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Abstract We generalize the maximal regularity result from Da Prato and Lunardi
(Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl 9(1):25–
29, 1998) to stochastic convolutions driven by time homogenous Poisson random
measures and cylindrical infinite dimensional Wiener processes.
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1 Introduction

The aim of the article is to investigate the maximal regularity of Ornstein–Uhlenbeck
type processes driven by purely discontinuous noise. In particular we will generalize
a result due to Da Prato and Lunardi [12] about maximal regularity of a stochastic
convolution process driven by one-dimensional Wiener process. In order to put the
reader into a framework, we briefly present here [12, Theorem 2.2].
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616 Z. Brzeźniak, E. Hausenblas

Theorem (Da Prato and Lunardi) Assume that E is a separable martingale type 2
Banach space, see the Appendix for a definition, and a linear operator −A in E (with
the domain D(A)) is an infinitesimal generator of an analytic semigroup {e−t A}t≥0
on E. Suppose that W = (W (t))t≥0 is a real valued Wiener process defined on some
filtered probability space (Ω,F , (Ft )t≥0, P). Assume that q ∈ [2,∞), ϑ ∈ (0, 1) and
T > 0. Then there exists a constant K > 0 such that for any progressively measurable
DA(θ, q)-valued process ϕ the following inequality holds.

E

T∫

0

|u(t)|q
DA(θ+ 1

2 ,q)
dt ≤ K q

E

T∫

0

|ϕ(t)|qDA(θ,q) dt, (1.1)

where u = (u(t))t∈[0,T ] is the stochastic convolution process defined by

u(t) :=
t∫

0

e−(t−s)Aϕ(s) dW (s), t ∈ [0, T ]. (1.2)

In the above DA(θ, q) stands for the real interpolation space between D(A) and E,
defined by

DA(θ, q) := {x ∈ E : |x |DA(θ,q) < ∞},

|x |qDA(θ,q) = |x |qE +
1∫

0

∣∣∣t1−θ Ae−t Ax
∣∣∣q dt

t
, x ∈ E . (1.3)

For θ /∈ (0, 1), one has to modify the above definition, see Sect. 2 for details.

The process u defined by the equality (1.2) can be viewed, see e.g. [8] for a discus-
sion of this subject, as a solution to the following E–valued Langevin equation written
in the Itô-form

du(t) + Au(t) dt = ϕ(t)dW (t), t ≥ 0,

u(0) = 0.
(1.4)

When the process ϕ is both deterministic and time independent, the process u is called
an Ornstein–Uhlenbeck process with drift −A.

Let us now present the main result of the current paper. Let us assume that (S,S)

is a measurable space, ν a non negative measure on (S,S), and η̃ is a time homoge-
neous compensated Poisson random measure defined on a filtered probability space
(Ω;F; (Ft )0≤t<∞; P) with intensity measure ν on S, to be specified later.

Let us further assume that 1 < p ≤ 2, 1 ≤ q ≤ p, E is a Banach space of
martingale type p, see the Appendix A for a definition, and that −A is an infinitesimal
generator of an analytic semigroup (e−t A)0≤t<∞ in E . We consider the following
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Maximal regularity for stochastic convolutions driven by Lévy processes 617

SPDE written in the Itô-form

{
du(t) = Au(t) dt + ∫

S ξ(t; x)η̃(dx; dt),

u(0) = 0,
(1.5)

where ξ : [0, T ] × Ω × S → E is a progressively measurable process satisfying
certain integrability conditions also specified later.

We define the solution to (1.5) to be the following stochastic convolution process
with respect to η̃.

u(t) :=
t∫

0

∫

S

e−A(t−r)ξ(r, x) η̃(dx; dr), t > 0. (1.6)

Our main result will be the following inequality

E

T∫

0

|u(t)|p
DA(θ+ 1

p ,p)
ν(dz)dt ≤ CE

T∫

0

∫

S

|ξ(t, z)|p
DA(θ,p) ν(dz)dt. (1.7)

As mentioned in the beginning, in the case of Stochastic Evolution Equations (brie-
fly SEEs) driven by a scalar Wiener process, the question of optimal regularity was
investigated by Da Prato in [11] or Da Prato and Lunardi [12].

We generalize their’s results to equations driven by discontinuous noise.

Notation 1 By N we denote the set of natural numbers, i.e. N = {0, 1, 2, . . .} and by
N̄ we denote the set N∪{+∞}. Whenever we speak about N (or N̄)-valued measurable
functions we implicitly assume that this set is equipped with the trivial σ -field 2N (or

2N̄). By R+ we will denote the interval [0,∞). If X is a topological space, then by
B(X) we will denote the Borel σ -field on X. By λ we will denote the Lebesgue measure
on (R,B(R)). For a measurable space (S,S) let M+

S be the set of all non negative
measures on (S,S).

2 Main results

Let us suppose that 1 < p ≤ 2, 1 ≤ q ≤ p and E is a Banach space of martingale type
p, see the Appendix A for the definition. Let us assume that (S,S) is a measurable
space and ν ∈ M+

S . Suppose that P = (Ω,F , (Ft )t≥0, P) is a filtered probability
space, η : S × B(R+) → N̄ is time homogeneous Poisson random measure with
intensity measure ν defined over (Ω,F , P) and adapted to the filtration (Ft )t≥0. We
will denote by η̃ = η − γ the compensated Poisson random measure associated to η,
where the compensator γ is defined by

γ : S × B(R+) � (A, I ) �→ ν(A)λ(I ) ∈ R+.
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618 Z. Brzeźniak, E. Hausenblas

We will prove in Appendix C, see also [17] for a different approach to this
question, that there exists a unique continuous linear operator which associates with
each progressively measurable process ξ : R+ × S × Ω → E such that

E

T∫

0

∫

S

|ξ(r, x)|p ν(dx) dr < ∞, T > 0, (2.1)

an adapted cádlág E-valued process, denoted by
∫ t

0

∫
S ξ(r, x)η̃(dx, dr), t ≥ 0, such

that if a process ξ satisfying the above condition (2.1) is a random step process with
representation

ξ(r) =
n∑

j=1

1(t j−1,t j ](r)ξ j , r ≥ 0,

where {t0 = 0 < t1 < · · · < tn < ∞} is a finite partition of [0,∞) and for all j , ξ j is
an E-valued Ft j−1 measurable, p-summable random variable, then

t∫

0

∫

S

ξ(r, x)η̃(dx, dr) =
n∑

j=1

∫

S

ξ̃ j (x)η
(
dx, (t j−1 ∧ t, t j ∧ t]) . (2.2)

The continuity mentioned above means that there exists a constant C = C(E)

independent of ξ such that

E

∣∣∣∣∣∣
t∫

0

∫

S

ξ(r, x)η̃(dx, dr)

∣∣∣∣∣∣
p

≤ CE

t∫

0

∫

S

|ξ(r, x)|p ν(dx) dr, t ≥ 0. (2.3)

One can prove,1 see e.g. the proof of Proposition 3.3 in [17], Theorem 3.1 in [4] for
the case q < p, or Corollary C.2 in Appendix C, that for any q ∈ [1, p] there exists a
constant C = Cq(E) such that for each process ξ as above and for all t ≥ 0,

E

∣∣∣∣∣∣
t∫

0

∫

S

ξ(r, x)η̃(dx, dr)

∣∣∣∣∣∣
q

≤ CE

⎛
⎝

t∫

0

∫

S

|ξ(r, x)|p ν(dx) dr

⎞
⎠

q/p

. (2.4)

1 The case q ∈ (p, ∞) is different and will be discussed later.
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Maximal regularity for stochastic convolutions driven by Lévy processes 619

Remark 2.1 Let us denote

I (ξ)(t) :=
t∫

0

∫

S

ξ(r, x)η̃(dx, dr), t ≥ 0

‖ξ‖ :=
⎛
⎝
∫

S

|ξ(x)|p ν(dx)

⎞
⎠

1/p

, ξ ∈ L p(S, ν; E).

Then the inequality (2.4) takes the following form

E|I (ξ)(t)|q ≤ Cq(E)E

⎡
⎢⎣
⎛
⎝

t∫

0

‖ξ(r)‖p dr

⎞
⎠

q/p
⎤
⎥⎦.

This should be (and will be) compared with the Gaussian case. Note that in the present
case ‖ξ‖ is simply the L p(S, ν, E) norm of ξ . In the Gaussian case the situation is
different.

Let us also point out that the inequality (2.4) for q < p follows from the same
inequality for q = p. In fact, using Proposition IV.4.7 from [30], see the proof of
Theorem 3.1 in [4], one can prove a stronger result. Namely that if inequality (2.4)
holds true for q = p, then for q ∈ [1, p) there exists a constant Kq > 0 such that for
each accessible2 stopping time τ > 0,

E sup
0≤t≤τ

|I (ξ)(t)|q ≤ Kq E

⎛
⎝

τ∫

0

‖ξ(t)‖p dt

⎞
⎠

q/p

. (2.5)

Assume further that −A is an infinitesimal generator of an analytic semigroup
denoted by (e−t A)t≥0 on E . By D(A) we denote the domain of A.

Define the stochastic convolution of the semigroup (e−t A)t≥0 and an E-valued
process ξ as above by the following formula

SC(ξ)(t) =
t∫

0

∫

S

e(t−r)Aξ(r, x)η̃(dx, dr), t ≥ 0. (2.6)

Let us recall that there exist constants C0 and ω0 such that

‖e−t A‖ ≤ C0etω0 , t ≥ 0. (2.7)

2 Following [6,15,20], a stopping time τ is called accessible if there exists an increasing sequence {τn}n∈N

of stopping times such that τn < τ a.s. and limn→∞ τn = τ .
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620 Z. Brzeźniak, E. Hausenblas

Without loss of generality, we will assume from now on that ω0 < 0. Let us also
recall the following characterization of the real interpolation3 spaces (E, D(Am))θ,q =
(D(Am), E)1−θ,q , where m ∈ N, between D(Am) and E with parameters θ ∈ (0, 1)

and q ∈ [1,∞), see section 1.14.5 in [32] or [11]. If δ ∈ (0,∞] then

(D(Am), E)1−θ,q =
⎧⎨
⎩x ∈ E :

δ∫

0

∣∣∣tm(1−θ) Ame−t Ax
∣∣∣q dt

t
< ∞

⎫⎬
⎭ ;

(E, D(Am))ϑ,q =
⎧⎨
⎩x ∈ E :

δ∫

0

∣∣∣tm(1−ϑ) Ame−t Ax
∣∣∣q dt

t
< ∞

⎫⎬
⎭ . (2.8)

The norms defined by the equality (2.8) for different values of δ are equivalent.
The spaces (D(Am), E)1−θ,q = (E, D(Am))θ,q depend on m, θ and q but for special
choices of these parameters they are equal, e.g. see the identity (2.12) below.

The space (D(Am), E)1−θ,q = (E, D(Am))θ,q is often denoted by DAm (θ, p) and
we will use the following notation

|x |qDAm (θ,q);δ =
δ∫

0

∣∣∣tm(1−θ) Ame−t Ax
∣∣∣q dt

t
. (2.9)

In the general case, i.e. when the semigroup {e−t A}t≥0 satisfies the condition (2.7)
with possibly positive ω0, one has the following equality but only for δ ∈ (0,∞):

(E, D(Am))θ,q =
⎧⎨
⎩x ∈ E :

δ∫

0

∣∣∣tm(1−θ)(ω0 I + A)me−t (ω0+A)x
∣∣∣p dt

t
< ∞

⎫⎬
⎭ .

(2.10)
In this case, the norm defined in the formula (2.9) has to be redefined in the following

way

|x |qDAm (θ,q);δ =
δ∫

0

∣∣∣tm(1−θ) Ame−t Ax
∣∣∣q dt

t
+ |x |q . (2.11)

Let us finally recall that if 0 < k < m ∈ N, p ∈ [1,∞) and θ ∈ (0, 1),
then (E, D(Ak))θ,p = (E, D(Am)) k

m θ,p, see [32, Theorem 1.15.2 (f)]. Therefore, if

3 In order to fix the notation let us point out that the interpolation functor (X0, X1)θ,q , θ ∈ (0, 1), q ∈
[1,∞], between two Banach spaces X1 and X0 such that both are continuously embedded into a common
topological Hausdorff vector space, satisfies the following properties: (i)(X1, X0)θ,q = (X0, X1)1−θ,q ,
(ii) if X0 ⊂ X1, 0 < θ1 < θ2 < 1 and p, q ∈ [1, ∞], then (X0, X1)θ1,p ⊂ (X0, X1)θ2,q . Roughly
speaking, (ii) implies that, if X0 ⊂ X1, then (X0, X1)ϑ,p ↘ X0 as ϑ ↘ 0 and (X0, X1)θ,p ↗ X1 as
ϑ ↗ 0. Or equivalently, if X0 ⊂ X1, then (X1, X0)θ,p ↘ X0 as θ ↗ 1 and (X1, X0)θ,p ↗ X1 as θ ↘ 1.
See Proposition 1.1.4 in [23] and section 1.3.3 in [32].
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Maximal regularity for stochastic convolutions driven by Lévy processes 621

p ∈ [1,∞) and θ ∈ [0, 1 − 1
p ), then

DA

(
θ + 1

p
, q

)
= DA2

(
θ

2
+ 1

2p
, q

)
(2.12)

with equivalent norms.
Our main result in this note is the following:

Theorem 2.1 Let us assume that 1 < p ≤ 2, E is a Banach space of martingale type
p, (S,S) be a measurable space and ν ∈ M+

S . Suppose that P = (Ω,F , (Ft )t≥0, P)

is a filtered probability space, η : S × B(R+) → N̄ is time homogeneous (Ft )t≥0-
adapted Poisson random measure with intensity measure ν defined over (Ω,F , P),
a linear operator −A in E is an infinitesimal generator of an analytic semigroup
{e−t A}t≥0 on E. Then for all θ ∈ (0, 1 − 1

p ), there exists a constant C = Ĉθ (E) such
that for any progressively measurable DA(θ, q)-valued process ξ and all T ≥ 0, the
following inequality holds

E

T∫

0

|SC(ξ)(t)|p
DA(θ+ 1

p ,p)
dt ≤ CE

T∫

0

∫

S

|ξ(t, z)|p
DA(θ,p) ν(dz) dt . (2.13)

In the Gaussian case, with q = p = 2 and E being a Hilbert space, a version of
the above result was proved by Da Prato in [11]. This result was then generalized to a
class of so called Banach spaces of martingale type 2 in [2], see also [3], for nuclear
Wiener process and in [7], to the case of cylindrical Wiener process. Finally, Da Prato
and Lunardi studied in [12] the case when q ≥ p = 2 with a one dimensional Wiener
process. However, a generalization of the last result to a cylindrical Wiener process
does not cause any serious problems, see Theorem 5.1 in Sect. 5 at the end of this
Note.

Theorem 2.1 will be deduced from a more general result whose idea can be traced
back to Remark 2.1.

Theorem 2.2 Let (Ω,F , (Ft )t≥0, P) be a filtered probability space, p ∈ (1, 2] and
q ∈ [p,∞). Let us denote by Ep,q a class of separable Banach spaces satisfying the
following assumptions:

(R1) With each space E belonging to the class Ep,q we associate a separable Banach
space R = R(E), such that there is a family (It )t≥0 of linear operators from
the class Mp

loc(R(E)) of all progressively measurable R(E)-valued processes
to L p(Ω,Ft, P; E) such that for some constant C p > 0

E|It (ξ)|p
E ≤ C pE

t∫

0

‖ξ(r)‖p
R(E) dr. (2.14)

(R2) If E ∈ Ep,q and E1 isomorphic to E, then E1 belongs to Ep,q as well.
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622 Z. Brzeźniak, E. Hausenblas

(R3) If E1, E2 ∈ Ep,q and Φ : E1 → E2 is a bounded linear operator, then

‖Φξ‖R(E2) ≤ |Φ|‖ξ‖R(E1), ξ ∈ R(E1).

(R4) If E1, E2 ∈ Ep,q are such that E2 ⊂ E1 densely and continuously, then the real
interpolation spaces (E2, E1)θ,p, θ ∈ (0, 1), belong to the class Ep,q as well.

(R5) There exists a constant Ĉq > 0 such that for all t > 0

E|It (ξ)|qE ≤ ĈqE

⎛
⎝

t∫

0

‖ξ(r)‖p
R(E) dr

⎞
⎠

q/p

, ξ ∈ Mp
loc(R(E)). (2.15)

For each E ∈ Ep,q let A(E) denote the class of operators A, such that −A is an
infinitesimal generator of an analytic semigroup {e−t A}t≥0 on the space E. We further
assume that

(R6) For each E ∈ Ep,q , θ ∈ (0, 1) and each δ > 0 here exists a constant K > 0
such that

δ∫

0

∥∥∥r1−θ Ae−r Aξ

∥∥∥q

R(E)

dr

r
≤ K q‖ξ‖q

R(DA(θ,q)), ξ ∈ R(E). (2.16)

For each pair (E, A) such that E ∈ Ep,q and A ∈ A(E), let us define a family
(SCt )t≥0 of linear operators from Mp

loc(R(E)) to L p(Ω,Ft , P; E) by the following
formula

SCt (ξ) = It

(
e−(t−·)Aξ(·)

)
, t ≥ 0. (2.17)

Then, for every pair (E, A) such that E ∈ Ep,q and A ∈ A(E) and θ ∈ (0, 1 − 1
p ),

there exists a constant Ĉ such that for all T > 0 the following inequality holds

E

T∫

0

|SCt (ξ)|q
DA(θ+ 1

p ,q)
dt ≤ Ĉ E

T∫

0

‖ξ(s)‖q
R(DA(θ,q)) dt. (2.18)

Remark 2.2 It follows from (R1) that if ξ(r, ω) = η(r, ω) λ×̂P-a.e. with respect to
(r, ω) ∈ [0, T ] × Ω , then It (ξ) = It (η).

Now we shall present two basic examples.

Example 2.1 Let (Ω,F , (Ft )t≥0, P) be a filtered probability space, p = 2 and q ∈
(1,∞). Let H be a separable Hilbert space and let E2,q be a class of all 2-smoothable
Banach spaces, see Appendix A for a definition. With E ∈ E2 = E2,q we associate the
space R(E) := R(H, E) of all γ -radonifying operators from H to E . It is known, see
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Maximal regularity for stochastic convolutions driven by Lévy processes 623

[25], that R(H, E) is a separable Banach space endowed with the following norm4

‖ϕ ‖q
R(H,E);q := E

∣∣∣∣∣
∑

k

βkϕ ek

∣∣∣∣∣
q

E

, ϕ ∈ R(H, E), (2.19)

{ek}k be an ONB of H and {βk}k a sequence of i.i.d. Gaussian N(0,1) random variables.

Example 2.2 Let (Ω,F , (Ft )t≥0, P) be a filtered probability space, p ∈ (1, 2]. Let
(S,S) be a measurable space and η : S×̂B(R+) → N

+ be a time homogeneous,
compensated Poisson random measure over (Ω;F; P) adapted to filtration (Ft )t≥0
with intensity ν ∈ M+

S . Let Ep,q = Ep be the set of all separable Banach spaces
of martingale type p. With E ∈ Ep we associate a class of measurable functions
ξ : S → E such that

‖ξ‖p
R(E) :=

∫

S

|ξ(x)|p
E ν(dx) < ∞.

An important case, often studied in the literature, see e.g. [31], is when the intensity
measure ν induces a Lévy measure on a certain Banach space E .

3 Proof of Theorem 2.2

We begin with the case q = p. Without loss of generality the norm | · |DA(θ+ 1
p ,p);1,

defined by formula (2.9), will be denoted by | · |DA(θ+ 1
p ,p). Also, we may assume that

A−1 exists and is bounded so that the graph norm in D(A) is equivalent to the norm
|A · |.

By the equality (2.12), Definition (2.9), the Fubini Theorem and formula (2.17) we
have

E

T∫

0

|SCt (ξ)|p
DA(θ+ 1

p ,p)
dt ≤ CE

T∫

0

|SCt (ξ)|p
DA2 ( θ

2 + 1
2p ,p)

dt

= C

T∫

0

1∫

0

E

∣∣∣r2(1− θ
2 − 1

2p ) A2e−r A SCt (ξ)

∣∣∣p dr

r
dt

4 It follows from the Khinchin–Kahane inequality, see [19], that the norms ‖ · ‖R(H,E);q for various
q ∈ (1,∞) are equivalent.
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624 Z. Brzeźniak, E. Hausenblas

= C

T∫

0

1∫

0

r p(2−θ)−1
E

∣∣∣A2e−r A It

(
e−(t−·)Aξ(·)

)∣∣∣p dr

r
dt

= C

T∫

0

1∫

0

r p(2−θ)−1
E

∣∣∣It

(
A2e−r Ae−(t−·)Aξ(·)

)∣∣∣p dr

r
dt ≤ · · ·

By applying next the inequality (2.14), the property (R3), the Fubini Theorem, the
fact that |Ae− r

2 A| ≤ Cr−1, r > 0, for some constant C > 0 (see e.g. [27], as well as
by observing that 1

t−u+r ≤ 1
r for t ∈ [u, T ], r > 0), we infer that

· · · ≤ C p

1∫

0

r p(2−θ)−1

T∫

0

E

t∫

0

∥∥∥A2e−(t−u+r)Aξ(u)

∥∥∥p

R(E)
du dt

dr

r

≤ C p

1∫

0

r p(2−θ)−1

T∫

0

E

t∫

0

∣∣∣Ae− t−u+r
2 A

∣∣∣p ∥∥∥Ae− t−u+r
2 Aξ(u)

∥∥∥p

R(E)
du dt

dr

r

≤ C pE

1∫

0

r p(2−θ)−1

[
sup

0≤u≤t
(t−u + r)−p

] T∫

0

⎡
⎣

T∫

u

∥∥∥Ae− t−u+r
2 Aξ(u)

∥∥∥p

R(E)
dt

⎤
⎦ du

dr

r

≤ C pE

T∫

0

T +1−ρ∫

0

∥∥∥Ae− σ
2 Aξ(ρ)

∥∥∥p

R(E)

⎡
⎢⎣

ρ+σ∫

ρ∨(σ+ρ−1)

(σ + ρ − τ)p(1−θ)−2 dτ

⎤
⎥⎦ dσ dρ

≤ C pE

T∫

0

T +1−ρ∫

0

∥∥∥Ae− σ
2 Aξ(ρ)

∥∥∥p

R(E)

⎡
⎣

ρ+σ∫

ρ

(σ + ρ − τ)p(1−θ)−2 dτ

⎤
⎦ dσ dρ

= C pE

T∫

0

T +1−ρ∫

0

∥∥∥Ae− σ
2 Aξ(ρ)

∥∥∥p

R(E)

⎡
⎣

σ∫

0

τ p(1−θ)−2 dτ

⎤
⎦ dσ dρ

= C ′
pE

T∫

0

T +1−ρ∫

0

σ p(1−θ)−1
∥∥∥Ae− σ

2 Aξ(ρ)

∥∥∥p

R(E)
dσ dρ

≤ C ′′
pE

T∫

0

T/2∫

0

∥∥∥σ 1−θ Ae−σ Aξ(ρ)

∥∥∥p

R(E)

dσ

σ
dρ

≤ Ĉ ′′′
p K p

T E

T∫

0

‖ξ(r)‖p
R(DA(θ,p)) dr,

where the last inequality is a consequence of the assumption (R6) with q = p.
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Maximal regularity for stochastic convolutions driven by Lévy processes 625

Remark 3.1 Note that the assumption θ < 1 − 1
p , i.e. p(1 − θ) − 2 > −1, was used

in one of the last inequalities.

The proof in the case q > p follows the same ideas. Note also that the above proof
resembles closely the proof from [12]. We give full details below.

We consider now the case q > p. We use the same notation as in the previous case.
But we will make some (or the same) additional assumptions. By the equality (2.12),
definition (2.9), the Fubini Theorem and formula (2.17) we have

E

T∫

0

|SCt (ξ)|q
DA(θ+ 1

p ,q)
dt ≤ CE

T∫

0

|SCt (ξ)|q
DA2 ( θ

2 + 1
2p ,q)

dt

= C

T∫

0

1∫

0

sq(2−θ)− q
p E

∣∣∣A2e−s A SCt (ξ)

∣∣∣q ds

s
dt

= C

T∫

0

1∫

0

sq(2−θ)− q
p E

∣∣∣A2e−s A It

(
e−(t−·)Aξ(·)

)∣∣∣q ds

s
dt

= C

T∫

0

1∫

0

sq(2−θ)− q
p E

∣∣∣It

(
A2e−s Ae−(t−·)Aξ(·)

)∣∣∣q ds

s
dt ≤ · · ·

Before we continue, we formulate the following simple Lemma.

Lemma 3.1 There exists a constant C > 0 such that for all t > 0, s ∈ (0, 1)

⎛
⎝

t∫

0

1

(t − r + s)
pq

q−p
dr

⎞
⎠

q
p −1

≤ C
1

sq(1− 1
p )+1

Proof of Lemma 3.1 Denote α = pq
q−p and observe that α > 1. Since

∫ t
0

1
(t−r+s)α dr =∫ t

0
1

(r+s)α dr ≤ ∫∞
0

1
(r+s)α dr = 1

α−1
1

sα−1 and (α − 1)(
q
p − 1) = q(1 − 1

p ) + 1, the

result follows.

As in the earlier case, by applying the inequality (2.14), the property (R3), the Fubini
Theorem, the fact that |Ae− s

2 A| ≤ Cs−1, s > 0, for some constant C > 0 as well as
Hölder inequality and Lemma 3.1 we infer that

· · · ≤ Ĉq

1∫

0

sq(2−θ)− q
p

T∫

0

E

⎡
⎣

t∫

0

∥∥∥A2e−(t−r+s)Aξ(r)

∥∥∥p

R(E)
dr

⎤
⎦

q/p

dt
ds

s

≤ CĈqE

1∫

0

sq(2−θ)− q
p

T∫

0

⎡
⎣

t∫

0

∣∣∣Ae− t−r+s
2 A

∣∣∣p ∥∥∥Ae− t−r+s
2 Aξ(r)

∥∥∥p

R(E)
dr

⎤
⎦

q/p

dt
ds

s
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626 Z. Brzeźniak, E. Hausenblas

≤ CĈqE

1∫

0

sq(2−θ)− q
p

T∫

0

⎡
⎢⎣
⎛
⎝

t∫

0

∣∣∣Ae− t−r+s
2 A

∣∣∣
pq

q−p
dr

⎞
⎠

q
p −1

×
t∫

0

∥∥∥Ae− t−r+s
2 Aξ(r)

∥∥∥q

R(E)
dr

⎤
⎦ dt

ds

s

≤ C ′ĈqE

1∫

0

sq(2−θ)− q
p

T∫

0

1

sq(1− 1
p )+1

t∫

0

∥∥∥Ae− t−r+s
2 Aξ(r)

∥∥∥q

R(E)
dr dt

ds

s

= C ′ĈqE

1∫

0

sq(1−θ)−1

T∫

0

⎡
⎣

T∫

r

∥∥∥Ae− t−r+s
2 Aξ(r)

∥∥∥q

R(E)
dt

⎤
⎦ dr

ds

s
≤ · · · (3.1)

Let us now introduce new integration variables: ρ = u, τ = t and σ = t − u + r .
Then the set over which the last integral is calculated is not larger than {(ρ, σ, τ ) :
0 < ρ < T, 0 < σ < T + 1 − ρ, ρ ∨ (σ + ρ − 1) < τ < ρ + σ }. Therefore, we have

· · · ≤ C ′ĈqE

T∫

0

T +1−ρ∫

0

∥∥∥Ae− σ
2 Aξ(ρ)

∥∥∥q

R(E)

⎡
⎢⎣

ρ+σ∫

ρ∨(σ+ρ−1)

(σ +ρ−τ)q(1−θ)−2dτ

⎤
⎥⎦ dσ dρ

≤ C ′ĈqE

T∫

0

T +1−ρ∫

0

∥∥∥Ae− σ
2 Aξ(ρ)

∥∥∥q

R(E)

⎡
⎣

ρ+σ∫

ρ

(σ + ρ − τ)q(1−θ)−2 dτ

⎤
⎦ dσ dρ

= C ′ĈqE

T∫

0

T +1−ρ∫

0

∥∥∥Ae− σ
2 Aξ(ρ)

∥∥∥q

R(E)

⎡
⎣

σ∫

0

τ q(1−θ)−2 dτ

⎤
⎦ dσ dρ

= Ĉ ′
qE

T∫

0

T +1−ρ∫

0

σ q(1−θ)−1
∥∥∥Ae− σ

2 Aξ(ρ)

∥∥∥q

R(E)
dσ dρ

≤ Ĉ ′′
q E

T∫

0

T/2∫

0

∥∥∥σ 1−θ Ae−σ Aξ(ρ)

∥∥∥q

R(E)

dσ

σ
dρ ≤ Ĉ ′′

q K p
T/2E

T∫

0

‖ξ(r)‖q
R(DA(θ,q)) dr,

where the last inequality follows from Assumption (R6). This completes the proof.

Remark 3.2 Note that the assumption q > p was used in (3.1). In the first part of the
proof we considered the case q = p. We do not know if our result is valid in the case
q ∈ (1, p).
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Maximal regularity for stochastic convolutions driven by Lévy processes 627

4 Proof of Theorem 2.1

We will deduce Theorem 2.1 from Theorem 2.2. For this we fix a number p ∈ (1, 2], put
q = p, and consider a measurable space (S,S), ν ∈ M+

S , a filtered probability space
P = (Ω,F , (Ft )t≥0, P) and a time homogeneous (Ft )t≥0-adapted Poisson random
measure η : S × B(R+) → N̄ with intensity measure ν defined over (Ω,F , P).
We set Ep,q = Ep to be the class of all martingale type p Banach spaces. Note that
we impose here an additional assumption that q = p. For any E ∈ Ep,q we put
R(E) := L p(S, ν, E).

We will verify now that this class satisfies the conditions (R1)–(R5). In Appendix C,
we prove that conditions (R1) and (R5) are satisfied. It follows directly from the
definition of martingale type p Banach spaces, see Appendix A, that condition (R2)
is also satisfied. Moreover, condition (R3) is obviously satisfied. Validity of condition
(R4) follows from Theorem A.4 in [3]. Hence, we only need to verify condition (R6).
We have

Proposition 4.1 Let us assume that θ ∈ (0, 1), p ∈ (1, 2] and T > 0. Then there
exists a constant KT > 0 such that for each ϕ ∈ L p(S, ν, E) =: R(E) the following
inequality holds

K −1
T ‖ϕ ‖p

R((E,D(A))θ,p) ≤
T∫

0

t (1−θ)p
∥∥∥Ae−t Aϕ

∥∥∥p

R(E)

dt

t

≤ KT ‖ϕ ‖p
R((E,D(A))θ,p). (4.1)

In particular, ϕ ∈ R((D(A), E)θ,p) iff (for some and/or all T > 0) the integral∫ T
0 t (1−θ)p‖Ae−t Aϕ ‖p

R(E)
dt
t is finite.

Proof of Proposition 4.1 Follows by applying the Fubini Theorem.

5 Stochastic convolution in the cylindrical Gaussian case

Assume now that H is separable Hilbert space and W (t), t ≥ 0, is an H - cylindrical
Wiener process defined on some complete filtered probability space
(�,F , (Ft )t≥0, P), see e.g. [4].

Theorem 5.1 Assume that E is a martingale type 2 Banach space, q ∈ [2,∞) and a
linear operator −A in E (with the domain D(A)) is an infinitesimal generator of an
analytic semigroup {e−t A}t≥0 on E. Then under the above assumptions there exists a
constant Ĉq(E) such that for any process ξ described above the following inequality
holds

E

T∫

0

|SC(ξ)(t)|q
DA(θ+ 1

p ,q)
dt ≤ Ĉq(E)E

T∫

0

‖ξ(t)‖q
R(H,DA(θ,q)) dt, T ≥ 0. (5.1)
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628 Z. Brzeźniak, E. Hausenblas

The proof of Theorem 5.1 will be preceded by the following useful result.

Proposition 5.1 Let us assume that θ ∈ (0, 1), q ≥ 1 and T > 0. Then there exists a
constant KT > 0 such that for each bounded linear map ϕ : H → E the following
inequality holds

K −1
T ‖ϕ ‖q

R(H,(E,D(A))θ,q
≤

T∫

0

t (1−θ)q
∥∥∥Ae−t Aϕ

∥∥∥q

R(H,E)

dt

t

≤ KT ‖ϕ ‖q
R(H,(E,D(A))θ,q ). (5.2)

In particular, ϕ ∈ R(H, (D(A), E)θ,q) iff (for some and/or all T > 0) the integral∫ T
0 t (1−θ)q‖Ae−t Aϕ ‖q

R(H,E)
dt
t is finite.

Proof of Proposition 5.1 Let {ek}k be an ONB of H and {βk}k a sequence of i.i.d.
Gaussian N(0,1) random variables. It is known, see e.g. [21] that there exists a constant
C p(E) such that for each linear operator ϕ : H → E the following inequality holds.

C p(E)−1
E

∣∣∣∣∣∣
∑

j

β jϕ e j

∣∣∣∣∣∣
p

E

≤ ‖ϕ ‖p
R(H,E) ≤ C p(E)E

∣∣∣∣∣∣
∑

j

β jϕ e j

∣∣∣∣∣∣
p

E

(5.3)

We have

T∫

0

t (1−θ)q
∥∥∥Ae−t Aϕ

∥∥∥q

R(H,E)

dt

t
≤ Cq(E)

T∫

0

t (1−θ)q
E

∣∣∣∣∣
∑

k

βk Ae−t Aϕ ek

∣∣∣∣∣
q

E

dt

t

= Cq(E)E

T∫

0

t (1−θ)q

∣∣∣∣∣
∑

k

βk Ae−t Aϕ ek

∣∣∣∣∣
q

E

dt

t

= Cq(E)E

∣∣∣∣∣
∑

k

βk Ae−t Aϕ ek

∣∣∣∣∣
q

DA(θ,q);T
≤ C(T )Cq(E)‖ϕ ‖q

R(H,DA(θ,q)).

Since DA(ϑ, q) = (E, D(A))θ,q with equivalent norms, this proves the second inequa-
lity in (5.2). The first inequality follows the same lines.

Proof of Theorem 5.1 We set E2,q to be the class of all martingale type p Banach
spaces. Note that we impose here an additional assumption that q ≤ p. Let us recall
that the space R(H, E) of γ -radonifying operators is described in Appendix B. We
will verify now that this class satisfies the conditions (R1)–(R5). Conditions (R1)
follows from [25] while condition (R5) follows from e.g. Theorem 2.12 in [5], see also
[4] and [26, section 5], where the Burkholder inequality is proved for all q ∈ (0,∞).
Condition (R2) follows directly from the definition of martingale type 2 Banach spaces.
Moreover, condition (R3) follows from the Definition B.1 of the γ -radonifying norm.
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Maximal regularity for stochastic convolutions driven by Lévy processes 629

Validity of condition (R4) follows from Theorem A.4 in [3]. Finally, the condition
(R6) has just been proved in Proposition 5.1. Hence the proof is complete.

Appendix

A: Martingale type p, p ∈ [1, 2], Banach spaces

In this section, we collect some basic information about the martingale type p, p ∈
[1, 2], Banach spaces.

Assume also that p ∈ [1, 2] is fixed. A Banach space E is of martingale type p iff
there exists a constant L p(E) > 0 such that for all E-valued finite martingale {Mn}N

n=0
the following inequality holds

sup
n

E|Mn|p ≤ L p(E)

N∑
n=0

E|Mn − Mn−1|p, (A.1)

where as usually, we put M−1 = 0.
A Banach space E is called p-smoothable, see the celebrated paper [28] by Pisier,

iff there exists an equivalent norm | · | on E such that for some k > 0 the modulus of
smoothness ρE of (E, |·|) defined by ρE (t) := sup|x |=|y|=1

1
2 (|x + t y|+|x − t y|) −1,

satisfies
ρE (t) ≤ kt p, t ∈ (0, 1]. (A.2)

It is now well known, see e.g. [28] and [29], that a Banach space E is of martingale
type p iff it is p-smoothable. In particular, all spaces Lq for q ≥ p and q > 1, are of
martingale type p.

Let us also recall that a Banach space E is of type p iff there exists a constant
K p(E) > 0 for any finite sequence ε1, . . . , εn : Ω → {−1, 1} of symmetric i.i.d.
random variables and for any finite sequence x1, . . . , xn of elements of E , the following
inequality holds

E

∣∣∣∣∣
n∑

i=1

εi xi

∣∣∣∣∣
p

≤ K p(E)

n∑
i=1

|xi |p. (A.3)

It is known, see e.g. [22, Theorem 3.5.2], that a Banach space E is of type p iff E
is of Gaussian type p, i.e. there exists a constant K̃ p(E) > 0 such that for any finite
sequence ξ1, . . . , ξn of i.i.d. N (0, 1) random variables and for any finite sequence
x1, . . . , xn of elements of E , the following inequality holds

E

∣∣∣∣∣
n∑

i=1

ξi xi

∣∣∣∣∣
p

≤ K̃ p(E)

n∑
i=1

|xi |p, (A.4)

It is also known, see [18, Theorem 2.1], that a Banach space E is of type p iff there
exists K p(X) such that for any finite sequence f1, . . . , fn of independent E-valued
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630 Z. Brzeźniak, E. Hausenblas

random variables mean zero with finite p-th moments,

E

∣∣∣∣∣
n∑

i=1

fi

∣∣∣∣∣
p

≤ K p(E)

n∑
i=1

E| fi |p. (A.5)

Let us finally recall that a Banach space E is an UMD space (i.e. E has the uncon-
ditional martingale difference property) iff for any p ∈ (1,∞) there exists a constant
βp(E) > 0 such that for any E-valued martingale difference {ξ j } ( i.e.:

∑n
j=1 ξ j is a

martingale), for any ε : N → {−1, 1} and for any n ∈ N

E

∣∣∣∣∣∣
n∑

j=1

ε jξ j

∣∣∣∣∣∣
p

≤ βp(E)E

∣∣∣∣∣∣
n∑

j=1

ξ j

∣∣∣∣∣∣
p

. (A.6)

It is known, see [9] and references therein, that for a Banach space E the following
conditions are equivalent: (1) E is an UMD space, (2) E is ζ convex, (3) the Hilbert
transform for E-valued functions is bounded in L p(R, E) for any (or some) p > 1.

Finally, it is known, see e.g. [28, Proposition 2.4], that if a Banach space E is both
UMD and of type p, then E is of martingale type p.

B: γ -Radonifying operators

Assume that H and E are real separable Hilbert and resp. Banach spaces and γH

is the canonical Gaussian cylindrical distribution on H . A bounded linear operator
L : H → E is called γ -radonifying iff L(γH ) is σ -additive. If this is the case, L(γH )

has a unique extension to a σ -additive Borel probability measure νL on E . The set of all
γ -radonifying operators from H to E we will denote by R(H, E). For L ∈ R(H, E)

one puts

‖L‖R(H,E) :=
⎧⎨
⎩
∫

E

|x |2dνL(x)

⎫⎬
⎭

1
2

. (B.1)

Neidhardt in [25] proved that ‖ ·‖ is a norm on R(H, E), that R(H, E) with that norm
is a separable Banach space and that the set Lfin(H, E) of bounded linear operators L :
H → E with finite dimensional range, is a dense subspace of R(H, E). It follows from
Baxendale [1] that R(H, E) is an operator ideal, i.e. if L ∈ R(H, E), A ∈ L(G, H)

and B ∈ L(E, Y ) (where G and Y is another separable Hilbert, resp. Banach space)
then also BL A ∈ R(G, Y ) and ‖BL A‖R(G,Y ) ≤ C |B|L(E,Y )‖L‖R(H,E)|A|L(G,H) for
some constant C independent of A, B and L .

Let us fix an orthonormal basis (ONB) {ek}k of H and let us denote by Πn the
projection onto the space spanned by e1, . . . , en . Let us choose and fix an i.i.d. sequence
of standard centered real valued Gaussian random variables βk , k ∈ N. It follows from
the Itô-Nisio Theorem, see e.g. [21] then L ∈ R(H, E) iff

(
E |∑k βk Lek |2E

)1/2
< ∞.

Moreover, ‖L‖ = (
E |∑k βk Lek |2E

)1/2
. One can also show that the exponent 2 above

can be replaced by any p ∈ (1,∞).
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C: Proof of inequality (2.3)

In this appendix we formulate and prove inequality (2.3). Our approach is a sense
similar to the approach used in the Gaussian case by Neidhard [25] and Brzeźniak [3]
or in the Poisson random measure in Madrekar and Rüdiger [24]. In fact, our main
result below can be seen a generalization of Theorem 3.6 from [24] to the case of
martingale type p Banach spaces, with p ∈ (1, 2].

Assume that E is a real separable Banach space of martingale type p.

Notation 2 By M N̄

S×R+ we denote the family of all N̄-valued measures on (S×R+,S⊗
B(R+)) and MN̄

S×R+ is the σ -field on MN̄

S×R+ generated by functions iB : M � µ �→
µ(B) ∈ N̄, B ∈ S ⊗ B(R+).

Let us assume that (S,S) is a measurable space, ν ∈ M+
S is a non-negative measure

on (S,S) and P = (Ω,F , (Ft )t≥0, P) is a filtered probability space. We also assume
that η is time homogeneous Poisson random measure over P, with the intensity mea-
sure ν, i.e. η : (Ω,F) → (MN̄

S×R+ ,MN̄

S×R+) is a measurable function satisfying the
following conditions:

(i) for each B ∈ S ⊗ B(R+), η(B) := iB ◦ η : Ω → N̄ is a Poisson random
variable with parameter5

Eη(B);
(ii) η is independently scattered, i.e. if the sets B j ∈ S ⊗ B(R+), j = 1, . . . , n are

pair-wise disjoint, then the random variables η(B j ), j = 1, . . . , n are pair-wise
independent;

(iii) for all B ∈ S and I ∈ B(R+), E [η(B × I )] = λ(I )ν(B), where λ is the
Lebesgue measure;

(iv) for each U ∈ S, the N̄-valued process (N (t, U ))t>0 defined by

N (t, U ) := η(U × (0, t]), t > 0

is (Ft )t≥0-adapted and its increments are independent of the past, i.e. if t >

s ≥ 0, then N (t, U ) − N (s, U ) = η(U × (s, t]) is independent of Fs .

By η̃ we will denote the compensated Poisson random measure, i.e. a function defined
by η̃(B) = η(B) − E(η(B)), with the convention that ∞ − ∞ = 0.

Lemma C.1 Let p ∈ (1, 2] and assume that E is a Banach space of type p. If a
finitely valued function f belongs to L p(Ω × S,Fa ⊗S; P⊗ ν; E) for some a ∈ R+,
then for any b > a,

E

∣∣∣∣∣∣
∫

S

f (x)η̃(dx, (a, b])
∣∣∣∣∣∣

p

E

≤ 22−p L2
p(E)(b − a)E

∫

S

| f (x)|p
E ν(dx). (C.1)

The proof of this Lemma will be given later.

5 If Eη(B) = ∞, then obviously η(B) = ∞ a.s..
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632 Z. Brzeźniak, E. Hausenblas

Since the space of finitely valued functions is dense in L p(Ω×S,Fa ⊗S; P⊗ν; E),
see e.g. [10, Lemma 1.2.14], the previous result implies the following fundamental
claim, whose proof is omitted.

Corollary C.1 Assume that p ∈ (1, 2] and that E is a p-smoothable Banach space.
Then under the assumptions of Lemma C.1 there exists a unique bounded linear ope-
rator

Ĩ(a,b) : L p(Ω × S,Fa ⊗ S; P ⊗ ν; E) → L p(Ω,F , E)

such that for a finitely-valued function f , we have

Ĩ(a,b)( f ) =
∫

S

f (x)η̃(dx, (a, b]).

In particular, for every f ∈ L p(Ω × S,Fa ⊗ S; P ⊗ ν; E),

E

∣∣∣ Ĩ(a,b)( f )

∣∣∣p

E
≤ 22−p L2

p(E)(b − a)E

∫

S

|ξ(x)|p
E ν(dx). (C.2)

In what follows, unless we are in danger of ambiguity, for every L p(Ω × S,Fa ⊗
S; P ⊗ ν; E) we will write

∫
S ξ(x)η̃(dx, (a, b]) instead of Ĩ(a,b)( f ).

Let X be any Banach space. Later on we will take X to be one of the spaces
E , R(H, E) or L p(S, ν, E). For a < b ∈ [0,∞] let N (a, b; X) be the space of
(equivalence classes of) progressively-measurable processes ξ : (a, b] × Ω → X .

For q ∈ (1,∞) we set

N q(a, b; X) =
⎧⎨
⎩ξ ∈ N (a, b; X) :

b∫

a

|ξ(t)|q dt < ∞ a.s.

⎫⎬
⎭, (C.3)

Mq(a, b; X) =
⎧⎨
⎩ξ ∈ N (a, b; X) : E

b∫

a

|ξ(t)|q dt < ∞
⎫⎬
⎭. (C.4)

Let Nstep(a, b; X) be the space of all ξ ∈ N (a, b; X) for which there exists a partition
a = t0 < t1 < · · · < tn < b such that for k ∈ {1, . . . , n}, for t ∈ (tk−1, tk],
ξ(t) = ξ(tk) is Ftk−1 -measurable and ξ(t) = 0 for t ∈ (tn, b). We put Mq

step =
Mq ∩ Nstep. Note that Mq(a, b; X) is a closed subspace of Lq([a, b) × Ω; X) ∼=
Lq([a, b); Lq(Ω; X)).

In what follows we put a = 0 and b = ∞. For ξ ∈ Mp
step(0,∞; L p(S, ν; E)) we

set

Ĩ (ξ) =
n∑

j=1

∫

S

ξ(t j , x)η̃(dx, (t j−1, t j ]). (C.5)
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Obviously, Ĩ (ξ) is a F-measurable map from Ω with values in E .
We have the following auxiliary results.

Lemma C.2 Let p ∈ (1, 2] and assume that E is a Banach space of martingale type
p. Then for any ξ ∈ Mp

step(0,∞; L p(S, ν; E)), Ĩ (ξ) ∈ L p(Ω, E), E Ĩ (ξ) = 0 and

E| Ĩ (ξ)|p ≤ K 2
p(E)L p(E)22−p

∞∫

0

E

∫

S

|ξ(t, x)|p
Eν(dx) dt (C.6)

The proof of this Lemma will be given later.

Lemma C.3 Suppose that ξ ∼ Poiss (λ), where λ > 0. Then, for all p ∈ [1, 2],

E|ξ − λ|p ≤ 22−pλ.

Also the proof of this Lemma will be given later.

Remark C.1 One can easily calculate that

E(|ξ − λ|) = 2λ e−λ, if λ ∈ (0, 1).

Theorem C.1 Assume that p ∈ (1, 2] and E is a martingale type p Banach space.
Then there exists a unique bounded linear operator

Ĩ : Mp(0,∞, L p(S, ν; E)) → L p(Ω,F , E)

such that for ξ ∈ Mp
step(0,∞, L p(S, ν; E)) we have I (ξ) = Ĩ (ξ). In particular, for

every ξ ∈ Mp(0,∞, L p(S, ν; E)),

E|I (ξ)|p
E ≤ 22−p L2

p(E)L p(E)E

∞∫

0

∫

S

|ξ(t, x)|p
E ν(dx) dt. (C.7)

Moreover, for each ξ ∈ Mp(0,∞, L p(S, ν; E)), the process I (1[0,t]ξ), t ≥ 0, is an
E-valued p-integrable martingale. The process 1[0,t]ξ is defined by [1[0,t]ξ ](r, x;ω)

:= 1[0,t](r)ξ(r, x, ω), t ≥ 0, r ∈ R+, x ∈ S and ω ∈ Ω .

Proof of Theorem C.1 Follows from Lemma C.2 and the density of Mp
step(0,∞,

L p(S, ν; E)) in the space Mp(0,∞, L p(S, ν; E)).

In a natural way we can define spaces Mp
loc(0,∞, L p(S, ν; E)) and Mp(0, T,

L p(S, ν; E)), where T > 0. Then for any ξ ∈ Mp
loc(0,∞, L p(S, ν; E)) we can

in a standard way define the integral
∫ t

0

∫
S ξ(r, x)η̃(dx, dr), t ≥ 0, as the cádlág

modification of the process

I
(
1[0,t]ξ

)
, t ≥ 0. (C.8)
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In view of [14, Theorem 1, p. 181] the existence of the above mentioned cádlág
modification follows from the last part of Theorem C.1.

Similarly, for a stopping time τ we can define a process ξ ∈ Mp
loc(0,∞,

L p(S, ν; E)) and the integral

τ∫

0

∫

S

ξ(r, x)η̃(dx, dr) := I (1[0,τ ]ξ), (C.9)

provided 1[0,τ ]ξ ∈ Mp(0,∞, L p(S, ν; E)). Theorem C.1 implies that in this case
the following inequality holds.

E

∣∣∣∣∣∣
τ∫

0

∫

S

ξ(r, x)η̃(dx, dr)

∣∣∣∣∣∣
p

E

≤ C pE

τ∫

0

∫

S

|ξ(r, x)|p
E ν(dx) dr. (C.10)

with some constant C p > 0 independent of ξ .

Proof of Lemma C.2 Let us observe that the sequence (Mk)
n
k=1 defined by Mk =∑k

j=1

∫
S ξ(t j , x)η̃(dx, [t j−1, t j )), k = 1, . . . , n, is an E-valued martingale (with res-

pect to the filtration (Ftk )
n
k=1). Therefore, by the martingale type p property of the

space E and Lemma C.1 we have the following sequence of inequalities

E| Ĩ (ξ)|p
E = E|Mn|p

E ≤ L p(E)

n∑
k=1

E

∣∣∣∣∣∣
∫

S

ξ(tk, x)η̃(dx, [tk−1, tk])
∣∣∣∣∣∣

p

E

≤ L p(E)K 2
p(E)22−p

n∑
k=1

(tk − tk−1) E

∫

S

|ξ(tk, x)|p
E ν(dx)

= L p(E)K 2
p(E)22−p

∞∫

0

E

∫

S

|ξ(t, x)|p
E ν(dx) dt. (C.11)

This concludes the proof.

Proof of Lemma C.1 Put I = (a, b]. We may suppose that f = ∑
j,i f j i 1A ji ×B j with

f j i ∈ E , A ji ∈ Fa and B j ∈ S, the finite families of sets (A ji × B j ) and (B j ) being
pair-wise disjoint and ν(B j ) < ∞. Let us notice that

∫

S

f (x)η̃(dx, I ) =
∑

j i

1A ji η̃(B j × I ) f j i =
∑

j

(∑
i

1A ji f j i

)
η̃(B j × I ).

Since the random variables 1A ji f j i are Fa-measurable and the random variables
η̃(B j × I ) are Fa-independent, we may suppose that these random variables are defi-
ned on a probability space (Ω̂, F̂ , P̂) such that Ω̂ = Ω1 × Ω2, F̂ = F1 ⊗ F2,
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P̂ = P1 ⊗ P2, where Ωi ,Fi , Pi ), i = 1, 2 are probability spaces, and the first, resp.
second, group of variables depend on ω = (ω1, ω2) ∈ Ω̂ only via ω1, resp. ω2. Let us
denote the integral with respect to probability measure Pi by Ei . Since, for each fixed
ω1 ∈ Ω1, the sequence

∑
j

(∑
i 1A ji f j i

)
η̃(B j × I ), j = 1, 2, . . . is an E-valued

martingale difference, by the martingale type p property of the space E , Lemma C.3,
we infer that

E2

∣∣∣∣∣∣
∑

j

(∑
i

1A ji f j i

)
η̃(B j × I )

∣∣∣∣∣∣
p

E

≤ L p(E)
∑

j

E2

∣∣∣∣∣
(∑

i

1A ji f j i

)
η̃(B j × I )

∣∣∣∣∣
p

E

= L p(E)
∑

j

∣∣∣∣∣
∑

i

1A ji f j i

∣∣∣∣∣
p

E

E2
∣∣η̃(B j × I )

∣∣p

= 22−p L p(E)
∑

j

∣∣∣∣∣
∑

i

1A ji f j i

∣∣∣∣∣
p

E

ν(B j )λ(I )

For the same reasons

E1

∣∣∣∣∣
∑

i

1A ji f j i

∣∣∣∣∣
p

E

≤ L p(E)
∑

i

E1|1A ji f j i |p
E = L p(E)

∑
i

P(A ji )| f j i |p
E

Therefore, by the Fubini Theorem,

E

∣∣∣∣∣∣
∫

S

ξ(x)η̃(dx, I )

∣∣∣∣∣∣
p

E

= E1E2

∣∣∣∣∣∣
∑

j

(∑
i

1A ji f j i

)
η̃(B j × I )

∣∣∣∣∣∣
p

E

≤ 22−p L2
p(E)

∑
j

∑
i

P(A ji )| f j i |p
Eν(B j )λ(I )

= 22−p L2
p(E)λ(I )

∑
j

∑
i

| f j i |p
E (P ⊗ ν)(A ji × B j )

= 22−p L2
p(E)λ(I )

∫

Ω×S

∣∣∣∣∣∣
∑

j i

1A ji ×B j f ji

∣∣∣∣∣∣
p

d(P ⊗ ν)

= 22−p L2
p(E)(b − a)E

∫

S

| f (x)|p
E ν(dx).

The proof is complete.
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Proof of Lemma C.3 The case p = 2 is well known. Since ξ ≥ 0 and E(ξ) = λ, the
case p = 1 follows by the triangle inequality. The case p ∈ (1, 2) follows then by
applying the Hölder inequality. Indeed, with α = 2(p − 1) and β = 2 − p we have
the following sequence of inequalities, where η := |ξ − λ|.

E(ηp) = E(ηαηβ) ≤ [E((ηα)2/α)]α/2[E((ηβ)1/β)]β

= [E(η2)]α/2[E(η)]β ≤ (λ)α/2(2λ)β = 22−pλ.

We conclude with a result corresponding to inequality (2.4).

Corollary C.2 Assume that 1 ≤ q ≤ p < 2 and E is a martingale type p Banach
space. Then there exists a constant C > 0 such that for any process ξ ∈ Mp

loc(0,∞,

L p(S, ν; E)), and any T > 0,

E

∣∣∣∣∣∣ sup
t∈[0,T ]

t∫

0

∫

S

ξ(r, x)η̃(dx, dr)

∣∣∣∣∣∣
q

≤ CE

⎛
⎝

T∫

0

∫

S

|ξ(r, x)|p ν(dx) dr

⎞
⎠

q/p

. (C.12)

The proof of the above result will be based on Proposition IV.4.7 from the mono-
graph [30] by Revuz and Yor, which we recall here for the convenience of the reader.

Proposition C.1 Suppose that a positive, adapted right-continuous process Z is domi-
nated by an increasing process A, with A0 = 0, i.e. there exists a constant C > 0
such that for every bounded stopping time τ , EZτ ≤ CEAτ . Then for any k ∈ (0, 1),

E sup
0≤t<∞

Zk
t ≤ Ck 2 − k

1 − k
EAk∞.

Proof of Corollary C.2 Let now fix q ∈ [1, p). Put k = q
p . We will apply Proposi-

tion C.1 to the processes Zt = | ∫ t
0

∫
S ξ(r, x)η̃(dx, dr)|p

E and At = ∫ t
0

∫
S |ξ(r, x)|p

E
ν(dx) dr , t ∈ [0, T ]. Let us notice that in view of inequality (C.10), the process
Z is dominated by the process A. Since Z is right continuous, sup0≤t≤T Zk

t =
sup0≤t≤T | ∫ t

0

∫
S ξ(r, x)η̃(dx, dr)|qE and Ak∞ =

(∫ T
0

∫
S |ξ(r, x)|p

E ν(dx) dr
)q/p

, we

get inequality (C.12). This completes the proof of Corollary C.2.
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