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Abstract We consider the averaging principle for stochastic reaction–diffusion
equations. Under some assumptions providing existence of a unique invariant measure
of the fast motion with the frozen slow component, we calculate limiting slow motion.
The study of solvability of Kolmogorov equations in Hilbert spaces and the analy-
sis of regularity properties of solutions, allow to generalize the classical approach to
finite-dimensional problems of this type in the case of SPDE’s.
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1 Introduction

Consider a Hamiltonian system with one degree of freedom. In the area where the
Hamiltonian has no critical points, one can introduce action-angle coordinates (I, ϕ),
with I ∈ R

1 and 0 ≤ ϕ ≤ 2π , so that the system has the form

İt = 0, ϕ̇t = ω(It ). (1.1)
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138 S. Cerrai, M. Freidlin

Now, consider small perturbations of this system such that, after an appropriate
time rescaling, the perturbed system can be written as follows

İ εt = β1(I
ε
t , ϕ

ε
t ), ϕ̇εt = 1

ε
ω(I εt )+ β2(I

ε
t , ϕ

ε
t ). (1.2)

Here the perturbations β1, β2 : R
1 × [0, 2π ] → R are assumed to be regular enough

functions, as well as ω : R → R, and 0 < ε << 1.
System (1.2) has a fast component, which is, roughly speaking, the motion along

the non-perturbed trajectories (1.1), after the time change t → t/ε, and the slow
component which can be described by the evolution of I εt . When ε goes to 0, the slow
component approaches the averaged motion Īt , defined by

˙̄It = β̄1( Īt ), Ī0 = I0, (1.3)

where

β̄1(y) = 1

2π

2π∫

0

β1(y, ϕ)dϕ.

This is a classical manifestation of the averaging principle for Eq. (1.2).
To prove the convergence of I εt to Īt , one can consider a 2π -periodic in ϕ solution

u(I, ϕ) of an auxiliary equation

LI u(I, ϕ) := ω(I )
∂u

∂ϕ
= β1(I, ϕ)− β̄(I ). (1.4)

It is easy to see that such a solution exists and is unique up to an additive function,
depending just on I . Moreover, it can be chosen in such a way that u(I, ϕ) has con-
tinuous derivatives in I and ϕ. Actually, u(I, ϕ) can be written explicitly. It follows
from (1.2) and (1.4) that

u
(
I εt , ϕ

ε
t

)− u
(
I ε0 , ϕ

ε
0

) = 1

ε

t∫

0

∂u

∂ϕ

(
I εs , ϕ

ε
s

)
ω(I εs )ds +

t∫

0

∂u

∂ϕ

(
I εs , ϕ

ε
s

)
β2
(
I εs , ϕ

ε
s

)
ds

+
t∫

0

∂u

∂ I

(
I εs , ϕ

ε
s

)
β1
(
I εs , ϕ

ε
s

)
ds

= 1

ε

t∫

0

[
β1
(
I εs , ϕ

ε
s

)− β̄(I εs )
]
ds

+
t∫

0

∂u

∂ϕ

(
I εs , ϕ

ε
s

)
β2
(
I εs , ϕ

ε
s

)
ds+

t∫

0

∂u

∂ I

(
I εs , ϕ

ε
s

)
β1
(
I εs , ϕ

ε
s

)
ds.
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Averaging principle for a class of stochastic reaction–diffusion equations 139

Hence, by taking into account the boundedness of coefficientsβ1 andβ2 and of function
u(I, ϕ) together with its first derivatives, one can conclude from the last equality that
for any T > 0

sup
0≤t≤T

∣∣∣∣∣∣
t∫

0

[
β1(I

ε
s , ϕ

ε
s )− β̄(I εs )

]
ds

∣∣∣∣∣∣ ≤ c ε, (1.5)

for some constant c > 0. Now, from (1.2) and (1.3) it follows

I εt − Īt =
t∫

0

[
β1(I

ε
s , ϕ

ε
s )− β̄(I εs )

]
ds +

t∫

0

[
β̄(I εs )− β̄( Īs)

]
ds,

so that, assuming that β(I, ϕ) (and thus β̄(I )) is Lipschitz-continuous, thanks to (1.5)
and to Gronwall’s lemma we get

sup
0≤t≤T

∣∣I εt − Īt
∣∣ ≤ c ε.

On a first glance, one can think that consideration of the auxiliary equation (1.4) for
proving averaging principle is an artificial trick. But, actually, this is not the case; the
use of Eq. (1.4) and its natural generalizations helps to prove averaging principle in
many cases. For example, when deterministic perturbations of a completely integrable
system with many degrees of freedom (in a domain where one can introduce action-
angle coordinates) are considered, the operator L is the generator of the corresponding
flow on a torus. Because of the existence of resonance tori, where invariant measure of
the flow is not unique, one has to consider approximate solutions of the corresponding
equation (1.4). The price for this is that the convergence of sup0≤t≤T |I εt − Īt | to zero
does not hold for any fixed initial condition, but just in Lebesgue measure in the phase
space, given that the set of resonance tori is small enough (see [17]). An approximate
solution of the corresponding analogue of Eq. (1.4) is used in [8] for averaging of
stochastic perturbations. In this case it is possible to prove weak convergence to the
averaged system in the space of continuous functions on the phase space. Moreover,
concerning the use of the auxiliary equation (1.4), it is worthwhile mentioning that in
[18] suitable correction functions arising as solutions of problems analogous to (1.4)
are introduced in order to prove some limit theorems for more general multi-scaling
systems.

An analogue of Eq. (1.4) appears also in the case when the fast motion is a stochastic
process

İ εt = β1(I
ε
t , ϕ

ε
t ), ϕ̇εt = 1

ε
ω(I εt , ϕ

ε
t )+ 1√

ε
σ (I εt , ϕ

ε
t )ẇt + β2(I

ε
t , ϕ

ε
t ).

Here I, ϕ : [0,+∞) → R
n , ω : R

n × R
n → R

n , σ(I, ϕ)σ ∗(I, ϕ) = α(I, ϕ) is a
positive definite n × n-matrix and wt is the standard n-dimensional Wiener process.
All functions are assumed to be 2π -periodic in the variables ϕi and smooth enough.
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140 S. Cerrai, M. Freidlin

Under these conditions, for each I ∈ R
n the diffusion process ϕ I

t on the n-torus T n

defined by the equation

ϕ̇ I
t = ω

(
I, ϕ I

t

)+ σ
(
I, ϕ I

t

)
ẇt ,

has a unique invariant measure with density m I (ϕ). Then Eq. (1.4) should be
replaced by

LI u(I, ϕ) = β1(I, ϕ)− β̄1(I ), (1.6)

where LI is the generator of the process ϕ I
t and for any I ∈ R

n

β̄1(I ) :=
∫

T n

β1(I, ϕ)m I (ϕ)dϕ.

Taking into account the uniqueness of the invariant measure, one can check that
there exists a solution to problem (1.6) which is smooth in I and ϕ. Applying Itô’s
formula to u(I εt , ϕ

ε
t ), one can prove not just weak convergence of I εt to Īt on any finite

time interval, but also convergence of (I εt − Īt )/
√
ε to a diffusion process.

Besides the situations described above, averaging principle both for determinis-
tically and for randomly perturbed systems, having a finite number of degrees of
freedom, has been studied by many authors, under different assumptions and with
different methods. The first rigorous results are due to Bogoliubov (see [2]). Further
developments were obtained by Volosov, Anosov and Neishtadt (see [17,21]) and by
Arnold et al. (see [1]). All these references are for the deterministic case. Concerning
the stochastic case, it is worth quoting the paper by Khasminskii [10], the works of
Brin, Freidlin and Wentcell (see [3,6–8]), Veretennikov (see [20]) and Kifer (see for
example [11–14]).

To the best of our knowledge, very few has been done as far as averaging for
infinite dimensional systems is concerned. To this purpose we recall the papers [16]
and [19], where the case of stochastic evolution equations in abstract Hilbert spaces is
considered, and the paper [15], where randomly perturbed KdV equation is studied.

In this paper we are dealing with a system of reaction–diffusion equations with a
stochastic fast component. Namely, for each 0 < ε << 1, we consider the system of
partial differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uε

∂t
(t, ξ) = Auε(t, ξ)+ f (ξ, uε(t, ξ), vε(t, ξ)), t ≥ 0, ξ ∈ [0, L],

∂vε

∂t
(t, ξ) = 1

ε

[Bvε(t, ξ)+ g(ξ, uε(t, ξ), vε(t, ξ))
]+ 1√

ε

∂w

∂t
(t, ξ),

t ≥ 0, ξ ∈ [0, L],

uε(0, ξ) = x(ξ), vε(0, ξ) = y(ξ), ξ ∈ [0, L],

N1uε (t, ξ) = N2v
ε (t, ξ) = 0, t ≥ 0, ξ ∈ {0, L}.

(1.7)
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Averaging principle for a class of stochastic reaction–diffusion equations 141

The present model describes a typical and relevant situation for reaction–diffusion
systems in which the diffusion coefficients and the rates of reactions have different
order. In the case we are considering here, the noise is included only in the fast motion
and it is of additive type. However, we would like to stress that the introduction of a
noisy term of additive type in the slow equation would not lead to any new effects, as
it should be included in the limiting slow motion without any substantial changes.

The linear operators A and B, appearing respectively in the slow and in the fast
equation, are second-order uniformly elliptic operators and N1 and N2 are some oper-
ators acting on the boundary. The operator B, endowed with the boundary conditions
N2, is self-adjoint and strictly dissipative (see Hypothesis 1).

The reaction coefficients f and g are measurable mappings from [0, L] × R
2 into

R which satisfy suitable regularity assumptions and for the reaction coefficient g in
the fast motion equation some dissipativity assumption is assumed (see Hypotheses 2
and 3).

The noisy perturbation of the fast motion equation is given by a space–time white
noise ∂w/∂t (t, ξ), defined on a complete stochastic basis (
,F ,Ft ,P).

The corresponding fast motion vx,y(t), with frozen slow component x ∈ H :=
L2(0, L), (the counterpart of the process ϕ I

t above in the case of a system with a finite
number of degrees of freedom) is a Markov process in a functional space. Notice
that the phase space of vx,y(t) is not just infinitely dimensional but also not compact.
Nevertheless, by assuming that the system has certain dissipativity properties, for any
fixed x ∈ H the process vx,y(t) has a unique invariant measure µx . If Lx is the
generator of this process, then the counterpart of Eq. (1.4) has the form

c(ε)�εh(x, y)− Lx�εh(x, y) = 〈
F(x, y)− F̄(x), h

〉
H , x, y, h ∈ H, (1.8)

where c(ε) is a constant depending on ε and vanishing at ε = 0,

F(x, y)(ξ) = f (ξ, x(ξ), y(ξ)), ξ ∈ [0, L],

and

F̄(x) :=
∫

H

F(x, y) µx (dy), x ∈ H.

Notice that in (1.8) we cannot consider the Poisson equation (c(ε) = 0), but we have
to add a zero-order term c(ε)�εh(x, y), in order to get bounds for �εh(x, y) and its
derivatives which are uniform with respect to ε ∈ (0, 1].

Due to the ergodicity of µx , we prove that there exists some δ > 0 such that for
any ϕ : H → R and x, y ∈ H

∣∣∣∣∣∣P
x
t ϕ(y)−

∫

H

ϕ(z) µx (dz)

∣∣∣∣∣∣ ≤ c (1 + |x |H + |y|H ) e−δt [ϕ]Lip,
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142 S. Cerrai, M. Freidlin

where Px
t is the transition semigroup associated with the fast motion vx,y(t), with

frozen slow component x . This implies that the solution �εh(x, y) of Eq. (1.8) can be
written explicitly as

�εh(x, y) =
t∫

0

e−c(ε)t Px
t

〈
F(x, ·)− F̄(x), h

〉
H (y) dt.

By using some techniques developed in [4], we obtain bounds for�εh(x, y) and its
derivatives, which in general are not uniform in x, y ∈ H , as the reaction coefficients
f and g are not assumed to be bounded. Moreover, we are able to apply an infinite
dimensional Itô’s formula to �εh(u

ε, Pnv
ε), where Pn is the projection of H onto the

n-dimensional space generated by the first n modes of the operator B, and uε and vε

are the solutions of system (1.7). In this way, as in the case of a system with a finite
number of degrees of freedom, we are able to prove that

E

∣∣∣∣∣∣
t∫

0

〈
F(uε(s), vε(s))− F̄(uε(s)), h

〉
H ds

∣∣∣∣∣∣ ≤ Kt (ε), t ≥ 0, ε > 0, (1.9)

for some Kt (ε) ↓ 0, as ε goes to zero. The proof of (1.9) is one of the major task of
the paper, as it requires several estimates for�εh(x, y) and its derivatives and uniform
bounds with respect to ε > 0, both for uε and for vε .

Once we have estimate (1.9), we show that for any T > 0 the family {L(uε)}ε∈ (0,1)
is tight in P(C((0, T ]; H)∩ L∞(0, T ; H)) and then we identify the weak limit of any
subsequence of {uε} with the solution ū of the averaged equation

dū(t) = Aū(t)+ F̄(ū(t)), ū(0) = x ∈ H. (1.10)

Now, as a consequence of the dependence of µx on x ∈ H , the nonlinear term F̄
in (1.10) is a functional of ū. Nevertheless, one can prove that problem (1.10), under
certain small assumptions, has a unique solution (see Sect. 5, Proposition 5.1). Hence,
by a uniqueness argument, this allows us to conclude that the whole sequence {uε}ε>0
converges to ū in probability, uniformly on any finite time interval [0, T ]. That is

Theorem 1.1 Under Hypotheses 1, 2 and 3 (see Sect. 2), for any T > 0, x, y ∈
Wα,2(0, L), with α > 0, and η > 0 it holds

lim
ε→0

P

(
sup

t∈ [0,T ]
|uε(t)− ū(t)|H > η

)
= 0.

Notice that in the case of space dimension d = 1 the fast equation with frozen
slow component is a gradient system and then we have an explicit expression for the
invariant measure µx . This allows to prove that the mapping F̄ is differentiable and
to give an expression for its derivative. In such a way we can study dependence with
respect to x for the correction function �εh and we can proceed with the use of Itô’s
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Averaging principle for a class of stochastic reaction–diffusion equations 143

formula. In the case of space dimension d > 1 the fast equation is no more of gradient
type. Nevertheless, in Sect. 6 we show how it is possible to overcome this difficulty
and how, by a suitable approximation procedure, it is still possible to prove averaging.

Finally, we would like to recall that in a number of models, one can assume that
the noise in the fast motion is small. This results in replacement of ε−1/2 by δ ε−1/2,
with 0 < δ << 1 (to this purpose we refer to [6]). Then, in generic situation, the
invariant measure of the fast motion with frozen slow component x is concentrated, as
δ goes to zero, near one point y�(x) ∈ H . This is a result of large deviations bounds
and y�(x) can be found as an extremal of a certain functional. In particular, if the
operator B in the fast equation is self-adjoint and g(ξ, σ, ρ) = h(σ )N (ρ), with, for
brevity, the antiderivative H(σ ) of h(σ ) having a unique maximum point, then y�(x)
is a constant providing the maximum of H(σ ). In this case we have that F̄(x)(ξ) =
f (ξ, x(ξ), y�(x)(ξ)), ξ ∈ [0, π ], and (1.10) is a classical reaction-diffusion equation.
We will address this problem somewhere else.

2 Assumptions and notations

Let H be the Hilbert L2(0, L), endowed with the usual scalar product 〈·, ·〉H and the
corresponding norm | · |H . In what follows, we shall denote by L(H) the Banach space
of bounded linear operators on H , endowed with the usual sup-norm. L1(H) denotes
the Banach space of trace-class operators, endowed with the norm

‖A‖1 := Tr [√AA�],

and L2(H) denotes the Hilbert space of Hilbert–Schmidt operators on H , endowed
with the scalar product

〈A, B〉2 = Tr [AB�]

and the corresponding norm ‖A‖2 = √
Tr [AA�].

The Banach space of bounded Borel functions ϕ : H → R, endowed with the
sup-norm

‖ϕ‖0 := sup
x∈ H

|ϕ(x)|,

will be denoted by Bb(H). Cb(H) is the subspace of all uniformly continuous map-
pings and Ck

b (H) is the subspace of all k-times differentiable mappings, having
bounded and uniformly continuous derivatives, up to the kth order, for k ∈ N. Ck

b (H)
is a Banach space endowed with the norm

‖ϕ‖k := ‖ϕ‖0 +
k∑

i=1

sup
x∈ H

∣∣Diϕ(x)
∣∣Li (H) =: ‖ϕ‖0 +

k∑
i=1

[ϕ]i ,

where L1(H) := H and, by recurrence, Li (H) := L(H,Li−1(H)), for any i > 1.
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144 S. Cerrai, M. Freidlin

In what follows we shall denote by Lip(H) the set of all Lipschitz-continuous
mappings ϕ : H → R and we shall set

[ϕ]Lip := sup
x =y

|ϕ(x)− ϕ(y)|
|x − y| .

Moreover, for any k ≥ 1 we shall denote by Lipk(H) the subset of all k-times dif-
ferentiable mappings having bounded and uniformly continuous derivatives, up to the
kth order. Notice that for any ϕ ∈ Lip(H)

|ϕ(y)| ≤ [ϕ]Lip|y|H + |ϕ(0)|, y ∈ H. (2.1)

The stochastic perturbation in the fast motion equation is given by a space–time
white noise ∂w/∂t (t, ξ), for t ≥ 0 and ξ ∈ [0, L]. Formally the cylindrical Wiener
process w(t, ξ) is defined as the infinite sum

w(t, ξ) =
∞∑

k=1

ek(ξ) βk(t), t ≥ 0, ξ ∈ [0, L],

where {ek}k∈ N is a complete orthonormal basis in H and {βk(t)}k∈ N is a sequence
of mutually independent standard Brownian motions defined on the same complete
stochastic basis (
,F ,Ft ,P).

Now, for any T > 0 and p ≥ 1 we shall denote by HT,p the space of adapted
processes in C((0, T ]; L p(
; H)) ∩ L∞(0, T ; L p(
; H)). HT,p is a Banach space,
endowed with the norm

‖u‖HT,p =
(

sup
t∈ [0,T ]

E |u(t)|p
H

) 1
p

.

Moreover, we shall denote byCT,p the subspace of processes u ∈ L p(
; C((0, T ]; H)∩
L∞(0, T ; H)), endowed with the norm

‖u‖CT,p =
(

E sup
t∈ [0,T ]

|u(t)|p
H

) 1
p

.

The linear operators A and B, appearing respectively in the slow and in the fast
motion equation, are second order uniformly elliptic operators, having continuous
coefficients on [0, L], and N1 and N2 can be either the identity operator (Dirichlet
boundary conditions) or first-order operators of the following type

β(ξ)
∂

∂ξ
+ γ (ξ), ξ ∈ {0, L},

for some β, γ ∈ C1[0, L] such that β(ξ) = 0, for ξ = 0, L .
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Averaging principle for a class of stochastic reaction–diffusion equations 145

As known, the realizations A and B in H of the second-order operators A and B,
endowed respectively with the boundary condition N1 and N2, generate two analytic
semigroups, which will be denoted by et A and et B , t ≥ 0. Their domains D(A) and
D(B) are given by

W 2,2
Ni
(0, L) := {

x ∈ W 2,2(0, L) : Ni x(0) = Ni x(L) = 0
}
, i = 1, 2.

By interpolation we have that for any 0 ≤ r ≤ s ≤ 1/2 and t > 0 the semigroups et A

and et B map W r,2(0, L) into W s,2(0, L)1 and

∣∣et Ax
∣∣
s,2 + ∣∣et B x

∣∣
s,2 ≤ cr,s(t ∧ 1)−

s−r
2 eγr,s t |x |r,2, (2.2)

for some constants cr,s ≥ 1 and γr,s ∈ R.
In what follows, we shall assume that the operator B arising in the fast motion

equation fulfills the following condition.

Hypothesis 1 There exists a complete orthonormal basis {ek}k∈ N in H and a sequence
{αk}k∈ N such that Bek = −αkek and

λ := inf
k∈ N

αk > 0. (2.3)

From (2.3) it immediately follows

∥∥et B
∥∥L(H) ≤ e−λt , t ≥ 0. (2.4)

Lemma 2.1 There exists γ < 1 such that

∞∑
k=1

e−tαk ≤ c (t ∧ 1)−γ e−λt , t ≥ 0. (2.5)

In particular ∥∥et B
∥∥

2 ≤ c (t ∧ 1)−
γ
2 e−λt , t ≥ 0. (2.6)

Proof For any γ > 0, there exists some cγ > 0 such that

∞∑
k=1

e−αk t ≤ cγ t−γ
∞∑

k=1

α
−γ
k .

1 For any s > 0, W s,2(0, L) denotes the set of functions x ∈ H such that

[x]s,2 :=
∫

[0,L]2

|x(ξ)− x(η)|2
|ξ − η|2s+1 dξ dη < ∞.

W s,2(0, L) is endowed with the norm |x |s,2 := |x |H + [x]s,2.
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146 S. Cerrai, M. Freidlin

Now, for any second-order uniformly elliptic operator on the interval [0, L] having
continuous coefficients, it holds αk ∼ k2. Hence, if we assume γ > 1/2 and take
t ∈ (0, 1], we have that (2.5) is satisfied. In the case t > 1, thanks to (2.4) we have

∞∑
k=1

e−αk t =
∞∑

k=1

∣∣e(t−1)BeBek
∣∣

H ≤ c e−(t−1)λ
∞∑

k=1

∣∣eBek
∣∣

H ≤ c e−λt ,

so that (2.5) follows in the general case. ��
According to (2.6), there exists some δ > 0 such that

t∫

0

s−δ ∥∥es B
∥∥2

2 ds < ∞, t ≥ 0. (2.7)

As known (for a prof see e.g. [5]), this implies that the so-called stochastic convolution

wB(t) :=
t∫

0

e(t−s)B dw(s), t ≥ 0,

is a p integrable H -valued process, for any p ≥ 1, having continuous trajectories.
Moreover, as a consequence of the dissipativity assumption (2.3), for any p ≥ 1

sup
t≥0

E
∣∣wB(t)

∣∣p
H =: cp < ∞. (2.8)

Concerning the reaction coefficient f in the slow motion equation, we assume what
follows.

Hypothesis 2 The mapping f : [0, L] × R
2 → R is measurable and f (ξ, ·) : R

2 →
R is continuously differentiable, for almost all ξ ∈ [0, L], with uniformly bounded
derivatives.

Concerning the reaction coefficient g in the fast motion equation, we assume the
following conditions.

Hypothesis 3 1. The mapping g : [0, L] × R
2 → R is measurable.

2. For each fixed σ2 ∈ R and almost all ξ ∈ [0, L], the mapping g(ξ, ·, σ2) : R →
R is of class C1, with uniformly bounded derivatives.

3. For each fixed σ1 ∈ R and almost all ξ ∈ [0, L], the mapping g(ξ, σ1, ·) : R →
R is of class C3, with uniformly bounded derivatives. Moreover,

sup
ξ∈ [0,L]
σ∈ R2

∣∣∣∣ ∂g

∂σ2
(ξ, σ )

∣∣∣∣ =: Lg < λ, (2.9)

where λ is the positive constant introduced in (2.3).
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Averaging principle for a class of stochastic reaction–diffusion equations 147

In what follows we shall denote by F and G the Nemytskii operators associated
respectively with f and g, that is

F(x, y)(ξ) = f (ξ, x(ξ), y(ξ)), G(x, y)(ξ) = g(ξ, x(ξ), y(ξ)),

for any ξ ∈ [0, L] and x, y ∈ H . Due to the boundedness assumptions on their
derivatives, functions f and g are Lipschitz-continuous and hence the mappings F,G :
H × H → H are Lipschitz-continuous.

Concerning their regularity properties, for any fixed y ∈ H the mappings F(·, y)
and G(·, y) are once Gâteaux differentiable in H with

Dx F(x, y)z = ∂ f

∂σ1
(·, x, y)z, Dx G(x, y)z = ∂g

∂σ1
(·, x, y)z.

Moreover, for any fixed x ∈ H , the mapping F(x, ·) : H → H is once Gâteaux
differentiable and the mapping G(x, ·) : H → H is three times Gâteaux differentiable,
with

Dy F(x, y)z = ∂ f

∂σ2
(·, x, y)z,

and

D j
y G(x, y)(zi , . . . , z j ) = ∂g j

∂σ
j

2

(·, x, y)z1 · · · z j , j = 1, 2, 3.

Notice that if h ∈ L∞(0, L), then for any fixed x, y ∈ H the mappings 〈F(·, y), h〉H
and 〈F(x, ·), h〉H are both Fréchet differentiable and

sup
x,y∈ H

|D 〈F(·, y), h〉H (x)|H ≤ L f |h|H ,

(2.10)
sup

x,y∈ H
|D 〈F(x, ·), h〉H (y)|H ≤ L f |h|H ,

where L f is the Lipschitz constant of f .

3 Preliminary results on the fast motion equation

As (2.7) holds and the mappings F,G : H × H → H are both Lipschitz-continuous,
for any ε > 0 and any initial conditions x, y ∈ H system (1.7) admits a unique mild
solution (uε, vε) ∈ CT,p × CT,p, with p ≥ 1 and T > 0 (for a proof see e.g. [5,
Theorem 7.6]). This means that there exist two unique processes uε and vε , both in
CT,p, such that for any t ∈ [0, T ]

uε(t) = et Ax +
t∫

0

e(t−s)A F(uε(s), vε(s)) ds (3.1)
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and

vε(t) = et B/ε y + 1

ε

t∫

0

e(t−s)B/εG(uε(s), vε(s)) ds + 1√
ε

t∫

0

e(t−s)B/ε dw(s).

3.1 The fast motion equation

Now, for any fixed x ∈ H we consider the problem

⎧⎨
⎩
∂v

∂t
(t, ξ) = Bv(t, ξ)+ g(ξ, x(ξ), v(t, ξ))+ ∂w

∂t
(t, ξ), t ≥ 0, ξ ∈ [0, L],

v(0, ξ) = y(ξ), ξ ∈ [0, L], N2v (t, ξ) = 0, t ≥ 0, ξ ∈ {0, L}.
(3.2)

By arguing as above, for any fixed slow component x ∈ H and any initial datum
y ∈ H , Eq. (3.2) admits a unique mild solution in CT,p, which will be denoted by
vx,y(t).

Moreover, as proved for example in [4, Proposition 8.2.2], there exists θ > 0 such
that for any t0 > 0 and p ≥ 1

sup
t≥t0

E
∣∣vx,y(t)

∣∣p
Cθ ([0,L]) < ∞. (3.3)

Lemma 3.1 Under Hypotheses 1 and 3, for any p ≥ 1 and x, y ∈ H

E
∣∣vx,y(t)

∣∣p
H ≤ cp

(
e−δpt |y|p

H + |x |p
H + 1

)
, t ≥ 0, (3.4)

where δ := (λ− Lg)/2.

Proof If we set ρ(t) := vx,y(t)−wB(t), thanks to (2.4) and (2.9) and to the Lipschitz-
continuity of G, we have

1

2

d

dt
|ρ(t)|2H = 〈Bρ(t), ρ(t)〉H +

〈
G(x, ρ(t)+ wB(t))− G(x, wB(t)), ρ(t)

〉
H

+
〈
G
(
x, wB(t)

)
, ρ(t)

〉
H

≤ −(λ− Lg) |ρ(t)|2H + c
(
|wB(t)|H + |x |H + 1

)
|ρ(t)|H

≤ −λ− Lg

2
|ρ(t)|2H + c

(
|wB(t)|2H + |x |2H + 1

)

and, by comparison, it easily follows

|vx,y(t)|H ≤ |ρ(t)|H + |wB(t)|H

≤ c

(
e− λ−Lg

2 t |y|H + sup
s≥0

|wB(s)|H + |x |H + 1

)
. (3.5)
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In particular, if we set δ := (λ− Lg)/2, as a consequence of estimate (2.8) we obtain
(3.4). ��

Since we are assuming that for each fixed σ1 ∈ R and almost all ξ ∈ [0, L] the
mapping g(ξ, σ1, ·) : R → R is of class C3, with uniformly bounded derivatives, for
any T > 0 and p ≥ 1 and for any fixed slow variable x ∈ H the mapping

y ∈ H �→ vx,y ∈ HT,p, (3.6)

is three times continuously differentiable (for a proof and all details see e.g. [4,
Theorem 4.2.4]).

The first-order derivative Dyv
x,y(t)h, at the point y ∈ H and along the direction

h ∈ H , is the solution of the first variation equation

⎧⎪⎨
⎪⎩
∂z

∂t
(t, ξ) = Bz(t, ξ)+ ∂g

∂σ2
(ξ, x(ξ), y(ξ))z(t, ξ),

z(0) = h, N2z (t, ξ) = 0, ξ ∈ {0, L}.

Hence, thanks to (2.4) and (2.9), it is immediate to check that for any t ≥ 0

sup
x,y∈ H

∣∣Dyv
x,y(t)h

∣∣
H ≤ e−δt |h|H , P-a.s. (3.7)

where, as in the previous lemma, δ = (λ− Lg)/2. Moreover, as shown in [4, Lemma
4.2.2], for any 1 ≤ r ≤ p ≤ ∞ and h ∈ Lr (0, L) we have that Dyv

x,y(t)h ∈
L p(0, L), P-a.s. for t > 0, and

sup
y∈ H

∣∣Dyv
x,y(t)h

∣∣
L p ≤ µr,p(t) t−

p−r
2rp |h|Lr , P-a.s.

for a continuous increasing function µr,p which is independent of x ∈ H .
Concerning the second and the third-order derivatives, they are respectively solu-

tions of the second and of the third variation equations. As proved in [4, Proposition
4.2.6], for any h1, h2, h3 ∈ H and p ≥ 1 both D2

yv
x,y(t)(h1, h2) and D3

yv
x,y(t)

(h1, h2, h3) belong to L p(0, L), P-a.s. for any t ≥ 0, and

sup
y∈ H

∣∣D j
yv

x,y(t)(h1, . . . , h j )
∣∣
L p ≤ ν

j
r,p(t)

j∏
i=1

|hi |H , P-a.s., (3.8)

for j = 2, 3. It is important to notice that, as for µr,p, due to the boundedness as-

sumption on the derivatives of the reaction term g, all ν j
r,p are continuous increasing

functions independent of x ∈ H .
We conclude this subsection by proving the smooth dependence of the solution

vx,y(t) of Eq. (3.2) on the frozen slow component x ∈ H . In the space HT,2 we
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introduce the equivalent norm

‖|u‖| := sup
t∈ [0,T ]

e−αt
E |u(t)|2H ,

for some α > 0. Moreover, for any x ∈ H and v ∈ HT,2 we define

F(x, v)(t) := et B y +
t∫

0

e(t−s)B G(x, v(s)) ds + wB(t), t ∈ [0, T ].

If α is chosen large enough, the mapping F(x, ·) is a contraction in the space HT,2,
endowed with the norm defined above.

It is easy to show that for all v ∈ HT,2, the mapping x ∈ H �→ F(x, v) ∈ HT,2 is
Fréchet differentiable and the derivative is continuous. Furthermore, for all x ∈ H the
mapping v ∈ HT,2 �→ F(x, v) ∈ HT,2 is Gâteaux differentiable and the derivative is
continuous. Hence, by using the generalized theorem on contractions depending on a
parameter given in [4, Proposition C.0.3], we have that the solution vx,y of Eq. (3.2),
which is the fixed point of the mapping F(x, ·), is differentiable with respect to x ∈ H
and the derivative along the direction h ∈ H satisfies the following equation

dρ

dt
(t) = [

B + G y(x, v
x,y(t))

]
ρ(t)+ Gx (x, v

x,y(t))h, ρ(0) = 0.

According to Hypothesis 3, we have

1

2

d

dt
|ρ(t)|2H = 〈[B + G y(x, v

x,y(t))]ρ(t), ρ(t)〉H + 〈
Gx (x, v

x,y(t))h, ρ(t)
〉
H

≤ −λ− Lg

2
|ρ(t)∣∣2H + |Gx (x, v

x,y(t))
∣∣2L(H)|h|2H ,

so that, due to the boundedness of Gx ,

sup
x,y∈ H

|Dxv
x,y(t)h|H ≤ c e− λ−Lg

2 t |h|H , P-a.s. (3.9)

3.2 The fast transition semigroup

For any fixed x ∈ H , we denote by Px
t , t ≥ 0, the transition semigroup associated

with the fast Eq. (3.2) with frozen slow component x . For any ϕ ∈ Bb(H) and t ≥ 0,
it is defined by

Px
t ϕ(y) = Eϕ(vx,y(t)), y ∈ H.

As the mapping introduced in (3.6) is differentiable and (3.7) holds, it is immediate
to check that Px

t is a Feller contraction semigroup and maps Cb(H) into itself.
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Thanks to estimate (3.4) and to (2.1), the semigroup Px
t is well defined on Lip(H)

and for any ϕ ∈ Lip(H), x, y ∈ H and t ≥ 0

|Px
t ϕ(y)|≤[ϕ]Lip E |vx,y(t)|H +|ϕ(0)|≤c [ϕ]Lip (1+|x |H + |y|H )+|ϕ(0)|. (3.10)

Furthermore, Px
t maps Lip(H) into itself and according to (3.7)

[Px
t ϕ]Lip ≤ e−δt [ϕ]Lip, t ≥ 0. (3.11)

As known, the semigroup Px
t is not strongly continuous on Cb(H), in general.

Nevertheless, it is weakly continuous on Cb(H) (for a definition and all details we
refer to [4, Appendix B]). For any λ > 0 and ϕ ∈ Cb(H), we set

F x (λ)ϕ(y) :=
∞∫

0

e−λt Px
t ϕ(y) dt, x, y ∈ H.

As proved in [4, Propositions B.1.3, B.1.4], since Px
t is a weakly continuous semi-

group, for anyλ > 0 and x ∈ H the linear operator F x (λ) is bounded from Cb(H) into
itself and there exists a unique closed linear operator Lx : D(L) ⊆ Cb(H) → Cb(H)
such that

F x (λ) = R(λ, Lx ) λ > 0.

Such an operator is, by definition, the infinitesimal weak generator of Px
t .

It is important to stress that, thanks to (3.10) and (3.11), the operator F x (λ) is also
well defined from Lip(H) into itself.

Concerning the regularity properties of Px
t , as the mapping (3.6) is three times

continuously differentiable, by differentiating under the sign of expectation, for any
t ≥ 0 and k ≤ 3 we get

ϕ ∈ Lipk(H) �⇒ Px
t ϕ ∈ Lipk(H),

and thanks to estimates (3.7), for k = 1, and (3.8), for k = 2, 3,

sup
x∈ H

[Px
t ϕ]k ≤ ck(t)

∑
1≤h≤k

[ϕ]h, t ≥ 0,

where ck(t) is some continuous increasing function. Moreover, the semigroup Px
t has

a smoothing effect. Actually, as proved in [4, Theorem 4.4.5], for any t > 0

ϕ ∈ Bb(H) �⇒ Px
t ϕ ∈ C3

b(H),

and for any 0 ≤ i ≤ j ≤ 3

sup
x∈ H

∥∥D j (Px
t ϕ)

∥∥
0 ≤ c (t ∧ 1)−

j−i
2 ‖ϕ‖i , t > 0. (3.12)
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By adapting the arguments used in [4, Theorem 4.4.5], it is possible to prove that
if ϕ ∈ Lip(H), then Px

t ϕ is three times continuously differentiable, for any t > 0.
Moreover, the following estimates for the derivatives of Px

t ϕ hold

[Px
t ϕ]1 = sup

y∈ H

∣∣D Px
t ϕ(y)

∣∣
H ≤ e−δt [ϕ]Lip, (3.13)

and for j = 2, 3

∣∣D j Px
t ϕ(y)

∣∣L j (H) ≤ c (t ∧ 1)−
j−1
2
([ϕ]Lip(1 + |x |H + |y|H )+ |ϕ(0)|) . (3.14)

Moreover, by adapting the proof of [4, Theorem 5.2.4], which is given for bounded
functions, to the case of general Lipschitz-continuous functions, it is possible to prove
the following crucial fact.

Theorem 3.2 Under Hypotheses 1 and 3, the operator D2(Px
t ϕ)(y) belongs to

L1(H), for any fixed x, y ∈ H, t > 0 and ϕ ∈ Lip(H). Besides, the mapping

(t, y) ∈ (0,∞)× H �→ Tr [D2(Px
t ϕ)(y)] ∈ R,

is continuous and
∣∣∣Tr [D2(Px

t ϕ)(y)]
∣∣∣ ≤ cγ (t ∧ 1)−

1+γ
2
( [ϕ]Lip(1 + |x |H + |y|H )+ |ϕ(0)|) , (3.15)

where γ is the constant introduced in (2.5).

Remark 3.3 Even if the semigroup Px
t has a smoothing effect, the proof of the validity

of the trace-class property for the operator D2(Px
t ϕ)(y) is far from being trivial.

Actually, it is based on the two following facts. First (see [4, Lemma 5.2.1]), if {ek}k∈ N

is the orthonormal basis introduced in Hypothesis 1 and if γ < 1 is the constant
introduced in (2.5), then it holds

sup
y∈ H

∞∑
k=1

t∫

0

|Dyv
x,y(s)ek |2H ds ≤ c(t) t1−γ , P-a.s.,

for some continuous increasing function c(t) independent of x ∈ H . Second (see [4,
Lemma 5.2.2]), there exists some continuous increasing function c(t) such that for
any N ∈ L(H) and x ∈ H

sup
y∈ H

∞∑
k=1

t∫

0

∣∣D2
yv

x,y(s)(ek, Nek)
∣∣2

H ds ≤ c(t) ‖N‖, P-a.s.

It is important to stress that both the estimate for the first derivative and the estimate
for the second derivative are a consequence of (2.6) and (2.5).
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3.3 The asymptotic behavior of the fast equation

We describe here the asymptotic behavior of the semigroup Px
t . Namely, we show

that, for any fixed x ∈ H , it admits a unique invariant measure µx which is explicitly
given and we describe the convergence of Px

t to equilibrium. Most of these results are
basically known in the literature, but we shortly recall them for the reader convenience.

According to (2.6), the self-adjoint operator

∞∫

0

e2s B ds = 1

2
(−B)−1

is well defined in L1(H), so that the Gaussian measure N (0, (−B)−1/2) of zero mean
and covariance operator (−B)−1/2 is well defined on (H,B(H)).

For any x, y ∈ H we define

U (x, y) :=
1∫

0

〈G(x, θy), y〉H dθ =
L∫

0

y(ξ)∫

0

g(ξ, x(ξ), s) ds dξ.

Due to the Lipschitz-continuity of g(ξ, ·) (see Hypothesis 3), for any x, y ∈ H we
have

|G(x, y)|H ≤ Lg |y|H + c |x |H + |G(0, 0)|H , (3.16)

so that for any η > 0 we can fix a constant cη ≥ 0 such that

|U (x, y)| ≤ Lg + η

2
|y|2H + cη

(
1 + |x |2H

)
.

As η > 0 can be chosen as small as we wish, thanks to (2.9) this implies that for any
fixed x ∈ H the mapping

y ∈ H �→ exp 2U (x, y) ∈ R

is integrable with respect to the Gaussian measure N (0, (−B)−1/2) and

Z(x) :=
∫

H

exp 2U (x, y)N (0, (−B)−1/2) dy ∈ (0,∞), x ∈ H.

This means that for each fixed x ∈ H the measure

µx (dy) := 1

Z(x)
exp 2U (x, y)N (0, (−B)−1/2) (dy) (3.17)

is well defined on (H,B(H)).
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Now, it is immediate to check that the mapping U (x, ·) : H → R is differentiable
and

Uy(x, y) = G(x, y), x, y ∈ H. (3.18)

Therefore, as well known from the existing literature, the measureµx defined in (3.17)
is invariant for Eq. (3.2).

Because of the way the measure µx has been constructed, we immediately have
that it has all moments finite. In particular, for any x ∈ H we have

Lip(H) ⊂ L p(H, µx ), p ≥ 1. (3.19)

In the next lemma we show how the moments of µx can be estimated in terms of the
slow variable x .

Lemma 3.4 Under Hypotheses 1 and 3, for any x ∈ H and p ≥ 1

∫

H

|z|p
H µ

x (dz) ≤ c
(
1 + |x |p

H

)
. (3.20)

Proof By using the invariance of µx , thanks to estimate (3.4) for any p ≥ 1 and t ≥ 0
we have

∫

H

|z|p
H µ

x (dz) =
∫

H

Px
t |z|p

H µ
x (dz) =

∫

H

E |vx,z(t)|p
H µ

x (dz)

≤ c e−δpt
∫

H

|z|p
H µ

x (dz)+ c (1 + |x |p
H )

Then, if we take t = t0 such that c e−δpt0 < 1, we have (3.20). ��
Once we have the explicit invariant measure µx , we show that it is unique and we

describe its convergence to equilibrium.

Theorem 3.5 Under Hypotheses 1 and 3, for any fixed x ∈ H Eq. (3.2) admits a
unique ergodic invariant measure µx , which is strongly mixing and such that for any
ϕ ∈ Bb(H) and x, y ∈ H

∣∣∣∣∣∣P
x
t ϕ(y)−

∫

H

ϕ(z) µx (dz)

∣∣∣∣∣∣ ≤ c (1 + |x |H + |y|H ) e−δt (t ∧ 1)−
1
2 ‖ϕ‖0, (3.21)

where δ := (λ− Lg)/2.

Proof We fix y, z ∈ H and set ρ(t) := vx,y(t)− vx,z(t). We have

1

2

d

dt
|ρ(t)|2H = 〈Bρ(t), ρ(t)〉H + 〈

G(x, vx,y(t))− G(x, vx,z(t)), ρ(t)
〉
H ,
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and then, according to (2.4) and (2.9), we easily get

∣∣vx,y(t)− vx,z(t)
∣∣2

H = ∣∣ρ(t)∣∣2H ≤ e−2(λ−Lg)t |y − z|2H , P-a.s.

This means that for any ϕ ∈ Lip(H)

|Px
t ϕ(y)− Px

t ϕ(z)| ≤ [ϕ]Lip E |vx,y(t)− vx,z(t)|H

≤ [ϕ]Lip e−(λ−Lg)t |y − z|H , t ≥ 0.

Hence, if ϕ ∈ Bb(H), due to the semigroup law and to estimate (3.12) (with j = 1
and i = 0), for any t > 0 we obtain

|Px
t ϕ(y)− Px

t ϕ(z)| ≤ [Px
t/2ϕ]1 e−δ t |y − z|H ≤ c ‖ϕ‖0 (t ∧ 1)−

1
2 e−δ t |y − z|H ,

(3.22)
where δ := (λ− Lg)/2. In particular,

lim
t→∞ Px

t ϕ(y)− Px
t ϕ(z) = 0,

so that the invariant measure µx is unique and strongly mixing.
Now, due to the invariance of µx , if ϕ ∈ Bb(H) from (3.22) we have

∣∣∣∣∣∣P
x
t ϕ(y)−

∫

H

ϕ(z) µx (dz)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫

H

[
Px

t ϕ(y)− Px
t ϕ(z)

]
µx (dz)

∣∣∣∣∣∣
≤ c ‖ϕ‖0 e−δ t (t ∧ 1)−

1
2

∫

H

|y − z|H µ
x (dz)

≤ c ‖ϕ‖0 e−δ t (t ∧ 1)−
1
2

⎛
⎝|y|H +

∫

H

|z|H µ
x (dz)

⎞
⎠ .

and then, thanks to (3.20) (with p = 1), we obtain (3.21). ��

Remark 3.6 From the proof of estimate (3.21), we immediately see that ifϕ ∈ Lip(H),
then for any x, y ∈ H

∣∣∣∣∣∣P
x
t ϕ(y)−

∫

H

ϕ(z) µx (dz)

∣∣∣∣∣∣ ≤ c (1 + |x |H + |y|H ) e−δt [ϕ]Lip, (3.23)

where δ := (λ− Lg)/2.
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3.4 The Kolmogorov equation associated with the fast equation

For any frozen slow component x ∈ H , the Kolmogorov operator associated with
Eq. (3.2) is given by the following second-order differential operator

Lxϕ(y) = 1

2
Tr [D2ϕ(y)] + 〈By + G(x, y), Dϕ(y)〉H , y ∈ D(B).

The operator Lx is defined for functions ϕ : H → R which are twice continuously
differentiable, such that the operator D2ϕ(y) is in L1(H), for all y ∈ H , and the
mapping

y ∈ H �→ Tr D2ϕ(y) ∈ R,

is continuous. In what follows it will be important to study the solvability of the elliptic
equation associated with the infinite dimensional operator Lx

λϕ(y)− Lxϕ(y) = ψ(y), y ∈ D(B), (3.24)

for any fixed x ∈ H , λ > 0 and ψ : H → R regular enough. To this purpose we
recall the notion of strict solution for the elliptic problem (3.24).

Definition 3.7 A function ϕ is a strict solution of problem (3.24) if

1. ϕ belongs to D(Lx ), that is ϕ : H → R is twice continuously differentiable, the
operator D2ϕ(y) ∈ L1(H), for any y ∈ H , and the mapping y �→ Tr D2ϕ(y) is
continuous on H with values in R;

2. ϕ(y) satisfies (3.24), for any y ∈ D(B).

In the next theorem we see how it is possible to get the existence of a strict solution
of problem (3.24) in terms of the Laplace transform of the semigroup Px

t (see Sect. 3.2
for the definition and [4, Theorem 5.4.3] for the proof).

Theorem 3.8 Fix any x ∈ H and λ > 0. Then under Hypotheses 1 and 3, for any
ψ ∈ Lip(H) the function

y ∈ H �→ ϕ(x, y) :=
∞∫

0

e−λt Px
t ψ(y) dt ∈ R,

is a strict solution of problem (3.24).

Remark 3.9 A detailed proof of the theorem above can be found in [4, Theorem
5.4.3] in the case ψ ∈ C1

b(H). The case of ψ ∈ Lip(H) is analogous: we have to
prove that for any ψ ∈ Lip(H) the function R(λ, Lx )ψ is a strict solution. To this
purpose, by using (3.13) and (3.14), we have that R(λ, Lx )ψ is twice continuously
differentiable and then, thanks to Theorem 3.2 and estimate (3.15), we have that
D2[R(λ, Lx )ψ] ∈ L1(H) and continuity for the trace holds. Notice that in all these
results it is crucial that ψ ∈ Lip(H), because in this case all singularities arising at
t = 0 are integrable.
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4 A priori bounds for the solution of the system

With the notations introduced in Sect. 2, system (1.7) can be written as

⎧⎪⎪⎨
⎪⎪⎩

duε

dt
(t) = Auε(t)+ F(uε(t), vε(t)), uε(0) = x,

dvε(t) = 1

ε

[
Bvε(t)+ G(uε(t), vε(t))

]
dt + 1√

ε
dw(t), vε(0) = y.

(4.1)

Our aim here is proving uniform bounds with respect to ε > 0 for the solutions uε

and vε of system (4.1).

Lemma 4.1 Under Hypotheses 1, 2 and 3, for any x, y ∈ H and T > 0 we have

sup
ε>0

E sup
t∈ [0,T ]

|uε(t)|2H ≤ cT

(
1 + |x |2H + |y|2H

)
, (4.2)

and
sup
ε>0

sup
t∈ [0,T ]

E |vε(t)|2H ≤ cT

(
1 + |x |2H + |y|2H

)
, (4.3)

for some constant cT > 0.

Proof We have

1

2

d

dt
|uε(t)|2H = 〈

Auε(t), uε(t)
〉
H + 〈

F(uε(t), vε(t))− F(0, vε(t)), uε(t)
〉
H

+ 〈F(0, vε(t)), uε(t)
〉
H ≤ c |uε(t)|2H + c

(
1 + |vε(t)|2H

)
,

so that

|uε(t)|2H ≤ ect |x |2H + c

t∫

0

ec(t−s)
(

1 + |vε(s)|2H
)

ds. (4.4)

Now, for any ε > 0 we denote by wε,B(t) the solution of the problem

dz(t) = 1

ε
Bz(t) dt + 1√

ε
dw(t), z(0) = 0.

We have

wε,B(t) = 1√
ε

t∫

0

e(t−s)B/ε dw(s),
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and, due to (2.6), with a simple change of variables we get

E
∣∣wε,B(t)∣∣2H = 1

ε

t∫

0

∥∥e(t−s)B/ε
∥∥2

2 ds

=
t/ε∫

0

∥∥eρB
∥∥2

2 dρ ≤ c

∞∫

0

(ρ ∧ 1)−γ e−2λρ dρ < ∞.

This means that
sup
ε>0

sup
t≥0

E |wε,B(t)|2H < ∞. (4.5)

Notice that the same uniform bound is true for moments of any order of the H -norm
of wε,B(t).

If we set ρε(t) := vε(t)−wε,B(t), by proceeding as in the proof of Lemma 3.1 we
have

1

2

d

dt
|ρε(t)|2H ≤ −λ− Lg

2ε
|ρε(t)|2H + c

ε

(
1 + |uε(t)|2H + |wε,B(t)|2H

)
.

Hence, by comparison

|ρε(t)|2H ≤ e− λ−Lg
ε

t |y|2H + c

ε

t∫

0

e− λ−Lg
ε

(t−s)
(

1 + |uε(s)|2H + |wε,B(s)|2H
)

ds.

(4.6)
According to (4.4), this implies

|vε(t)|2H ≤ 2 |wε,B(t)|2H + 2 |ρε(t)|2H ≤ 2 |wε,B(t)|2H + cT

(
1 + |x |2H + |y|2H

)

+cT

ε

t∫

0

e− λ−Lg
ε

(t−s)

s∫

0

|vε(r)|2H dr ds + c

ε

t∫

0

e− λ−Lg
ε

(t−s)|wε,B(s)|2H ds

and by taking expectation, thanks to (4.5) we have

E |vε(t)|2H ≤ cT

(
1 + |x |2H + |y|2H

)

+cT

ε

t∫

0

e− λ−Lg
ε

(t−s)

s∫

0

E |vε(r)|2H dr ds + c

ε

t∫

0

e− λ−Lg
ε

s ds.
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With a change of variables, this yields

E |vε(t)|2H ≤ cT

(
1 + |x |2H + |y|2H

)
+ cT

t∫

0

⎡
⎢⎣

t−r
ε∫

0

e−(λ−Lg) σ dσ

⎤
⎥⎦

× E |vε(r)|2H dr + c

t
ε∫

0

e−(λ−Lg) s ds

≤ cT

(
1 + |x |2H + |y|2H

)
+ cT

t∫

0

E |vε(r)|2H dr,

so that

sup
t∈ [0,T ]

E
∣∣vε(t)∣∣2H ≤ cT

(
1 + |x |2H + |y|2H

)
,

which gives (4.3). By replacing the estimate above in (4.4), we immediately obtain
(4.2). ��

Remark 4.2 In the previous lemma we have proved uniform bounds, with respect to
ε > 0, for supt∈ [0,T ] E |vε(t)|H and not for E supt∈ [0,T ] |vε(t)|H . This is a conse-
quence of the fact that we can only prove the following estimate for the second moment
of the C([0, T ]; H)-norm of the stochastic convolution wε,B

E sup
t∈ [0,T ]

∣∣wε,B(t)∣∣2H ≤ cT,δ ε
δ−1, t ∈ [0, T ],

for any 0 < δ < 1/2. Then, due to the previous estimate, we are only able to prove
that

E sup
t∈ [0,T ]

|vε(t)|2H ≤ cT,δ

(
1 + |x |2H + |y|2H + ε δ−1

)
, ε > 0. (4.7)

Theorem 4.3 Assume that x ∈ Wα,2(0, L), for some α > 0. Then, under Hypotheses
1, 2 and 3, for any T > 0 the family of probability measures { L(uε) }ε>0 is tight in
C((0, T ]; H) ∩ L∞(0, T ; H).

Proof As known, if δ ≤ 1/4

W 2δ,2(0, L) = (
H,W 2,2

Ni
(0, L)

)
δ,∞ =

{
x ∈ H : sup

t∈ (0,1]
t−δ |et Ax − x |H < ∞

}
,

(4.8)
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with equivalence of norms. Moreover, if f ∈ L2(0, T ; H), it is possible to prove that
for any t > s and δ < 1/2

∣∣∣∣∣∣
t∫

0

e(t−r)A f (r) dr −
s∫

0

e(s−r)A f (r) dr

∣∣∣∣∣∣
H

≤ cT,δ (t − s)δ‖ f ‖L2(0,T ;H).

Then, if x ∈ Wα,2(0, L), for any t > s and θ ≤ 1/4 ∧ α/2 we have

|uε(t)− uε(s)|H ≤
∣∣∣es A(e(t−s)Ax − x)

∣∣∣
H

+
∣∣∣∣∣∣

t∫

0

e(t−r)A F(uε(r), vε(r)) dr

−
s∫

0

e(s−r)A F(uε(r), vε(r)) dr

∣∣∣∣∣∣
H

≤ cT,θ (t − s)θ |x |2θ,2 + cT,θ (t − s)θ‖F(uε, vε)‖L2(0,T ;H).

This implies that for any θ ≤ 1/4 ∧ α/2

[uε]Cθ ([0,T ];H) = sup
s =t

|uε(t)− uε(s)|
|t − s|θ ≤ cT

(|x |2θ,2 + ‖F(uε, vε)‖L2(0,T ;H)

)
.

(4.9)
Now, according to estimates (4.2) and (4.3), we have

E ‖F(uε, vε)‖L2(0,T ;H) ≤ c
(
1 + E |uε |L2([0,T ];H) + E |vε |L2([0,T ];H)

)
≤ cT (1 + |x |H + |y|H ) , (4.10)

and hence
sup
ε>0

E |uε |Cθ ([0,T ];H) ≤ cT
(
1 + |x |2θ,2 + |y|H

)
. (4.11)

Next, if θ < 1/2 ∧ α, thanks to (2.2) for any t ∈ [0, T ] we have

|uε(t)|θ,2 ≤ cT |x |θ,2 + cT

t∫

0

(t − s)−
θ
2 |F(uε(s), vε(s))|H ds

≤ cT |x |θ,2 + cT,θ ‖F(uε, vε)‖L2(0,T ;H).

Then, by using again (4.10), we have

sup
ε>0

E sup
t∈ [0,T ]

|uε(t)|θ,2 ≤ cT,θ
(
1 + |x |θ,2 + |y|H

)
. (4.12)
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Combining together (4.11) and (4.12), we conclude that for any η > 0 there exists
R(η) > 0 such that

P
(
uε ∈ KR(η)

) ≥ 1 − η, ε > 0,

where, by the Ascoli-Arzelà theorem, KR(η) is the compact subset of C((0, T ]; H)∩
L∞(0, T ; H) defined by

KR(η) :=
{

u : sup
t∈ [0,T ]

|u(t)|θ,2 ≤ R(η), |u|Cθ ([0,T ];H) ≤ R(η)

}
,

for some θ < 1/4 ∧ α/2. This implies the tightness of the family {L(uε)}ε>0 in
C((0, T ]; H) ∩ L∞(0, T ; H). ��

We conclude the present section by proving that if x and y are taken in Wα,2(0, L),
for some α > 0, then uε(t) ∈ D(A), for t > 0. Moreover, we provide an estimate for
the momentum of the norm of Auε(t), which is uniform with respect to ε ∈ (0, 1].
Lemma 4.4 Assume that x, y ∈ Wα,2(0, L), for some α ∈ (0, 2]. Then, under
Hypotheses 1, 2 and 3, we have that uε(t) ∈ D(A), P-a.s., for any t > 0 and ε > 0.
Moreover, for any T > 0 and ε ∈ (0, 1] it holds

E |Auε(t)|H ≤ c t
α
2 −1 |x |α,2+cT

(
1 + ε−

α∨(1−γ )
2

)
(1+|x |α,2+|y|α,2), t ∈ (0, T ],

(4.13)
where γ is the constant introduced in (2.5).

Proof We decompose uε(t) as

uε(t) = uε1(t)+ uε2(t) :=
⎡
⎣et Ax +

t∫

0

e(t−s)A F(uε(t), vε(t)) ds

⎤
⎦

+
t∫

0

e(t−s)A [F(uε(s), vε(s))− F(uε(t), vε(t))
]

ds.

According to (2.2) we have

∣∣Auε1(t)
∣∣

H ≤ ∣∣Aet Ax
∣∣

H + ∣∣(et A − I )F(uε(t), vε(t))
∣∣

H

≤ cT t
α
2 −1 |x |α,2 + cT

(
1 + |uε(t)|H + |vε(t)|H

)
,

so that, thanks to (4.2) and (4.3)

E
∣∣Auε1(t)

∣∣
H ≤ cT t

α
2 −1 |x |α,2 + cT (1 + |x |H + |y|H ) , t ∈ (0, T ]. (4.14)
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Concerning uε2(t), we have

|Auε2(t)|H ≤ cT

t∫

0

(t − s)−1 ( |uε(t)− uε(s)|H + |vε(t)− vε(s)|H
)

ds

≤ cT

t∫

0

(t − s)
α
2 −1 ds [uε]

C
α
2 (0,T ;H)

+c

t∫

0

(t−s)−1|vε(t)−vε(s)|H ds,

and then, due to (4.11), by taking expectation we have

E
∣∣Auε2(t)

∣∣
H ≤cT (1+|x |α,2+|y|H )+ c

t∫

0

(t − s)−1
E |vε(t)− vε(s)|H ds. (4.15)

This means that, in order to conclude the proof, we have to estimate E |vε(t)−vε(s)|H ,
for any 0 ≤ s < t ≤ T .

It holds

vε(t)− vε(s) =
[
et B

ε y − es B
ε y
]

+ 1

ε

t∫

s

e(t−σ)
B
ε G(uε(σ ), vε(σ )) dσ

+1

ε

s∫

0

[
e(t−σ)

B
ε − e(s−σ)

B
ε

]
G(uε(σ ), vε(σ )) dσ +

[
wε,B(t)− wε,B(s)

]

=:
4∑

k=1

I εk (t, s).

Proceeding as in the proof of Theorem 4.3, we have

∣∣I ε1 (t, s)
∣∣

H ≤ c ε−
α
2 (t − s)

α
2 |y|α,2. (4.16)

Concerning I ε2 (t, s), we have

∣∣I ε2 (t, s)
∣∣

H ≤ c

ε

t∫

s

e−λ (t−σ)
ε
(
1 + |uε(σ )|H + |vε(σ )|H

)
dσ,

and then, with a change of variables, according to (4.2) and (4.3) we get

E |I ε2 (t, s)|H ≤ cT

t−s
ε∫

0

e−λσ dσ(1+|x |H +|y|H ) ≤ cT ε
− α

2 (t −s)
α
2 (1+|x |H +|y|H ).

(4.17)
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By proceeding with analogous arguments we prove that

E
∣∣I ε3 (t, s)

∣∣
H ≤ cT ε

− α
2 (t − s)

α
2 (1 + |x |H + |y|H ). (4.18)

Therefore, it remains to estimate E |I ε4 (t, s)|H . By straightforward computations, we
have

E
∣∣I ε4 (t, s)

∣∣2
H = E

∣∣wε,B(t)− wε,B(s)
∣∣2

H

= 1

ε

t∫

s

∥∥e(t−σ)B/ε
∥∥2

2 dσ + 1

ε

s∫

0

∥∥e(t−σ)B/ε − e(s−σ)B/ε
∥∥2

2 dσ =: J ε1 + J ε2 .

According to (2.6), with a change of variables we have

J ε1 ≤ c

t−s
ε∫

0

e−2λσ (σ ∧ 1)−γ dσ ≤ c ε−(1−γ )(t − s)1−γ .

Concerning J ε2 , due to (2.2) and (4.8) for any η ∈ [0, 1/2] and s, t > 0

‖(et B − I )es B‖L(H) ≤ cη (t ∧ 1)η(s ∧ 1)−η.

Hence, thanks to (2.6), if 0 < η < 1 − γ , by proceeding with the same change of
variables

J ε2 = 1

ε

s∫

0

∥∥∥[e(t−s)B/ε − I ]e(s−σ)B/2εe(s−σ)B/2ε
∥∥∥2

2
dσ

≤ c

ε

(
t − s

ε
∧ 1

)η s∫

0

(
s − σ

2ε
∧ 1

)−(η+γ )
e−λ s−σ

2ε dσ ≤ c ε−η(t − s)η,

so that

E |I ε4 (t, s)|H ≤
(
E |I ε4 (t, s)|2H

) 1
2 ≤ c ε−(1−γ ) [(t − s)1−γ + (t − s)η

]
. (4.19)

Collecting together (4.16), (4.17), (4.18) and (4.19), we obtain

E |vε(t)−vε(s)|H ≤ cT ε
− α∨(1−γ )

2
(
1 + |x |H +|y|α,2

)[
(t−s)

α
2 +(t − s)η+(t − s)1−γ

]
,

so that, from (4.15),

E |Auε2(t)|H ≤ cT (1 + |x |α,2 + |y|α,2)
(

1 + ε−
α∨(1−γ )

2

)
.

Together with (4.14), this yields (4.13). ��

123



164 S. Cerrai, M. Freidlin

5 The averaging result

Our aim here is proving the main result of the present paper. Namely, we are going to
prove that for any fixed T > 0 the sequence {uε}ε>0 ⊂ C((0, T ]; H)∩ L∞(0, T ; H)
converges in probability to the solution ū of the averaged equation

du(t) = Au(t)+ F̄(u(t)), u(0) = x . (5.1)

The non-linear coefficient F̄ in the equation above is obtained by averaging the
reaction coefficient F appearing in the slow motion equation, with respect to the unique
invariant measureµx of the fast motion equation (3.2), with frozen slow component x .
More precisely,

F̄(x) :=
∫

H

F(x, y) µx (dy), x ∈ H. (5.2)

Notice that, as the mapping y ∈ H �→ F(x, y) ∈ H is Lipschitz-continuous, due to
(3.19) the integral above is well defined. Moreover, as µx is ergodic, for any h ∈ H
we have

〈
F̄(x), h

〉
H = lim

t→∞
1

t

t∫

0

〈
F(x, vx,y(s)), h

〉
H ds, P-a.s. (5.3)

This implies that F̄ is Lipschitz-continuous. Actually, as F : H×H → H is Lipschitz-
continuous (with Lipschitz-constant L f ) and vx,y(t) is differentiable with respect to
x ∈ H , with its derivative fulfilling (3.9), for any x1, x2 ∈ H and t > 0 we have

1

t

∣∣∣∣∣∣
t∫

0

〈
F(x1, v

x1,y(s))− F(x2, v
x2,y(s)), h

〉
H ds

∣∣∣∣∣∣

≤ L f

t

t∫

0

(|x1 − x2|H + |vx1,y(s)− vx2,y(s)|H ) ds|h|H

≤ L f |h|H

⎛
⎜⎝|x1 − x2|H + sup

x,y∈ H
t≥0

|Dxv
x,y(t)|L(H)|x1 − x2|H

⎞
⎟⎠

≤ c (L f + 1) |h|H |x1 − x2|H .

Therefore, as (5.3) holds, we can conclude that F̄ is Lipschitz-continuous, with

[F̄]Lip ≤ c (L f + 1). (5.4)

In particular, we have the following existence and uniqueness result for the averaged
equation.
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Proposition 5.1 Under Hypotheses 1, 2 and 3, Eq. (5.1) admits a unique mild solution
ū ∈ C((0, T ]; H)∩ L∞(0, T ; H), for any T > 0 and p ≥ 1 and for any initial datum
x ∈ H.

As far as the differentiability of F̄ is concerned, we have the following result.

Lemma 5.2 For any h ∈ L∞(0, L), the mapping
〈
F̄(·), h

〉
H : H → R is Fréchet

differentiable and for any k ∈ H

〈
DF̄(x)k, h

〉
H =

∫

H

〈Dx F(x, y)k, h〉H µx (dy)

+ 2
∫

H

〈Ux (x, y), k〉H 〈F(x, y), h〉H µx (dy)

− 2
∫

H

〈Ux (x, y), k〉H µx (dy)
∫

H

〈F(x, y), h〉H µx (dy),

where Ux (x, y) is the Fréchet derivative of the mapping U (·, y) : H → R introduced
in Sect. 3.3, for y ∈ L∞(0, L) fixed.

Proof It is immediate to check that for any y ∈ L∞(0, L) the mapping

x ∈ H �→ U (x, y) =
1∫

0

〈G(x, θy), y〉H dθ ∈ R,

is Fréchet differentiable and for any k ∈ H

〈Ux (x, y), k〉H =
1∫

0

〈Gx (x, θy)k, y〉H dθ,

where Gx (x, y) is the Gâteaux derivative of G(·, y) introduced in Sect. 2.
Then, if we define

V (x, y) := 1

Z(x)
exp 2U (x, y), x, y ∈ H,

by straightforward computations, for any y ∈ L∞(0, L) the mapping V (·, y) : H → H
is differentiable and we have

Dx V (x, y) = 2 V (x, y)

⎡
⎣Ux (x, y)−

∫

H

Ux (x, z)µx (dz)

⎤
⎦ =: 2 V (x, y)H(x, y).

(5.5)
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Notice that, as we are assuming ∂g/∂σ1(ξ, σ ) to be uniformly bounded, we have

|Ux (x, y)|H ≤ c |y|H , x, y ∈ H,

so that thanks to (3.20) Dx V (x, y) is well defined.
Now, according to (3.3), the measure µx is supported on C([0, L]), so that

〈
F̄(x), h

〉
H =

∫

C([0,L])
〈F(x, y), h〉H µx (dy).

Hence, if we set µ := N (0, (−B)−1/2), by differentiating under the sign of integral
from (5.5) we have

〈
DF̄(x)k, h

〉
H

=
〈

D
∫

C([0,L])
〈F(x, y), h〉H V (x, y) µ(dy), k

〉

H

=
∫

C([0,L])
〈Dx F(x, y)k, h〉H µ

x (dy)+ 2
∫

C([0,L])
〈F(x, y), h〉H H(x, y) µx (dy)

=
∫

H

〈Dx F(x, y)k, h〉H µ
x (dy)+ 2

∫

H

〈F(x, y), h〉H H(x, y) µx (dy),

and recalling how H(x, y) is defined, we can conclude the proof of the lemma. ��
Now, as uε is a mild solution of the slow motion equation (in fact it is a classical

solution, as uε(t) ∈ D(A) for any t > 0, and estimate (4.13) holds), for any h ∈
D(A�)

〈
uε(t), h

〉
H = 〈x, h〉H +

t∫

0

〈
uε(s), A�h

〉
H ds +

t∫

0

〈
F(uε(s), vε(s)), h

〉
H ds, t ≥ 0.

Hence, we have

〈
uε(t), h

〉
H = 〈x, h〉H +

t∫

0

〈
uε(s), A�h

〉
H ds+

t∫

0

〈
F̄(uε(s)), h

〉
H ds+Rεh(t), t ≥ 0

(5.6)
where the remainder Rεh(t) is clearly given by

Rεh(t) :=
t∫

0

〈
F(uε(s), vε(s))− F̄(uε(s)), h

〉
H ds, t ≥ 0. (5.7)

123



Averaging principle for a class of stochastic reaction–diffusion equations 167

Our purpose is proving that the remainder Rεh(t) converges to zero, as ε goes to
zero. We will see that, thanks to Theorem 4.3, this will imply the averaging result.

Lemma 5.3 Assume Hypotheses 1, 2 and 3 and fix any α > 0. Then, for any T > 0,
x, y ∈ Wα,2(0, L) and any h ∈ H

lim
ε→0

sup
t∈ [0,T ]

E |Rεh(t)| = 0. (5.8)

Proof Fix h ∈ L∞(0, L). For any x, y ∈ H and ε > 0 we define

�εh(x, y) :=
∞∫

0

e−c(ε) t Px
t

[〈F(x, ·), h〉H − 〈
F̄(x), h

〉
H

]
(y) dt, (5.9)

where c(ε) is some positive constant, depending on ε > 0, to be chosen later on. As
for any y, z ∈ H

∣∣ 〈F(x, y), h〉H − 〈F(x, z), h〉H

∣∣ ≤ c |y − z|H |h|H ,

for some constant c independent of x ∈ H , we have that the mapping

y ∈ H → 〈F(x, y), h〉H − 〈
F̄(x), h

〉
H ∈ R

is Lipschitz-continuous and

[〈F(x, ·), h〉H − 〈
F̄(x), h

〉
H ]Lip ≤ c |h|H . (5.10)

According to Theorem 3.8, this means that the function�εh(x, ·) is a strict solution of
the problem

c(ε)�εh(x, y)− Lx�εh(x, y) = 〈F(x, y), h〉H − 〈
F̄(x), h

〉
H , y ∈ D(B). (5.11)

Now, we prove uniform bounds in ε > 0 for �εh(x, y), for its first derivatives with
respect to y and x and for Tr [D2

y�
ε
h(x, y)]. Due to (3.23) and (5.10), we have

∣∣Px
t 〈F(x, ·), h〉H (y)− 〈

F̄(x), h
〉
H

∣∣ ≤ c (1 + |x |H + |y|H ) e−δt |h|H ,

and then

|�εh(x, y)| ≤ c

∞∫

0

e−c(ε) t e−δt dt (1+|x |H +|y|H ) |h|H ≤ c

δ
(1+|x |H + |y|H ) |h|H ,

(5.12)
for some constant c independent of ε > 0.
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For the first derivative with respect to y, from (3.13) and (5.10) we get

[
Px

t 〈F(x, ·), h〉H − 〈
F̄(x), h

〉
H

]
1

≤ c e−δt |h|H ,

and then

|Dy�
ε
h(x, y)|H =

∣∣∣∣∣∣
∞∫

0

e−c(ε)t Dy
[
Px

t 〈F(x, ·), h〉H (y)− 〈
F̄(x), h

〉
H

]
dt

∣∣∣∣∣∣
H

≤ c

∞∫

0

e−c(ε)t e−δt dt |h|H ≤ c

δ
|h|H , (5.13)

for a constant c independent of ε > 0.
For the trace of D2

y�
ε
h(x, y), according to (3.15) we have

∣∣∣Tr
[

D2
y Px

t 〈F(x, ·), h〉H (y)
]∣∣∣ ≤ c (t ∧ 1)−ρ (1 + |x |H + |y|H ) |h|H ,

for some ρ < 1, and hence if c(ε) ≤ 1

∣∣∣Tr
[

D2
y�

ε(x, y)
]∣∣∣ ≤

∞∫

0

e−c(ε)t
∣∣∣Tr

[
D2

y

(
Px

t 〈F(x, ·), h〉H (y)− 〈
F̄(x), h

〉
H

)]∣∣∣ dt

≤
∞∫

0

e−c(ε)t (t ∧ 1)−ρ dt (1 + |x |H +|y|H ) |h|H ≤ c

c(ε)
(1 + |x |H +|y|H ) |h|H .

(5.14)
Next, concerning the regularity of�εh with respect to x ∈ H , we first compute the

derivative of the mapping

x ∈ H �→ Px
t 〈F(x, ·), h〉H (y) = E

〈
F(x, vx,y(t)), h

〉
H ∈ R.

As we are assuming that h ∈ L∞, we have that the mappings 〈F(x, ·), h〉H and
〈F(·, y), h〉H are both Fréchet differentiable (see Sect. 2). Beside, as shown at the end
of Sect. 3.1, the process vx,y is differentiable with respect to x . Then, by differentiating
above under the sign of integral, for any k ∈ H we obtain

〈
Dx
[
Px

t 〈F(x, ·), h〉H (y)
]
, k
〉
H

= E
〈
Dx F(x, vx,y(t))k, h

〉
H + E

〈
Dy F(x, vx,y(t))Dxv

x,y(t)k, h
〉
H

= Px
t 〈Dx F(x, ·)k, h〉H (y)+ E

〈
Dy F(x, vx,y(t))Dxv

x,y(t)k, h
〉
H ,

so that, thanks to (2.10) and (3.9)

∣∣Dx
[
Px

t 〈F(x, ·), h〉H (y)
] ∣∣

H ≤ cL f |h|H , t ≥ 0.
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Moreover, as shown in Lemma 5.2, the mapping x ∈ H �→ 〈
F̄(x), h

〉
H ∈ R is

Fréchet differentiable and, due to estimate (5.4), we have

[ 〈
F̄(x), h

〉
H

]
1 = [ 〈

F̄(x), h
〉
H

]
Lip

≤ c(L f + 1) |h|H .

Therefore

|Dx�
ε
h(x, y)|H

=
∣∣∣∣∣∣

∞∫

0

e−c(ε)t Dx
[
Px

t 〈F(x, ·), h〉H (y)− 〈
F̄(x), h

〉
H

]
dt

∣∣∣∣∣∣
H

≤ c

∞∫

0

e−c(ε)t dt (L f + 1) |h|H = c(L f + 1)

c(ε)
|h|H . (5.15)

Next, for any n ∈ N, we define vεn := Pnv
ε , where Pn the projection of H onto

〈e1, . . . , en〉 and {ek}k∈ N is the complete orthonormal system, introduced in Hypo-
thesis 2, which diagonalizes B. It is immediate to check that vεn is a strong solution of
equation

dvεn(t) = 1

ε

[
Bvεn(t)+ Pn G(uε(t), vε(t))

]
dt + 1√

ε
Pn dw(t), vεn(0) = Pn y.

Moreover, according to Lemma 4.4, uε is a strong solution of the slow motion equation.
Therefore, we can apply Itô’s formula to �εh(u

ε(t), vεn(t)) and we get

�εh(u
ε(t), vεn(t))

= �εh(x, Pn y)+
t∫

0

〈
Dx�

ε
h(u

ε(s), vεn(s)), Auε(s) +F(uε(s), vε(s))
〉
H ds

+ 1

ε

t∫

0

〈
Dy�

ε
h(u

ε(s), vεn(s)), Bvεn(s)+ PnG(uε(s), vε(s))
〉
H ds

+ 1

2ε

t∫

0

Tr [Pn D2
y�

ε
h(u

ε(s), vεn(s))] ds

+ 1√
ε

t∫

0

〈
Dy�

ε
h(u

ε(s), vεn(s)), Pndw(s)
〉
H ,
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and hence

�εh(u
ε(t), vεn(t)) = �εh(x, Pn y)+

t∫

0

〈
Dx�

ε
h(u

ε(s), vεn(s)), Auε(s)

+ F(uε(s), vε(s))
〉
H ds

+ 1

ε

t∫

0

Luε (s)�εh(u
ε(s), vεn(s)) ds + 1√

ε

t∫

0

〈
Dy�

ε
h(u

ε(s), vεn(s)), Pndw(s)
〉
H

+ 1

ε

t∫

0

〈
Dy�

ε
h(u

ε(s), vεn(s)), [PnG(uε(s), vε(s))− G(uε(s), vεn(s))]
〉
H ds

+ 1

2ε

t∫

0

Tr [(Pn − I ) D2
y�

ε
h(u

ε(s), vεn(s))] ds. (5.16)

Recalling that�εh(x, ·) is a strict solution of the elliptic equation (5.11), for any s ≥ 0
we have

Luε (s)�εh(u
ε(s), vεn(s)) = c(ε)�εh(u

ε(s), vεn(s))− (〈
F(uε(s), vεn(s)), h

〉
H

− 〈F̄(uε(s)), h
〉
H

)
.

Then, multiplying both sides of (5.16) by ε,

Rε(t)=
t∫

0

[〈
F(uε(s), vε(s)), h

〉
H −〈F̄(uε(s)), h

〉
H

]
ds=c(ε)

t∫

0

�εh(u
ε(s), vεn(s)) ds

+√
ε

t∫

0

〈
Dy�

ε
h(u

ε(s), vεn(s)), Pn dw(s)
〉
H − ε

[
�εh(u

ε(t), vεn(t))−�εh(x, y)
]

+ ε
t∫

0

〈
Dx�

ε
h(u

ε(s), vεn(s)), Auε(s)+ F(uε(s), vε(s))
〉
H ds + Hn,ε(t),

where

Hn,ε(t) :=
t∫

0

〈
Dy�

ε
h(u

ε(s), vεn(s)), [PnG(uε(s), vε(s))− G(uε(s), vεn(s))]
〉
H ds

+1

2

t∫

0

Tr [(Pn − I ) D2
y�

ε
h(u

ε(s), vεn(s))] ds +
t∫

0

〈
F(uε(s), vε(s))

−F(uε(s), vεn(s)), h
〉
H ds.
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Thanks to (5.12), (5.13) and (5.15), this yields

|Rεh(t)| ≤ c

(
ε

c(ε)
+ c(ε)

) t∫

0

(
1 + |uε(s)|H + |vε(s)|H + |vεn(s)|H

)
ds|h|H

+ c
ε

c(ε)

t∫

0

|Auε(s)|H ds |h|H + √
ε

∣∣∣∣∣∣
t∫

0

〈
Dy�

ε
h(u

ε(s), vεn(s)), Pn dw(s)
〉
H

∣∣∣∣∣∣
+ ε (1 + |uε(t)|H + |vεn(t)|H + |x |H + |y|H

) |h|H + |Hn,ε |,

and hence, by taking expectation, due to (4.2), (4.3), (4.13) and (5.13), for any n ∈ N

E |Rεh(t)| ≤ cT

(
ε

c(ε)
+ c(ε)+ ε

)
(1 + |x |H + |y|H ) |h|H

+ cT
ε

c(ε)
(1 + ε−

α∨(1−γ )
2 )(1 + |x |α,2 + |y|α,2)|h|H + cT

√
ε |h|H + E |Hn,ε |.

Now, thanks to estimates (4.2), (4.3), (5.13) and (5.14), by using the dominated
convergence theorem, for any ε > 0 we have

lim
n→∞ E |Hn,ε | = 0.

This means that if we take c(ε) = εδ , with 0 < δ < 1 − [α ∨ (1 − γ )]/2, and nε ∈ N

such that E |Hnε ,ε | ≤ ε, it follows

sup
t∈ [0,T ]

E |Rεh(t)|

≤ cT

(
ε

c(ε)
+ c(ε)+ ε

)
(1 + |x |H + |y|H ) |h|H

+ cT
ε

c(ε)

(
1 + ε− α∨(1−γ )

2

)
(1 + |x |α,2 + |y|α,2)|h|H + cT

√
ε |h|H + E |Hnε ,ε |

≤ cT eρ (1 + |x |α,2 + |y|α,2)|h|H ,

for some ρ > 0. This immediately yields (5.8) for h ∈ L∞(0, L).
Now, if h ∈ H we fix a sequence {hn}n∈ N ⊂ L∞(0, L) converging to h in H and

such that |hh |H ≤ |h|H . As

sup
t∈ [0,T ]

E |Rεhn
(t)| ≤ cT ε

ρ (1 + |x |α,2 + |y|α,2)|hn|H ,

we obtain (5.8) also in the general case. ��
Once we have proved the key Lemma 5.3, we can prove the main result of the

paper, the convergence of the solution of the slow motion equation to the solution of
the averaged equation.
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Theorem 5.4 Assume that x, y ∈ Wα,2(0, L), for some α > 0. Then, under Hy-
potheses 1, 2 and 3, for any T > 0 and η > 0 we have

lim
ε→0

P

(
sup

t∈ [0,T ]
|uε(t)− ū(t)|H > η

)
= 0, (5.17)

where ū is the solution of the averaged equation (5.1).

Proof Due to Theorem 4.3, the sequence {L(uε)}ε>0 is tight in C((0, T ]; H) ∩
L∞(0, T ; H), and then as a consequence of the Skorokhod theorem, for any two se-
quences {εn}n∈ N and {εm}m∈ N converging to zero, there exist subsequences {εn(k)}k∈ N

and {εm(k)}k∈ N and a sequence of random elements

{ρk}k∈ N :=
{
(uk

1, uk
2)
}

k∈ N
,

inC :=[C((0, T ]; H) ∩ L∞(0, T ; H)
]2, defined on some probability space (
̂, F̂ , P̂),

such that the law of ρk coincides with the law of (uεn(k) , uεm(k) ), for each k ∈ N, and
ρk converges P̂-a.s. to some random element ρ := (u1, u2) ∈ C. By a well known
argument due to Gyöngy and Krylov (see [9]), if we show that u1 = u2, then we can
conclude that there exists some u ∈ C((0, T ]; H)∩ L∞(0, T ; H) such that the whole
sequence {uε}ε>0 converges to u in probability.

For any k ∈ N and i = 1, 2 we define

Rk
i (t) := 〈uk

i (t), h〉H − 〈x, h〉H −
t∫

0

〈uk
1(s), A�h〉H ds −

t∫

0

〈F̄(uk
i (s)), h〉H ds.

(5.18)
As L(uk

1) = L(uεn(k) ) and L(uk
1) = L(uεm(k) ), according to (5.8) we have

lim
k→∞ sup

t∈ [0,T ]
Ê
∣∣Rk

i (t)
∣∣ = 0,

so that, as the sequences {uk
1}k∈ N and {uk

2}k∈ N converge P̂-a.s. in C((0, T ]; H) ∩
L∞(0, T ; H) respectively to u1 and u2, by taking the limit for some {ki (n)} ⊆ {k}
going to infinity in (5.18), we have that both u1 and u2 fulfill the equation

〈u(t), h〉H = 〈x, h〉H +
t∫

0

〈u(s), A�h〉H ds +
t∫

0

〈F̄(u(s)), h〉H ds,

for any h ∈ D(A�), and then they coincide with the unique solution of the averaged
equation (5.1).

As we have recalled before, this implies that the sequence {uε}ε>0 converges in
probability to some u ∈ C([0, L]; H), and, by using again a uniqueness argument,
such u has to coincide with the solution ū of Eq. (5.1). ��
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6 Some remarks on the case of space dimension d > 1

In the case of space dimension d = 1, the fast equation (3.2) with frozen slow compo-
nent x ∈ H is a gradient system and hence its unique invariant measure µx admits a
density V (x, y) with respect to the Gaussian measure N (0, (−B)−1/2). This allows
to prove in Lemma 5.2 that for any h ∈ L∞(0, L) the mapping

x ∈ H �→ 〈
F̄(x), h

〉
H ∈ R (6.1)

is Fréchet differentiable and also allows to compute its derivative.
In space dimension d > 1, in order to have function-valued solutions to system

(1.7) we have to take a noise colored in space, and hence the fast equation is no more
a gradient system. For this reason we cannot say anything about the differentiability
of mapping (6.1) and hence we cannot say anything about the differentiability with
respect to x ∈ H of the mapping �εh(x, y) introduced in (5.9). Nevertheless, under
suitable assumptions on the noise in the fast equation, it is possible to prove a result
analogous to that proved in Lemma 5.3 and hence to get averaging.

Instead of working in the interval (0, L), now we work in a bounded open set
D ⊂ R

d , with d > 1, having a regular boundary. In the fast motion equation we take
a noise of the following form

wQ(t, ξ) =
∞∑

k=1

Qek(ξ)βk(t), t ≥ 0, ξ ∈ D,

and we assume that the operators B and Q satisfy the following conditions.

Hypothesis 4 1. There exists a complete orthonormal system {ek}k∈ N in H and two
positive sequences {αk}k∈ N and {λk}k∈ N such that Bek = −αkek and Qek =
λkek and, for some γ < 1,

∞∑
k=1

λ2
k

α
1−γ
k

< ∞.

2. There exists λ > 0 such that αk ≥ λ, for any k ∈ N.
3. There exists η < 1/2 such that

inf
k∈ N

λkα
η
k > 0.

Notice that, as αk ∼ k2/d , the conditions above imply that we have to work with
d ≤ 3. Under Hypothesis 4 and Hypotheses 2 and 3 (with obvious changes due
to the passage from d = 1 to d ≥ 1) system (1.7) admits a unique mild solution
(uε, vε) ∈ CT,p × CT,p, for any ε > 0, p ≥ 1 and T > 0, and for any fixed slow
component x ∈ H the fast equation (3.2) admits a unique mild solution vx,y ∈ CT,p,
fulfilling (3.3) and (3.4). As in the one-dimensional case, the process vx,y is three times
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differentiable with respect to y ∈ H and once with respect to x ∈ H and estimates
analogous to (3.7), (3.8) and (3.9) hold (for all details see [4]).

The fast transition semigroup Px
t maps Cb(H) into itself and Lip(H) into itself

and (3.11) holds. Moreover, it has a smoothing effect and maps Bb(H) into C3
b(H)

and estimates (3.12), (3.13) and (3.14) are still true, with the singularity (t ∧ 1)( j−i)/2

replaced by (t ∧ 1)( j−i)(η+1/2).
As far as the asymptotic behavior of the fast semigroup is concerned, it admits a

unique invariant measure µx which is strongly mixing and fulfills (3.20), (3.21) (with
the singularity (t ∧ 1)1/2 replaced by the singularity (t ∧ 1)−(η+1/2)) and (3.23). But,
as we have said before, as Eq. (3.2) is not of gradient type, we do not have any explicit
expression for the measure µx .

All uniform bounds for uε and vε proved in Sect. 4 are still valid, so that the
family of probability measures {L(uε)}ε∈ (0,1) is tight in C((0, T ]; H)∩L∞(0, T ; H).
This means that in order to have averaging in this multidimensional case it suffices
to prove Lemma 5.3. The proof in this case follows the same lines as in the one-
dimensional case, but it requires some extra approximation arguments. Actually, one
has to introduce the approximating problems

dvεn(t) = 1

ε

[
Bnv

ε
n + Gn(u

ε(t), vεn(t))
]

dt + 1√
ε

Qn dw(t), vεn(0) = Pn y, (6.2)

and

dvx,y
n (t) = [

Bnv
x,y
n + Gn(x, v

x,y
n (t))

]
dt + Qn dw(t), v

x,y
n (0) = Pn y, (6.3)

where Bn x := B Pn x , Qn x := Q Pn x and Gn(x, y) := PnG(x, Pn x), for any n ∈ N

and x, y ∈ H . As the operators Bn and Qn fulfill Hypothesis 4 and Gn has the same
regularity properties of G, all properties satisfied by vε , vx,y and Px

t are still valid
for vεn , vx,y

n and for the transition semigroup Pn,x
t associated with (6.3). Moreover,

all estimates for vx,y
n and Pn,x

t are uniform with respect to n ∈ N, and for each fixed
ε > 0 and x, y ∈ H

lim
n→∞ E sup

t≥0

∣∣vεn(t)− vε(t)
∣∣2

H = 0, (6.4)

and
lim

n→∞ E sup
t≥0

∣∣vx,y
n (t)− vx,y(t)

∣∣2
H = 0. (6.5)

Clearly, Eq. (6.3) shows the same long-time behavior as Eq. (3.2). Then for any n ∈ N

there exists a unique invariant measure µn,x for the semigroup Pn,x
t , which fulfills all

properties described for µx , with all estimates uniform with respect to n ∈ N.
Next, we define

F̄n(x) :=
∫

H

F(x, y) µn,x (dy), x ∈ H.
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As for F̄ , we obtain that all F̄n : H → H are Lipschitz-continuous and

sup
n∈ N

[F̄n]Lip ≤ c L f . (6.6)

Moreover, for any x ∈ H

lim
n→∞

∣∣F̄n(x)− F̄(x)
∣∣

H = 0. (6.7)

For any n ∈ N we define

Hn(x) :=
∫

Rn

F̄n

(
Pn x −

n∑
k=1

ξkek

)
ρn(ξ) dξ, x ∈ H,

where ρn : R
n → R is a C1 mapping having support in BRn (0, 1/n) and having total

mass equal 1. All mappings Hn are in C1(H ; H) and

lim
n→∞ |F̄n(x)− Hn(x)|H = 0, x ∈ H. (6.8)

Moreover, due to (6.6), we have

|F̄n(x)− Hn(x)|H ≤ c (1 + |x |H ) , sup
n∈ N

[Hn]Lip(H) < ∞. (6.9)

Then, in the proof of Lemma 5.3 we introduce the following correction function

�εn(x, y) :=
∞∫

0

e−c(ε) t Pn,x
t

[〈F(x, ·), h〉H − 〈Hn(x), h〉H
]
(y) dt,

As in the one-dimensional case, we have that the function �εn(x, ·) is a strict solution
of the problem

c(ε)�εn(x, y)− Ln,x�εn(x, y) = 〈F(x, y), h〉H − 〈Hn(x), h〉H , y ∈ H,

where Ln,x is the Kolmogorov operator associated with the approximating fast
Eq. (6.3).

Concerning the regularity of �εn with respect to y, we proceed as in the proof of
Lemma 5.3 and all estimates are uniform with respect to n ∈ N. As far as regularity
in x is concerned, we also proceed as in the one-dimensional case, by noticing that the
mapping x ∈ H �→ 〈Hn(x), h〉H ∈ R is Fréchet differentiable and, due to estimate
(6.8), the C1-norm is uniformly bounded in n ∈ N, that is

sup
n∈ N

[〈Hn(·), h〉H ]1 = sup
n∈ N

[〈Hn(·), h〉H ]Lip = c |h|H < ∞.

This implies an estimate for Dx�
ε
n , which is uniform with respect to n ∈ N.

123



176 S. Cerrai, M. Freidlin

Next, as in the proof of Lemma 5.3 we apply Itô’s formula to�εn(u
ε(t), vεn(t)) and,

by some estimates not different from those already used, by taking c(ε) = εδ , for
some δ > 0 we obtain

E

∣∣∣∣∣∣
t∫

0

[〈
F(uε(s), vεn(s)), h

〉
H − 〈

Hn(u
ε(s)), h

〉
H

]
ds

∣∣∣∣∣∣

≤ cT ε
δ′ (1 + |x |α,2 + |y|α,2

) |h|H +
T∫

0

E
∣∣F̄n(u

ε(s))− Hn(u
ε(s))

∣∣
H ds |h|H ,

for some δ′ > 0. Due to (6.7) and (6.8), this allow to conclude that (5.8) holds.
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