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Abstract We develop a tool to approximate the entries of a large dimensional
complex Jacobi ensemble with independent complex Gaussian random variables.
Based on this and the author’s earlier work in this direction, we obtain the Tracy–
Widom law of the largest singular values of the Jacobi emsemble. Moreover, the
circular law, the Marchenko–Pastur law, the central limit theorem, and the laws of
large numbers for the spectral norms are also obtained.
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1 Introduction and main results

There are two purposes in this paper. The first is approximating a part of Haar
distributed unitary matrices by independent complex normals. The second is to prove,
by using the previous result, that the limiting distribution of the largest singular value
of a Jacobi ensemble follows the Tracy–Widom distribution. Besides, for the squared
singular values of the Jacobi ensembles, we prove that the empirical distributions
converge to the Marchenko–Pastur law; the central limit theorem holds; the law of
large numbers of the largest eigenvalues holds. We also prove that the empirical dis-
tribution of the (complex) eigenvalues of a Jacobi ensemble converges to the circular
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222 T. Jiang

law. Before stating our results, we review some central themes in Random Matrix
Theory.

Random Matrix Theory mainly concerns on the eigenvalues of matrices with ran-
dom entries. These matrices include, among others, Gaussian symmetric matrices,
Wishart matrices, Jacobi ensembles, Haar invariant matrices on compact groups. A
recent work by Bryc et al. [13] studied the Toeplitz, Hankel and Markov matrices,
which are different than the matrices investigated before. About eigenvalues, early
work of random matrices by statisticians such as Hsu, Girshick and Wilks are on den-
sity functions of eigenvalues of real and complex Wishart matrices, see, e.g., Anderson
[2] and Muirhead [55]; the celebrated semicircular law was established by physicist
Wigner [68]; the limiting distributions of the largest eigenvalues of Gaussian ortho-
gonal, unitary and symplectic ensembles were obtained by Tracy and Widom [63–65].

Random matrix theory has a vast literature, one can check, for instance, Anderson
[2], Bai [3,5], Diaconis [21], Eaton [27] and Muirhead [55] for the interest of statistics.
For some connections between the random matrix theory and Engineering, one can see
Tulino and Verdu [66]. A good reference for random matrix theory and applications in
Physics are Beenakker [11], Bohigas [12], Forrester [30], Guhr [35] and Mehta [54].
For some connections between random matrix theory and other fields of mathematics,
particularly the number theory, one can see, e.g., Conrey et al. [18], Deift [23], Katz
and Sanark [48], and Mezzardi and Snaith [53].

Investigating the entries of large dimensional random matrices is another interest
in Random Matrix Theory. Compared with the studies of eigenvalues, there are few
literatures about this. For the research in this direction, one can see, for example,
D’Aristotle et al. [20], Diaconis et al. [22], and Jiang [42–44], which are based on
statistical testing problems, and the image analysis. In the forthcoming paper, by using
the properties of the entries of Haar distributed matrices, Jiang [41] obtain the exact
formula of the variance for a quantum conductance studied in [10,11,58].

In the first part of this paper, we will develop a tool to understand the entries of a
truncated part of a Haar distributed unitary matrices, which has the same distribution
as that of a Jacobian ensemble. We will then apply this tool to study the asymptotic
properties of the eigenvalues of the Jacobi ensembles.

The classical definition of a Jacobi ensemble is matrix J = (C∗C + D∗ D)−1/2

C(C∗C + D∗D)−1/2, where C and D are n1 × m and n2 × m matrices, respectively,
n1 ≥ m and n2 ≥ m, and the total (n1 +n2)m entries are i.i.d. standard real (complex)
Gaussian random variables. See, e.g., Anderson [2], Constantine [19], Eaton [27],
Muirhead [55], Collins [17] and Forrester [30] for full details. The density of the
eigenvalues of J is that

f (λ1, . . . , λm) = C ·
m∏

i=1

λ
aβ/2
i ·

m∏

i=1

(1 − λi )
bβ/2 ·

∏

1≤i< j≤m

|λi − λ j |β · IA, (1.1)

where C is a normalizing constant, A = {0 ≤ λi ≤ 1; 1 ≤ i ≤ m}, β = 1 corresponds
to the real case, β = 2 corresponds to the complex case, a = n1 − m + 1 − 2/β and
b = n2 − m + 1 − 2/β, see, e.g., (3.15) and (4.1) from [29].
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Approximation of eigenvalues of Jacobi ensembles 223

Table 1 Dyson’s “threefold way” of classical random matrices

Real, β = 1 Complex, β = 2 Quaternion, β = 4

Hermite GOE GUE GSE

Laguerre Real Wishart Complex Wishart Quaternion Wishart

Jacobi Real MANOVA Complex MANOVA Quaternion MANOVA

It is shown in [16,29] that J has the same distribution as that of U∗U , where U
is the p × q upper-left corner of an n × n Haar orthogonal (unitary) matrix, where
p = n1, q = m and n = n1 + n2 (see (3.14) and (4.1) from [29]). Therefore, the
eigenvalues of J , a Jacobi ensemble, is the squared singular values of U. For this
reason, we will only consider the eigenvalues of U in this paper.

Now, to better understand what our limiting results are in the general context of
Random Matrix Theory, let’s look at Dyson’s “threefold way” of classical random
matrices, see Table 1 (see also [25,26]), on which much research of the Random
Matrix Theory focuses.

For the first two rows of matrices in Table 1 and for β = 1, 2, 4, the circular
law, the semi-circular law, the Marchenko–Pastur law of eigenvalues, the strong law
of largest eigenvalues, the Tracy–Widom distribution for the largest eigenvalues had
been derived, respectively, by many authors since Wigner [68]. In this paper we prove
that if p and q are of order o(

√
n), then all these results also hold for the third row of

matrices for β = 1 and 2, that is, the real and complex Jacobi ensemble of matrices.
To the author’s knowledge, these results are new. While stating our main results below,
some relevant references will also be given.

Let µ and ν be two probability measures on (Rm,B), where B is the Borel
σ -algebra. The variation distance between µ and ν, denoted by ‖µ − ν‖, is equal to

‖µ − ν‖ = 2 · sup
A∈B

|µ(A) − ν(A)| =
∫

Rm

| f (x) − g(x)| dx1dx2 . . . dxm (1.2)

provided µ and ν have density functions f (x) and g(x) with respect to the Lesbegue
measure, respectively. This is one of the strongest probability distances between two
probability measures. In fact, four probability distances will be used in this paper. We
use L(X) to denote the probability distribution of random matrix X. When we say “X
is the upper-left p × q block of matrix A”, we mean X is the matrix formed by the
first p rows and first q columns of A. Our first result is as follows.

Theorem 1 (Normal approximation) Let {pn; n ≥ 1} and {qn; n ≥ 1} be two
sequences of positive integers such that pn = o(

√
n) and qn = o(

√
n). Let Un be

the upper-left pn × qn block of an n × n Haar invariant unitary matrix. Let Xn be
a pn × qn matrix whose pnqn entries are i.i.d. standard complex normal random
variables. Then limn→∞ ‖L(

√
nUn) − L(Xn)‖ = 0.

The next result shows that above result is also sharp.
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224 T. Jiang

Theorem 2 (Sharp order) Given x > 0, y > 0 and integer n. Set pn = [x√
n] and

qn = [y
√

n] for n ≥ 1. Let Un be the upper-left pn × qn block of an n × n Haar
invariant unitary matrix. Let Xn be a pn × qn matrix whose pnqn entries are i.i.d.
standard complex normal random variables. Then

lim inf
n→∞ ‖L(

√
nUn) − L(Xn)‖ ≥ 2�

( xy

2

)
− 1,

where �(x) = (2π)−1/2
∫ x
−∞ e−t2/2 dt for x ∈ R.

Theorems 1 and 2 also hold for the Haar orthogonal matrices. They are proved in
Jiang [42]. In the applications next, we will need the following corollary. As usual,
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) stand for the eigenvalues of an n×n Hermitian matrix
A.

Corollary 1.1 Let the condition in Theorem 1 hold for Un being the truncated part of
a Haar orthogonal or unitary matrix. Given integer k ≥ 1, let fn(x1, . . . , xn) : R

n →
R

k be measurable functions for all n ≥ 1. If for some Borel set F ⊂ R
k such that

P( fn(λ1(X∗
n Xn), . . . , λn(X∗

n Xn)) ∈ F) → C for some constant C, then this also
holds if X∗

n Xn is replaced by nU∗
n Un for each n ≥ 1.

In the following we will investigate the law of large numbers for spectral radius,
the circular law, the semicircular law for the Jacobi ensemble.

The fact that a scaled spectral radius of a matrix of i.i.d. standard normals as entries
converges was first proved by Geman [31]. Later Bai et al. [7], Yin et al. [71] gen-
eralized it to the matrices with entries being i.i.d. (arbitrary) random variables with
the finite fourth moment. Yin et al. [70] and Silverstein [60,61] are the first to obtain
some properties of smallest eigenvalues. Silverstein [59] proved the strong conver-
gence of the smallest eigenvalue of Wishart matrices. Bai and Yin [7] generalized it to
the covariance matrices whose entries are not necessarily Gaussian random variables.

For a p × q matrix Up,q , denote λmax the largest eigenvalue of U∗
p,qUp,q , and

λmin =
{

the smallest eigenvalue of U∗
p,qUp,q , if p ≥ q;

the (q − p + 1)th smallest eigenvalue of U∗
p,qUp,q , if p < q.

(1.3)

The reason for this definition is that the q − p smallest eigenvalues of q × q matrix
U∗

p,qUp,q are all zero if q > p. For the Jacobi ensemble, we have the following result.

Theorem 3 (Spectral limit) Suppose �n is an n × n Haar invariant orthogonal or
unitary matrix, and Up,q be its upper-left p × q sub-matrix. Let λmax be the largest
eigenvalues of U∗

p,qUp,q , and λmin be as in (1.3). If p → ∞, p = o(
√

n) and
q/p → c ∈ (0,+∞), then

(
n

p

)
λmax → (1 + √

c)2 and

(
n

p

)
λmin → (1 − √

c)2 (1.4)

in probability as n → ∞.
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Approximation of eigenvalues of Jacobi ensembles 225

The empirical distribution of the eigenvalues of the covariance matrices was first
obtained by Marchenko and Pastur [52] (see also [8,34,45,67,69] for some of the
many studies of this and related questions). To state the result in the Jacobi case, we
need some notation first. Let �n be an n × n Haar invariant matrix, and U = Up,q

be its upper-left p × q sub-matrix. Let Fp,q be the empirical distribution of (n/p)λi ,

where λi , 1 ≤ i ≤ q, are the eigenvalues of U∗U, that is,

Fp,q(x) = 1

q

q∑

i=1

I
{
(np−1)λi ≤ x

}
, x ∈ R. (1.5)

The Marchenko–Pastur distribution is the probability distribution with density

p(x) =
{

1
2πcx

√
(b − x)(x − a), if a < x < b;

0, otherwise,
(1.6)

and a point mass 1−c−1 at the origin if c > 1, where a = (1−√
c)2 and b = (1+√

c)2

for some c ∈ (0, 1].
Hiai and Petz [36] showed that the large deviations for Fp,q holds when p/n →

γ ∈ (0,∞), and the rate function has an unique zero. This means that Fp,q converges
weakly to a probability distribution. The exact limiting distribution for complex case
was given explicitly in [14,51].

Considering here a smaller value of pn , we complement their result by explicitly
characterizing the limiting distribution and proving that the convergence also holds
for the Kolmogorov–Smirnov distance.

Theorem 4 (Marchenko–Pastur limit) Let �n be an n × n Haar invariant orthogonal
or unitary matrix. If p → +∞, q/p → c > 0 and p = o(n/(log n)), then ‖Fp,q −
F‖ := supx∈R |Fp,q(x) − F(x)| → 0 in probability, where F(x) = ∫ x

−∞ p(t) dt for
x ∈ R, and p(x) is as in (1.6).

Next we study the circular law. Let µ and ν be two probability measures on C (or
R

2). Define

ρ(µ, ν) = sup
‖ f ‖L≤1

∣∣∣∣∣∣

∫

C

f (x) µ(dx) −
∫

C

f (x) ν(dx)

∣∣∣∣∣∣
, (1.7)

where f above is a bounded Lipschitz function defined on C with‖ f ‖=supx∈C | f (x)|,
and ‖ f ‖L = ‖ f ‖+supx 
=y | f (x)− f (y)|/|x − y|. This metric generates the topology
of the weak convergence of probability measures on C (see, e.g., Chap. 11 from [24]),
that is, µn converges to µ weakly if and only if ρ(µn, µ) → 0 as n → ∞.

Girko [32,33] found the Circular Law, that is, the empirical distribution of the
(complex) eigenvalues of a non-symmetric square matrix of i.i.d. entries goes to the
uniform distribution on the unit disc. Silverstein proved the Circular Law for
the complex normal case in his unpublished notes, which was reported in Hwang
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226 T. Jiang

[39]. Edelman [28] proved that the expected value of the empirical distribution con-
verges. Bai [4] is the first one who rigorously proved the Circular Law when the entries
of the matrices are i.i.d. random variables (not necessarily normally distributed).

For an upper-left p × p corner of an n × n Haar unitary matrix, Życzkowski and
Sommers [72] simulated the empirical measure of its eigenvalues for small n and
p. It is very interesting to see from Petz and Réffy [56] that the above empirical
measure converges to a non-uniform distribution on the unit disc in the complex
plane when p/n → γ ∈ (0,∞) as n → ∞. They proved the result by using the
large deviations. We complement their results by showing the weak convergence to a
uniform distribution on the unit disk for pn = o(

√
n).

Theorem 5 (Circular law) Suppose �n is an n × n Haar invariant orthogonal or
unitary matrix, and Up is its upper-left p × p sub-matrix. Let λ1, λ2, . . . , λp be the
eigenvalues of Up. Denote by µn the empirical measure of

√
n/pλi ’s, and µ the

uniform distribution on {z ∈ C; |z| ≤ 1}. If p → +∞ and p = o(
√

n), then
ρ(µn, µ) → 0 in probability as n → ∞.

The central limit theorems for the traces of kth power of n-dimensional sample
covariance matrices was proved by Jonsson [45] when k is fixed and n → ∞. Sinai
and Soshnikov [62] extended this CLT to k = k(n) which grows sufficiently slow in n.

Bai and Silverstein [6] proved a CLT for linear spectral statistics of large-dimensional
generalized sample covariance matrices. The CLT for Jacobi ensembles is given next.

Theorem 6 (Central limit theorem) Let �n be an n × n Haar invariant matrix, and
Up,q be its upper-left p × q sub-matrix. Assume that p → +∞ and q/p → c ∈
(0,∞) and p = o(

√
n). Let λ1, λ2, . . . , λq be the eigenvalues of (n/p)U∗

p,qUp,q , and

f1, f2, . . . , fk be functions on R analytic on an open interval containing [(1 − c)2,

(1 + c)2].

(i) If �n is a Haar invariant orthogonal matrix, then
(∑q

i=1 f1(λi ), . . . ,
∑q

i=1 fk

(λi ))−cn converges weakly to a k-dimensional normal distribution Nk(µ,
),

where µ, cn and 
 are deterministic (see Theorem 1.1 from [6] for further
details about the expressions of µ, cn and 
).

(ii) If �n is a Haar invariant unitary matrix, then
(∑q

i=1 f1(λi ), . . . ,
∑q

i=1 fk(λi )
)

− cn converges weakly to Nk
(
0, 1

2

)
, where cn and 
 are as in (i).

Recently, Killip [49] obtained the CLT for Fp,q(x) as in (1.5) for fixed x and its
muti-dimensional analogue, which is different than Theorem 6.

Now we study the asymptotic distributions of the largest eigenvalues of the Jacobi
ensembles. Let q(x) be the solution of the Painléve II (non-linear) differential equation

q ′′(x) = xq(x) + 2q(x)3 with boundary condition,

q(x) ∼ Ai(x) as x → +∞,
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Approximation of eigenvalues of Jacobi ensembles 227

where Ai(x) denotes the Airy function. The Tracy–Widom distributions are as follows.

F1(s) = exp

⎛

⎝−1

2

∞∫

s

q(x) + (x − s)q(x)2 dx

⎞

⎠ , (1.8)

F2(s) = exp

⎛

⎝−
∞∫

s

(x − s)q(x)2 dx

⎞

⎠ , s ∈ R. (1.9)

Let �n be an n × n matrix, and Up,q be its upper-left p × q sub-matrix. Denote

µnp = (√
p + √

q
)2

,

σnp = (√
p + √

q
) (

1√
p

+ 1√
q

)1/3

.

Tracy and Widom [63–65] established the limiting distributions of the largest eigen-
values of Gaussian orthogonal ensembles (GOE), Gaussian unitary ensembles (GUE)
and Gaussian symplectic ensembles (GSE). These distributions are called the Tracy–
Widom distribution subsequently. Johansson [46] proved that the largest eigenvalues
of complex Wishart matrices converge to F2. Johnstone [47] later showed that this is
also true for the real Wishart matrices with limiting distribution F1.

For the third row of Table 1, Constantine [19] in 1963 established the exact dis-
tribution of the largest eigenvalues of the real Jacobi ensembles. Koev and Dumitriu
[50] recently generalized it to the β-Jacobi matrices. In particular, their results hold
for Gaussian orthogonal (β = 1), Gaussian unitary (β = 2) and Gaussian symplectic
(β = 4) cases. Considering the largest principal angles between random subspaces,
Absil et al. [1] obtained some formulas similar to those in [50]. Their results in [1,50]
are based on an infinite series of terms involving with the Jack functions. We comple-
ment these works by proving the weak convergence to a Tracy–Widom distribution.

Theorem 7 (Tracy–Widom limit law) Suppose �n is an n × n Haar invariant matrix,
Up,q is its upper-left p×q sub-matrix, and λmax is the largest eigenvalue of U∗

p,qUp,q .
Assume p → ∞, p = o(

√
n) and q/p → c ∈ (0,+∞).

(i) If �n is a Haar orthogonal matrix, then (nλmax−µn,p)/σn,p converges weakly
to F1 as in (1.8).

(ii) If �n is a Haar unitary matrix, then (nλmax − µn,p)/σn,p converges weakly
to F2 as in (1.9).

The idea of the proofs of Theorems 1 and 2 is essentially to approximate the density
function in (1.1) by that of a Wishart matrix, which has form

f (λ1, . . . , λm) = C ′ ·
m∏

i=1

λ
aβ/2
i · e−bβ/2

∑m
i=1 λi ·

∏

1≤i< j≤m

|λi − λ j |β (1.10)

by using the heuristic that 1 − x ∼ e−x as x → 0, where C ′ is a numerical constant.
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Future problems. In the above theorems, conclusions hold under two different orders
of pn and qn . Recall the definition of variation distance in (1.2), Theorem 1 is sharp
for the approximation order that p = o(

√
n) and q = o(

√
n), this does not mean

that the orders of p and q in Theorems 3, 5, 6 and 7 cannot be improved. The reason
is that the variation distance is the maximum of the differences of two probabilities
over all Borel sets, whereas in those theorems we only need that the difference of two
probabilities of a specific set goes to zero. The same argument applies to Theorems 4
in terms of Theorems 8 and 9 stated in Sect. 3. It will be interesting to see how much
the order can be improved.

The organization of this paper is as follows: the main results are stated in this
section; we prove Theorems 1, 2 and Corollary 1.1 in Sect. 2; we prove Theorems 3–7
in Sect. 3.

2 Proofs of Theorems 1, 2 and Corollary 1.1

Certain steps of the proofs in this section are similar to those of Theorems 1 and 2
from [42]. However, the proofs here are more friendly.

The general form of the probability density function of the Jacobian ensemble is
known, see, e.g., [17,29]. We will first calculate the normalizing constant to make it
to be a density function, which will be used later in the proofs of Theorems 1 and 2.

The first part of the following lemma belongs to Hsu [38]. The second part is simply
the Jacobian determinant for the transform from a positive definite Hermitian matrix
to its eigenvalues, see, e.g., [40]. The abbreviation “p.d.f.” next means “probability
density function”.

Lemma 2.1 Let Z be a m by n (m ≤ n) matrix of complex entries with p.d.f. g(Z Z∗).
Then the p.d.f. of R = Z Z∗ is given by πmn(�m(n))−1(det(R))n−m g(R). Moreover,
the p.d.f. of the eigenvalues � = diag(λ1, . . . , λm) of R is given by

πm(n+m−1)

�m(n)�m(m)
g(�) ·

(
m∏

i=1

λi

)n−m ∏

1≤i< j≤m

(λi − λ j )
2,

if g(U�U∗) = g(�) for any unitary matrix U, where �m(n)=πm(m−1)/2 ∏m
i=1 �(n−

i + 1).

The following well-known formula can be found in many places, e.g., Mehta [54] and
Forrester [30].

Lemma 2.2 (Selberg integral) Let N ≥ 2 be an integer, and α, β and γ be positive
numbers. Then

1∫

0

1∫

0

. . .

1∫

0

N∏

i=1

xα−1
i (1 − xi )

β−1 ·
∏

1≤ j<k≤N

|x j − xk |2γ dx1 dx2 . . . dxN
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Approximation of eigenvalues of Jacobi ensembles 229

=
N−1∏

l=0

�(1 + γ + lγ )�(α + lγ )�(β + lγ )

�(1 + γ )�(α + β + (N + l − 1)γ )
.

The next lemma is a special case of (2.15) and (2.16) from [3].

Lemma 2.3 Let {pn; n ≥ 1} and {qn; n ≥ 1} be two sequences of positive integers
such that pn → ∞ and pn/qn → η ∈ (0,∞). Let Xn be a pn × qn random
matrix whose entries are i.i.d. complex normals with mean zero and variance one. The
following two statements hold. For each integer k ≥ 1,

(i) E
(

tr(X∗
n Xn)k

)
∼ pk

nqn

k−1∑

r=0

1

r + 1

(
qn

pn

)r (
k

r

)(
k − 1

r

)

as n → ∞.

(ii)

tr
(
(X∗

n Xn)k
)

qk+1
n

→
k−1∑

r=0

ηk−r

r + 1

(
k

r

)(
k − 1

r

)

in probability as n → ∞.

The following lemma is quite similar to Lemma 2.4 from [42]. The only difference
is that the fourth moment of a standard real normal is 3 and that of the absolute value
of a standard complex normal is 2.

Lemma 2.4 Given ε ∈ (0, 1). Let {pn; n ≥ 1} and {qn; n ≥ 1} be two sequences of
positive integers such that ε < pn/qn < ε−1 for all n ≥ 1, and pn → ∞. For each n,
let Xn = (xi j ) be a pn ×qn matrix whose entries are i.i.d. standard complex normals.
Then, as n → ∞,

(i) Var(tr((X∗X)2)) ∼ p2
nq2

n + 4pnqn(pn + qn)2,

(i i) Cov(tr(X∗X)2, tr(X∗ X)) ∼ 2pnqn(pn + qn).

Proof For convenience, we simply write p = pn and q = qn in what follows. For a
standard complex normal ξ, we know |ξ |2 ∼ Exp(1). Therefore

E |ξ |2 = 1, E |ξ |4 = 2 and E |ξ |6 = 6. (2.1)

Use identity tr(U V ) = tr(V U ) to obtain that

tr((X∗X)2) = tr(X X∗ X X∗) =
∑

1≤i,k≤pn ,1≤ j, l≤qn

xi j x̄k j xkl x̄il .
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Classifying the sum according to that i = k or j = l, we have that

tr(X∗ X) =
q∑

j=1

p∑

i=1

|xi j |2,

tr((X∗ X)2)

=
q∑

j=1

p∑

i=1

|xi j |4 +
q∑

j=1

p∑

i 
=l=1

|xi j |2|xl j |2 +
p∑

i=1

q∑

j 
=k=1

|xi j |2|xik |2

+
∑

i 
=k, j 
=l

xi j x̄k j xkl x̄il . (2.2)

Set

B1 =
q∑

j=1

p∑

i=1

(|xi j |4 − 2), B2 =
q∑

j=1

p∑

i 
=l=1

(|xi j |2 − 1)(|xl j |2 − 1),

B3 =
p∑

i=1

q∑

j 
=k=1

(|xi j |2 − 1)(|xik |2 − 1), B4 =
∑

i 
=k, j 
=l

xi j x̄k j xkl x̄il .

It is easy to check that

tr((X∗ X)2) =
(

4∑

i=1

Bi

)
+ 2(p + q − 2)(tr(X∗X) − pq) + C p,q , (2.3)

where C p,q is a constant on p and q. Moreover, it is not difficult to see that E Bi = 0
for 1 ≤ i ≤ 4, Cov(Bi , B j ) = 0 for all 1 ≤ i 
= j ≤ 4, and Cov(Bi , tr(X∗ X)) = 0
for i = 2, 3, 4. Also, each Bi is a sum of uncorrelated random variables. Therefore,

Var
(

tr((X∗X)2)
)

=
(

4∑

i=1

Var(Bi )

)
+ 4(p + q − 2)2Var(tr(X∗X))

+ 4(p + q − 2)Cov(B1, tr(X∗ X)).

Now it is easy to verify that Cov(B1, tr(X∗ X)) = O(p2) and Var(Bi ) = O(p3)

for i = 1, 2, 3 as p → ∞. Moreover, from (2.2), we know B4 is a real number, so
Var(B4) = E |B4|2 = pq(p − 1)(q − 1) and Var(tr(X∗X)) = pqVar(|x11|2) = pq
by (2.1). Combining these quantities together, we obtain (i).

(ii) By (2.3) again,

Cov(tr((X∗ X)2), tr(X∗ X)) = Cov(tr(X∗ X), B1) + 2(p + q − 2) · Var(tr(X∗ X))

∼ 2pq(p + q)

as n → ∞. 
�

123



Approximation of eigenvalues of Jacobi ensembles 231

To get the uniform integrability for a certain sequence of random variables, we need
the following lemma.

Lemma 2.5 Let the notation be as in Lemma 2.4 except that x11 be any random vari-
able with Ex11 = 0, E |x11|2 = 1 and E |x11|16 < ∞. Set Zn,i = p−i

n(
tr(X∗

n Xn)i − Etr(X∗
n Xn)i

)
for i = 1, 2. Then supn≥1 E |Zn,i |4 < ∞ for i = 1, 2.

Proof As in the proof of Lemma 2.4, write p = pn and q = qn . Recall (2.2), pZn,1
is a sum of pq i.i.d. random variables with mean zero. Then E |pZn,1|4 = O((pq)2)

as n → ∞. So the conclusion for i = 1 holds.
Recall (2.3). By the convex property of function h(x) = x4, we have that

E(p2 Zni )
4 ≤ C

(
4∑

i=1

E |Bi |4 + p4 E(tr(X∗
n Xn) − Etr(X∗

n Xn))4

)
.

The last term in the parenthesis is of order p8 E |Zn,1|4 = O(p8). Again, B1 is a sum
of pq independent random variables with mean zero. Then E(B4

1 ) = O((pq)2) =
O(p4). Notice that B4 is a sum of uncorrelated random variables, and each term is a
product of four independent and centered random variables sitting in the corners of a
non-degenerate rectangle in the matrix. Then E B4

4 is the same as the fourth moment
of the sum of pq(p − 1)(q − 1) independent random variables with mean zero. So,
E(B4)

4 = O(p8).

Set yi j = |xi j |2 − 1 for all i, j. Then B2 = ∑q
j=1

∑p
i 
=l=1 yi j yl j . Then

B2 =
q∑

j=1

⎛

⎝
( p∑

i=1

yi j

)2

− p

⎞

⎠ −
q∑

j=1

p∑

i=1

(y2
i j − 1).

The second term is a sum of pq i.i.d. r.v.’s. Then its fourth moment is O((pq)2). The
fourth moment of the first term is bounded by

Cq2 E

⎛

⎝
( p∑

i=1

yi j

)2

− p

⎞

⎠
4

≤ C ′q2

⎛

⎝p4 + E

( p∑

i=1

yi1

)8
⎞

⎠ = O(p6)

for some universal constants C > 0, C ′ > 0, since E(
∑p

i=1 yi1)
8 = O(p4).

Thus, E(B2)
4 = O(p6). Similarly, E(B3)

4 = O(p6). In summary, p8 E |Zn2|4 =
E(p2

n Zn2)
4 = O(p8) as n → ∞. The conclusion then follows for i = 2. The proof

is complete. 
�
The lower bound in Theorem 2 actually comes from the following.

Lemma 2.6 Let Z ∼ N (0, 1). Then, E |1 − e−t2+t Z | = 2�(t) − 1 ∈ (0, 1) for any
t > 0, where �(x) = (2π)−1/2

∫ x
−∞ e−t2/2 dt.
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Proof Observe that

E(1 − e−t2+t Z )I (Z ≤ t) + E(e−t2+t Z − 1)I (Z > t)

= E(1 − e−t2+t Z ) + 2E(e−t2+t Z − 1)I (Z > t)

= 1 − e−t2/2 + 2√
2π

∞∫

t

(e−t2+t x − 1)e−x2/2 dx .

Now, note that (x − t)2/2 = t2/2 − t x + x2/2 the last term is equal to

2√
2π

∞∫

t

e−t2+t x−x2/2 dx − 2√
2π

∞∫

t

e−x2/2 dx

= e−t2/2

⎛

⎝ 2√
2π

∞∫

0

e−x2/2 dx

⎞

⎠ − 2P(Z > t)

= e−t2/2 + 2�(t) − 2.

The two identities prove the lemma. 
�

Now we state the density function of the complex Jacobi ensemble as follows.

Proposition 2.1 Let �n be an n×n Haar invariant unitary matrix. Let p and q be two
positive integers such that p ≥ q and p + q ≤ n. Let also U be the p × q upper-left
block of �n. Then the density of U is

f (U ) = C p,q · (det(I − U∗U ))n−p−q I (λmax(U
∗U ) ≤ 1), (2.4)

where

1

C p,q
= π pq ·

q∏

i=1

(n − i − p)!
(n − i)! .

Proof By Theorem 5.1 from [17] or (3.10) from [29], we know (2.4) holds with some
unknown constant C p,q > 0. We compute it next. Define

g(A) = C p,q · (det(I − A))n−p−q I (λmax(A) ≤ 1),

where A is a q × q non-negative definite matrix. Then g(W ∗�W ) = g(�) for any
unitary matrix W, where � = diag(λ1, . . . , λq) and λ1, . . . , λq are eigenvalues of A.
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Taking Z = U∗, by Lemma 2.1, the density of eigenvalues of Z Z∗ is

C p,q
πq(p+q−1)

�q(p)�q(q)

q∏

i=1

λ
p−q
i (1 − λi )

n−p−q

×
∏

1≤i< j≤q

(λi − λ j )
2 I (0 ≤ λ1 < . . . , λq ≤ 1), (2.5)

where �q(p) = πq(q−1)/2 ∏q
i=1 �(p − i + 1). Obviously,

∫

0≤λ1<···<λq≤1

h(λ1, . . . , λq) dλ1 . . . dλq = 1

q!
1∫

0

. . .

1∫

0

h(λ1, . . . , λq) dλ1 . . . λq

for any symmetric function g(λ1, . . . , λq). Taking α = p −q +1, β = n − p −q +1
and γ = 1 in Lemma 2.2, and integrating the function in (2.5) over R

q , we have that

1 = 1

q! · C p,q
πq(p+q−1)

�q(p)�q(q)
·

q−1∏

l=0

�(l + 2)�(l + p − q + 1)�(n + l − p − q + 1)

�(n − q + l + 1)

= 1

q! · C p,qπ pq ·
( ∏q

i=1 �(i + 1)
∏q

i=1 �(q − i + 1)

)
·
(∏q

i=1 �(i + p − q)
∏q

i=1 �(p − i + 1)

)

×
( q∏

i=1

�(n + i − p − q)

�(n − q + i)

)

= 1

q! · C p,qπ pq�(q + 1) ·
q∏

i=1

�(n − p − i + 1)

�(n − q + i)
,

where we set i = l + 1 in the second equality, and use in the third equality the fact
that the first parenthesis is equal to �(q + 1), the second is identical to 1. Note that∏q

i=1 �(n − q + i) = ∏q
i=1 �(n − i + 1). The conclusion then follows from the fact

that �(m + 1) = m! for any integer m ≥ 0. 
�
Lemma 2.7 Let U be the upper-left p × q block of an n × n Haar invariant unitary
matrix. Assume q ≤ p and p+q ≤ n. Let X p,q be a p×q matrix whose pq entries are
i.i.d. standard complex normal random variables. Then the variation distance between
the distribution of

√
nU and that of X p,q is equal to E |Kn Ln − 1|, where

Kn = 1

n pq

q∏

i=1

(n − i)!
(n − i − p)! ,

Ln = e
∑q

i=1 λi

( q∏

i=1

(
1 − λi

n

))n−p−q

I

(
max

1≤i≤q
λi ≤ n

)
,
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and λ1, . . . , λq are eigenvalues of Z∗Z with Z being a p × q matrix whose entries
are independent and standard complex normals.

Proof Let f√nU (x) be the probability density function of
√

nU, and fY (x) be the
probability density function of Y. Recalling that

√
nU has 2pq variables, then

f√nU (x) = 1

n pq
f

(
X√
n

)

= C p,q

n pq

(
det

(
I − X∗ X

n

))n−p−q

I (λmax(X∗ X) ≤ 1),

and fY (x) = (
√

π)−2pqe−tr(X∗ X), where C p,q is as in Proposition 2.1. Let
‖L(

√
nU ) − L(Y )‖ denote the variation distance between

√
nU and Y . Then

‖L(
√

nU ) − L(Y )‖ =
∫

R2pq

∣∣∣ f√nU (x) − fY (x)

∣∣∣ dx

=
∫

R2pq

∣∣∣∣
f√nU (x)

fY (x)
− 1

∣∣∣∣ fY (x) dx

= E

∣∣∣∣
f√nU (Z)

fY (Z)
− 1

∣∣∣∣ ,

where Z is a p × q matrix with entries being i.i.d. standard complex normals. The
conclusion then follows from the facts that det(I − Z∗Z/n)n−p−q = (

∏q
i=1(1 −

n−1λi ))
n−p−q , and tr(Z∗Z) = ∑q

i=1 λi , where λi ’s are eigenvalues of Z∗Z . 
�
The next two lemmas analyze the precise behaviors of Kn and Ln appearing in

Lemma 2.7.

Lemma 2.8 Given x > 0 and y > 0, let p = [xn1/2] and q = [yn1/2]. Set

Kn = 1

n pq

q∏

j=1

(n − j)!
(n − j − p)! .

Then

Kn = exp

{
− p2q + pq2

2n
− 2x3 y + 2xy3 + 3x2 y2

12
+ O

(
1√
n

)}
(2.6)

as n is sufficiently large.

Proof Write Kn = n−pq ∏q
j=1

∏p−2
i=−1(n − i − j) = ∏q

j=1

∏p−1
i=0 (1 − (i + j)/n).

Then

log Kn =
q∑

j=1

p−1∑

i=0

log

(
1 − i + j

n

)
.
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Note that | log(1 − x) + x + (x2/2)| ≤ x3 for x small enough, and (p + q)/n → 0
as n → ∞ since p ∼ x

√
n and q ∼ y

√
n, we have that

∣∣∣∣∣∣
log Kn + 1

n

q∑

j=1

p−1∑

i=0

(i + j) + 1

2n2

q∑

j=1

p−1∑

i=0

(i + j)2

∣∣∣∣∣∣

≤ 1

n3

q∑

j=1

p−1∑

i=0

(i + j)3

as n is sufficiently large. Let

Hn = 1

n

q∑

j=1

p−1∑

i=0

(i + j) and In = 1

2n2

q∑

j=1

p−1∑

i=0

(i + j)2

for n ≥ 1, p ≥ 1 and q ≥ 1. Since (i + j)3 ≤ (p + q)(i + j)2 for 0 ≤ i ≤ p and
1 ≤ j ≤ q, we obtain

| log Kn + Hn + In| ≤ C√
n

In (2.7)

for some constant C = C(x, y) > 0 as n is sufficiently large. Now we evaluate Hn

and In . Recall

n∑

i=1

i = 1

2
n(n + 1) and

n∑

i=1

i2 = 1

6
n(n + 1)(2n + 1)

for n ≥ 1. Then

Hn = q

n

p−1∑

i=0

i + p

n

q∑

j=1

j = pq(p − 1)

2n
+ pq(q + 1)

2n
= pq(p + q)

2n
. (2.8)

Now

In = 1

2n2

q∑

j=1

p−1∑

i=0

(i2 + j2 + 2i j)

= q

2n2

(p − 1)p(2p − 1)

6
+ p

2n2

q(q + 1)(2q + 1)

6
+ 2

2n2

(p − 1)p

2
· q(q + 1)

2

= 2x3 y + 2xy3 + 3x2 y2

12
+ O

(
1√
n

)
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as n → ∞, where we sum i2, j2 and i j separately in the second equality above, and
the equalities p = x

√
n + O(1) and q = y

√
n + O(1) are used in the last step. This

together with (2.7) and (2.8) proves the lemma. 
�
Lemma 2.9 Let x > 0 and y > 0 be constants, and p = pn = [x√

n] and q =
qn = [y

√
n]. Recall function Ln in Lemma 2.7. Then, e−an Ln converges weakly to

the distribution of eσξ where ξ ∼ N (0, 1), and

an = p2q + pq2

2n
+ x3 y + xy3

6
and σ = xy

2
.

Proof Set Xn = X p,q and

f (x) =
{

x + (n − p − q) log
(
1 − x

n

)
, if 0 ≤ x < n;

−∞, otherwise.
(2.9)

Then, Ln = exp(
∑q

i=1 f (λi )). For any x ∈ (0, n), by the Taylor expansion, there
exists ξ = ξx ∈ (0, x) such that

log
(

1 − x

n

)
= − x

n
− x2

2n2 − x3

3n3 − x4

4
· 1

(ξ − n)4 .

Then

f (x) = p + q

n
x − n − p − q

2n2 x2 − n − p − q

3n3 x3 + gn(ξ)
x4

n3 , x ∈ (0, n), (2.10)

where gn(x) = −n3(n−p−q)/(4(x−n)4). It is trivial to see that sup0≤x≤αn |gn(x)| ≤
(1 − α)−4 for any α ∈ (0, 1). Recall that λ1, λ2, . . . , λq are eigenvalues of X∗

n Xn =
X∗

p,q X p,q , where the entries of the p×q matrix Xn are independent standard complex
normals. Recall that p ∼ x

√
n and q ∼ y

√
n. By Theorem 2.16 from [3], there exists

a constant c(x, y) ∈ (0,∞) such that

max1≤i≤q λi

p
→ c(x, y) (2.11)

in probability as n → ∞. Define �n := {max1≤i≤q λi ≤ (c(x, y) + 1)p }. Then

P(�c
n) → 0 (2.12)

as n → ∞. Now on �n, by (2.10),

q∑

i=1

f (λi ) = p + q

n
tr

(
X∗

n Xn
) − n − p − q

2n2 tr
(
(X∗

n Xn)2
)

− n − p − q

3n3 tr
(
(X∗

n Xn)3
)

+ g̃n
tr

(
(X∗

n Xn)4
)

n3 , (2.13)

where |g̃n| ∈ [0, 2) as n is sufficiently large.
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By (ii) of Lemma 2.3,

tr((X∗X)4)

n3 = tr((X∗X)4) − Etr((X∗ X)4)

n3 + O

(
q5

n3

)
→ 0 (2.14)

in probability as n → ∞. Taking η = x/y in (ii) of Lemma 2.3, we obtain

p + q

2n2 tr
(
(X∗

n Xn)2
)

= (p + q)q3

2n2 · tr
(
(X∗

n Xn)2
)

q3 → xy(x + y)2

2
, (2.15)

n− p−q

3n3 tr
(
(X∗

n Xn)3
)
∼ q4

3n2 · tr
(
(X∗

n Xn)3
)

q4 → xy(x2 + y2 + 3xy)

3
(2.16)

and

tr((X∗ X)4)

n3 = q5

n3 · tr((X∗ X)4)

q5
→ 0

in probability as n → ∞ since p ∼ x
√

n and q ∼ y
√

n. It is easy to check that the
term on left hand side of (2.15) minus that of (2.16) converges to (x3 y + xy3)/6 in
probability as n → ∞. Define

Rn = p + q

n
tr

(
X∗

n Xn
) − 1

2n
tr

(
(X∗

n Xn)2
)

. (2.17)

By (2.12) and (2.13), to prove the lemma, it is enough to show

Rn − p2q + pq2

2n
converges weakly to N

(
0,

x2 y2

4

)
(2.18)

as n → ∞. Reviewing (2.2), we have that

tr((X∗
n Xn)2) =

q∑

j=1

p∑

i=1

|xi j |4 +
q∑

j=1

p∑

i 
=l=1

|xi j |2|xl j |2 +
p∑

i=1

q∑

j 
=k=1

|xi j |2|xik |2

+
∑

i 
=k, j 
=l

xi j x̄k j xkl x̄il . (2.19)

Then, by (2.1),

Etr
(
(X∗

n Xn)2
)

= pq(E |x11|4) + qp(p − 1) + pq(q − 1) = pq(p + q).

Easily, E
(
tr(X∗

n Xn)
) = pq. Thus

E Rn = pq(p + q)

n
− pq(p + q)

2n
= pq(p + q)

2n
.
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Now set hi = tr(X∗
n Xn)i − E

(
tr(X∗

n Xn)i
)

for i = 1, 2. From (2.18) and the above,
to prove the lemma, it suffices to show that

Wn := p + q

n
h1 − 1

2n
h2 converges to N (0, σ 2) weakly, (2.20)

where σ is as in the statement of the lemma. Since, tr(X∗
n Xn) = ∑

i, j |xi j |2, which
is a sum of i.i.d. random variables, Var(h1) = Var(tr(X∗

n Xn)) = pq. By Lemma
2.4, Var(h2)/n2 converges to a positive constant. By (ii) of Theorem 1.1 from [6],
(h1/

√
Var(h1), h2/

√
Var(h2)) converges weakly to a normal distribution with mean

zero. It follows that Wn converges weakly to a normal distribution with mean zero
and variance σ 2. By Lemma 2.5, {W 2

n ; n ≥ 1} is uniformly integrable, therefore
σ 2 = limn→∞ EW 2

n . Now,

Var(Wn) = (p + q)2

n2 Var
(
tr(X∗

n Xn)
) + 1

4n2 Var
(

tr
(
(X∗

n X)2
))

− p + q

n2 · Cov
(

tr(X∗
n Xn), tr

(
(X∗

n Xn)2
))

.

Since Var(tr(X∗
n Xn)) = pq as calculated earlier, by Lemma 2.4 again, the above

yields

Var(Wn) → x2 y2

4

as n → ∞. Therefore, σ 2 = x2 y2/4. The proof is completed. 
�
Now we are ready to prove Theorems 1 and 2.

Proof of Theorem 2 Lemma 2.7 says that ‖L(Un)−L(Xn)‖ = E |Kn Ln−1|. Lemmas
2.8 and 2.9 imply that Kn Ln converges to eµ+σξ in distribution, where µ = −x2 y2/4
and σ = xy/2. Then the conclusion follows from the Fatou lemma and Lemma 2.6.


�
Proof of Theorem 1 Heuristically, the proof here corresponds to the case x = y = 0
in the proof of Theorem 2. We now make it rigorous.

As discussed in the proof of Theorem 1 in [42], we assume, without loss of gener-
ality, pn → ∞ and pn = qn = o(

√
n) as n → ∞.

Let Kn and Ln be as in Lemma 2.7. Following the proof of Lemma 2.8, it is easy
to see that

Kn ∼ e−(p2q+pq2)/2n (2.21)

as n → ∞. Now we claim that

e−(p2q+pq2)/2n Ln → 1 (2.22)
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in probability as n → ∞. Recall the proof of Lemma 2.9, every step follows from the
beginning to (2.18) with x = y = 0. We need to show that

Rn − p2q + pq2

2n
→ 0

in probability, where Rn is as in (2.17). As checked before assertion (2.20), E Rn =
(p2q + pq2)/(2n). Therefore, it suffices to prove that

p + q

n
h1 → 0 and

1

n
h2 → 0 (2.23)

in probability as n → ∞, where hi = tr(X∗
n Xn)i − E

(
tr(X∗

n Xn)i
)

for i = 1, 2.

Recall the arguments immediately after (2.20), we know that Var(h1) = pq. Thus,
Var((p+q)h1/n) = (p+q)2 pq/n2 → 0 since p = q = o(

√
n). Then the first asser-

tion in (2.23) holds by Chebyshev’s inequality. Finally, Var(h2/n) ∼ 17p4/n2 → 0
by (i) of Lemma 2.4. The second conclusion in (2.23) follows.

Now by Lemma 2.7, ‖L(Un) − L(Xn)‖ = E |Kn Ln − 1|. From (2.21) and (2.22),
we know that 0 ≤ Kn Ln → 1 in probability. Also, E(Kn Ln) = ∫

f√nU (x) dx = 1,
where f√nU (x) is as in the proof of Lemma 2.7. These two facts imply E |Kn Ln−1| →
0 as n → ∞. 
�
Proof of Corollary 1.1 We first prove the unitary case. Fix n ≥ 1. By a perturbation
theorem for singular values, see, e.g., Corollary 7.3.8 from [37],

max
1≤i≤q

|√λi (A∗ A) − √
λi (B∗ B)| ≤ max

1≤i≤q

√
λi ((A − B)∗(A − B))

≤ √
tr((A − B)∗(A − B)) (2.24)

for any p × q matrices A and B. This says that (λ1(A∗ A), . . . , λq(A∗ A)) is a contin-
uous vector of A. Then there exists a Borel set H ⊂ R

pq such that

{
fn(λ1(X∗

n Xn), . . . , λ1(X∗
n Xn)) ∈ F

} = {Xn ∈ H} and{
fn(λ1(U

∗
n Un), . . . , λ1(U

∗
n Un)) ∈ F

} = {Un ∈ H} .

Theorem 1 says that P(Xn ∈ H) − P(Un ∈ H) → 0. The conclusion follows.
The same argument also applies to orthogonal case because of Theorem 10. 
�

3 Proofs of Theorems 3–7

Let F1 and F2 be two probability cumulative distribution functions (c.d.f.). Recall the
Levy distance (see, e.g., p. 278 from [15])

L(F1, F2) = inf{ε > 0; F1(x − ε) − ε ≤ F2(x) ≤ F1(x + ε) + ε for all x ∈ R}.
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This distance characterizes the weak convergence of probability distributions, i.e., for
a sequence of c.d.f.’s {F, Fn; n ≥ 1}, the assertion

∫
R

g(x) d Fn(x) → ∫
R

g(x) d F(x)

for every bounded continuous function g, is equivalent to that L(Fn, F) → 0, which
again is equivalent to that Fn(x) → F(x) for every continuous point x of F. See, e.g.,
Theorem 3 on p.278 from [15].

Lemma 3.1 Let Fn; n ≥ 1, be a sequence of c.d.f.’s, and F be a continuous
and deterministic c.d.f. such that L(Fn, F) → 0 in probability as n → ∞. Then
supx∈R |Fn(x) − F(x)| → 0 in probability.

Proof If L(Fn, F) < a for some a > 0, then F(x − a)− a ≤ Fn(x) ≤ F(x + a)+ a
for all x ∈ R. Since L(Fn, F) → 0, for any ε > 0 there exists N ≥ 1 such that

P (F(x − ε) − ε ≤ Fn(x) ≤ F(x + ε) + ε for all x ∈ R) > 1 − ε

for n ≥ N . If the event in the above parenthesis holds, then supx∈R |Fn(x)− F(x)| ≤
sup|x−y|≤ε |F(x) − F(y)| + ε. Since F(x) is continuous, and F(+∞) = 1 and
F(−∞) = 0, we know that F(x) is uniformly continuous. Thus sup|x−y|≤δ |F(x) −
F(y)| < ε as δ ∈ (0, δ0) for some δ0 > 0. Therefore, for any ε ∈ (0, δ0),

P

(
sup
x∈R

|Fn(x) − F(x)| < 2ε

)
> 1 − ε

as n ≥ N . This proves the lemma. 
�
Lemma 3.2 Let X be an n × n matrix with complex entries, and λ1, . . . , λn be its
eigenvalues. Let µX be the empirical law of λi , 1 ≤ i ≤ n. Let µ be a probability
measure. Then ρ(µX , µ) is a continuous function in the entries of X, where ρ is as in
(1.7).

Proof For convenience of discussion, denote by λi (X), 1 ≤ i ≤ n, the eigenvalues
of X. First, note that

∫
R

f (x) µX (dx) = (1/n)
∑n

i=1 f (λi (X)). Then by the triangle
inequality, for any permutation π of 1, 2, . . . , n,

|ρ(µX , µ) − ρ(µY , µ)| ≤ 1

n
sup

‖ f ‖L≤1

∣∣∣∣∣

n∑

i=1

f (λπ(i)(X)) − f (λi (Y ))

∣∣∣∣∣

≤ max
1≤i≤n

sup
‖ f ‖L≤1

| f (λπ(i)(X)) − f (λi (Y ))|
≤ max

1≤i≤n
|λπ(i)(X) − λi (Y )|,

where in the last step we use the Lipschitz property of f : | f (x) − f (y)| ≤ |x − y|
for any x and y. Since the above inequality is true for any permutation π, we have that

|ρ(µX , µ) − ρ(µY , µ)| ≤ min
π

max
1≤i≤n

|λπ(i)(X) − λi (Y )|.
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By Theorem 2 from [9], which is a generalization of [57], we have that

min
π

max
1≤i≤n

|λπ(i)(X) − λi (Y )| ≤ 22−1/n‖X − Y‖1/n
2 (‖X‖2 + ‖Y‖2)

1−1/n,

where ‖X‖2 is the operator norm of X. Let X = (xi j ) and Y = (yi j ). We know that
‖X‖2 ≤ ∑

1≤i, j≤n |xi j |2. Therefore

|ρ(µX , µ) − ρ(µY , µ)|

≤ 2(‖X‖2 + ‖Y‖2)
1−1/n ·

⎛

⎝
∑

1≤i, j≤n

|xi j − yi j |2
⎞

⎠
1/(2n)

.


�
We will use the following results in later proofs.

Theorem 8 (Theorem 5 in [43]) For each n ≥2, there exists matrices�n =(γi j )1≤i, j≤n

and Yn = (yi j )1≤i, j≤n whose 2n2 elements are random variables defined on the same
probability space such that

(i) the law of �n is the normalized Haar measure on the orthogonal group On;
(ii) {yi j ; 1 ≤ i, j ≤ n} are i.i.d. random variables with the standard normal

distribution;
(iii) set εn(m) = max1≤i≤n,1≤ j≤m |√nγi j − yi j | for m = 1, 2, . . . , n. Then

P(εn(m) ≥ rs + 2t) ≤ 4me−nr2/16 + 3mn

×
(

1

s
e−s2/2 + 1

t

(
1 + t2

3(m + √
n)

)−n/2
)

for any r ∈ (0, 1/4), s > 0, t > 0, and m ≤ (r/2)n.

Theorem 9 (Theorem 6 in [43]) For each n ≥ 2, there exists two n × n matrices
�n = (γ jk) and Yn = ((x jk + iy jk)/

√
2) such that γ jk ’s, x jk’s and y jk’s are random

variables defined on the same probability space, and

(i) the law of �n is the normalized Haar measure on the unitary group U (n);
(ii) the 2n2 random variables {x jk, y jk; 1 ≤ j, k ≤ n} are independent standard

normals;
(iii) set εn(m) = max1≤ j≤n,1≤k≤m |√nγ jk −(x jk +iy jk)/

√
2| for m = 1, 2, . . . , n.

Then

P(εn(m) ≥ rs + 2t) ≤ 4me−nr2/8+mne−s2 + 6mn

t

(
1 + t2

12(m + t
√

n)

)−n

for any r ∈ (0, 1/4), s > 0, t > 0, and m ≤ (r/2)n.
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Theorem 10 (Theorem 1 in [42]) Let {pn; n ≥ 1} and {qn; n ≥ 1} be two sequences
of positive integers such that pn → +∞, pn = o(

√
n) and pn/qn → c for some

constant c ∈ (0,∞) as n → ∞. Let Un be the upper-left pn × qn block of an n × n
Haar invariant random orthogonal matrix. Let Xn be a pn × qn matrix whose pnqn

entries are i.i.d. standard real normal random variables. Then limn→∞ ‖L(
√

nUn)−
L(Xn)‖ = 0.

The order that p = o(
√

n) is also proved to be the best in Jiang [42]. However, we
do not need it in later applications.

Proof of Theorem 3 We only prove the unitary case, the orthogonal case is similar.
Let Xn be as in Theorem 1. For a q × q square matrix A, write λ1(A) ≥ λ2(A) ≥

· · · ≥ λq(A) for all the eigenvalues of A. By Theorem 2.16 from [3] (see also [7] and
[71]) that

λmax(X∗
n Xn)

p
→ (1 + √

c)2 and
λmin(X∗

n Xn)

p
→ (1 − √

c)2 (3.1)

in probability by the given condition that q → +∞ and q/p → c ∈ (0,+∞). Thus

P

(∣∣∣∣
λmax(X∗

n Xn)

p
− (1 + √

c)2
∣∣∣∣ ≥ ε

)
→ 0

as n → ∞ for any ε > 0. Then the first assertion in (1.4) follows from Corollary
1.1. The second holds by the same argument since fn(λ1(X∗

n Xn), . . . , λq(X∗
n Xn)) =

λmin(X∗
n Xn) as in (1.3) is a continuous function in the entries of X∗

n Xn by (2.24).

�

Proof of Theorem 4 We will only prove the unitary case, the orthogonal case is similar.
By Lemma 3.1, we only need to show that the Levy distance between Fp,q and F

goes to zero in probability, that is, L(Fp,q , F) → 0 in probability as n → +∞.

Let �n and Yn be as in Theorem 9, and Yp,q be the upper-left sub-matrix of Yn . Let
F̃ be the empirical distribution of eigenvalues of Y ∗

p,qYp,q/p. Apply the difference
inequality Lemma 2.7 from Bai [3] for A = √

nU∗
p,q/

√
p and B = Y ∗

p,q/
√

p to obtain
that

L4(Fp,q , F̃p,q) ≤ 2

p4 tr
{
(
√

nU − Yp,q)∗(
√

nU − Yp,q)
}

×
{

tr(nU∗U ) + tr(Y ∗
p,qYp,q)

}
.

Recalling the definition of εn(m) in Theorem 9, we have that

tr
{
(
√

nU − Yp,q)∗(
√

nU − Yp,q)
} ≤ pqεn(q).

123



Approximation of eigenvalues of Jacobi ensembles 243

Also, ‖A‖ := √
tr(A∗ A) is a norm, we obtain from the triangle inequality that

tr(nU∗U ) = ‖√nU‖2 ≤ (‖√nU − Yp,q‖ + ‖Yp,q‖)2

≤ 2pqεn(q) + 2tr(Y ∗
p,qYp,q).

The above inequalities lead to

L4(Fp,q , F̃p,q) ≤ 2pεn(q)

p
·
⎛

⎝2qεn(q)

p
+ 3

p2

∑

1≤i≤p,1≤ j≤q

(x2
i j + y2

i j )

⎞

⎠ .

By the Law of Large Numbers, the second term in the parenthesis above goes to 3c in
probability as n → +∞. We have to show that

εn(q) → 0 (3.2)

in probability as q = o(n/ log n) and n → ∞. First, this is true for the orthogonal
case by Theorem 3 from [42]. Second, applying the same argument in the beginning
of the proof of Theorem 3 from [42] to Theorem 9, (3.2) also holds for the unitary
case. Therefore, L(Fp,q , F̃p,q) → 0 in probability. By the Machenko–Pastur law, see,
e.g., Theorem 2.5 from [3] or [52], L(F̃p,q , F) → 0 in probability. Therefore, by the
triangle inequality, L(Fp,q , F) → 0 in probability as n → +∞. 
�
Proof of Theorem 5 We only prove the unitary case, the orthogonal case is exactly the
same. Let X p be a p× p matrix with entries being i.i.d. standard complex normals. By
the circular law, see, e.g., Bai [4], ρ(νn, µ) → 0 in probability, that is, P(ρ(νn, µ) ≥
ε) → 0 for any ε > 0, where νn is the empirical distribution of eigenvalues of
(1/

√
p)X p. Now, by Theorem 1 and Lemma 3.2, P(ρ(µn, µ) ≥ ε) − P(ρ(νn, µ) ≥

ε) → 0 for any ε > 0. The conclusion follows. 
�
Proof of Theorem 6 (i) Let fn(x1, . . . , xq) = (∑q

i=1 f1(xi ), . . . ,
∑q

i=1 fk(xi )
) − cn .

Note that p and q here correspond to N and n, respectively, in Theorem 1.1 from [6].
By Theorem 1.1 from [6],

(∑q
i=1 f1(λi ), . . . ,

∑q
i=1 fk(λi )

) − cn converges weakly
to a k-dimensional normal distribution Nk(µ,
), for certain µ,
 and cn, where λi ’s
are eigenvalues of a q × q matrix with i.i.d. entries of the standard complex normal
distribution. Then Corollary 1.1 yields the result.

(ii) It is similar to (i). We omit it. 
�
Proof of Theorem 7 Johansson [46] showed that (λ1(X∗

n Xn) − µpq)/σpq converges
to F2 when the entries of Xn are i.i.d. standard complex Gaussian random variables.
Johnstone [47] proved that the result is still true if F2 is replaced by F1 when the
entries of Xn are i.i.d. standard real normals. Then the results follow from Corollary
1.1 by taking

fn(x1, . . . , xq) = max1≤i≤q xi − µnp

σnp
, x1 ≥ 0, . . . , xq ≥ 0,

and F = (−∞, x] for any x ∈ R. 
�
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