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Abstract We consider the space of complete and separable metric spaces which
are equipped with a probability measure. A notion of convergence is given based on
the philosophy that a sequence of metric measure spaces converges if and only if
all finite subspaces sampled from these spaces converge. This topology is metrized
following Gromov’s idea of embedding two metric spaces isometrically into a com-
mon metric space combined with the Prohorov metric between probability measures
on a fixed metric space. We show that for this topology convergence in distribution
follows—provided the sequence is tight—from convergence of all randomly sampled
finite subspaces. We give a characterization of tightness based on quantities which are
reasonably easy to calculate. Subspaces of particular interest are the space of real trees
and of ultra-metric spaces equipped with a probability measure. As an example we
characterize convergence in distribution for the (ultra-)metric measure spaces given by
the random genealogies of the �-coalescents. We show that the �-coalescent defines
an infinite (random) metric measure space if and only if the so-called “dust-free”-
property holds.
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1 Introduction and motivation

In this paper we study random metric measure spaces which appear frequently in the
form of random trees in probability theory. Prominent examples are random binary
search trees as a special case of random recursive trees [9], ultra-metric structures in
spin-glasses (see, for example, [8,22]), and coalescent processes in population genetics
(for example, [12,19]). Of special interest is the continuum random tree, introduced
in [2], which is related to several objects, for example, Galton-Watson trees, spanning
trees and Brownian excursions.

Moreover, examples for Markov chains with values in finite trees are the Aldous–
Broder Markov chain which is related to spanning trees ([1]), growing Galton-Watson
trees, and tree-bisection and reconnection which is a method to search through tree
space in phylogenetic reconstruction (see e.g., [14]).

Because of the exponential growth of the state space with an increasing number
of vertices tree-valued Markov chains are—even so easy to construct by standard
theory—hard to analyze for their qualitative properties. It therefore seems to be rea-
sonable to pass to a continuum limit and to construct certain limit dynamics and study
them with methods from stochastic analysis.

We will apply this approach in the forthcoming paper [16] to trees encoding genea-
logical relationships in exchangeable models of populations of constant size. The
result will be the tree-valued Fleming–Viot dynamics. For this purpose it is necessary
to develop systematically the topological properties of the state space and the corres-
ponding convergence in distribution. The present paper focuses on these topological
properties.

As one passes from finite trees to “infinite” trees the necessity arises to equip the
tree with a probability measure which allows to sample typical finite subtrees. In
[2], Aldous discusses a notion of convergence in distribution of a “consistent” family
of finite random trees towards a certain limit: the continuum random tree. In order
to define convergence Aldous codes trees as separable and complete metric spaces
satisfying some special properties for the metric characterizing them as trees which are
embedded into �+1 and equipped with a probability measure. In this setting finite trees,
i.e., trees with finitely many leaves, are always equipped with the uniform distribution
on the set of leaves. The idea of convergence in distribution of a “consistent” family of
finite random trees follows Kolmogorov’s theorem which gives the characterization of
convergence of R-indexed stochastic processes with regular paths. That is, a sequence
has a unique limit provided a tightness condition holds on path space and assuming
that the “finite-dimensional distributions” converge. The analogs of finite-dimensional
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distributions are “subtrees spanned by finitely many randomly chosen leaves” and the
tightness criterion is built on characterizations of compact sets in �+1 .

Aldous’s notion of convergence has been successful for the purpose of rescaling a
given family of trees and showing convergence in distribution towards a specific limit
random tree. For example, Aldous shows that suitably rescaled families of critical
finite variance offspring distribution Galton–Watson trees conditioned to have total
population size N converge as N → ∞ to the Brownian continuum random tree, i.e.,
the R-tree associated with a Brownian excursion. Furthermore, Aldous constructs the
genealogical tree of a resampling population as a metric measure space associated
with the Kingman coalescent, as the limit of N -coalescent trees with weight 1/N on
each of their leaves.

However, Aldous’s ansatz to view trees as closed subsets of �+1 , and thereby using a
very particular embedding for the construction of the topology, seemed not quite easy
and elegant to work with once one wants to construct tree-valued limit dynamics
(see, for example, [11,13,16]). More recently, isometry classes of R-trees, i.e., a
particular class of metric spaces, were introduced, and a means of measuring the
distance between two (isometry classes of) metric spaces were provided based on an
“optimal matching” of the two spaces yielding the Gromov–Hausdorff metric (see,
for example, [4, Chap. 7]).

The main emphasis of the present paper is to exploit Aldous’s philosophy of conver-
gence without using Aldous’s particular embedding. That is, we equip the space of
separable and complete real trees which are equipped with a probability measure with
the following topology:

• A sequence of trees (equipped with a probability measure) converges to a limit tree
(equipped with a probability measure) if and only if all randomly sampled finite
subtrees converge to the corresponding limit subtrees. The resulting topology is
referred to as the Gromov-weak topology (compare Definition 2.8).

Since the construction of the topology works not only for tree-like metric spaces,
but also for the space of (measure preserving isometry classes of) metric measure
spaces we formulate everything within this framework.

• We will see that the Gromov-weak topology on the space of metric measure spaces
is Polish (Theorem 1).

In fact, we metrize the space of metric measure spaces equipped with the Gromov-
weak topology by the Gromov–Prohorov metric which combines the two concepts of
metrizing the space of metric spaces and the space of probability measures on a given
metric space in a straightforward way. Moreover, we present a number of equivalent
metrics which might be useful in different contexts.

This then allows to discuss convergence of random variables taking values in that
space.

• We next characterize compact sets (Theorem 2 combined with Theorem 5) and
tightness (Theorem 3 combined with Theorem 5) via quantities which are reaso-
nably easy to compute.

• We then illustrate with the example of the�-coalescent tree (Theorem 4) how the
tightness characterization can be applied.
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We remark that topologies on metric measure spaces are considered in detail in
Sect. 3 1

2 of [17]. We are aware that several of our results (in particular, Theorems 1,
2 and 5) are stated in [17] in a different set-up. While Gromov focuses on geometric
aspects, we provide the tools necessary to do probability theory on the space of metric
measure spaces. See Remark 5.3 for more details on the connection to Gromov’s
work.

Further related topologies on particular subspaces of isometry classes of complete
and separable metric spaces have already been considered in [13,27]. Convergence in
these two topologies implies convergence in the Gromov-weak topology but not vice
versa.

Outline

The rest of the paper is organized as follows. In the next two sections we formulate
the main results. In Sect. 2 we introduce the space of metric measure spaces equipped
with the Gromov-weak topology and characterize their compact sets. In Sect. 3 we
discuss convergence in distribution and characterize tightness. We then illustrate the
main results introduced so far with the example of the metric measure tree associated
with genealogies generated by the infinite �-coalescent in Sect. 4.

Sections 5– 9 are devoted to the proofs of the theorems. In Sect. 5 we introduce
the Gromov–Prohorov metric as a candidate for a complete metric which generates
the Gromov-weak topology and show that the generated topology is separable. As
a technical preparation we collect results on the modulus of mass distribution and
the distance distribution (see Definition 2.9) in Sect. 6. In Sects. 7 and 8 we give
characterizations on pre-compactness and tightness for the topology generated by the
Gromov–Prohorov metric. In Sect. 9 we prove that the topology generated by the
Gromov–Prohorov metric coincides with the Gromov-weak topology.

Finally, in Sect. 10 we provide several other metrics that generate the Gromov-weak
topology.

2 Metric measure spaces

As usual, given a topological space (X,O), we denote by M1(X) the space of all
probability measures on X equipped with the Borel-σ -algebra B(X). Recall that the
support of µ, supp(µ), is the smallest closed set X0 ⊆ X such that µ(X \ X0) = 0.
The push forward of µ under a measurable map ϕ from X into another metric space
(Z , rZ ) is the probability measure ϕ∗µ ∈ M1(Z) defined by

ϕ∗µ(A) := µ
(
ϕ−1(A)

)
, (2.1)

for all A ∈ B(Z). Weak convergence in M1(X) is denoted by �⇒.

In the following we focus on complete and separable metric spaces.
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Definition 2.1 (Metric measure space) A metric measure space is a complete and
separable metric space (X, r) which is equipped with a probability measure
µ ∈ M1(X). We write M for the space of measure-preserving isometry classes
of complete and separable metric measure spaces, where we say that (X, r, µ) and
(X ′, r ′, µ′) are measure-preserving isometric if there exists an isometry ϕ between
the supports of µ on (X, r) and of µ′ on (X ′, r ′) such that µ′ = ϕ∗µ. It is clear that
the property of being measure-preserving isometric is an equivalence relation.

We abbreviate X = (X, r, µ) for a whole isometry class of metric spaces whenever
no confusion seems to be possible.

Remark 2.2

(i) Metric measure spaces, or short mm-spaces, are discussed in [17] in detail.
Therefore they are sometimes also referred to as Gromov metric triples (see,
for example, [28]).

(ii) We have to be careful to deal with sets in the sense of the Zermelo-Fraenkel
axioms. The reason is that we will show in Theorem 1 that M can be metrized,
say by d, such that (M, d) is complete and separable. Hence if P ∈ M1(M)

then the measure preserving isometry class represented by (M, d,P) yields an
element in M. The way out is to define M as the space of measure preserving
isometry classes of those metric spaces equipped with a probability measure
whose elements are not themselves metric spaces. Using this restriction we
avoid the usual pitfalls which lead to Russell’s antinomy.

To be in a position to formalize that for a sequence of metric measure spaces all
finite subspaces sampled by the measures sitting on the corresponding metric spaces
converge we next introduce the algebra of polynomials on M.

Definition 2.3 (Polynomials) A function� = �n,φ : M → R is called a polynomial
(of degree n with respect to the test functionφ) on M if and only if n ∈ N is the mimimal
number such that there exists a bounded continuous function φ : [0,∞)(

n
2) → R such

that

�((X, r, µ)) =
∫
µ⊗n(d(x1, . . . , xn)) φ

(
(r(xi , x j ))1≤i< j≤n

)
, (2.2)

where µ⊗n is the n-fold product measure of µ. Denote by � the algebra of all poly-
nomials on M.

Example 2.4 In future work, we are particularly interested in tree-like metric spaces,
i.e., ultra-metric spaces and R-trees. In this setting, functions of the form (2.2) can be,
for example, the mean total length or the averaged diameter of the sub-tree spanned
by n points sampled independently according to µ from the underlying tree.

The next example illustrates that one can, of course, not separate metric measure
spaces by polynomials of degree 2 only.
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Example 2.5 Consider the following two metric measure spaces.
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Assume that in both spaces the mutual distances between different points are 1.
In both cases, the empirical distribution of the distances between two points equals
1
2δ0 + 1

2δ1, and hence all polynomials of degree n = 2 agree. But obviously, X and Y
are not measure preserving isometric.

The first key observation is that the algebra of polynomials is a rich enough subclass
to determine a metric measure space.

Proposition 2.6 (Polynomials separate points) The algebra � of polynomials sepa-
rates points in M.

We need the useful notion of the distance matrix distribution.

Definition 2.7 (Distance matrix distribution) Let X = (X, r, µ) ∈ M and the space
of infinite (pseudo-)distance matrices

R
met := {

(ri j )1≤i< j<∞ : ri j + r jk ≥ rik, ∀ 1 ≤ i < j < k < ∞}
. (2.3)

Define the map ιX : XN → R
met by

ιX (x1, x2, . . .) := (
r(xi , x j )

)
1≤i< j<∞ , (2.4)

and the distance matrix distribution of X by

νX := (ιX )∗µ⊗N. (2.5)

Note that for X ∈ M and � of the form (2.2), we have that

�(X ) =
∫
νX (

d(ri j )1≤i< j
)
φ

(
(ri j )1≤i< j≤n

)
. (2.6)

Proof of Proposition 2.6 Let X� = (X�, r�, µ�) ∈ M, � = 1, 2, and assume that
�(X1) = �(X2), for all � ∈ �. The algebra {φ ∈ Cb(R

(n
2)); n ∈ N} is separating in

M1(R
met) and so νX1 = νX2 by (2.6). Applying Gromov’s Reconstruction theorem

for mm-spaces (see Paragraph 3 1
2 .5 in [17]), we find that X1 = X2. �

We are now in a position to define the Gromov-weak topology.
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Definition 2.8 (Gromov-weak topology) A sequence (Xn)n∈N is said to converge
Gromov-weakly to X in M if and only if �(Xn) converges to �(X ) in R, for all
polynomials � ∈ �. We call the corresponding topology OM on M the Gromov-
weak topology.

The following result ensures that the state space is suitable to do probability theory
on it.

Theorem 1 The space (M,OM) is Polish.

In order to obtain later tightness criteria for laws of random elements in M we need
a characterization of the compact sets of (M,OM). Informally, a subset of M will turn
out to be pre-compact iff the corresponding sequence of probability measures put most
of their mass on subspaces of a uniformly bounded diameter, and if the contribution
of points which do not carry much mass in their vicinity is small.

These two criteria lead to the following definitions.

Definition 2.9 (Distance distribution and Modulus of mass distribution) Let
X = (X, r, µ) ∈ M.

(i) The distance distribution, which is an element in M1([0,∞)), is given by
wX := r∗µ⊗2, i.e.,

wX (·) := µ⊗2 {
(x, x ′) : r(x, x ′) ∈ ·}. (2.7)

(ii) For δ > 0, define the modulus of mass distribution as

vδ(X ) := inf {ε > 0 : µ {x ∈ X : µ(Bε(x)) ≤ δ} ≤ ε} (2.8)

where Bε(x) is the open ball with radius ε and center x .

Remark 2.10 Observe that wX and vδ are well-defined because they are constant on
isometry classes of a given metric measure space.

The next result characterizes pre-compactness in (M,OM).

Theorem 2 (Characterization of pre-compactness) A set � ⊆ M is pre-compact in
the Gromov-weak topology if and only if the following hold.

(i) The family {wX : X ∈ �} is tight.
(ii) For all ε > 0 there exist a δ = δ(ε) > 0 such that

sup
X∈�

vδ(X ) < ε. (2.9)

Remark 2.11 If � = {X1,X2, . . .} then we can replace sup by lim sup in (2.9).

Example 2.12 In the following we illustrate the two requirements for a family in M

to be pre-compact which are given in Theorem 2 by two counter-examples.
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(i) Consider the isometry classes of the metric measure spaces Xn := ({1, 2},
rn(1, 2) = n, µn{1} = µn{2} = 1

2 ). A potential limit object would be a metric
space with masses 1

2 within distance infinity. This clearly does not exist.
Indeed, the family {wXn = 1

2δ0 + 1
2δn; n ∈N} is not tight, and hence {Xn; n ∈N}

is not pre-compact in M by Condition (i) of Theorem 2.
(ii) Consider the isometry classes of the metric measure spaces Xn = (Xn, rn, µn)

given for n ∈ N by

Xn := {1, . . . , 2n}, rn(x, y) := 1{x �= y}, µn := 2−n
2n∑

i=1

δi , (2.10)

i.e., Xn consists of 2n points of mutual distance 1 and is equipped with a uniform
measure on all points.
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A potential limit object would consist of infinitely many points of mutual dis-
tance 1 with a uniform measure. Such a space does not exist.
Indeed, notice that for δ > 0,

vδ(Xn) =
{

0, δ < 2−n,

1, δ ≥ 2−n,
(2.11)

so supn∈N vδ(Xn) = 1, for all δ > 0. Hence {Xn; n ∈ N} does not fulfil
Condition (ii) of Theorem 2, and is therefore not pre-compact.

3 Distributions of random metric measure spaces

From Theorem 1 and Definition 2.8 we immediately conclude the characterization of
weak convergence for a sequence of probability measures on M.

Corollary 3.1 (Characterization of weak convergence) A sequence (Pn)n∈N in M1
(M) converges weakly w.r.t. the Gromov-weak topology if and only if

(i) the family {Pn; n ∈ N} is relatively compact in M1(M), and
(ii) for all polynomials � ∈ �, (Pn [�])n∈N converges in R.
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Proof The “only if” direction is clear, as polynomials are bounded and continuous
functions by definition. To see the converse, recall from Lemma 3.4.3 in [10] that
given a relative compact sequence of probability measures, each separating family of
bounded continuous functions is convergence determining. �

While Condition (ii) of the characterization of convergence given in Corollary ii
can be checked in particular examples, we still need a manageable characterization
of tightness on M1(M) which we can conclude from Theorem 2. It will be given in
terms of the distance distribution and the modulus of mass distribution.

Theorem 3 (Characterization of tightness) A set A ⊆ M1(M) is tight if and only if
the following holds:

(i) The family {P[wX ] : P ∈ A} is tight in M1(R).

(ii) For all ε > 0 there exist a δ = δ(ε) > 0 such that

sup
P∈A

P [vδ(X )] < ε. (3.1)

Remark 3.2 (i) Using the properties of vδ from Lemmata 6.4 and 6.5 it can be seen
that (3.1) can be replaced either by

sup
P∈A

P{vδ(X ) ≥ ε} < ε (3.2)

or

sup
P∈A

P[µ{x : µ(Bε(x)) ≤ δ}] < ε. (3.3)

(ii) If A = {P1,P2, . . .} then we can replace sup by lim sup in (3.1), (3.2) and (3.3).

The usage of Theorem 3 will be illustrated with the example of the �-coalescent
measure tree constructed in the next section, and with examples of trees corresponding
to spatially structured coalescents [15] and of evolving coalescents [16] in forthcoming
work.

Remark 3.3 Starting with Theorem 3 one characterizes easily tightness for the stronger
topology given in [27] based on certain L2-Wasserstein metrics if one requires in
addition to (i) and (ii) uniform integrability of sampled mutual distance.

Similarly, with Theorem 3 one characterizes tightness in the space of measure
preserving isometry classes of metric spaces equipped with a finite measure (rather
than a probability measure) if one requires in addition tightness of the family of total
masses (compare, also with Remark 7.2(ii)).
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4 Example: �-coalescent measure trees

In this section we apply the theory of metric measure spaces to a class of genealogies
which arise in population models. Often such genealogies are represented by coales-
cent processes and we focus on �-coalescents introduced in [24] (see also [26]). The
family of �-coalescents appears in the description of the genealogies of population
models with evolution based on resampling and branching. Such coalescent processes
have since been the subject of many papers (see, for example, [3,5,6,21,23]).

In resampling models where the offspring variance of an individual during a repro-
duction event is finite, the Kingman coalescent appears as a special �-coalescent.
The fact that general �-coalescents allow for multiple collisions is reflected in an
infinite variance of the offspring distribution. Furthermore a �-coalescent is up to
time change dual to the process of relative frequencies of families of a Galton–Watson
process with possibly infinite variance offspring distribution (compare [3]). Our goal
here is to decide for which �-coalescents the genealogies are described by a metric
measure space.

We start with a quick description of �-coalescents. Recall that a partition of a set
S is a collection {Aλ} of pairwise disjoint subsets of S, also called blocks, such that
S = ∪λAλ. Denote by S∞ the collection of partitions of N := {1, 2, 3, . . .}, and for
all n ∈ N, by Sn the collection of partitions of {1, 2, 3, . . . , n}. Each partition P ∈ S∞
defines an equivalence relation ∼P by i ∼P j if and only if there exists a partition
element π ∈ P with i, j ∈ π . Write ρn for the restriction map from S∞ to Sn . We say
that a sequence (Pk)k∈N converges in S∞ if for all n ∈ N, the sequence (ρnPk)k∈N

converges in Sn equipped with the discrete topology.
We are looking for a strong Markov process ξ starting in P0 ∈ S∞ such that for

all n ∈ N, the restricted process ξn := ρn ◦ ξ is an Sn-valued Markov chain which
starts in ρnP0 ∈ Sn , and given that ξn(t) has b blocks, each k-tuple of blocks of Sn is
merging to form a single block at rate λb,k . Pitman [24] showed that such a process
exists and is unique (in law) if and only if

λb,k :=
1∫

0

�(dx) xk−2(1 − x)b−k (4.1)

for some non-negative and finite measure � on the Borel subsets of [0, 1].
Let therefore � be a non-negative finite measure on B([0, 1]) and P ∈ S∞. We

denote by P
�,P the probability distribution governing ξ with ξ(0) = P on the space

of cadlag paths with the Skorohod topology.

Example 4.1 If we choose

P0 := {{1}, {2}, . . .}, (4.2)

� = δ0, or �(dx) = dx , then P
�,P0

is the Kingman and the Bolthausen-Sznitman
coalescent, respectively.
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For each non-negative and finite measure �, all initial partitions P ∈ S∞ and
P
�,P -almost all ξ , there is a (random) metric r ξ on N defined by

r ξ (i, j) := inf
{
t ≥ 0 : i ∼ξ(t) j

}
. (4.3)

That is, for a realization ξ of the� coalescent, r ξ (i, j) is the time it needs i and j to
coalesce. Notice that r ξ is an ultra-metric on N, almost surely, i.e., for all i, j, k ∈ N,

r ξ (i, j) ≤ r ξ (i, k) ∨ r ξ (k, j). (4.4)

Let (Lξ , r ξ ) denote the completion of (N, r ξ ). Clearly, the extension of r ξ to Lξ

is also an ultra-metric. Recall that ultra-metric spaces are associated with tree-like
structures.

The main goal of this section is to introduce the �-coalescent measure tree as the
metric space (Lξ , r ξ ) equipped with the “uniform distribution”. Notice that since the
Kingman coalescent is known to “come down immediately to finitely many partition
elements” the corresponding metric space is almost surely compact [12]. Even though
there is no abstract concept of the “uniform distribution” on compact spaces, the
reader may find it not surprising that in particular examples one can easily make
sense out of this notion by approximation. We will see, that for �-coalescents, under
an additional assumption on �, one can extend the uniform distribution to locally
compact metric spaces. Within this class falls, for example, the Bolthausen–Sznitman
coalescent which is known to have infinitely many partition elements for all times,
and whose corresponding metric space is therefore not compact.

Define Hn to be the map which takes a realization of the S∞-valued coalescent and
maps it to (an isometry class of) a metric measure space as follows:

Hn : ξ �→
(

Lξ , r ξ , µξn := 1
n

n∑
i=1

δi

)
. (4.5)

Put then for given P0 ∈ S∞,

Q
�,n := (Hn)∗ P

�,P0 . (4.6)

Next we give the characterization of existence and uniqueness of the�-coalescent
measure tree.

Theorem 4 (The�-coalescent measure tree) The family {Q�,n; n ∈ N} converges in
the weak topology with respect to the Gromov-weak topology if and only if

1∫

0

�(dx) x−1 = ∞. (4.7)
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Remark 4.2 (“Dust-free” property) Notice first that Condition (4.7) is equivalent to
the total coalescence rate of a given {i} ∈ P0 being infinite (compare with the proof
of Lemma 25 in [24]).

By exchangeability and the de Finetti Theorem, the family { f̃ (π); π ∈ ξ(t)} of
frequencies

f̃ (π) := lim
n→∞

1

n
# { j ∈ {1, . . . , n} : j ∈ π} (4.8)

exists for P
�,P0 almost all π ∈ ξ(t) and all t > 0. Define f := ( f (π); π ∈ ξ(t))

to be the ranked rearrangements of { f̃ (π); π ∈ ξ(t)} meaning that the entrees of the
vector f are non-increasing. Let P�,P0 denote the probability distribution of f . Call
the frequencies f proper if

∑
i≥1 f (πi ) = 1. By Theorem 8 in [24], the�-coalescent

has in the limit n → ∞ proper frequencies if and only if Condition (4.7) holds.
According to Kingman’s correspondence (see, for example, Theorem 14 in [24]),

the distribution P
�,P0 and P�,P0 determine each other uniquely. For P ∈ S∞ and

i ∈ N, let P i := { j ∈ N : i ∼P j} denote the partition element in P which contains
i . Then Condition (4.7) holds if and only if for all t > 0,

P
�,P0

{
f̃
(
(ξ(t))1

)
= 0

}
= 0. (4.9)

The latter is often referred to as the “dust”-free property.

Proof of Theorem 4 For existence we will apply the characterization of tightness as
given in Theorem 3, and verify the two conditions.

(i) By definition, for all n ∈ N, Q
�,n[wX ] is exponentially distributed with para-

meter λ2,2. Hence the family {Q�,n[wX ]; n ∈ N} is tight.
(ii) Fix t ∈ (0, 1). Then for all δ > 0, by the uniform distribution and exchangea-

bility,

Q
�,n [µ{x : Bε(x) ≤ δ}]
= P

�,P0
[
µξn

{
x ∈ Lξ : µξn(Bt (x)) ≤ δ |x = 1}]

= P
�,P0

{
µξn(Bt (1)) ≤ δ

}
. (4.10)

By the de Finetti theorem,µξn(Bt (1))
n→∞−−−→ f̃

(
(ξ(t))1

)
, P�,P0 -almost surely. Hence,

dominated convergence yields

lim
δ→0

lim
n→∞ Q

�,n [µ{x : Bε(x) ≤ δ}] = lim
δ→0

P
�,P0

{
f̃ ((ξ(t))1) ≤ δ

}

= P
�,P0

{
f̃ ((ξ(t))1) = 0

}
. (4.11)

We have shown that Condition (4.7) is equivalent to (4.9), and therefore, using
(3.3), a limit of Q

�,n exists if and only if the “dust-free”-property holds.
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Uniqueness of the limit points follows from the projective property, i.e. restricting
the observation to a tagged subset of initial individuals is the same as starting in this
restricted initial state. �

5 A complete metric: the Gromov–Prohorov metric

In this section we introduce the Gromov–Prohorov metric dGPr on M and prove that
the metric space (M, dGPr) is complete and separable. In Sect. 9 we will see that the
Gromov–Prohorov metric generates the Gromov-weak topology.

Notice that the first naive approach to metrize the Gromov-weak topology could be
to fix a countably dense subset {�n; n ∈ N} in the algebra of all polynomials, and to
put for X ,Y ∈ M,

dnaive (X ,Y) :=
∑
n∈N

2−n |�n(X )−�n(Y)| . (5.1)

However, such a metric is not complete. Indeed one can check that the sequence
{Xn; n ∈ N} given in Example 2.12(ii) is a Cauchy sequence w.r.t dnaive which does
not converge.

Recall that metrics on the space of probability measures on a fixed complete and
separable metric space are well-studied (see, for example, [18,25]). Some of them,
like the Prohorov metric and the Wasserstein metric (on compact spaces) generate
the weak topology. On the other hand the space of all (isometry classes of compact)
metric spaces, not carrying a measure, is complete and separable once equipped with
the Gromov–Hausdorff metric (see, [11]). We recall the notion of the Prohorov and
Gromov–Hausdorff metric below.

Metrics on metric measure spaces should take both components into account and
compare the spaces and the measures simultaneously. This was, for example, done
in [13,27]. We will follow along similar lines as in [27], but replace the Wasserstein
metric with the Prohorov metric.

Recall that the Prohorov metric between two probability measures µ1 and µ2 on a
common metric space (Z , rZ ) is defined by

d(Z ,rZ )
Pr (µ1, µ2) := inf

{
ε > 0 : µ1(F) ≤ µ2(F

ε)+ ε, ∀ F closed
}

(5.2)

where

Fε := {
z ∈ Z : rZ (z, z′) < ε, for some z′ ∈ F

}
. (5.3)

Sometimes it is easier to work with the equivalent formulation based on couplings
of the measures µ1 and µ2, i.e., measures µ̃ on X × Y with µ̃(· × Y ) = µ1(·) and
µ̃(X × ·) = µ2(·). Notice that the product measure µ1 ⊗µ2 is a coupling, and so the
set of all couplings of two measures is not empty. By Theorem 3.1.2 in [10],
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d(Z ,rZ )
Pr (µ1, µ2)

= inf
µ̃

inf
{
ε > 0 : µ̃ {

(z, z′) ∈ Z × Z : rZ (z, z′) ≥ ε
} ≤ ε

}
, (5.4)

where the infimum is taken over all couplings µ̃ of µ1 and µ2. The metric d(Z ,rZ )
Pr is

complete and separable if (Z , rZ ) is complete and separable ([10], Theorem 3.1.7).
The Gromov–Hausdorff metric is a metric on the space Xc of (isometry classes of)

compact metric spaces. For (X, rX ) and (Y, rY ) in Xc the Gromov–Hausdorff metric
is given by

dGH ((X, rX ), (Y, rY )) := inf
(ϕX ,ϕY ,Z)

d Z
H (ϕX (X), ϕY (Y )), (5.5)

where the infimum is taken over isometric embeddings ϕX and ϕY from X and Y ,
respectively, into some common metric space (Z , rZ ), and the Hausdorff metric d(Z ,rZ )

H
for closed subsets of a metric space (Z , rZ ) is given by

d(Z ,rZ )
H (X,Y ) := inf

{
ε > 0 : X ⊆ Y ε,Y ⊆ Xε

}
, (5.6)

where Xε and Y ε are given by (5.3) (compare [4,7,17]).
Sometimes, it is handy to use an equivalent formulation of the Gromov–Hausdorff

metric based on correspondences. Recall that a relation R between two compact metric
spaces (X, rX ) and (Y, rY ) is any subset of X × Y . A relation R ⊆ X × Y is called a
correspondence iff for each x ∈ X there exists at least one y ∈ Y such that (x, y) ∈ R,
and for each y′ ∈ Y there exists at least one x ′ ∈ X such that (x ′, y′) ∈ R. Define the
distortion of a (non-empty) relation as

dis(R) := sup
{|rX (x, x ′)− rY (y, y′)| : (x, y), (x ′, y′) ∈ R

}
. (5.7)

Then by Theorem 7.3.25 in [4], the Gromov–Hausdorff metric can be given in terms
of a minimal distortion of all correspondences, i.e.,

dGH ((X, rX ), (Y, rY )) = 1

2
inf
R

dis(R), (5.8)

where the infimum is over all correspondences R between X and Y .
To define a metric between two metric measure spaces X = (X, rX , µX ) and

Y = (Y, rY , µY ) in M, we can neither use the Prohorov metric nor the Gromov–
Hausdorff metric directly. However, we can use the idea due to Gromov and embed
(X, rX ) and (Y, rY ) isometrically into a common metric space and measure the distance
of the image measures.

Definition 5.1 (Gromov–Prohorov metric) The Gromov–Prohorov distance between
two metric measure spaces X = (X, rX , µX ) and Y = (Y, rY , µY ) in M is defined by

dGPr (X ,Y) := inf
(ϕX ,ϕY ,Z)

d(Z ,rZ )
Pr ((ϕX )∗µX , (ϕY )∗µY ), (5.9)
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where the infimum is taken over all isometric embeddings ϕX and ϕY from X and Y ,
respectively, into some common metric space (Z , rZ ).

Remark 5.2 (i) To see that the Gromov–Prohorov metric is well-defined we have
to check that the right hand side of (5.9) does not depend on the element of
the isometry class of (X, rX , µX ) and (Y, rY , µY ). We leave out the straight-
forward details.

(ii) Notice that w.l.o.g. the common metric space (Z , rZ ) and the isometric embed-
dings ϕX and ϕY from X and Y can be chosen to be X � Y and the canonical
embeddings ϕX and ϕY from X and Y to X � Y , respectively (compare, for
example, Remark 3.3(iii) in [27]). We can therefore also write

dGPr (X ,Y) := inf
r X,Y

d(X�Y,r X,Y )
Pr ((ϕX )∗µX , (ϕY )∗µY ), (5.10)

where the infimum is here taken over all complete and separable metrics r X,Y

which extend the metrics rX on X and rY on Y to X � Y .

Remark 5.3 (Gromov’s �1-metric) Even though the material presented in this paper
was developed independently of Gromov’s work, some of the most important ideas
are already contained in Chap. 3 1

2 in [17].
More detailed, one can also start with a Polish space (X,O) which is equipped

with an probability measure µ ∈ M1(X) on B(X), and then introduce a metric
r : X × X → R+ as a measurable function satisfying the metric axioms. Polish
measure spaces (X, µ) can be parameterized by the segment [0, 1) where the para-
metrization refers to a measure preserving map ϕ : [0, 1) → X . If r is a metric on X
then r can be pulled back to a metric (ϕ−1)∗r on [0, 1) by letting

(ϕ−1)∗r(t, t ′) := r
(
ϕ(t), ϕ(t ′)

)
. (5.11)

Notice that such a measure-preserving parametrization is far from unique and
Gromov introduces his �1-distance between (X, r, µ) and (X ′, r ′, µ′) as the infimum
of distances �1 between the two metric spaces ([0, 1), (ϕ−1)∗r) and ([0, 1), (ψ−1)∗r ′)
defined as

�1
(
d, d ′)

:= sup
{
ε > 0 : ∃Xε ∈ B([0, 1)) : λ(Xε) ≤ ε, s.t.

|d(t1, t2)− d ′(t1, t2)| ≤ ε, ∀ t1, t2 ∈ X \ Xε
}
, (5.12)

where the infimum is taken all possible measure preserving parameterizations and
λ denotes the Lebesgue measure.

The interchange of first embedding in a measure preserving way and then taking the
distance between the pulled back metric spaces versus first embedding isometrically
and then taking the distance between the pushed forward measures explains the simi-
larities between Gromov’s ε-partition lemma (Sect. 3 1

2 .8 in [17]), his union lemma
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(Sect. 3 1
2 .12 in [17]) and his pre-compactness criterion (Sect. 3 1

2 .D in [17]) on the one
hand and our Lemma 6.9, Lemma 5.8 and Proposition 7.1, respectively, on the other.

We strongly conjecture that the Gromov-weak topology agrees with the topology
generated by Gromov’s �1-metric but a (straightforward) proof is not obvious to us.

We first show that the Gromov–Prohorov distance is indeed a metric.

Lemma 5.4 dGPr defines a metric on M.

In the following we refer to the topology generated by the Gromov–Prohorov metric
as the Gromov–Prohorov topology. In Theorem 5 of Sect.9 we will prove that the
Gromov–Prohorov topology and the Gromov-weak topology coincide.

Remark 5.5 (Extension of metrics via relations) The proof of the lemma and some
of the following results is based on the extension of two metric spaces (X1, rX1) and
(X2, rX2) if a non-empty relation R ⊆ X1 × X2 is known. The result is a metric on
X1 � X2 where � is the disjoint union. Recall the distortion of a relation from (5.7)
Define the metric space (X1 � X2, r R

X1�X2
) by letting r R

X1�X2
(x, x ′) := rXi (x, x ′) if

x, x ′ ∈ Xi , i = 1, 2 and for x1 ∈ X1 and x2 ∈ X2,

r R
X1�X2

(x1, x2)

:= inf
{
rX1(x1, x ′

1)+ 1
2 dis(R)+ rX2(x2, x ′

2) : (x ′
1, x ′

2) ∈ R
}
. (5.13)

It is then easy to check that r R
X1�X2

defines a (pseudo-)metric on X1 � X2 which

extends the metrics on X1 and X2. In particular, r R
X1�X2

(x1, x2) = 1
2 dis(R), for any

pair (x1, x2) ∈ R, and

d
(X1�X2,r R

X1�X2
)

H (π1 R, π2 R) = 1
2 dis(R), (5.14)

where π1 and π2 are the projection operators on X1 and X2, respectively.

Proof of Lemma 5.4 Symmetry is obvious and positive definiteness can be shown by
standard arguments. To see the triangle inequality, let ε, δ > 0 andXi :=(Xi , rXi , µXi )

∈ M, i = 1, 2, 3, be such that dGPr (X1,X2) < ε and dGPr (X2,X3) < δ. Then, by
the definition (5.9) together with Remark 5.2(ii), we can find metrics r1,2 and r2,3 on
X1 � X2 and X2 � X3, respectively, such that

d(X1�X2,r1,2)
Pr

(
(ϕ̃1)∗µX1 , (ϕ̃2)∗µX2

)
< ε, (5.15)

and

d(X2�X3,r2,3)
Pr

(
(ϕ̃′

2)∗µX2 , (ϕ̃3)∗µX3

)
< δ, (5.16)

where ϕ̃1, ϕ̃2 and ϕ̃′
2, ϕ̃3 are canonical embeddings from X1, X2 to X1�X2 and X2, X3

to X2 � X3, respectively. Setting Z := (X1 � X2) � (X2 � X3) we define the metric
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r R
Z on Z using the relation

R := {(ϕ̃2(x), ϕ̃
′
2(x)) : x ∈ X2} ⊆ (X1 � X2)× (X2 � X3) (5.17)

and Remark 5.5. Denote the canonical embeddings from X1, the two copies of X2 and
X3 to Z by ϕ1, ϕ2, ϕ

′
2 and ϕ3, respectively. Since dis(R) = 0 and

d
(Z ,r R

Z )

Pr

(
(ϕ2)∗µ2, (ϕ

′
2)∗µ2

) = 0, (5.18)

by the triangle inequality of the Prohorov metric,

dGPr (X1,X3) ≤ d
(Z ,r R

Z )

Pr ((ϕ1)∗µ1, (ϕ3)∗µ3)

≤ d
(Z ,r R

Z )

Pr ((ϕ1)∗µ1, (ϕ2)∗µ2)+ d
(Z ,r R

Z )

Pr

(
(ϕ2)∗µ2, (ϕ

′
2)∗µ2

)

+ d
(Z ,r R

Z )

Pr

(
(ϕ′

2)∗µ2, (ϕ3)∗µ3
)

< ε + δ. (5.19)

Hence the triangle inequality follows by taking the infimum over all ε and δ. �
Proposition 5.6 The metric space is (M, dGPr) is complete and separable.

We prepare the proof with a lemma.

Lemma 5.7 Fix (εn)n∈N in (0, 1). A sequence (Xn := (Xn, rn, µn))n∈N in M satisfies

dGPr (Xn,Xn+1) < εn (5.20)

if and only if there exist a complete and separable metric space (Z , rZ ) and isometric
embeddings ϕ1, ϕ2, …from X1, X2, …, respectively, into (Z , rZ ), such that

d(Z ,rZ )
Pr ((ϕn)∗µn, (ϕn+1)∗µn+1) < εn . (5.21)

Proof The “if” direction is clear. For the “only if” direction, take sequences
(Xn := (Xn, rn, µn))n∈N and (εn)n∈N which satisfy (5.20). By Remark 5.2, for
Yn := Xn � Xn+1 and all n ∈ N, there is a metric rYn on Yn such that

d
(Yn ,rYn )

Pr ((ϕn)∗µn, (ϕn+1)∗µn+1) < εn (5.22)

where ϕn and ϕn+1 are the canonical embeddings from Xn and Xn+1 to Yn . Put

Rn := {
(x, x ′) ∈ Xn × Xn+1 : rYn (ϕn(x), ϕn+1(x

′)) < εn
}
. (5.23)

Recall from (5.4) that (5.22) implies the existence of a coupling µ̃n of (ϕn)∗µn and
(ϕn+1)∗µn+1 such that

µ̃n
{
(x, x ′) : rYn (y, y′) < εn

}
> 1 − εn . (5.24)
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This implies that Rn is not empty and

d
(Yn ,r

Rn
Yn
)

Pr ((ϕn)∗µn, (ϕn+1)∗µn+1) ≤ εn . (5.25)

Using the metric spaces (Yn, r
Rn
Yn
) we define recursively metrics rZn on Zn :=⊔n

k=1 Xk . Starting with n = 1, we set (Z1, rZ1) := (X1, r1). Next, assume we are
given a metric rZn on Zn . Consider the isometric embeddings ψn

k from Xk to Zn , for
k = 1, . . . , n which arise from the canonical embedding of Xk in Zn . Define for all
n ∈ N,

R̃n :=
{
(z, x) ∈ Zn × Xn+1 : ((ψn

n )
−1(z), x) ∈ Rn

}
(5.26)

which defines metrics r R̃n
Zn+1

on Zn+1 via (5.13).

By this procedure we obtain in the limit a separable metric space (Z ′ := ⊔∞
n=1 Xn,

rZ ′). Denote its completion by (Z , rZ ) and isometric embeddings from Xn to Z which
arise by the canonical embedding by ψn, n ∈ N. Observe that the restriction of rZ to
Xn � Xn+1 is isometric to (Yn, r

Rn
Yn
) and thus

d(Z ,rZ )
Pr

(
(ψn)∗µXn , (ψn+1)∗µXn+1

) ≤ εn (5.27)

by (5.25). So the claim follows. �
Proof of Proposition 5.6 To get separability, we partly follow the proof of Theorem
3.2.2 in [10]. Given X := (X, r, µ) ∈ M and ε > 0, we can find X ε := (X, r, µε) ∈ M

such that µε is a finitely supported atomic measure on X and dPr(µ
ε, µ) < ε. Now

dGPr (X ε,X ) < ε, while Xε is just a “finite metric space” and can clearly be approxi-
mated arbitrary closely in the Gromov–Prohorov metric by finite metric spaces with
rational mutual distances and weights. The set of isometry classes of finite metric
spaces with rational edge-lengths is countable, and so (M, dGPr) is separable.

To get completeness, it suffices to show that every Cauchy sequence has a convergent
subsequence. Take therefore a Cauchy sequence (Xn)n∈N in (M, dGPr) and a subse-
quence (Yn)n∈N, Yn = (Yn, rn, µn) with dGPr(Yn,Yn+1) ≤ 2−n . By Lemma 5.7 we
can choose a complete and separable metric space (Z , rZ ) and, for each n ∈ N, an
isometric embedding ϕn from Yn into (Z , rZ ) such that ((ϕn)∗µn)n∈N is a Cauchy
sequence on M1(Z) equipped with the weak topology. By the completeness of
M1(Z), ((ϕn)∗µn)n∈N converges to some µ̄ ∈ M1(Z).

Putting the arguments together yields that with Z := (Z , rZ , µ̄),

dGPr (Yn,Z) n→∞−→ 0, (5.28)

so that Z is the desired limit object, which finishes the proof. �
We conclude this section by another Lemma.
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Lemma 5.8 Let X = (X, r, µ), X1 = (X1, r1, µ1), X2 = (X2, r2, µ2), . . . be in M.
Then,

dGPr (Xn,X ) n→∞−−−→ 0 (5.29)

if and only if there exists a complete and separable metric space (Z , rZ ) and isometric
embeddings ϕ, ϕ1, ϕ2, . . . from X, X1, X2 into (Z , rZ ), respectively, such that

d(Z ,rZ )
Pr ((ϕn)∗µn, ϕ∗µ)

n→∞−−−→ 0. (5.30)

Proof Again the “if” direction is clear by definition. For the “only if” direction, assume
that (5.29) holds. To conclude (5.30) we can follow the same line of argument as in
the proof of Lemma 5.7 but with a metric r extending the metrics r , r1, r2,…built
on correspondences between X and Xn (rather than Xn and Xn+1). We leave out the
details. �

6 Distance distribution and Modulus of mass distribution

In this section we provide results on the distance distribution and on the modulus
of mass distribution. These will be heavily used in the following sections, where
we present metrics which are equivalent to the Gromov–Prohorov metric and which
are very helpful in proving the characterizations of compactness and tightness in the
Gromov–Prohorov topology.

We start by introducing the random distance distribution of a given metric measure
space.

Definition 6.1 (Random distance distribution) Let X = (X, r, µ) ∈ M. For each
x ∈ X , define the map rx : X → [0,∞) by rx (x ′) := r(x, x ′), and put µx :=
(rx )∗µ ∈ M1([0,∞)), i.e.,µx defines the distribution of distances to the point x ∈ X .
Moreover, define the map r̂ : X → M1([0,∞)) by r̂(x) := µx , and let

µ̂X := r̂∗µ ∈ M1(M1([0,∞))) (6.1)

be the random distance distribution of X .

Notice first that the random distance distribution does not characterizes the metric
measure space uniquely. We will illustrate this with an example.

Example 6.2 Consider the following two metric measure spaces:
That is, both spaces consist of 8 points. The distance between two points equals the

minimal number of edges one has to cross to come from one point to the other. The
measures µX and µY are given by the numbers in the figure. We find that

µ̂X = µ̂Y = 1

10
δ 1

20 δ0+ 9
20 δ2+ 1

2 δ3
+ 1

5
δ 1

10 δ0+ 2
5 δ2+ 1

2 δ3

+ 3

10
δ 3

20 δ0+ 7
20 δ2+ 1

2 δ3
+ 2

5
δ 1

5 δ0+ 3
10 δ2+ 1

2 δ3
. (6.2)
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Hence, the random distance distributions agree. But obviously, X and Y are not mea-
sure preserving isometric.

Recall the distance distributionw· and the modulus of mass distribution vδ(·) from
Definition 2.9. Both can be expressed through the random distance distribution µ̂(·).
These facts follow directly from the definitions, so we omit the proof.

Lemma 6.3 (Reformulation of w· and vδ(·) in terms of µ̂(·)) Let X ∈ M.

(i) The distance distribution wX satisfies

wX =
∫

M1([0,∞))

µ̂X (dν) ν. (6.3)

(ii) For all δ > 0, the modulus of mass distribution vδ(X ) satisfies

vδ(X ) = inf
{
ε > 0 : µ̂X {ν ∈ M1([0,∞)) : ν([0, ε)) ≤ δ} ≤ ε

}
. (6.4)

The next result will be used frequently.

Lemma 6.4 Let X = (X, r, µ) ∈ M and δ > 0. If vδ(X ) < ε, for some ε > 0, then

µ {x ∈ X : µ(Bε(x)) ≤ δ} < ε. (6.5)

Proof By definition of vδ(·), there exists ε′<ε for whichµ {x ∈ X :µ(Bε′(x))≤δ}≤ε′.
Consequently, since {x : µ(Bε(x)) ≤ δ} ⊆ {x : µ(Bε′(x)) ≤ δ},

µ{x : µ(Bε(x)) ≤ δ} ≤ µ{x : µ(Bε′(x)) ≤ δ} ≤ ε′ < ε, (6.6)

and we are done. �
The next result states basic properties of the map δ �→ vδ .

Lemma 6.5 (Properties of vδ(·)) Fix X ∈ M. The map which sends δ ≥ 0 to vδ(X )
is non-decreasing, right-continuous and bounded by 1. Moreover, vδ(X ) δ→0−→ 0.
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Proof The first three properties are trivial. For the forth, fix ε > 0, and let
X = (X, r, µ) ∈ M. Since X is complete and separable there exists a compact
set Kε ⊆ X with µ(Kε) > 1 − ε (see [10], Lemma 3.2.1). In particular, Kε can be
covered by finitely many balls A1, . . . , ANε of radius ε/2 and positiveµ-mass. Choose
δ such that

0 < δ < min {µ(Ai ) : 1 ≤ i ≤ Nε}. (6.7)

Then

µ {x ∈ X : µ(Bε(x)) > δ} ≥ µ

( Nε⋃
i=1

Ai

)

≥ µ(Kε)

> 1 − ε.

(6.8)

Therefore, by definition, vδ(X ) ≤ ε, and since ε was chosen arbitrary, the assertion
follows. �

The following proposition states continuity properties of µ̂(·), w· and vδ(·). The
reader should have in mind that we finally prove with Theorem 5 in Sect. 9 that the
Gromov-weak and the Gromov–Prohorov topology are the same.

Proposition 6.6 (Continuity properties of µ̂(·), w· and vδ(·))
(i) The map X �→ µ̂X is continuous with respect to the Gromov-weak topology on

M and the weak topology on M1(M1([0,∞))).
(ii) The mapX �→ µ̂X is continuous with respect to the Gromov–Prohorov topology

on M and the weak topology on M1(M1([0,∞))).
(iii) The map X �→ wX is continuous with respect to both the Gromov-weak and

the Gromov–Prohorov topology on M and the weak topology on M1([0,∞)).
(iv) Let X , X1, X2, . . . in M such that µ̂Xn

n→∞�⇒ µ̂X and δ > 0. Then

lim sup
n→∞

vδ(Xn) ≤ vδ(X ). (6.9)

The proof of Parts (i) and (ii) of Proposition 6.6 are based on the notion of moment
measures.

Definition 6.7 (Moment measures of µ̂X ) For X = (X, r, µ) ∈ M and k ∈ N, define
the kth moment measure µ̂k

X ∈ M1([0,∞)k) of µ̂X by

µ̂k
X (d(r1, . . . , rk)) :=

∫
µ̂X (dν) ν⊗k(d(r1, . . . , rk)). (6.10)

Remark 6.8 (Moment measures determine µ̂X ) Observe that for all k ∈ N,

µ̂k
X (A1 × · · · × Ak)

= µ⊗k+1 {(u0, u1, . . . , uk) : r(u0, u1) ∈ A1, . . . , r(u0, uk) ∈ Ak}. (6.11)
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By Theorem 16.16 of [20], the moment measures µ̂k
X , k = 1, 2, . . . determine µ̂X

uniquely. Moreover, weak convergence of random measures is equivalent to conver-
gence of all moment measures.

Proof of Proposition 6.6 (i) Take X , X1, X2, …in M such that

�(Xn)
n→∞−−−→ �(X ), (6.12)

for all � ∈ �. For k ∈ N, consider all φ ∈ Cb([0,∞)(
k+1

2 )) which depend on
(ri j )0≤i< j≤k only through (r0,1, . . . , r0,k), i.e., there exists φ̃ ∈ Cb([0,∞)k) with
φ

(
(ri j )0≤i< j≤k

) = φ̃
(
(r0, j )1≤ j≤k

)
. Since for any Y = (Y, r, µ) ∈ M,

∫
µ̂k

Y (d(r1, . . . , rk)) φ̃ (r1, . . . , rk)

=
∫
µ⊗k+1(d(u0, u1, . . . , uk)) φ̃ (r(u0, u1), . . . , r(u0, uk))

=
∫
µ⊗k+1(d(u0, u1, . . . , uk)) φ

(
(r(ui , u j ))0≤i< j≤k

)
(6.13)

it follows from (6.12) that µ̂k
Xn

n→∞�⇒ µ̂k
X in the topology of weak convergence. Since

k was arbitrary the convergence µ̂Xn

n→∞�⇒ µ̂X follows by Remark 6.8.
(ii) Once more it suffices to prove that all moment measures converge.
Let X = (X, rX , µX ) ∈ M and ε > 0 be given. Now consider a metric measure

space Y = (Y, rY , µY ) ∈ M with dGPr(X ,Y) < ε.
We know that there exists a metric space (Z , rZ ), isometric embeddings ϕX and

ϕY of supp(µX ) and supp(µY ) into Z , respectively, and a coupling µ̃ of (ϕX )∗µX and
(ϕY )∗µY such that

µ̃
{
(z, z′) : rZ (z, z′) ≥ ε

} ≤ ε. (6.14)

Given k ∈ N, define a coupling ˜̂µk of µ̂k
X and µ̂k

Y by

˜̂µk (A1 × · · · × Ak × B1 · · · × Bk)

:= µ̃⊗(k+1) {(z0, z′
0), . . . , (zk, z′

k) : rZ (z0, zi )∈ Ai , rZ (z
′
0, z′

i )∈ Bi , i =1, . . . , k
}

(6.15)

for all A1 × · · · × Ak × B1 × · · · × Bk ∈ B(R2k+ ). Then

˜̂µk {
(r1, . . . , rk, r

′
1, . . . , r

′
k) : |ri − r ′

i | ≥ 2ε for at least one i
}

≤ k · ˜̂µ1 {
(r1, r

′
1) : |r1 − r ′

1| ≥ 2ε
}

= k · µ̃⊗2 {
(z, z′), (z̃, z̃′) : |rZ (z, z̃)− rZ (z

′, z̃′)| ≥ 2ε
}

≤ k · µ̃⊗2 {
(z, z′), (z̃, z̃′) : rZ (z, z′) ≥ ε or rZ (z̃, z̃′) ≥ ε

}

≤ 2kε,

(6.16)

which implies that d
R

k+
Pr (

˜̂µk
X , ˜̂µk

Y ) ≤ 2kε, and the claim follows.
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(iii) By Part (i) of Lemma 6.3, for X ∈ M, wX equals the first moment measure of
µ̂X . The continuity properties of X �→ wX are therefore a direct consequence of (i)
and (ii).

(iv) Let X , X1, X2, …in M such that µ̂Xn

n→∞�⇒ µ̂X and δ > 0. Assume that ε > 0
is such that ε > vδ(X ). Then by Lemmata 6.3(ii) and 6.4,

µ̂X {ν ∈ M1([0,∞)) : ν([0, ε)) ≤ δ} < ε. (6.17)

The set {ν ∈ M1([0,∞)) : ν([0, ε)) ≤ δ} is closed in M1([0,∞)). Hence by the
Portmanteau Theorem (see, for example, Theorem 3.3.1 in [10]),

lim sup
n→∞

µ̂Xn {ν ∈ M1([0,∞)) : ν([0, ε)) ≤ δ}
≤ µ̂X {ν ∈ M1([0,∞)) : ν([0, ε)) ≤ δ} < ε.

(6.18)

That is, we have vδ(Xn) < ε, for all but finitely many n, by (6.9). Therefore we
find that lim supn→∞ vδ(Xn) < ε. This holds for every ε > vδ(X ), and we are done.

�
The following estimate will be used in the proofs of the pre-compactness charac-

terization given in Proposition 7.1 and of Part (i) of Lemma 10.3.

Lemma 6.9 Let δ > 0, ε ≥ 0, and X = (X, r, µ) ∈ M. If vδ(X ) < ε, then there
exists N ≤ � 1

δ
� and points x1, . . . , xN ∈ X such that the following hold.

• For i = 1, . . . , N, µ (Bε(xi )) > δ, and µ
(⋃N

i=1 B2ε(xi )
)
> 1 − ε.

• For all i, j = 1, . . . , N with i �= j , r
(
xi , x j

)
> ε.

Proof Consider the set D := {x ∈ X : µ(Bε(x)) > δ}. Since vδ(X ) < ε, Lemma 6.4
implies that µ(D) > 1 − ε. Take a maximal 2ε separated net {xi : i ∈ I } ⊆ D, i.e.,

D ⊆
⋃
i∈I

B2ε(xi ), (6.19)

and for all i �= j ,

r(xi , x j ) > 2ε, (6.20)

while adding a further point to D would destroy (6.20). Such a net exists in every
metric space (see, for example, in [4], p. 278). Since

1 ≥ µ

(⋃
i∈I

Bε(xi )

)
=

∑
i∈I

µ (Bε(xi )) ≥ |I |δ, (6.21)

|I | ≤ � 1
δ
� follows. �
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7 Compact sets

By Prohorov’s Theorem, in a complete and separable metric space, a set of probability
measures is relatively compact iff it is tight. This implies that compact sets in M play a
special role for convergence results. In this section we characterize the (pre-)compact
sets in the Gromov–Prohorov topology.

Recall the distance measure wX from (2.7) and the modulus of mass distribution
vδ(X ) from (2.8). Denote by (Xc, dGH) the space of all isometry classes of compact
metric spaces equipped with the Gromov–Hausdorff metric (see Sect. 5 for basic
definitions).

The following characterizations together with Theorem 5 stated in Sect. 9 which
states the equivalence of the Gromov–Prohorov and the Gromov-weak topology imply
the result stated in Theorem 2.

Proposition 7.1 (Pre-compactness characterization) Let � be a family in M. The fol-
lowing four conditions are equivalent.

(a) The family � is pre-compact in the Gromov–Prohorov topology.
(b) The family {w(X ); X ∈ �} is tight, and

sup
X∈�

vδ(X ) δ→0−−→ 0. (7.1)

(c) For all ε > 0 there exists Nε ∈ N such that for all X = (X, r, µ) ∈ � there is a
subset Xε,X ⊆ X with
– µ

(
Xε,X

) ≥ 1 − ε,
– Xε,X can be covered by at most Nε balls of radius ε, and
– Xε,X has diameter at most Nε.

(d) For all ε > 0 and X = (X, r, µ) ∈ � there exists a compact subset Kε,X ⊆ X
with
– µ

(
Kε,X

) ≥ 1 − ε, and
– the family Kε := {Kε,X ; X ∈ �} is pre-compact in (Xc, dGH).

Remark 7.2

(i) In the space of compact metric spaces equipped with a probability measure with
full support, Proposition 2.4 in [13] states that Condition (d) is sufficient for
pre-compactness.

(ii) Proposition 7.1(b) characterizes tightness for the stronger topology given in
[27] based on certain L2-Wasserstein metrics if one requires in addition uniform
integrability of sampled mutual distance.
Similarly, (b) characterizes tightness in the space of measure preserving iso-
metry classes of metric spaces equipped with a finite measure (rather than a
probability measure) if one requires in addition tightness of the family of total
masses. �

Proof of Proposition 7.1 As before, we abbreviate X = (X, rX , µX ). We prove four
implications giving the statement.
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(a) ⇒ (b). Assume that � ∈ M is pre-compact in the Gromov–Prohorov topology.
To show that {w(X ); X ∈ �} is tight, consider a sequence X1,X2, . . . in �. Since

� is relatively compact by assumption, there is a converging subsequence, i.e., we find

X ∈ M such that dGPr(Xnk ,X )
k→∞−→ 0 along a suitable subsequence (nk)k∈N. By

Part (iii) of Proposition 6.6, wXnk

k→∞�⇒ wX . As the sequence was chosen arbitrary it
follows that {w(X ); X ∈ �} is tight.

The second part of the assertion in (b) is by contradiction. Assume that vδ(X ) does
not converge to 0 uniformly in X ∈ �, as δ → 0. Then we find an ε > 0 such that for
all n ∈ N there exist sequences (δn)n∈N converging to 0 and Xn ∈ � with

vδn (Xn) ≥ ε. (7.2)

By assumption, there is a subsequence {Xnk ; k ∈ N}, and a metric measure space

X ∈ � such that dGPr
(Xnk ,X

) k→∞−→ 0. By Parts (ii) and (iv) of Proposition 6.6, we
find that lim supk→∞ vδnk

(Xnk ) = 0 which contradicts (7.2).
(b) ⇒ (c). By assumption, for all ε > 0 there are C(ε) with

sup
X∈�

wX ([C(ε),∞)) < ε, (7.3)

and δ(ε) such that

sup
X∈�

vδ(ε)(X ) < ε. (7.4)

Set

X ′
ε,X :=

{
x ∈ X : µX

(
B

C( ε
2

4 )
(x)

)
> 1 − ε/2

}
. (7.5)

We claim thatµX (X ′
ε,X ) > 1−ε/2. If this were not the case, there would be X ∈ �

with

wX
(
[C( 1

4ε
2);∞)

)
= µ⊗2

X

{
(x, x ′) ∈ X × X : rX (x, x ′) ≥ C( 1

4ε
2)

}

≥ µ⊗2
X

{
(x, x ′) : x /∈ X ′

ε,X , x ′ /∈ B
C( ε

2

4 )
(x)

}

≥ ε

2
µX (�X ′

ε,X )

≥ ε2

4
, (7.6)

which contradicts (7.3). Furthermore, the diameter of X ′
ε,X is bounded by 4C( ε

2

4 ).
Indeed, otherwise we would find points x, x ′ ∈ X ′

ε,X with B
C( ε

2

4 )
(x)∩B

C( ε
2

4 )
(x ′) = ∅,

which contradicts that
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µX

(
B

C( ε
2

4 )
(x) ∩ B

C( ε
2

4 )
(x ′)

)
≥ 1 − µX

(
�B

C( ε
2

4 )
(x)

)
−µX

(
�B

C( ε
2

4 )
(x ′)

)

≥ 1 − ε. (7.7)

By Lemma 6.9, for all X = (X, rX , µX ) ∈ �, we can choose points x1, . . . , xNX
ε

∈
X with NX

ε ≤ N (ε) := � 1
δ(ε/2)�, rX (xi , x j ) > ε/2, 1 ≤ i < j ≤ NX

ε , and with

µX

(⋃NX
ε

i=1 Bε(xi )

)
> 1 − ε/2.

Set

Xε,X := X ′
ε,X ∩

NX
ε⋃

i=1

Bε(xi ). (7.8)

Then µX (Xε,X ) > 1 − ε. In addition, Xε,X can be covered by at most N (ε) balls

of radius ε and X ′
ε,X has diameter at most 4C( ε

2

4 ), so the same is true for Xε,X .

(c) ⇒ (d). Fix ε > 0, and set εn := ε2−(n+1), for all n ∈ N. By assumption we may
choose for each n ∈ N, Nεn ∈ N such that for all X ∈ � there is a subset Xεn ,X ⊆ X
of diameter at most Nεn withµ

(
Xεn ,X

) ≥ 1−εn , and such that Xεn ,X can be covered
by at most Nεn balls of radius εn . Without loss of generality we may assume that all
{Xεn ,X ; n ∈ N,X ∈ �} are closed. Otherwise we just take their closure. For every
X ∈ � take compact sets Kεn ,X ⊆ X with µX (Kεn ,X ) > 1 − εn . Then the set

Kε,X :=
∞⋂

n=1

(
Xεn ,X ∩ Kεn ,X

)
(7.9)

is compact since it is the intersection of a compact set with closed sets, and

µX (Kε,X ) ≥ 1 −
∞∑

n=1

(
µX (�Xεn ,X )+ µX (�Kεn ,X )

)
> 1 − ε. (7.10)

Consider

Kε := {
Kε,X ; X ∈ �}

. (7.11)

To show that Kε is pre-compact we use the pre-compactness criterion given in
Theorem 7.4.15 in [4], i.e., we have to show that Kε is uniformly totally bounded.
This means that the elements of Kε have bounded diameter and for all ε′ > 0 there
is a number Nε′ such that all elements of Kε can be covered by Nε′ balls of radius ε′.
By definition, Kε,X ⊆ Xε1,X and so, Kε,X has diameter at most Nε1 . So, take ε′ < ε

and n large enough for εn < ε′. Then Xεn ,X as well as Kε,X can be covered by Nεn

balls of radius ε′. So Kε is pre-compact in (Xc, dGH).
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(d) ⇒ (a). The proof is in two steps. Assume first that all metric spaces (X, rX )

with (X, rX , µX ) ∈ � are compact, and that the family {(X, rX ) : (X, rX , µX ) ∈ �}
is pre-compact in the Gromov–Hausdorff topology.

Under these assumptions we can choose for every sequence in � a subsequence
(Xm)m∈N, Xm = (Xm, rXm , µXm ), and a metric space (X, rX ), such that

dGH(X, Xm)
m→∞−→ 0. (7.12)

By Lemma A.1, there are a compact metric space (Z , rZ ) and isometric embeddings
ϕX , ϕX1 , ϕX2 , …from X , X1, X2, …, respectively, to Z , such that dH

(
ϕX (X), ϕXm

(Xm)
) m→∞−→ 0. Since Z is compact, the set {(ϕXm )∗µXm : m ∈ N} is pre-compact

in M1(Z) equipped with the weak topology. Therefore (ϕXm )∗µXm has a converging
subsequence, and (a) follows in this case.

In the second step we consider the general case. Let εn := 2−n , fix for every X ∈ �
and every n ∈ N, x ∈ Kεn ,X . Put

µX,n(·) := µX (· ∩ Kεn ,X )+ (1 − µX (Kεn ,X ))δx (·) (7.13)

and let X n := (X, rX , µX ,n). By construction, for all X ∈ �,

dGPr
(X n,X ) ≤ εn, (7.14)

and µX,n is supported by Kεn ,X . Hence, �n := {X n; X ∈ �} is pre-compact in Xc
equipped with the Gromov–Hausdorff topology, for all n ∈ N. We can therefore find
a converging subsequence in �n , for all n, by the first step.

By a diagonal argument we find a subsequence (Xm)m∈N withXm =(Xm, rXm , µXm )

such that (X n
m)m∈N converges for every n ∈ N to some metric measure space Zn . Pick

a subsequence such that for all n ∈ N and m ≥ n,

dGPr
(X n

m,Zn
) ≤ εm . (7.15)

Then

dGPr
(X n

m,X n
m′

) ≤ 2εn, (7.16)

for all m,m′ ≥ n. We conclude that (Xn)n∈N is a Cauchy sequence in (M, dGPr) since∑
n≥1 εn < ∞. Indeed,

dGPr (Xn,Xn+1)

≤ dGPr
(Xn,X n

n

) + dGPr
(X n

n ,X n
n+1

) + dGPr
(X n

n+1,Xn+1
)

≤ 4εn . (7.17)

Since (M, dGPr) is complete, this sequence converges and we are done.
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8 Tightness

In Proposition 7.1 we have given a characterization for relative compactness in M

with respect to the Gromov–Prohorov topology. This characterization extends to the
following tightness characterization in M1(M) which is equivalent to Theorem 3,
once we have shown the equivalence of the Gromov–Prohorov and the Gromov-weak
topology in Theorem 5 in Sect. 10.

Proposition 8.1 (Tightness with respect to the Gromov–Prohorov topology) A set
A ⊆ M1(M) is tight with respect to the Gromov–Prohorov topology on M if and only
if for all ε > 0 there exist δ > 0 and C > 0 such that

sup
P∈A

P [vδ(X )+ wX ([C;∞))] < ε. (8.1)

Proof of Proposition 8.1 For the “only if” direction assume that A is tight and fix
ε > 0. By definition, we find a compact set �ε in (M, dGPr) such that infP∈A P(�ε) >

1 − ε/4. Since �ε is compact there are, by part (b) of Proposition 7.1, δ = δ(ε) > 0
and C = C(ε) > 0 such that vδ(X ) < ε/4 and wX ([C,∞)) < ε/4, for all X ∈ �ε.
Furthermore both vδ(·) andw·([C,∞)) are bounded above by 1. Hence for all P ∈ A,

P [vδ(X )+ wX ([C,∞))]

= P [vδ(X )+ wX ([C,∞));�ε] + P
[
vδ(X )+ wX ([C,∞)); ��ε

]

<
ε

2
+ ε

2
= ε. (8.2)

Therefore (8.1) holds.
For the “if” direction assume (8.1) is true and fix ε > 0. For all n ∈ N, there are

δn > 0 and Cn > 0 such that

sup
P∈A

P
[
vδn (X )+ wX ([Cn,∞))

]
< 2−2nε2. (8.3)

By Tschebychev’s inequality, we conclude that for all n ∈ N,

sup
P∈A

P
{X : vδn (X )+ wX ([Cn,∞)) > 2−nε

}
< 2−nε. (8.4)

By the equivalence of (a) and (b) in Proposition 7.1 the closure of

�ε :=
∞⋂

n=1

{X : vδn (X )+ wX ([Cn,∞)) ≤ 2−nε
}

(8.5)

is compact. We conclude
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P
(
�ε

) ≥ P (�ε)

≥ 1 −
∞∑

n=1

P
{X : vδn (X )+ wX ([Cn,∞)) > ε

2n

}

> 1 − ε. (8.6)

Since ε was arbitrary, A is tight. �

9 Gromov–Prohorov and Gromov-weak topology coincide

In this section we show that the topologies induced by convergence of polynomials
and convergence in the Gromov–Prohorov metric coincide. This implies that the cha-
racterizations of compact subsets of M and tight families in M1(M) in Gromov-weak
topology stated in Theorems 2 and 3 are covered by the corresponding characteriza-
tions with respect to the Gromov–Prohorov topology given in Propositions 7.1 and
8.1, respectively. Recall the distance matrix distribution from Definition 2.7

Theorem 5 Let X ,X1,X2, . . . ∈ M. The following are equivalent:

(a) The Gromov–Prohorov metric converges, i.e.,

dGPr (Xn,X ) n→∞−−−→ 0. (9.1)

(b) Distance matrix distributions converge, i.e.,

νXn �⇒ νX as n → ∞. (9.2)

(c) All polynomials � ∈ � converge, i.e.,

�(Xn)
n→∞−−−→ �(X ). (9.3)

Proof (a) ⇒ (b). Let X = (X, rX , µX ), X1 = (X1, r1, µ1), X2 = (X2, r2, µ2). By
Lemma 5.8 there are a complete and separable metric space (Z , rZ ) and isometric
embeddings ϕ, ϕ1, ϕ2,…from (X, rX ), (X1, r1), (X2, r2), …, respectively, to (Z , rZ )

such that (ϕn)∗µn converges weakly to ϕ∗µX on (Z , rZ ). Consequently, using (2.4),

νXn = (ιXn )∗µN
n = (ιZ )∗

(
((ϕn)∗µn)

N
)

�⇒ (ιZ )∗
(
(ϕ∗µ)N

)
= (ιX )∗µN = νX

(9.4)

(b) ⇒ (c).This is a consequence of the two different representation of polynomials
from (2.2) and (2.6).
(c) ⇒ (a). Assume that for all � ∈ �, �(Xn)

n→∞−−−→ �(X ). It is enough to
show that the sequence (Xn)n∈N is pre-compact with respect to the Gromov–Prohorov
topology, since by Proposition 2.6, this would imply that all limit points coincide and
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equal X . We need to check the two conditions guaranteeing pre-compactness given
by Part (b) of Proposition 7.1.

By Part (iii) of Proposition 6.6, the map X �→ wX is continuous with respect to
the Gromov-weak topology. Hence, the family {wXn ; n ∈ N} is tight.

In addition, by Parts (i) and (iv) of Proposition 6.6, lim supn→∞ vδ(Xn) ≤ vδ(X )
δ→0−−→ 0. By Remark 2.11, the latter implies (7.1), and we are done. �

10 Equivalent metrics

In Sect. 5 we have seen that M equipped with the Gromov–Prohorov metric is separable
and complete. In this section we conclude the paper by presenting further metrics (not
necessarily complete) which are all equivalent to the Gromov–Prohorov metric and
which may be in some situations easier to work with.

The Eurandom metric1 Recall from Definition 2.3 the algebra of polynomials, i.e.,
functions which evaluate distances of finitely many points sampled from a metric
measure space. By Proposition 2.6, polynomials separate points in M. Consequently,
two metric measure spaces are different if and only if the distributions of sampled
finite subspaces are different.

We therefore define

dEur (X ,Y) := inf
µ̃

inf
{
ε > 0 : µ̃⊗2 {(x, y), (x ′, y′) ∈ (X × Y )2 :

|rX (x, x ′)− rY (y, y′)| ≥ ε} < ε
}
, (10.1)

where the infimum is over all couplings µ̃ of µX and µY . We will refer to dEur as the
Eurandom metric.

Not only is dEur a metric on M, it also generates the Gromov–Prohorov topology.

Proposition 10.1 (Equivalent metrics) The distance dEur is a metric on M. It is equi-
valent to dGPr, i.e., the generated topology is the Gromov-weak topology.

Before we prove the proposition we give an example to show that the Eurandom
metric is not complete.

Example 10.2 (Eurandom metric is not complete) Let for all n ∈ N,Xn :=(Xn, rn, µn)

as in Example 2.12(ii). For all n ∈ N,

dEur (Xn,Xn+1)

≤ inf
{
ε > 0 : (µn ⊗ µn+1)

⊗2{|1{x = x ′} − 1{y = y′}| ≥ ε} ≤ ε
}

≤ 2−(n−1), (10.2)

1 When we first discussed how to metrize the Gromov-weak topology the Eurandom metric came up. Since
the discussion took place during a meeting at Eurandom, we decided to name the metric accordingly.
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i.e., (Xn)n∈N is a Cauchy sequence for dEur which does not converge. Hence (M, dEur)

is not complete. The Gromov–Prohorov metric was shown to be complete, and hence
the above sequence is not Cauchy in this metric. Indeed,

dGPr (Xn,Xn+1) = 2−1
n→∞�−→ 0. (10.3)

To prepare the proof of Proposition 10.1, we provide bounds on the introduced
“distances”.

Lemma 10.3 (Equivalence]) Let X ,Y ∈ M, and δ ∈ (0, 1
2 ).

(i) If dEur (X ,Y) < δ4 then dGPr (X ,Y) < 12(2vδ(X )+ δ).

(ii) dEur (X ,Y) ≤ 2dGPr (X ,Y). (10.4)

Proof (i) The Gromov–Prohorov metric relies on the Prohorov metric of embeddings
ofµX andµY in M1(Z) in a metric space (Z , rZ ). This is in contrast to the Eurandom
metric which is based on an optimal coupling of the two measures µX andµY without
referring to a space of measures over a third metric space. Since we want to bound the
Gromov–Prohorov metric in terms of the Eurandom metric the main goal of the proof
is to construct a suitable metric space (Z , rZ ).

The construction proceeds in three steps. We start in Step 1 with finding a suitable
ε-net {x1, . . . , xN } in (X, rX ), and show that this net has a suitable corresponding net
{y1, . . . , yN } in (Y, rY ). In Step 2 we then verify that these nets have the property that
rX (xi , x j ) ≈ rY (yi , y j ) (where the ’≈’ is made precise below) and δ-balls around
these nets carry almost all µX - and µY -mass. Finally, in Step 3 we will use these nets
to define a metric space (Z , rZ ) containing both (X, rX ) and (Y, rY ), and bound the
Prohorov metric of the images of µX and µY .

Step 1 (Construction of suitable ε-nets in X and Y )

Fix δ ∈ (0, 1
2 ). Assume that X ,Y ∈ M are such that dEur (X ,Y) < δ4. By definition,

we find a coupling µ̃ of µX and µY such that

µ̃⊗2 {(x1, y1), (x2, y2) : |rX (x1, x2)− rY (y1, y2)| > 2δ} < δ4. (10.5)

Set ε := 4vδ(X ) ≥ 0. By Lemma 6.9, there are N ≤ � 1
δ
� points x1, . . . , xN ∈ X

with pairwise distances at least ε,

µ (Bε(xi )) > δ, (10.6)

for all i = 1, . . . , N , and

µ

(
N⋃

i=1

Bε(xi )

)
≥ 1 − ε. (10.7)
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Put D := ⋃N
i=1 Bε(xi ). We claim that for every i = 1, . . . , N there is yi ∈ Y with

µ̃
(
Bε(xi )× B2(ε+δ)(yi )

) ≥ (1 − δ2)µX (Bε(xi )). (10.8)

Indeed, assume the assertion is not true for some 1 ≤ i ≤ N . Then, for all y ∈ Y ,

µ̃
(
Bε(xi )× �B2(ε+δ)(y)

) ≥ δ2µX (Bε(xi )). (10.9)

which implies that

µ̃⊗2 {
(x ′, y′), (x ′′, y′′) : |rX (x

′, x ′′)− rY (y
′, y′′)| > 2δ

}

≥ µ̃⊗2 {
(x ′, y′), (x ′′, y′′) : x ′, x ′′ ∈ Bε(xi ), y′′ /∈ B2(ε+δ)(y′)

}

≥ µX (Bε(xi ))
2δ2

> δ4, (10.10)

by (6.19) and (10.9) which contradicts (10.5).

Step 2 (Distortion of {x1, . . . , xN } and {y1, . . . , yn})

Assume that {x1, . . . , xN } and {y1, . . . , yn} are such that (10.6) through (10.8) hold.
We claim that then

∣∣rX (xi , x j )− rY (yi , y j )
∣∣ ≤ 6(ε + δ), (10.11)

for all i, j = 1, . . . , N . Assume that (10.11) is not true for some pair (i, j). Then for
all x ′ ∈ Bε(xi ), x ′′ ∈ Bε(x j ), y′ ∈ B2(ε+δ)(yi ), and y′′ ∈ B2(ε+δ)(y j ),

∣∣rX (x
′, x ′′)− rY (y

′, y′′)
∣∣ > 6(ε + δ)− 2ε − 4(ε + δ) = 2δ. (10.12)

Then

µ̃⊗2 {
(x ′, y′), (x ′′, y′′) : |rX (x

′, x ′′)− rY (y
′, y′′)| > 2δ

}

≥ µ̃⊗2 {
(x ′, y′), (x ′′, y′′) :

x ′ ∈ Bε(xi ), x ′′ ∈ Bε(x j ), y′ ∈ B2(ε+δ)(yi ), y′′ ∈ B2(ε+δ)(y j )
}

= µ̃
(
Bε(xi )× B2(ε+δ)(yi )

)
µ̃

(
Bε(x j )× B2(ε+δ)(y j )

)

δ2(1 − δ)2

> δ4, (10.13)

where we used (10.8), (6.19) and δ < 1
2 . Since (10.13) contradicts (10.5), we are done.
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Step 3 (Definition of a suitable metric space (Z , rZ ))

Define the relation R := {(xi , yi ) : i = 1, . . . , N } between X and Y and consi-
der the metric space (Z , rZ ) defined by Z := X � Y and rZ := r R

X�Y , given as in
Remark 5.5. Choose isometric embeddings ϕX and ϕY from (X, rX ) and (Y, rY ), res-
pectively, into (Z , rZ ). As dis(R) ≤ 6(ε+δ) (see (5.7) for definition), by Remark 5.5,
rZ (ϕX (xi ), ϕY (yi )) ≤ 3(ε + δ), for all i = 1, . . . , N .

If x ∈ X and y ∈ Y are such that rZ (ϕX (x), ϕY (y)) ≥ 6(ε + δ) and rX (x, xi ) < ε

then

rY (y, yi ) ≥ rZ (ϕX (x), ϕY (y))− rX (x, xi )− rZ (ϕX (xi ), ϕY (yi ))

≥ 6(ε + δ)− ε − 3(ε + δ)

≥ 2(ε + δ) (10.14)

and so for all x ∈ Bε(xi ),

{y ∈ Y : rZ (ϕX (x), ϕY (y)) ≥ 6(ε + δ)} ⊆ �B2(ε+δ)(yi ). (10.15)

Let µ̃ be the probability measure on Z × Z defined by µ̂(A × B) := µ̃(ϕ−1
X (A)×

ϕ−1
Y (B)), for all A, B ∈ B(Z). Therefore, by (10.11), (10.15), (10.8) and as

N ≤ �1/δ�,

µ̂
{
(z, z′) : rZ (z, z′) ≥ 6(ε + δ)

}

≤ µ̂
(
ϕX (�D)× ϕY (Y )

) + µ̂

(
N⋃

i=1

Bε(ϕX (xi ))× �B2(ε+δ)(ϕY (yi ))

)

≤ ε +
N∑

i=1

µX (Bε(xi ))δ
2

≤ ε + δ. (10.16)

Hence, using (5.4) and ε = 4vδ(X ),

d(Z ,rZ )
Pr ((ϕX )∗µX , (ϕY )∗µY ) ≤ 6 (4vδ(X )+ 2δ), (10.17)

and so dGPr (X ,Y) ≤ 12 (2vδ(X )+ δ), as claimed.
(ii) Assume that dGPr (X ,Y) < δ. Then, by definition, there exists a metric space

(Z , rZ ), isometric embeddings ϕX and ϕY between supp(µX ) and supp(µY ) and Z ,
respectively, and a coupling µ̂ of (ϕX )∗µX and (ϕY )∗µY such that

µ̂
{
(z, z′) : rZ (z, z′) ≥ δ

}
< δ. (10.18)
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Hence with the special choice of a coupling µ̃ ofµX andµY defined by µ̃(A×B) =
µ̂ (ϕX (A)× ϕY (B)), for all A ∈ B(X) and B ∈ B(Y ),

µ̃⊗2 {
(x, y), (x ′, y′) ∈ X × Y : |rX (x, x ′)− rY (y, y′)| ≥ 2δ

}

≤ µ̃⊗2 {
(x, y), (x ′, y′) ∈ X × Y

: rZ (ϕX (x), ϕY (y)) ≥ δ or rZ (ϕX (x
′), ϕY (y

′)) ≥ δ
}

< 2δ. (10.19)

This implies that dEur (X ,Y) < 2δ. �

Proof of Proposition 10.1 Observe that by Lemma 6.5, vδ(X ) δ→0−→ 0. So Lemma 10.3
implies the equivalence of dGPr and dEur once we have shown that dEur is indeed a
metric.

The symmetry is clear. If X , Y ∈ M are such that dEur(X ,Y) = 0, by equivalence,
dGPr(X ,Y) = 0 and hence X = Y .

For the triangle inequality, let Xi = (Xi , ri , µi ) ∈ M, i = 1, 2, 3, be such that
dEur(X1,X2) < ε and dEur(X2,X3) < δ for some ε, δ > 0. Then there exist couplings
µ̃1,2 of µ1 and µ2 and µ̃2,3 of µ2 and µ3 with

µ̃⊗2
1,2

{
(x1, x2), (x

′
1, x ′

2) : |r1(x1, x ′
1)− r2(x2, x ′

2)| ≥ ε
}
< ε (10.20)

and

µ̃⊗2
2,3

{
(x2, x3), (x

′
2, x ′

3) : |r2(x2, x ′
2)− r3(x3, x ′

3)| ≥ δ
}
< δ. (10.21)

Introduce the transition kernel K2,3 from X2 to X3 defined by

µ̃2,3(d(x2, x3)) = µ2(dx2)K2,3(x2, dx3). (10.22)

which exists since X2 and X3 are Polish.
Using this kernel, define a coupling µ̃1,3 of µ1 and µ3 by

µ̃1,3(d(x1, x3)) :=
∫

X2

µ̃1,2(d(x1, x2))K2,3(x2, dx3). (10.23)

Then

µ̃⊗2
1,3

{
(x1, x3), (x

′
1, x ′

3) : |r1(x1, x ′
1)− r3(x3, x ′

3)| ≥ ε + δ
}

=
∫

X2
1×X2

2×X2
3

µ̃1,2(d(x1, x2))µ̃1,2(d(x
′
1, x ′

2))K2,3(x2, dx3)K2,3(x
′
2, dx ′

3)

×1
{|r1(x1, x ′

1)− r3(x3, x ′
3)| ≥ ε + δ

}
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≤
∫

X2
1×X2

2×X2
3

µ̃1,2(d(x1, x2))µ̃1,2(d(x
′
1, x ′

2))K2,3(x2, dx3)K2,3(x
′
2, dx ′

3)

× (
1{|r1(x1, x ′

1)− r2(x2, x ′
2)| ≥ ε} + 1{|r2(x2, x ′

2)− r3(x3, x ′
3)| ≥ δ})

= µ̃⊗2
1,2

{
(x1, x2), (x1, x ′

2) : |r1(x1, x ′
1)− r2(x2, x ′

2)| ≥ ε
}

+ µ̃⊗2
2,3

{
(x2, x3), (x2, x ′

3) : |r2(x2, x ′
2)− r3(x3, x ′

3)| ≥ δ
}

< ε + δ (10.24)

which yields dEur(X1,X3) < ε + δ. �

The Gromov-Wasserstein and the modified Eurandom metric

The topology of weak convergence for probability measures on a fixed metric space
(Z , r) is generated not only by the Prohorov metric, but also by

d(Z ,rZ )
W (µ1, µ2) := inf

µ̃

∫

Z×Z

µ̃(d(x, x ′))
(
r(x, x ′) ∧ 1

)
, (10.25)

where the infimum is over all couplings µ̃ of µ1 and µ2. This is a version of the
Wasserstein metric (see, for example, [25]). If we rely on the Wasserstein rather than
the Prohorov metric, this results in two further metrics: in the Gromov-Wasserstein
metric, i.e.,

dGW(X ,Y) := inf
(ϕX ,ϕY ,Z)

d(Z ,rZ )
W ((ϕX )∗µX , (ϕY )∗µY ), (10.26)

where the infimum is over all isometric embeddings from supp(µX ) and supp(µY )

into a common metric Z and in the modified Eurandom metric

d ′
Eur

(X ,Y)

:= inf
µ̃

∫
µ̃(d(x, y))µ̃(d(x ′, y′))

(|rX (x, x ′)− rY (y, y′)| ∧ 1
)
, (10.27)

where the infimum is over all couplings of µX and µY .

Remark 10.4 An L2-version of dGW on the set of compact metric measure spaces
is already used in [27]. It turned out that the metric is complete and the generated
topology is separable.

Altogether, we might ask if we could achieve similar bounds to those given in
Lemma 10.3 by exchanging the Gromov–Prohorov with the Gromov-Wasserstein
metric and the Eurandom with the modified Eurandom metric.

Proposition 10.5 The distances dGW and d ′
Eur define metrics on M. They all generate

the Gromov–Prohorov topology. Bounds that relate these two metrics with dGPr and
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dEur are for X ,Y ∈ M,

(dGPr(X ,Y))2 ≤ dGW(X ,Y) ≤ dGPr(X ,Y) (10.28)

and

(dEur(X ,Y))2 ≤ d ′
Eur(X ,Y) ≤ dEur(X ,Y) (10.29)

Consequently, the Gromov-Wasserstein metric is complete.

Proof The fact that dGW and d ′
Eur define metrics on M is proved analogously as for

the Gromov–Prohorov and the Eurandom metric. The Prohorov and the version of the
Wasserstein metric used in (10.26) and (10.27) on fixed metric spaces can be bounded
uniformly (see, for example, Theorem 3 in [18]). This immediately carries over to the
present case. �
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Appendix A. Additional facts on Gromov–Hausdorff convergence

Recall the notion of the Gromov–Hausdorff distance on the space Xc of isometry
classes of compact metric spaces given in (5.5). We give a statement concerning
convergence in the Gromov–Hausdorff metric which is analogous to Lemma 5.8 for
Gromov–Prohorov convergence.

Lemma A.1 Let (X, rX ), (X1, rX1), (X2, rX2), …be in Xc. Then

dGH(Xn, X)
n→∞−→ 0

if and only if there is a compact metric space (Z , rZ ) and isometric embeddings ϕ,
ϕ1, ϕ2, …of (X, r), (X1, rX1), (X2, rX2), …, respectively, into (Z , rZ ) such that

d(Z ,rZ )
H (ϕn(Xn), ϕ(X))

n→∞−→ 0. (A.1)

Proof The “if”-direction is clear. So we come immediately to the “only if” direction.

If dGH (Xn, X)
n→∞−→ 0, then by (5.8) we find correspondences Rn between X and Xn

such that dis(Rn)
n→∞−→ 0. Using these and X0 := X , we define recursively metrics rZn

on Zn := ⊔n
k=0 Xk . First, set Z1 := X0 � X1 and rZ1 := r R1

Z1
(recall Remark 5.5). In

the nth step, we are given a metric on Zn . Consider the canonical isometric embedding
ϕ from X to Zn and define the relation R̃n ⊆ Zn × Xn+1 by

R̃n+1 :=
{
(z, x) ∈ Zn × Xn+1 : (ϕ−1(z), x) ∈ Rn+1

}
, (A.2)
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and set rZn+1 := r R̃n+1
Zn+1

. By this procedure we end up with a metric rZ on Z := ⊔∞
n=0 Xn

and isometric embeddings ϕ0, ϕ1,. . . between X0, X1, …and Z , respectively, such that

d(Z ,rZ )
H (ϕn(Xn), ϕ(X)) = 1

2
dis(Rn)

n→∞−→ 0. (A.3)

W.l.o.g. we can assume that Z is complete. Otherwise we just embed everything into
the completion of Z . To verify compactness of (Z , rZ ) it is therefore sufficient to show
that Z is totally bounded (see, for example, Theorem 1.6.5 in [4]). For that purpose
fix ε > 0, and let n ∈ N. Since X is compact, we can choose a finite ε/2-net S in X .
Then for all x ∈ Z with rZ (x, X) < ε/2 there exists x ′ ∈ S such that rZ (x, x ′) < ε.
Moreover, dH (ϕn(Xn), ϕ(X)) < ε, for all but finitely many n ∈ N. For the remaining
ϕn(Xn) choose finite ε-nets and denote their union by S̃. In this way, S ∪ S̃ is a finite
set, and {Bε(s) : s ∈ S ∪ S̃} is a covering of Z . �
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