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Abstract We prove a strong form of the equivalence of ensembles for the invariant
measures of zero range processes conditioned to a supercritical density of particles.
It is known that in this case there is a single site that accomodates a macroscopically
large number of the particles in the system. We show that in the thermodynamic limit
the rest of the sites have joint distribution equal to the grand canonical measure at
the critical density. This improves the result of Großkinsky, Schütz and Spohn, where
convergence is obtained for the finite dimensional marginals. We obtain as corollaries
limit theorems for the order statistics of the components and for the fluctuations of the
bulk.
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1 Introduction

In a landmark paper of 1970, Spitzer [18] introduced five particle systems undergoing
simple interactions and initiated a research project to rigorously analyse their equilib-
rium and dynamical properties. One of the systems he proposed was the zero range
process, a model in which particles leave any given site at a rate g(k) that only depends
on the number k of particles present at the site, hence the name. The attention was
initially drawn to the existence of the dynamics under general conditions, the identi-
fication of invariant measures and the establishment of the hydrodynamic limit. All
these questions have been successfully addressed, at least in the attractive case when
the rate function g(·) is increasing. A comprehensive review of these results can be
found in [13].

Over the last decade, there has been an increasing interest in zero range processes
such that the rate g(·) decreases with the number of particles. This can be thought as
introducing a mechanism of effective attraction between the particles, that if strong
enough, i.e. when the rates decrease sufficiently fast, can lead to phenomena of
condensation—a transition to a phase where a single site contains a finite fraction of
the particles in the system. This type of condensation appears in diverse contexts such
as traffic jamming, gelation in networks, or wealth condensation in macroeconomies,
and zero range processes or simple variants have been used as prototype models. Evans
and Hanney [6] provide an excellent review on this subject.

A phase transition in this class of zero range processes can be already observed at
the level of the invariant states. It is known [11,12] that when the density of particles
exceeds a critical value ρc, the invariant measures of the process concentrate on con-
figurations where a macroscopic proportion of the total number of particles forms a
randomly located cluster. In this article we analyse the thermodynamic limit of the
invariant measures of the process conditioned to having a supercritical density, that is
we let the number of sites L and the number of particles N grow to infinity in such a
way that N/L → ρ > ρc.

Given the particle and site numbers N and L as above, the invariant state of the
process is identified as the product of L copies of a measure νφc supported on the
integers, conditioned to adding up to N . When the particle density N/L is higher than
ρc we are conditioning on an atypical event, and the problem can be described as Gibbs
conditioning for a measure having no exponential moments. Großkinsky, Schütz and
Spohn [11] identified the typical configuration of a finite subsystem by proving an
equivalence of ensembles property. Remarkably, the effect of the conditioning on the
finite subsystem disappears in the thermodynamic limit. This happens because the
rare event is most likely realised by a large deviation of the maximum component. A
similar result was proved by Ferrari, Landim and Sisko [7] when the number of sites is
fixed while the particle number grows to infinity, and by Großkinsky [10] for systems
with two particle species.

The fact that convergence to a product measure holds for the finite dimensional
marginals is standard when the equivalence of ensembles or the Gibbs conditioning
principle are satisfied. It is crucial that the size of the subsystem amounts to a vanishing
fraction of the whole. Indeed, the result often fails to hold when this is not the case
(cf. Proposition 2.12 in [3]). The main result in this article is an unusually strong form
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Thermodynamic limit for the invariant measures 177

of the equivalence of ensembles. Precisely, we prove (Theorem 1) that in supercritical
zero range processes the effect of conditioning is entirely absorbed by the maximum
component, in the sense that the joint distribution of the remaining sites converges to
a product measure. We then derive some interesting corollaries from this result.

This distinctive behavior can be attributed to the fact that the marginals νφc of the
unconditional distribution are subexponential. Indeed, the proof of Theorem 1 relies
on a Local Limit Theorem in the form of Eq. (8), a result that requires little more than
subexponentiality.

2 Notation and results

Zero range processes are interacting particle systems evolving on a set of sites �.
Particles perform random walks on � interacting only with particles sitting on the
same site through the following rule: the rate at which a particle leaves a site depends
on the number of particles at that site. Given a function g : N0 = {0, 1, 2, . . .} �→ R+
and a transition probability p(·, ·) on � × �, the dynamics of the process can be
described as follows. If there are k particles at a site x , then independently of the
configuration on the other sites, a particle leaves x after an exponential waiting time
with rate g(k). A target site is chosen according to p(x, ·), the particle jumps there
and the process starts afresh.

A zero range process can be rigorously defined as a Markov process on the state
space X� = N

�
0 . A point η in X� can be thought of as a configuration of particles on

�, with ηx denoting the number of particles at the site x ∈ �. Regarding the jump
rate function g(·) and the transition probabilities p(·, ·), we assume that

g : N0 �→ R+ is such that g(k) = 0 ⇔ k = 0,

and

p : �×� �→ [0, 1] is such that
∑

y∈�
p(x, y) =

∑

y∈�
p(y, x) = 1, ∀x ∈ �.

In order to avoid degeneracies we further assume that the random walk on � with
transition probabilities p(·, ·) is irreducible. In this article we only consider finite
sets �, in which case we can define a process starting from any initial configuration
η ∈ X�.

The infinitesimal generator of the zero range process is then given by

L f (η) =
∑

x,y∈�
g (ηx ) p(x, y)

(
f (ηx,y)− f (η)

)
,
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where

η
x, y
z =

⎧
⎪⎨

⎪⎩

ηz if z �= x, y

ηx − 1 if z = x

ηy + 1 if z = y.

Zero range processes possess a family of invariant product measures with site marginals
given by

νφ [ηx = k] = 1

Z(φ)

φk

g(k)! ,

where g(k)! = ∏k
m=1 g(m). Each of these measures is usually referred to as the grand-

canonical ensemble corresponding to the fugacity φ, and they can be defined for any
φ in the range of convergence of the power series

Z(φ) =
∑

k

φk

g(k)! .

The expected number of particles per site is given by

ρ(φ) = E
νφ [ηx ] = 1

Z(φ)

∞∑

k=1

k
φk

g(k)! .

It can be easily verified that ρ is a strictly increasing function of φ.
Let φc ≤ +∞ denote the radius of convergence of Z(φ). If Z(φc) := limφ↑φc

Z(φ) = ∞, it can be proved [13] that ρc := limφ↑φc ρ(φ) = ∞. If on the other
hand Z(φc) is finite, it is possible that ρc is also finite. In this case none of the grand-
canonical measures corresponds to a particle density higher than the critical ρc, and
the system undergoes a phase transition [11,12] from a fluid to a condensed phase, in
a sense to be made precise later.

To fix ideas, we consider here a reference model such that both Z(φc) and ρc are
finite that was originally proposed by Evans [5]. In the last section we discuss how
our results apply to a number of other systems with finite critical density.

In Evans’ model the jump rates are given by

g(k) =
{

1 + b
k if k ≥ 1

0 if k = 0.
(1)

With this choice of g, one gets

g(k)! = �(b + k + 1)

�(b + 1)k! ∼ kb

�(b + 1)
,
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Thermodynamic limit for the invariant measures 179

if �(·) denotes the standard Gamma function. The critical fugacity φc is equal to 1,
the partition function Z(φ) is finite at φc if b > 1, and the critical density ρc is finite
if b > 2. Since we are interested in systems with finite critical density we will assume
throughout this article that b > 2.

We will use L to denote the cardinality of �. Due to the conservation of the
number of particles by the dynamics, the state space is partitioned into finite invariant
subspaces, where

SL(η) =
∑

x∈�
ηx

is constant: X�,N = {η ∈ X� : SL(η) = N }. On each of these subspaces the zero
range process is irreducible and has a unique invariant measure which we denote by
µN , L . We will refer to the measures µN , L as the canonical ensembles. They can be
explicitly computed, but they can also be obtained by conditioning the grand-canonical
ensembles on the total number of particles. That is

µN , L [·] = νL
φ [· | SL(η) = N ] .

Note that the right hand side of the last equation does not actually depend on φ. A
natural object of interest is the behavior of these measures in the thermodynamic limit,
as N , L → ∞ in such a way that the average particle density N/L converges to a
constant ρ.

When ρ < ρc there exists a fugacity φ such that ρ = ρ(φ) and the standard
equivalence of ensembles for independent random variables holds [13]. That is, the
finite dimensional marginals of the canonical ensembles µN , L converge to the grand-
canonical ensemble corresponding to fugacity φ. The equivalence of ensembles for
(super)critical densities (ρ ≥ ρc) was established by Großkinsky, Schütz and Spohn
[11]. Using relative entropy methods they prove convergence of the finite dimensional
marginals of µN , L to the grand-canonical ensemble at critical fugacity.

Furthermore, it has been proved [10–12] that when the density is supercritical a
condensation phenomenon emerges. Precisely, if ρ > ρc and ε > 0 then

lim
N , L → ∞
N/L → ρ

µN , L
[

1

L
max
x∈� ηx > ρ − ρc − ε

]
= 1. (2)

This is to be contrasted with the size of the largest component in the case below
criticality, which is of order log(L) [12]. The comparison gives a precise meaning to
the phase transition experienced by the system, and is reminiscent of the Erdös-Renyi
results on the largest cluster of a random graph.

The heuristic picture suggests that at supercritical densities the bulk of the sites is
distributed according to independent copies of νφc , while a single randomly located
site accumulates all the excess mass. The results mentioned above do not fully justify
this picture however, because convergence to the grand-canonical ensembles is only
obtained at the level of finite dimensional marginals. Hence, questions that require
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knowledge of the full limiting distribution of the bulk cannot be addressed directly.
Such questions include for example the fluctuations of the bulk density around ρc,
the fluctuations of the maximum around (ρ − ρc)L , or the size of the second largest
component.

The contribution of this paper is a strong version of the equivalence of supercritical
ensembles that provides a complete description for the thermodynamic limit and jus-
tifies the aforementioned picture. Precisely, if η ∈ X� is a configuration of particles
on � we define

ML(η) = max
x∈� ηx

and let mL(η) = argmax(η) be the position where the maximum occurs. We can
always enumerate the sites of � = {x1, . . . , xL} and define mL(η) to be the site with
the smallest index should the maximum occur more than once.

We also define

(σ y,zη)x =

⎧
⎪⎨

⎪⎩

ηx if x �= y, z,

ηy if x = z,

ηz if x = y,

and the operator T : X� −→ X� with Tη = σ xL ,mL (η)η that exchanges the last and
the maximum component of η.

We are ready to state the main result.

Theorem 1 Let F L be the σ -field generated by ηx1, . . . ηxL . If ρ > ρc, then

lim
N , L → ∞
N/L → ρ

sup
A∈FL−1

∣∣∣µN , L ◦ T −1 [A] − νL−1
φc

[A]
∣∣∣ = 0.

This extends the result of Ferrari, Landim and Sisko [7] to the case where the number of
sites increases to infinity together with the number of particles, and that of Großkinsky,
Schütz and Spohn [11] in the sense that convergence to the grand canonical distribution
is obtained for the joint distribution under µN , L of all the components in the bulk.

Given a measure µ defined on a σ–algebra B, let ‖ · ‖t.v. stand for the total variation
norm

‖µ‖t.v. = sup
A∈B

|µ(A)|.

It is not hard to see that Theorem 1 then implies that

∥∥∥∥∥µ
N , L − 1

L

∑

x∈�
νN , L ◦ σ x, xL

∥∥∥∥∥
t.v.

→ 0 ,
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Thermodynamic limit for the invariant measures 181

where νN , L is a probability measure on X� with marginal on FL−1 given by νL−1
φc

, and

such that the distribution ofηxL given FL−1 equals the Dirac measure at N−∑L−1
j=1 ηx j .

Several interesting facts about the invariant measures of the zero range process at
supercritical densities are now simple consequences of Theorem 1. In view of (2) we
would like to compute the fluctuations of ML(η) around (ρ−ρc)L . This question was
raised already in [12] and has been numerically investigated by Godrèche and Luck
(see appendix A.2.2 in [9]). The numerical experiments suggest that for b > 3 the
fluctuations of ML are of order

√
L and Gaussian, while for 2 < b < 3 they are of

order L
1

b−1 . Theorem 1 and the obvious equality

ML(η) = N −
L−1∑

x=1

(Tη)x , µN , L − a.s,

imply that the fluctuations of the maximum component reduce to the fluctuations of
the sum of L − 1 independent random variables with mean ρc around ρc(L − 1),
for which standard central limit theorems are available [8]. The precise result is the
following:

Corollary 1 Suppose ρ > ρc.

a) If b > 3, that is if νφc has finite variance σ 2 = (b−1)2

(b−2)2(b−3)
, then for all x ∈ R:

lim
N , L → ∞
N/L → ρ

µN , L
[

ML(η)− (N − ρc L)

σ L1/2 ≤ x

]
= 1√

2π

x∫

−∞
e−u2/2du.

b) If b = 3, then for all x ∈ R:

lim
N , L → ∞
N/L → ρ

µN , L
[

ML(η)− (N − ρc L)

2
√

L log L
≤ x

]
= 1√

2π

x∫

−∞
e−u2/2du.

c) If 2 < b < 3, then for all x ∈ R:

lim
N , L → ∞
N/L → ρ

µN , L

[
ML(η)− (N − ρc L)

(�(b)L)
1

b−1

≤ x

]
=

x∫

−∞
Lb−1(u) du.

where Lα is the density of the completely asymmetric stable law with index α and
characteristic function ψ(t) given by:

logψ(t) =
0∫

−∞

(
eitx − 1 − i t x

) αdx

|x |α+1 = −Cα|t |α
(

1 + i sgn(t) tan
πα

2

)

Note that for b = 3 we still have Gaussian fluctuations after proper scaling.
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182 I. Armendáriz, M. Loulakis

Clearly, one can go on and obtain limit theorems for the statistics of any order under
µN , L from the corresponding result for product measures. For instance, the second
largest component is given by

M (2)
L (η) = max

1≤x≤L−1
(Tη)x

and the following limit theorem is a direct consequence of Theorem 1 and the estimate
(7) for the tail probabilities under νφc .

Corollary 2 Suppose b > 2 and let ρ > ρc. Then, for any x > 0

lim
N , L → ∞
N/L → ρ

µN , L
[

M (2)
L (η) ≤ x(�(b)L)

1
b−1

]
= e−x1−b

.

The fluctuations of the bulk are closely related to the fluctuations of the maximum
component. It follows from Corollary 2 that in the limit, mL is the only site where the
number of particles is of order L . Given ζ ∈ (0, ρ−ρc)we define the bulk configuration
as η∗

x = ηx 1{ηx<ζ L}, and the rescaled bulk fluctuation process YL(·) ∈ D[0, 1] as

YL(t) = 1

aL

[Lt]∑

j=1

(η∗
x j

− ρc),

where

aL =

⎧
⎪⎨

⎪⎩

σ
√

L if b > 3

2
√

L log L if b = 3

(�(b)L)
1

b−1 if 2 < b < 3.

(3)

The following corollary follows easily from Theorem 1 and Donsker’s invariance
principle or its extension by Skorokhod (Theorem 2.7 in [17]) to i.i.d. random variables
in the domain of attraction of a stable law.

Corollary 3 Suppose ρ > ρc and let b > 2. Then under µN , L

YL(·) d−→ ξb(·), as N → ∞, L → ∞, N/L → ρ,

where ξb is a standard Wiener process if b ≥ 3, or a completely asymmetric stable
process with index α = b − 1 and characteristic exponent

logψ(−t) =
∞∫

0

(
eitx − 1 − i t x

) αdx

|x |α+1 = −Cα|t |α
(

1 − i sgn(t) tan
πα

2

)
,

if 2 < b < 3.
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It is worth comparing Corollary 3 with the bulk fluctuations at criticality. If
N = [ρc L] then, according to a result in Thomas Liggett’s dissertation (cf. Theo-
rem 4 in [14]), YL(·) converges in distribution to the bridge of ξb conditioned to return
to the origin at time 1.

Theorem 1 can be also applied to the numerical simulation of the invariant states
µN , L , when N/L → ρ > ρc. For large L , instead of drawing a sample from a
distribution µN , L , it is computationally more efficient to draw L − 1 independent
samples from a distribution νφc , and assign the rest of the mass to a site uniformly
distributed in {1, 2, . . . , L}.

We present the proof to the main result in the following section. We conclude
(Sect. 4) by discussing two questions that arise naturally from Theorem 1. In the first
one, we study a model such that the associated invariant measure νφc has a stretched
exponential tail, and prove that Theorem 1 still holds. In the second one, we consider
a family of systems with particle numbers N deviating moderately from the typical
value ρc L , and refine our estimate of the threshold of values for N where a phase
transition occurs.

3 Proof of Theorem 1

We begin this section with a few observations on the model. Recall from the previous
section that the jump rates are given by g(k) = 1 + b

k for k > 0, and the critical
fugacity φc is equal to 1. Recall also that since we assume b > 2 both Z(φc) and ρc

are finite. Although the precise value of the partition function, the critical density, or
other statistics of νφc are not important, it was pointed out in [11] that they can be
explicitly computed using the hypergeometric identity [1]

∞∑

k=0

�(u + k)�(v + k)

�(w + k) k! = �(u)�(v)�(w − u − v)

�(w − u)�(w − v)
, (4)

valid for any u, v, w > 0 with w > u + v. For instance,

Z(φc) = b

b − 1
, ρc = 1

b − 2
, and if b > 3 then σ 2 = (b − 1)2

(b − 2)2(b − 3)
.

We will next derive a smoothness estimate for the function

W (k) = νφc [ηx = k] = 1

Z(φc)g(k)! = (b − 1)�(b)k!
�(k + b + 1)

.

It is clear that W is decreasing, while from the elementary inequality

1 + x ≥ e
x

1+x x > −1 , (5)
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184 I. Armendáriz, M. Loulakis

one can easily deduce that W (k)kb is increasing. Thus, for k1 ≤ k2 we get

W (k1) ≥ W (k2) ≥ W (k1)

(
k1

k2

)b

. (6)

We can also apply (4) to compute the tail probabilities of νφc as follows

∞∑

k=m

W (k) = (b − 1)�(b)
∞∑

k=0

�(m + 1 + k)

�(m + b + 1 + k)
= �(b) m!
�(m + b)

.

Hence, if we denote by F the distribution function of νφc and by F̄ = 1 − F its tail,
we get the following asymptotic behavior at infinity

W (k) ∼ (b − 1)�(b)k−b, and F̄(x) ∼ �(b)x1−b. (7)

This observation explains the normalizing constants in the statements of Corollary 2
and Corollaries 1 and 3 for 2 < b < 3. The logarithmic correction when b = 3 comes
from the direct computation

E
νφc

[
η2

x 1{ηx ≤L}
]

∼ 4
L∑

k=1

1

k
∼ 4 log L .

The proof of Theorem 1 relies on a local limit theorem for the (unconditioned) measure
at criticality. It estimates the probability of the event we are conditioning upon in the
definition of µN , L . Such a result first appeared in Nagaev [15] for b > 3 and Tkačuk
[19] for b < 3. Baltrunas [2] gives an accessible proof that encompasses all values of
b > 2.

Proposition 1 If ρ > ρc then

lim
N , L → ∞
N/L → ρ

νL
φc

[SL(η) = N ]

Lνφc [ηx = N − [ρc L]] = 1. (8)

Equation (8) says that the most probable way that the rare event {SL(η) = N } occurs
is when one variable takes up all the “excess mass”, while the remaining L − 1 ones
assume typical values. This behaviour is to be contrasted with the large deviations
behavior for random variables with finite exponential moments, where the rare event
is realised by all variables taking values close to the atypical ρ.

We proceed now with the proof of Theorem 1.

Proof of Theorem 1. Recall from Section 2 that σ xi ,x j stands for the mapping that
exchanges the i th and the j th components of η, and that T denotes the transformation
that exchanges the last and the maximum components of η.
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Thermodynamic limit for the invariant measures 185

Let A ⊆ {η : ηxL > ηx j , j = 1, 2, . . . , L − 1}. Due to the invariance of µN , L

under σ xL ,x� , � = 1, . . . , L , we get

µN , L
[
T −1 A

]
=

L∑

�=1

µN , L
[
T −1 A ∩ {mL = x�}

]

=
L∑

�=1

µN , L ◦ σ xL ,x� [A] = LµN , L [A]

= L
νL
φc

[A ∩ {SL(η) = N }]
νL
φc

[SL(η) = N ]
. (9)

Consider a sequence CL such that CL/L → 0 and CL/aL → ∞, where aL is
defined in (3). Let DL = {m : |N − ρc L − m| < CL}, tL = N − ρc L − CL and
BL = {η : ηxL ∈ DL ; max1≤ j≤L−1 ηx j ≤ tL}.

Suppose now that A ∈ FL−1 = σ {ηx1, . . . , ηxL−1} We will apply Eq. (9) to the set
A ∩ BL . Note that

νL
φc

[A ∩ BL ∩ {SL(η)= N }]=
∑

m∈DL

W (m)νL−1
φc

[
A ∩

{
∑

x

ηx = N −m; max
x
ηx ≤ tL

}]
.

In view of (6) we can replace each value W (m) in the range of summation by
W (N − [ρc L]), creating an error that is negligible as L → ∞ uniformly in A. That
is,

νL
φc

[A ∩ BL ∩ {SL(η) = N }]

= W (N − [ρc L])
(
νL−1
φc

[
A ∩

{∣∣∣∣∣
∑

x

ηx − ρc L

∣∣∣∣∣ < CL ; max
x
ηx ≤ tL

}]
+o(1)

)
.

Since CL/aL → ∞, the central limit theorem implies that

νL−1
φc

[ ∣∣∣∣∣
∑

x

ηx − ρc L

∣∣∣∣∣ < CL

]
−→ 1 as L → ∞,

and there is also the elementary estimate

νL−1
φc

[
max

x
ηx ≤ tL

]
= (

1 − F̄(tL)
)L−1 −→ 1 as L → ∞.

Combining these two observations, we get

νL
φc

[A ∩ BL ∩ {SL(η) = N }] = W (N − [ρc L])
(
νL−1
φc

[A] + o(1)
)
,
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186 I. Armendáriz, M. Loulakis

where the error is again easily seen to be uniformly small in A. Together with equation
(9) and Proposition 1 this establishes that

lim
N , L → ∞
N/L → ρ

sup
A∈FL−1

∣∣∣µN , L ◦ T −1 [A ∩ BL ] − νL−1
φc

[A]
∣∣∣ = 0.

In particular, if A = X�, we get that

lim
N , L → ∞
N/L → ρ

µN , L ◦ T −1 [
Bc

L

] = 0,

Bc
L = X� \ BL . The assertion of the Theorem now follows by combining the last two

equations. ��

4 Remarks

We identified the condensation phenomenon present in supercritical zero range
processes by proving the equivalence of ensembles in the standard Evans’ model.
It should be clear however that the essential ingredient for the proof is a Local Limit
Theorem in the form of (8). There are thus two possible directions to generalise
Theorem 1. Its validity should be established for a greater variety of models, and the
point where the phase transition with the emergence of a large cluster occurs should
be determined with greater accuracy.

We describe next how the proof can be adapted to a model for condensation with
stretched exponential tails, also proposed by Evans.

Suppose the jump rates are given by the function g with

g(k) =
{

1 + β

kλ
if k > 0

0 if k = 0,
(10)

where λ ∈ ( 1
2 , 1). The critical fugacity is still 1, although it is not possible to explicitly

compute the distribution function and the critical density in this case. Nevertheless, it

is elementary to see that W (k) = νφc [ηx = k] is decreasing while W (k) exp
(
βk1−λ
1−λ

)

is increasing so that we have

W (k1) ≥ W (k2) ≥ W (k1) exp

(
−β k1−λ

2 − k1−λ
1

1 − λ

)
, k1 ≤ k2. (11)

In fact, using (5) one can check that

W (k) ≤ exp

(
−

k∑

m=1

β

β + mλ

)
≤ C exp

(
−β k1−λ

1 − λ

)
,
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and the following asymptotic behavior for W holds

W (k) ∼ A exp

(
−β k1−λ

1 − λ

)
as k → ∞.

This yields the asymptotic behavior of F̄(x)

F̄(x) ∼ Axλ

β
exp

(
−β x1−λ

1 − λ

)
as x → ∞. (12)

In this context, Nagaev [16] has proved that (8) is satisfied as long as N = ρc L +
γ (L)L

1
2λ with γ (L) → ∞ as L → ∞. In view of equations (11) and (12), we may

choose the sequence CL = √
L log L in the line following the expression (9), and

adapt the arguments presented in the previous section to prove the following theorem.

Theorem 1a If g(·) is given by (10) and N = ρc L +γ (L)L 1
2λ where lim γ (L) = ∞,

then

lim
L→∞ sup

A∈FL−1

∣∣∣µN , L ◦ T −1 [A] − νL−1
φc

[A]
∣∣∣ = 0.

In a similar fashion we can relax the conditions on N in Theorem 1 provided we prove
the validity of (8) for values of N deviating only moderately from its typical value.
For instance, when b > 3 Theorem 2 in [4] implies that if (N −ρc L)/

√
L → ∞ then

νL
φc

[SL(η) = N ] = 1

σ
√

L
ϕ

(
N − ρc L

σ
√

L

)
(1 + o(1))+LW (N − [ρc L]) (1 + o(1)) ,

where ϕ(·) is the density of the standard normal distribution. It is not hard to see that
in this case (8) holds as long as

N = ρc L + b − 1

b − 2

√
L log L

(
1 + b

2(b − 3)

log log L

log L
+ γ (L)

log L

)
,

with lim
L→∞ γ (L) = ∞. (13)

Once again, choosing CL = √
L log L we can prove the following refinement of

Theorem 1.

Theorem 1b If g(·) is given by (1) with b > 3 and N is as in (13), then

lim
L→∞ sup

A∈FL−1

∣∣∣µN , L ◦ T −1 [A] − νL−1
φc

[A]
∣∣∣ = 0.

Similar refinements of Theorem 1 can be obtained for the case when b ≤ 3.

123



188 I. Armendáriz, M. Loulakis

Acknowledgements We would like to thank Claudio Landim for suggesting a problem that eventually
led to the current form of the article, and for useful conversations while this paper was being prepared.
ML has been supported by a Marie Curie Fellowship of the European Community Programme “Improving
Human Potential” under the contract number MERG-CT-2005-016163. IA has been supported by FAPESP
Grant No.2007/50230–1.

References

1. Abramowitz, M.: Handbook Mathematical Functions. Dover, New York (1972)
2. Baltrunas, A.: On a local limit theorem on one-sided large deviations for dominated-variation distrib-

utions. Lithuanian Math. J. 36(1), 1–7 (1996)
3. Dembo, A., Zeitouni, O.: Refinements of the Gibbs conditioning principle. Prob. Th. Rel. Fields 104,

1–14 (1996)
4. Doney, R.A.: A local limit theorem for moderate deviations. Bull. London Math. Soc. 33,

100–108 (2001)
5. Evans, M.R.: Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30(1),

42–57 (2000)
6. Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related

models. J. Phys. A: Math. Gen. 38, 195–240 (2005)
7. Ferrari, P., Landim, C., Sisko, V.: Condensation for a fixed number of independent random variables.

J. Stat. Phys 128(5), 1153–1158 (2007)
8. Gnedenko, B.V., Kolmogorov, A.N.: Limit Distributions for Sums of Independent Random Vari-

ables. Addison-Wesley, Reading (1949)
9. Godrèche, C., Luck, J.M.: Dynamics of the condensate in zero-range processes. J. Phys. A Math.

Gen. 38, 7215–7237 (2005)
10. Großkinsky, S.: Equivalence of ensembles for two-component zero-range invariant measures to appear

in Stoch. Proc. Appl., available from http://www.warwick.ac.uk/~masgav
11. Großkinsky, S., Schütz, G.M., Spohn, H.: Condensation in the zero range process: stationary and

dynamical properties. J. Stat. Phys. 113, 389–410 (2003)
12. Jeon, I., March, P., Pittel, B.: Size of the largest cluster under zero-range invariant measures. Ann.

Probab. 28, 1162–1194 (2000)
13. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin

Heidelburg (1999)
14. Liggett, T.M.: An invariance principle for conditioned sums of independent random variables. J. Math.

Mech. 18, 559–570 (1968)
15. Nagaev, A.V.: Limit theorems that take into account large deviations when Cramér’s condition is

violated (in Russian). Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 13(6), 17–22 (1969)
16. Nagaev, A.V.: Local limit theorems with regard to large deviations when Cramér’s condition is not

satisfied. Litovsk. Mat. Sb. 8, 553–579 (1968)
17. Skorokhod, A.V.: Limit theorems for stochastic processes with independent increments. Theory

Probab. Appl. 2, 138–171 (1957)
18. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)
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