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Abstract It is shown that the combinatorics of commutation relations is well suited
for analyzing the convergence rate of certain Markov chains. Examples studied include
random walk on irreducible representations, a local random walk on partitions whose
stationary distribution is the Ewens distribution, and some birth–death chains.
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1 Introduction

Stanley [42] introduced a class of partially ordered sets, which he called differential
posets, with many remarkable combinatorial and algebraic properties. A basic tool
in his theory was the use of two linear transformations U and D on the vector space
of linear combinations of elements of P . If x ∈ P then U x (respectively, Dx) is
the sum of all elements covering x (respectively, which x covers). For differential
posets one has the commutation relation DU −U D = r I for some positive integer r ,
and he exploited this to compute the spectrum and eigenspaces (though typically not
individual eigenvectors) of the operator U D.

The primary purpose of this paper is to show that commutation relations are useful
not only for studying spectral properties, but also for obtaining sharp Markov chain
convergence rate results. We will need the more general commutation relation (studied
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100 J. Fulman

in Fomin’s paper [20])
Dn+1Un = anUn−1 Dn + bn In, (1.1)

for all n. In many of our examples the operators U, D will not be Stanley’s up and
down operators but will be probabilistic in nature and will involve certain weights.

There are several ways of quantifying the convergence rate of a Markov chain K to
its stationary distribution π . These, together with other probabilistic essentials, will be
discussed in Sect. 2. For now we mention that the commutation relations (1.1) will be
particularly useful for studying the maximal separation distance after r steps, defined
as

s∗(r) := max
x,y

[
1 − K r (x, y)

π(y)

]
,

where K r (x, y) is the chance of transitioning from x to y in r steps. In general it
can be quite a subtle problem even to determine which x, y attain the maximum in
the definition of s∗(r). Our solution to this problem involves using the commutation
relations (1.1) to write K r (x,y)

π(y) as a sum of non-negative terms.

After determining which x, y maximize 1 − K r (x,y)
π(y) , there is still work to be done

in analyzing the value of s∗(r), and in particular its asymptotic behavior. For several
examples in this paper, our method of writing K r (x,y)

π(y) as a sum of non-negative terms
will be well-suited for this. For all of the examples in this paper, we do express s∗(r)
in terms of the distinct eigenvalues 1, λ1, . . . , λd of K :

(1)

s∗(r) =
d∑

i=1

λr
i

⎡
⎣∏

j �=i

1 − λ j

λi − λ j

⎤
⎦ .

(2)

s∗(r) = P(T > r),

where T = ∑d
i=1 Xi and the Xi are independent geometric random variables

with probability of success 1 − λi .

These relations are useful for studying convergence rates and appeared earlier for
certain one-dimensional problems (stochastically monotone birth–death chains started
at 0) [15,17], and in [23] for a higher dimensional problem (random walk on irreducible
representations of Sn). The current paper provides further examples, and revisits the
results of [23] using commutation relations.

Section 3 reviews the concept of “down–up” Markov chains on branching graphs
and describes some main examples to be analyzed in this paper. Aside from their
intrinsic combinatorial interest, down–up chains are very useful. They were crucially
applied in [21,24] to study asymptotics of characters of the symmetric group, and
were recently used in [6,37] to construct interesting infinite dimensional diffusions.
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Commutation relations and Markov chains 101

(Actually [6,37] use “up–down” chains instead of “down–up” chains; our methods
apply to these too and it will be shown that they have the same convergence rate
asymptotics). Convergence rate information about these chains is also potentially use-
ful for proving concentration inequalities for statistics of their stationary distributions
[11].

Section 4 adapts Stanley’s work on differential posets to the commutation relations
(1.1). These results are applied in Sect. 5 to study the down–up walk on the Young
lattice. Here the stationary distributions are the so called z-measures, studied in papers
of Kerov, Olshanski, Vershik, Borodin, and Okounkov (see [6,7,30,31,34] and the
references therein). In a certain limit these measures become the Plancherel measure
of the symmetric group, and we obtain new proofs of results in [23].

Sections 6 analyzes down–up walk on the Schur lattice. We explicitly diagonalize
this random walk, and use this to study total variation distance convergence rates.
Similar ideas can be used to analyze down–up walk on the Jack lattice (see the dis-
cussion at the end of Sect. 6). The arguments in Sect. 6 do not require the use of
commutation relations, though we do note some connections.

Section 7 applies commutation relations to study down–up walk on the Kingman
lattice. Here the stationary distribution depends on two parameters θ, α and when
α = 0 is the Ewens distribution of population genetics [19]. The down–up walk is more
“local” than the traditionally studied random walks with this stationary distribution,
such as the random transposition walk when α = 0, θ = 1; this could be useful for
Stein’s method. We show that the eigenvalues and separation distance do not depend
on the parameter α, and prove order n2 upper and lower bounds for the separation
distance mixing time. Further specializing to the case θ = 1 (corresponding to cycles
of random permutations) we prove that for c > 0 fixed,

lim
n→∞ s∗(cn2) = 2

∞∑
i=2

(−1)i (i2 − 1)e−ci2
.

Note that in contrast to the random transposition walk, there is no cutoff.
Section 8 treats other examples to which the methodology applies. This includes

Bernoulli–Laplace models, subspace walks, and a Gibbs sampler walk on the
hypercube. For most of these examples, the spectrum is known by other methods,
and separation distance results (at least in continuous time) were described in [17].
However the hypercube example may be new, and in any case provides a nice illustra-
tion of how of our method for writing K r (x,y)

π(y) as a sum of non-negative terms allows
one to determine the precise separation distance asymptotics.

2 Probabilistic background

We will be concerned with the theory of finite Markov chains. Thus X will be a finite set
and K a matrix indexed by X×X whose rows sum to 1. Letπ be a distribution such that
K is reversible with respect to π ; this means that π(x)K (x, y) = π(y)K (y, x) for all
x, y and implies that π is a stationary distribution for the Markov chain corresponding
to K .
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102 J. Fulman

Define 〈 f, g〉 = ∑
x∈X f (x)g(x)π(x) for real valued functions f, g on X , and let

L2(π) denote the space of such functions. Then when K is considered as an operator
on L2(π) by

K f (x) :=
∑

y

K (x, y) f (y),

it is self adjoint. Hence K has an orthonormal basis of eigenvectors fi (x) with
K fi (x) = λi fi (x), where both fi (x) and λi are real. It is easily shown that the
eigenvalues satisfy −1 ≤ λ|X |−1 ≤ · · · ≤ λ1 ≤ λ0 = 1. If |λ1|, |λ|X |−1| < 1, the
Markov chain is called ergodic.

2.1 Total variation distance

A common way to quantify the convergence rate of a Markov chain is using total
variation distance. Given probabilities P, Q on X , one defines the total variation
distance between them as

||P − Q|| = 1

2

∑
x∈X

|P(x)− Q(x)|.

It is not hard to see that

||P − Q|| = max
A⊆X

|P(A)− Q(A)|.

Let K r
x be the probability measure given by taking r steps from the starting state x .

Researchers in Markov chains are interested in the behavior of ||K r
x − π ||.

Lemma 2.1 is classical (see [16] for a proof) and relates total variation distance to
spectral properties of K. Note that the sum does not include i = 0.

Lemma 2.1

4||K r
x − π ||2 ≤

|X |−1∑
i=1

λ2r
i | fi (x)|2.

Lemma 2.1 is remarkably effective and often leads to sharp convergence rate results;
we will apply it in Sect. 6. The main drawback with the bound in Lemma 2.1 is that one
rarely knows all of the eigenvalues and eigenvectors of a Markov chain. In such situa-
tions one typically bounds the total variation distance in terms of max(|λ1|, |λ|X |−1|)
and the results are much weaker.

2.2 Separation distance

Another frequently used method to quantify convergence rates of Markov chains is
to use separation distance, introduced by Aldous and Diaconis [1,2]. They define the
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Commutation relations and Markov chains 103

separation distance of a Markov chain K started at x as

s(r) = max
y

[
1 − K r (x, y)

π(y)

]

and the maximal separation distance of the Markov chain K as

s∗(r) = max
x,y

[
1 − K r (x, y)

π(y)

]
.

They show that the maximal separation distance has the nice properties:

•

max
x

||K r
x − π || ≤ s∗(r)

• (monotonicity) s∗(r1) ≤ s∗(r2), r1 ≥ r2
• (submultiplicativity) s∗(r1 + r2) ≤ s∗(r1)s∗(r2)

For every ε > 0, let n∗
ε be the smallest number such that s∗(nε) ≤ ε. Many authors

consider n∗
1
2

to be a definition of the separation distance mixing time (see [36] and

references therein), and we also adopt this convention. Heuristically, the separation
distance is 1

2 after n∗
1
2

steps and then decreases exponentially.

Lemma 2.2 will give useful upper and lower bounds for n∗
1
2
. It is essentially a

reformulation of Corollary 2.2.9 of [36]. By the general theory in [2], the random
variable T in Lemma 2.2 always exists, but could be hard to construct.

Lemma 2.2 Suppose that T is a random variable which takes values in the natural
numbers and satisfies s∗(r) = P(T > r) for all r ≥ 0. Then

E[T ]
2

≤ n∗
1
2

≤ 2E[T ].

Proof The upper bound follows since P(T > 2E[T ]) ≤ 1
2 . For the lower bound, note

that

E[T ] =
∑
r≥0

P(T > r) =
∑
r≥0

s∗(r) ≤ k + ks∗(k)+ ks∗(k)2 + · · · = k

1 − s∗(k)
.

The inequality used monotonicity and submultiplicativity. Thus if k < E[T ]
2 , then

s∗(k) > 1
2 , which completes the proof. ��

For the next proposition it is useful to define the distance dist(x, y) between x, y ∈
X as the smallest r such that K r (x, y) > 0. For the special case of birth–death chains
on the set {0, 1, . . . , d}, Proposition 2.3 appeared in [9,15].
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104 J. Fulman

Proposition 2.3 [23] Let K be a reversible ergodic Markov chain on a finite set X.
Let 1, λ1, . . . , λd be the distinct eigenvalues of K . Suppose that x, y are elements of
X with dist(x, y) = d. Then for all r ≥ 0,

1 − K r (x, y)

π(y)
=

d∑
i=1

λr
i

⎡
⎣∏

j �=i

1 − λ j

λi − λ j

⎤
⎦ .

The relevance of Proposition 2.3 to separation distance is that one might hope that
s∗(r) is attained by x, y satisfying dist(x, y) = d. Then Proposition 2.3 would give
an expression for s∗(r) using only the eigenvalues of K . Diaconis and Fill [15] show
(for s(r) when the walk starts at 0) that this hope is realized if K is a stochastically
monotone birth death-chain. In the current paper we give higher dimensional examples.

Proposition 2.4 gives a probabilistic interpretation for the right hand side of the
equation in Proposition 2.3. We use the convention that if X is geometric with para-
meter (probability of success) p, then P(X = n) = p(1 − p)n−1 for all n ≥ 1.

Proposition 2.4 Suppose that T = ∑d
i=1 Xi , where the random variables Xi are

independent, and Xi is geometric with parameter 1 − λi ∈ (0, 1]. If the λ’s are
distinct, then

P(T > r) =
d∑

i=1

λr
i

⎡
⎣∏

j �=i

1 − λ j

λi − λ j

⎤
⎦

for all natural numbers r .

Proof By independence, the Laplace transform of T is

E

[
e−sT

]
=

d∏
i=1

E

[
e−s Xi

]
=

d∏
i=1

1 − λi

es − λi
.

Since the Laplace transform of T is

∑
k≥1

[P(T > k − 1)− P(T > k)]e−sk,

it suffices to substitute in the claimed expression for P(T > k) and verify that one
obtains

∏d
i=1

1−λi
es−λi

. Observe that

∑
k≥1

e−sk
d∑

i=1

(
λk−1

i − λk
i

)∏
j �=i

1 − λ j

λi − λ j

=
d∑

i=1

(1 − λi )
∑
k≥1

λk−1
i e−sk

∏
j �=i

1 − λ j

λi − λ j
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Commutation relations and Markov chains 105

=
d∑

i=1

1 − λi

es − λi

∏
j �=i

1 − λ j

λi − λ j

=
d∏

k=1

1 − λk

es − λk

d∑
i=1

∏
j �=i

es − λ j

λi − λ j
.

Letting t = es , note that the polynomial

d∑
i=1

∏
j �=i

es − λ j

λi − λ j

is of degree at most d − 1 in t but is equal to 1 when t = λi for 1 ≤ i ≤ d. Thus the
polynomial is equal to 1, and the result follows. ��
Remarks (1) Proposition 2.4 has a continuous analog where the geometrics are

exponentials [10], and the above proof is a discrete version of theirs.
(2) For stochastically monotone birth–death chains with non-negative eigenvalues,

Propositions 2.3 and 2.4 lead to the equality s(r) = P(T > r). Here s(r) is the
separation distance of the walk started at 0, and T is the sum of independent
geometrics with parameters 1 − λi , where the λi ’s are the distinct eigenvalues
of the chain not equal to 1. This equality was first proved in [15] using the
theory of strong stationary times, and was beautifully applied to study the cutoff
phenomenon in [17].

2.3 Cut-off phenomenon

Since the term is mentioned a few times in this article, we give a precise definition of
the cutoff phenomenon. A nice survey of the subject is [14]; we use the definition from
[40]. Consider a family of finite sets Xn , each equipped with a stationary distribution
πn , and with another probability measure pn that induces a random walk on Xn .
One says that there is a total variation cutoff for the family (Xn, πn) if there exists a
sequence (tn) of positive reals such that

(1) limn→∞ tn = ∞;
(2) For any ε ∈ (0, 1) and rn = 
(1 + ε)tn�, limn→∞ ||prn

n − πn|| = 0;
(3) For any ε ∈ (0, 1) and rn = 
(1 − ε)tn�, limn→∞ ||prn

n − πn|| = 1.

For the definition of a separation cutoff, one replaces ||prn
n − πn|| by s∗(rn).

3 Down–up Markov chains

This section recalls the construction of down–up Markov chains on branching diagrams
and describes some main examples to be studied later in the paper. Down–up chains
appeared in [21] and more recently in [6]; they are obtained by composing down and
up Markov chains of Kerov [29].
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106 J. Fulman

The basic set-up is as follows. One starts with a branching diagram; that is an
oriented graded graph � = ∪n≥0�n such that

(1) �0 is a single vertex ∅.
(2) If the starting vertex of an edge is in �i , then its end vertex is in �i+1.
(3) Every vertex has at least one outgoing edge.
(4) All �i are finite.

For two vertices λ,� ∈ �, one writes λ ↗ � if there is an edge from λ to �. Part
of the underlying data is a multiplicity function κ(λ,�). Letting the weight of a path
in � be the product of the multiplicities of its edges, one defines the dimension d� of
a vertex � to be the sum of the weights over all maximal length paths from ∅ to �;
dim(∅) is taken to be 1.

A set {Mn} of probability distributions on �n is called coherent if

Mn(λ) =
∑

�:λ↗�

dλκ(λ,�)

d�
Mn+1(�).

Letting {Mn} be a coherent set of probability distributions, one can define the “up” Mar-
kov chain which transitions from τ ∈ �n−1 to ρ ∈ �n with probability dτ Mn(ρ)κ(τ,ρ)

dρMn−1(τ )
.

This preserves the set {Mn} in the sense that if τ is distributed from Mn−1, then ρ
is distributed from Mn . Similarly, one can define the “down” Markov chain which
transitions from λ ∈ �n to τ ∈ �n−1 with probability dτ κ(τ,λ)

dλ
. This also preserves

{Mn}. Composing these Markov chains by moving down and then up, one obtains the
“down–up” Markov chain in the level �n of the branching diagram. This moves from
λ to ρ with probability

Mn(ρ)

dλdρ

∑
τ∈�n−1

d2
τ κ(τ, λ)κ(τ, ρ)

Mn−1(τ )
.

This Markov chain has Mn as its stationary distribution and is in fact reversible with
respect to Mn .

The reader may wonder whether there are interesting examples of coherent proba-
bility distribution on branching diagrams. In fact there are many such; see the surveys
[5,29]. To make the above definitions more concrete, we now describe two examples
which are analyzed in this paper (Young and Kingman lattices). We will also analyze
down–up walk on the Schur and Pascal lattices, but define them later.

Example 1 Young lattice

Here �n consists of all partitions of size n, and (identifying a partition with its
diagram in the usual way [32]) a partition λ of size n is adjoined to a partition � of
size n + 1 if � can be obtained from λ by adding a box to some corner of λ. The
multiplicity function κ(λ,�) is equal to 1 on each edge. The dimension function dλ
has an algebraic interpretation as the dimension of the irreducible representation of
the symmetric group parameterized by λ, and there is an explicit formula for dλ in
terms of hook-lengths [39].
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Commutation relations and Markov chains 107

An important example of a coherent set of probability distributions on the Young
lattice is given by the so called z-measures. This is defined using two complex para-
meters z, z′ such that zz′ �∈ {0,−1,−2, . . .}, and assigns a partition λ weight

Mn(λ) =
∏

b∈λ(z + c(b))(z′ + c(b))

zz′(zz′ + 1) · · · (zz′ + n − 1)

d2
λ

n! .

Here c(b) = j − i is known as the “content” of the box b = (i, j) with row number
i and column number j . In order that Mn be strictly positive for all n, it is necessary
and sufficient that (z, z′) belongs to one of the following two sets:

• Principal series: Both z, z′ are not real and are conjugate to each other.
• Complementary series: Both z, z′ are real and are contained in the same open

interval of the form (m,m + 1) where m ∈ Z.

The z-measures are fundamental objects in representation theory (see [30,31]) and
become the Plancherel measure of the symmetric group in the limit z, z′ → ∞.

Example 2 Kingman lattice

Here the branching diagram is the same as the Young lattice, but the multiplicity
function κ(λ,�) is the number of rows of length j in �, where λ is obtained from �

by removing a box from a row of length j . The dimension function has the explicit
form dλ = n!

λ1!···λl ! where l is the number of rows of λ and λi is the length of row i of λ.
The Pitman distributions form a coherent set of probability distributions on �n .

These are defined in terms of two parameters θ > 0 and 0 ≤ α < 1. The Pitman
distribution assigns λ probability

Mn(λ) = θ(θ + α) · · · (θ + (l(λ)− 1)α)

θ(θ + 1) · · · (θ + n − 1)

n!∏
k mk(λ)!∏l(λ)

i=1 λi !
∏

(i, j)∈λ
j≥2

( j − 1 − α).

Here mi (λ) is the number of parts of λ of size i . When α = 0, this becomes the Ewens
distribution of population genetics. Further specializing to α = 0, θ = 1, gives that
Mn(λ) is equal to the chance that a random permutation on n symbols has cycle type λ.

4 Commutation relations

It is assumed that the reader is familiar with the concept of partially ordered sets,
or posets for short. Background on posets can be found in Chap. 3 of the text [41].
All posets considered here are assumed to be locally finite (every interval [x, y] of
P consists of a finite number of elements) and graded (every maximal chain from a
point x to a point y has length depending only on x, y). It is also assumed that P has
an element 0̂ satisfying x ≥ 0̂ for all x ∈ P .

Given a locally finite poset P and x ∈ P , let CP denote the complex vector space
with basis P , and let CPn denote the subspace of CP spanned by the rank n elements
(the rank of an element x is the length l of the longest chain x0 < x1 < · · · < xl = x
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108 J. Fulman

in P with top element x). Write x ↗ y if y covers x in the poset P . Stanley [42]
defined up and down operators U, D by the condition that for x ∈ P ,

U x =
∑

y:x↗y

y, Dx =
∑

y:y↗x

y.

These operators can be extended by linearity to CP . For A : CP �→ CP , let An

denote the restriction of A to CPn . Notation such as ABn is unambiguous since A(Bn)

and (AB)n have the same meaning. Linear transformations will operate right-to-left,
e.g. DUv = D(Uv), and I will denote the identity operator.

Stanley (loc. cit.) defined a locally finite, graded poset with 0̂ element to be diffe-
rential if its up and down operators satisfy the commutation relation

DU − U D = r I

for some positive integer r . He determined the spectrum and eigenspaces (though
typically not eigenvectors) of the operator U Dn . In the follow-up paper [43], Stanley
extended his ideas to the commutation relation

Dn+1Un − Un−1 Dn = rn In

where the rn’s are integers.
We study the more general case that Un : CPn �→ CPn+1 and Dn : CPn �→ CPn−1

are linear operators satisfying the commutation relation (1.1) of the introduction:

Dn+1Un = anUn−1 Dn + bn In,

where an, bn are real numbers. The results we need do not all appear in [20] (who
also studied this relation), so we briefly give statements and proofs. This serves both
to make the paper self-contained and to illustrate the power of Stanley’s methods.

Theorem 4.1 determines the spectrum of U Dn . It can be easily derived from Theo-
rem 1.6.5 of [20].

Theorem 4.1 Suppose that the commutation relations (1.1) hold and that an > 0 for
all n ≥ 1. Let p j denote the number of elements of P of rank j . Then the eigenvalues
of U Dn are

⎧⎨
⎩

0 multiplicity pn − pn−1
n−1∑
j=i

b j

n−1∏
k= j+1

ak multiplicity pi − pi−1 (0 ≤ i ≤ n − 1)

In particular, if bi = 1 − ai for all i , these become

⎧⎨
⎩

0 multiplicity pn − pn−1

1 −
n−1∏
k=i

ak multiplicity pi − pi−1 (0 ≤ i ≤ n − 1)
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Commutation relations and Markov chains 109

Proof The proof is by induction on n. Let Ch(A) = Ch(A, λ) be the characteristic
polynomial det(λI − A) of an operator A. Since Ch(U−1 D0) = λ, the theorem is true
for n = 0. Suppose that A : V �→ W and B : W �→ V are linear transformations on
finite dimensional vector spaces V and W and that dim(V ) = v and dim(W ) = w.
Then (by [46, Chap. 1, Sect. 51]),

Ch(B A) = λv−wCh(AB).

Applying this to Dn+1 and Un gives that

Ch(Un Dn+1, λ) = λpn+1−pn Ch(Dn+1Un, λ)

= λpn+1−pn Ch(anUn−1 Dn + bn In, λ)

= λpn+1−pn Ch(anUn−1 Dn, λ− bn)

= λpn+1−pn a pn
n det

[(
λ− bn

an

)
In − Un−1 Dn

]
.

Hence 0 is an eigenvalue with multiplicity at least pn+1− pn , and if λk is an eigenvalue
of Un−1 Dn of multiplicity mk , then anλk + bn is an eigenvalue of Un Dn+1 of multi-
plicity at least mk . This implies the eigenvalue formula in terms of the a, b variables.
If one sets bi = 1 − ai for all i , then the sum telescopes, yielding the second formula.

��
To compute the eigenspaces of U Dn , the following lemma is useful. These eigens-

paces will not be needed elsewhere in the paper, although knowing them could prove
useful in the search for eigenvectors, which by Lemma 2.1 are useful for the study of
total variation distance convergence rates.

Lemma 4.2 Suppose that the commutation relations (1.1) hold, with b0 = 1 and
an, bn > 0 for all n ≥ 1. Then the maps Un are injective and the maps Dn+1 are
surjective.

Proof The case n = 0 is clear since D1U0 = I0. For n ≥ 1, recall the commutation
relation

Dn+1Un = anUn−1 Dn + bn In .

By Theorem 4.1 and the assumption that an, bn > 0 for all n ≥ 1, it follows that all
eigenvalues of Un−1 Dn are non-negative. Thus all eigenvalues of Dn+1Un are positive.
Thus 0 is not an eigenvalue and the result follows. ��
Theorem 4.3 Suppose that the commutation relations (1.1) hold, with b0 = 1 and
an, bn > 0 for all n ≥ 1. Let En(λ) denote the eigenspace of U Dn corresponding to
the eigenvalue λ.

(1) En(0) = ker(Dn).

(2) En

(
n−1∑
j=i

b j

n−1∏
k= j+1

ak

)
= U n−i Ei (0).
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110 J. Fulman

Proof The first assertion is clear from Lemma 4.2. To prove the second assertion, we
show that

Un−1 En−1

⎛
⎝n−2∑

j=i

b j

n−2∏
k= j+1

ak

⎞
⎠ = En

⎛
⎝n−1∑

j=i

b j

n−1∏
k= j+1

ak

⎞
⎠ .

By Theorem 4.1, the multiplicity of
∑n−2

j=i b j
∏n−2

k= j+1 ak as an eigenvalue of U Dn−1

is the multiplicity of
∑n−1

j=i b j
∏n−1

k= j+1 ak as an eigenvalue of U Dn . Thus since Un−1
is injective (Lemma 4.2), it is enough to check that

Un−1 En−1

⎛
⎝n−2∑

j=i

b j

n−2∏
k= j+1

ak

⎞
⎠ ⊆ En

⎛
⎝n−1∑

j=i

b j

n−1∏
k= j+1

ak

⎞
⎠ .

So suppose that v ∈ En−1(
∑n−2

j=i b j
∏n−2

k= j+1 ak). Then commutation relation (1.1)
yields that

U Dn(Un−1v) = an−1Un−1(Un−2 Dn−1v)+ bn−1Un−1v

= an−1

n−2∑
j=i

b j

n−2∏
k= j+1

ak · Un−1v + bn−1Un−1v

=
n−1∑
j=i

b j

n−1∏
k= j+1

ak · Un−1v.

��
Another tool we need is an expression for (U D)rn as a linear combination of

(U k Dk)n , extending that of [42] for the case of differential posets.

Lemma 4.4 Suppose that the commutation relations (1.1) hold. Then

DkUn =
n∏

j=n−k+1

a j · U Dk
n +

n∑
j=n−k+1

b j

n∏
l= j+1

al · Dk−1
n

for all 1 ≤ k ≤ n. In particular, if bi = 1 − ai for all i , this becomes

DkUn =
n∏

j=n−k+1

a j · U Dk
n +

⎛
⎝1 −

n∏
j=n−k+1

a j

⎞
⎠ · Dk−1

n .

Proof This is straightforward to verify by induction on k, writing Dk = D(Dk−1Un)

and then using commutation relation (1.1). ��
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Now the desired expansion of (U D)rn can be obtained. We remark that for the
examples studied in this paper, the coefficients in the expansion will be non-negative.

Proposition 4.5 Suppose that the commutation relation (1.1) holds. Then

(U D)rn =
n∑

k=0

An(r, k)(U k Dk)n

where An(r, k) is determined by the recurrence

An(r, k) = An(r − 1, k − 1)
n−1∏

j=n−k+1

a j + An(r − 1, k)
n−1∑

j=n−k

b j

n−1∏
l= j+1

al

with initial conditions An(0, 0) = 1 and An(0,m) = 0 for m �= 0. In particular, if
0 ≤ ai ≤ 1, bi = 1 − ai for all i , then the recurrence becomes

An(r, k) = An(r − 1, k − 1)
n−1∏

j=n−k+1

a j + An(r − 1, k)

⎛
⎝1 −

n−1∏
j=n−k

a j

⎞
⎠

and all An(r, k) are non-negative.

Proof The proposition is proved by induction on r . The base case r = 0 is clear. First
applying the induction hypothesis and then Lemma 4.4 yields that (U D)rn is equal to

n∑
k=0

An(r − 1, k)U k DkU Dn

=
n∑

k=0

An(r − 1, k)

×
⎡
⎣ n−1∏

j=n−k

a j · (U k+1 Dk+1)n +
n−1∑

j=n−k

b j

n−1∏
l= j+1

al · (U k Dk)n

⎤
⎦

This implies the recurrence

An(r, k) = An(r − 1, k − 1)
n−1∏

j=n−k+1

a j + An(r − 1, k)
n−1∑

j=n−k

b j

n−1∏
l= j+1

al ,

and the rest of the proposition follows immediately. ��
As a final result, we give a generating function for the An(r, k) of Proposition 4.5.

By comparing with Theorem 4.1 one sees that the eigenvalues of U Dn appear in the
generating function.
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Proposition 4.6 For k ≥ 0 set Fk(x) = ∑
r≥0 xr An(r, k), where An(r, k)was defined

in the statement of Proposition 4.5. Then

Fk(x) = xk ∏k
i=1

∏n−1
j=n−i+1 a j∏k

i=1

(
1 − x

∑n−1
j=n−i b j

∏n−1
l= j+1 al

) .

In particular, if bi = 1 − ai for all i , then

Fk(x) = xk ∏k
i=1

∏n−1
j=n−i+1 a j∏k

i=1

[
1 − x

(
1 − ∏n−1

j=n−i a j

)] .

Proof Clearly F0(x) = 1. For k ≥ 1, multiply both sides of the recurrence of Propo-
sition 4.5 by xr and sum over r ≥ 0 to obtain that

Fk(x) = An(0, k)+
∑
r≥1

xr An(r, k)

=
∑
r≥1

xr An(r − 1, k − 1)
n−1∏

j=n−k+1

a j

+
∑
r≥1

xr An(r − 1, k)
n−1∑

j=n−k

b j

n−1∏
l= j+1

al

= x Fk−1(x)
n−1∏

j=n−k+1

a j + x Fk(x)
n−1∑

j=n−k

b j

n−1∏
l= j+1

al .

Thus

Fk(x) = x Fk−1(x)
∏n−1

j=n−k+1 a j

1 − x
∑n−1

j=n−k b j
∏n−1

l= j+1 al
,

and the result follows by induction. ��

5 The Young lattice

The purpose of this section is to use commutation relations to study separation distance
for down–up walk on the Young lattice. At the end of the section, it is shown that the
same asymptotics hold for up–down walk.
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The setting is that of Example 1 in Sect. 3. Thus the down–up walk is on partitions
of size n, and the chance of moving from λ to ρ is equal to

dρ
ndλ

∑
|τ |=n−1
τ↗λ,ρ

(z + c(ρ/τ))(z′ + c(ρ/τ))

(zz′ + n − 1)

and the z-measure is its stationary distribution. Here ρ/τ denotes the box of ρ not
contained in τ , and c(b) = j − i is the “content” of the box b = (i, j). We remind
the reader that it is assumed that either z′ = z̄ with z ∈ C − R, or that z, z′ are real
and there exists m ∈ Z such that m < z, z′ < m + 1.

In the limiting case that z, z′ → ∞, the stationary distribution becomes Plancherel
measure of the symmetric group. The paper [21] determined the eigenvalues and an
orthonormal basis of eigenvectors for down–up walk in this case. Then sharp total
variation distance convergence rates for this random walk were obtained in [22], and
separation distance asymptotics were derived in [23]. We give new proofs of some
of these results using commutation relations, and generalizations to the setting of
z-measures.

To begin, we define operators Dn : CPn �→ CPn−1 and Un : CPn �→ CPn+1 as
the linear extensions of

Dn(λ) =
∑
τ↗λ

τ, Un(λ) =
∑
�↘λ

(z + c(�/λ))(z′ + c(�/λ))

(zz′ + n)
�.

Note that by the hypotheses on z, z′, the coefficient of any partition in Dn(λ) or Un(λ)

is non-negative.
The following lemma is equivalent to Lemma 4.2 of [6] and is essentially due to

Kerov (see [34]).

Lemma 5.1

Dn+1Un = anUn−1 Dn + bn In

with an = 1 − 1
zz′+n and bn = 1 + n

zz′+n .

Let A be the diagonal operator on CP which sends λ to dλ ·λ. Then it is clear that the
down–up walk on Young’s lattice corresponds exactly to the operator 1

n (AU D A−1)n .
In Corollary 5.2, p( j) denotes the number of partitions of j . By convention,

p(0) = 1.

Corollary 5.2 The eigenvalues of the down–up walk on the nth level of the Young

lattice are i
n

(
zz′+2n−i−1

zz′+n−1

)
(0 ≤ i ≤ n), with multiplicity equal to p(n − i)− p(n −

i − 1).

Proof This is immediate from Theorem 4.1, Lemma 5.1, and the fact that the down–up
walk on Young’s lattice is given by 1

n (AU D A−1)n . ��
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Remark It is not difficult to see that p(n − i)− p(n − i − 1) is equal to the number
of partitions of n with i 1s. Indeed, using the notation that [un] f (u) is the coefficient
of un in f (u), one has that

p(n − i)− p(n − i − 1) = [un−i ]
∏
j≥1

(1 − u j )−1 − [un−i−1]
∏
j≥1

(1 − u j )−1

= [un−i ](1 − u)
∏
j≥1

(1 − u j )−1

= [un−i ]
∏
j≥2

(1 − u j )−1,

which is the number of partitions of n − i with no 1s.

Proposition 5.3 is crucial for determining where the maximal separation distance
of down–up walk on Young’s lattice is attained. Its statement uses the notation that if
B : CP �→ CP , then B[µ, λ] is the coefficient of λ in B(µ).

Proposition 5.3 Let π(λ) be the z-measure evaluated at λ, and let r be a non-negative
integer. Then the quantity

( 1
n AU D A−1)r [µ, λ]

π(λ)

is minimized (among pairs of partitions of size n) by µ= (n), λ= (1n) or µ= (1n),

λ= (n).
Proof Lemma 5.1 and Proposition 4.5 give that

(U D)r [µ, λ]
π(λ)

=
n∑

k=0

An(r, k)
U k Dk[µ, λ]

π(λ)
,

where An(r, k) is determined by the recursion of Proposition 4.5. Thus

( 1
n AU D A−1)r [µ, λ]

π(λ)
= 1

nr

n∑
k=0

dλAn(r, k)U k Dk[µ, λ]
dµπ(λ)

.

The proposition follows immediately from three claims:

• All terms in the sum are non-negative. Indeed, since bn ≥ 0 for n ≥ 0 and
an ≥ 0 for n ≥ 1, the recursion for An(r, k) implies that An(r, k) ≥ 0. Noting that
U, D map non-negative linear combinations of partitions to non-negative linear
combinations of partitions, the claim follows.

• If µ = (n), λ = (1n) or µ = (1n), λ = (n), then the summands for 0 ≤ k ≤ n − 2
vanish. Indeed, for such k it is impossible to move from the partition µ to the
partition λ by removing k boxes one at a time and then reattaching k boxes one at
a time.
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• The k = n − 1 and k = n summands are independent of both µ and λ. Indeed, for
the k = n − 1 summand one has that

dλAn(r, n − 1)U n−1 Dn−1[µ, λ]
nr dµπ(λ)

= dλAn(r, n − 1)U n−1[(1), λ]
nrπ(λ)

=
d2
λ An(r, n − 1)

∏
b∈λ

b �=(1,1)
(z + c(b))(z′ + c(b))

nr (zz′ + 1) · · · (zz′ + (n − 1))π(λ)

= n!An(r, n − 1)

nr
.

The first equality used the fact that there are dµ ways to go from µ to (1) by
removing a box at a time. The second equality used the fact that all dλ ways of
transitioning from (1) to λ in n − 1 upward steps give the same contribution to
U n−1[(1), λ].
A similar argument shows that the k = n summand is equal to n!An(r,n)

nr .

��

Corollary 5.4 gives an expression for maximal separation distance.

Corollary 5.4 Let s∗(r) be the maximal separation distance after r iterations of the
down–up chain K on the nth level of the Young lattice. Then s∗(r) = P(T > r),

where T is a sum of independent geometrics with parameters 1 − i
n

(
zz′+2n−i−1

zz′+n−1

)
for

0 ≤ i ≤ n − 2.

Proof By Proposition 5.3, s∗(r) = 1 − K r ((n),(1n))
π(1n)

. By Proposition 5.2, the down–up

walk has n distinct eigenvalues, namely 1 and i
n

(
zz′+2n−i−1

zz′+n−1

)
for 0 ≤ i ≤ n − 2.

Since the distance between (n) and (1n) is n − 1, the result follows from Propositions
2.3 and 2.4. ��

Theorem 5.5 gives a precise expression for the asymptotics of separation distance in
the special case that z, z′ → ∞. Then the stationary distribution is Plancherel measure
of the symmetric group, and these asymptotics were obtained earlier in [23]. Here we
present a new proof which involves determining the numbers An(r, k). This technique
is likely to prove useful for other problems; in particular, we apply it again later in this
paper (Proposition 8.8).

Theorem 5.5 Let s∗(r) be the maximal separation distance after r iterations of the
down–up walk on the nth level of the Young lattice, in the special case that z, z′ → ∞.

(1) s∗(r) = 1− n!S(r,n−1)
nr − n!S(r,n)

nr , where S(r, k) is a Stirling number of the second
kind (i.e. the number of partitions of an r-set into k blocks).
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(2) For c fixed in R and n → ∞,

s∗(n log(n)+ cn) = 1 − e−e−c
(1 + e−c)+ O

(
log(n)

n

)
.

Proof For the first assertion, the proof of Proposition 5.3 gives that

s∗(r) = 1 − n!An(r, n − 1)

nr
− n!An(r, n)

nr
.

The recurrence in Proposition 4.5 is

An(r, k) = An(r − 1, k − 1)+ k An(r − 1, k)

with initial conditions An(0,m) = δ0,m . The solution to this recurrence is An(r, k) =
S(r, k) (see also Proposition 4.9 of [42]), and the first assertion follows.

Let P(n, r, k) denote the probability that when r balls are dropped uniformly at
random into n boxes, there are k occupied boxes. It is straightforward to see that

P(n, r, k) = S(r,k)k!(n
k)

nr . Indeed, occupying k boxes using r balls is equivalent to
forming an ordered set partition of {1, . . . , r} into k blocks and then choosing k of the
n boxes. Thus,

s∗(r) = 1 − P(n, r, n − 1)− P(n, r, n).

Now we use asymptotics of the coupon collector’s problem: it follows from Sect. 6 of
[12] that when n log(n)+cn balls are dropped into n boxes, the number of unoccupied
boxes converges to a Poisson distribution with mean e−c, and that the error term in

total variation distance is O
(

log(n)
n

)
. The chance that a Poisson random variable with

mean e−c takes value not equal to 0 or 1 is 1 − e−e−c
(1 + e−c), which completes the

proof. ��

For general values of z, z′ it is not evident how to obtain results as clean as Theorem
5.5. However, Proposition 5.6 gives explicit upper and lower bounds for the separation
distance mixing time. For z, z′ fixed and n growing, these are both order n2.

Proposition 5.6 Let n∗
1
2

be the separation distance mixing time of down–up walk

(corresponding to z-measure) on the nth level of the Young lattice. Then E[T ]
2 ≤ n∗

1
2

≤
2E[T ], where T is as in Corollary 5.4. Moreover, if zz′ = 1 then

E[T ] =
n∑

i=2

n2

i2 ∼ n2
(
π2

6
− 1

)
,
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and if zz′ �= 1 then

1 + n(zz′ + n − 1)

1 − zz′ log

(
2(n + zz′ − 1)

n(zz′ + 1)

)

≤ E[T ] ≤ n(zz′ + n − 1)

1 − zz′ log

(
n + zz′ − 1

n(zz′)

)
.

Proof By Lemma 2.2, E[T ]
2 ≤ n∗

1
2

≤ 2E[T ]. Linearity of expectation gives that

E[T ] =
n−2∑
i=0

1

1 − i
n

(
zz′+2n−i−1

zz′+n−1

) .

When zz′ = 1,

E[T ] =
n−2∑
i=0

1

1 − i(2n−i)
n2

= n2
n−2∑
i=0

1

(n − i)2
= n2

n∑
i=2

1

i2 ∼ n2
(
π2

6
− 1

)
.

For zz′ �= 1, the fact that i(zz′+2n−i−1)
n(zz′+n−1) is monotone increasing for i ∈ [0, n − 1]

gives that

1 +
n−2∫
0

1

1 − t
n

(
zz′+2n−t−1

zz′+n−1

)dt ≤ E[T ] ≤
n−1∫
0

1

1 − t
n

(
zz′+2n−t−1

zz′+n−1

)dt.

Consider the upper bound on E[T ]. Since zz′ �= 1, it is equal to

n(zz′ + n − 1)

1 − zz′

n−1∫
0

(
1

t − n
− 1

t − (n + zz′ − 1)

)
dt

= n(zz′ + n − 1)

1 − zz′ log

(
n + zz′ − 1

n(zz′)

)
.

Similarly, since zz′ �= 1, the lower bound on E[T ] is equal to

1 + n(zz′ + n − 1)

1 − zz′

n−2∫
0

(
1

t − n
− 1

t − (n + zz′ − 1)

)
dt

= 1 + n(zz′ + n − 1)

1 − zz′ log

(
2(n + zz′ − 1)

n(zz′ + 1)

)
.

��
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To close this section we prove Proposition 5.7. It implies that the up–down and
down–up walks have the same convergence rate asymptotics.

Proposition 5.7 Let s∗
U Dn

(r) be the maximal separation distance after r iterations of
the down–up chain (corresponding to z-measure) on the Young lattice, and let s∗

DUn
(r)

be the corresponding quantity for the up–down chain. Then

s∗
DUn

(r) = s∗
U Dn+1

(r + 1)

for all n ≥ 1, r ≥ 0.

Proof Using the notation of Proposition 5.3, the up–down chain corresponds to the
operator 1

n+1 ADUn A−1. Lemma 5.1 implies that

( 1
n+1 ADUn A−1)r [µ, λ]

π(λ)
= 1

(n + 1)r

r∑
l=0

(
r

l

)
al

nbr−l
n nl (

1
n AU Dn A−1)l [µ, λ]

π(λ)
,

where an = 1 − 1
zz′+n and bn = 1 + n

zz′+n . Hence Proposition 5.3 gives that this
quantity is minimized by µ = (n), λ = (1n) or µ = (1n), λ = (n).

By Corollary 5.2 and Lemma 5.1, the distinct eigenvalues of the up–down chain
are 1 and t j := j (zz′+2n− j+1)

(n+1)(zz′+n) where 1 ≤ j ≤ n − 1. Hence Proposition 2.3 gives that

s∗
DUn

(r) =
n−1∑
j=1

(t j )
r

∏
k �= j

1≤k≤n−1

(
1 − tk
t j − tk

)
.

On the other hand, applying Proposition 2.3 to the down–up chain gives that

s∗
U Dn+1

(r + 1) =
n−1∑
j=0

(t j )
r+1

∏
k �= j

0≤k≤n−1

(
1 − tk
t j − tk

)
.

Since t0 = 0, this becomes

n−1∑
j=1

(t j )
r+1

∏
k �= j

0≤k≤n−1

(
1 − tk
t j − tk

)
=

n−1∑
j=1

(t j )
r

∏
k �= j

1≤k≤n−1

(
1 − tk
t j − tk

)
,

as desired. ��

6 The Schur lattice

In this example the underlying lattice is the Schur lattice. This is the sublattice of
Young’s lattice consisting of the partitions of n into distinct parts. We show that
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commutation relations can be used to compute the spectrum of down–up walk on the
Schur lattice, but our approach does not determine the separation distance convergence
rate (the obstacles are described in the second remark after Proposition 6.2). We do
however give a complete diagonalization of the Markov chain, and use it to study
the total variation distance convergence rate. The upper bound derived here is in fact
quite sharp and there is a cutoff at 1

2 n log(n). We omit the rather involved proof of a
matching lower bound but give a careful statement and explain the proof technique in
the remarks after Theorem 6.4.

It will be convenient to let D P(n) denote the set of partitions of n into distinct parts
and O P(n) denote the set of partitions of n into odd parts. Using the terminology of
Sect. 3, there is a coherent set of probability distributions on the Schur lattice called
the shifted Plancherel measures. The nth measure chooses a partition λ ∈ D P(n)with
probability

π(λ) := 2n−l(λ)g2
λ

n! ,

where l(λ) is the number of parts of λ and gλ is the number of standard shifted
tableaux of shape λ [26,32]. This measure is of interest to researchers in asymptotic
combinatorics and representation theory [4,27,33,44].

In the terminology of Sect. 3, it is known (see for instance [5]) that the dimension
of λ ∈ D P(n) is equal to gλ. Hence the down–up chain on the set D P(n) transitions
from λ to ρ with probability

2gρ
ngλ

∑
τ↗λ,ρ

2l(τ )−l(ρ).

An application of this Markov chain appears in [24]. However nothing seems to be
known about its convergence rate.

We will diagonalize this chain (determining eigenvalues and eigenvectors). Before
doing this we note that commutation relations can also be used to derive its eigenvalues.
The key is the following observation of Stanley [43]. He defined down and up operators
D,U for the Schur lattice by:

D(λ) =
∑
µ↗λ

µ, U (λ) = 2
∑
µ↘λ

l(µ)=l(λ)

µ+
∑
ν↘λ

l(ν)>l(λ)

ν,

and showed that they satisfy the commutation relation

Dn+1Un = Un−1 Dn + In (6.1)

for all n ≥ 0.
In Proposition 6.2, p∗( j) denotes the number of partitions of j into distinct parts.

Proposition 6.2 The eigenvalues of the down–up walk on the Schur lattice are i
n

(0 ≤ i ≤ n), with multiplicity equal to p∗(n − i)− p∗(n − i − 1).
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Proof Let A be the diagonal operator on CP which sends λ to gλ · λ. It is easily seen
that the down–up chain is equivalent to the operator 1

n (AU D A−1)n . The result now
follows from commutation relation (6.1) and Theorem 4.1. ��
Remarks (1) It is well known that |D P(n)| = |O P(n)|. Using generating functions

as in the remark after Proposition 5.2, one can show that p∗(n−i)− p∗(n−i −1)
is equal to the number of odd partitions of n with i parts equal to 1. This also
follows by comparing Proposition 6.2 with 6.3.

(2) From the previous remark, it is easily seen that the number of distinct eigenvalues
of U Dn is n − 2 for large enough n (an odd partition of n can not have i parts
of size 1 for i = n − 1, n − 2, n − 4). However the diameter of down–up walk
on the Schur lattice can be smaller than n − 3 (for n = 8 it is 4). This blocks the
use of Proposition 2.3 and also complicates the analysis of where the maximal
separation distance is attained, as the proof of Proposition 5.3 does not carry over.

To upper bound the total variation distance convergence rate, the following dia-
gonalization of the down–up walk is crucial. The eigenvectors are given in terms of
symmetric functions, more precisely in terms of Xλµ which is defined as the coefficient
of the Hall–Littlewood polynomial Pλ(x;−1) in the power sum symmetric function
pµ(x). The reader unfamiliar with these concepts can either consult Chap. 3 of [32]
(which calls these coefficients Xλµ(−1)), or can just proceed to Theorem 6.4. We also

use the notation that zµ = ∏
i imi (µ)mi (µ)!, where mi (µ) is the number of parts of µ

of size i . This is the number of permutations which commute with a fixed permutation
of cycle type µ.

Proposition 6.3 (1) The eigenvalues of down–up walk on the Schur lattice are
parameterized by µ ∈ O P(n) and are m1(µ)

n , where m1(µ) is the number of
parts of µ of size 1.

(2) The functionsψµ(λ) =
√

n!
zµ2n−l(µ)

Xλµ
gλ

are a corresponding basis of eigenvectors,

orthonormal with respect to the inner product

〈 f1, f2〉 =
∑

λ∈D P(n)

f1(λ) f2(λ)
2n−l(λ)g2

λ

n! .

Proof It follows from Lemma 5.6 and Corollary 5.11 of [24] that the ψµ are an ortho-
normal basis of eigenvectors with eigenvalue m1(µ)−2

n−2 for a certain operator J(n−1,1),
defined by

J(n−1,1)(λ, ρ) = gρ
2l(ρ)gλ(n − 2)

∑
ν∈O P(n)

2l(ν)Xλν Xρν (m1(ν)− 2)

zν
.

The proposition follows from the claim that the chance that the down–up chain moves
from λ to ρ is equal to

(n − 2)J(n−1,1)(λ, ρ)

n
+ 2

n
δλ,ρ
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where δλ,ρ is 1 if λ = ρ and vanishes otherwise. For the case that λ �= ρ, the claim
follows from the statement of Proposition 5.9 of [24], and for the case λ = ρ, it follows
from the proof of Proposition 5.9 and Lemma 5.3 of [24]. ��

Finally, we use the diagonalization to study total variation distance for down–up
walk on the Schur lattice.

Theorem 6.4 Let K r denote the distribution of the down–up walk on the Schur lattice
started from (n) after r steps, and let π denote the shifted Plancherel measure. For
r = 1

2 n log(n)+ cn with c > 0,

||K r − π || ≤ e−3c

4
.

Proof The diagonalization of the down–up walk, together with Lemma 2.1 and the
facts [32] that g(n) = 1 and X (n)µ = 1 for all µ, gives that

||K r − π ||2 ≤ 1

4

∑
µ�=(1n)
µ∈O P(n)

(
m1(µ)

n

)2r n!
zµ2n−l(µ)

= 1

4

n−2∑
i=1

(
i

n

)2r ∑
µ∈O P(n)
m1(µ)=i

n!
zµ2n−l(µ)

.

Letting [un] f (u) denote the coefficient of un in f (u), the cycle index of the symmetric
group (reviewed in Chap. 4 of [45]) yields that

∑
µ∈O P(n)
m1(µ)=i

n!
zµ2n−l(µ)

= n!
i !2n−i

[un−i ]
∏
m≥3
odd

e
2um

m

= n!
i !2n−i

[un−i ] 1

e2u

∏
m≥1
odd

e
2um

m

= n!
i !2n−i

[un−i ] (1 + u)

(1 − u)e2u

= n!
i !2n−i

⎡
⎣n−i∑

j=0

(−2) j

j ! +
n−i−1∑

j=0

(−2) j

j !

⎤
⎦ .

It is easily checked that

n−i∑
j=0

(−2) j

j ! +
n−i−1∑

j=0

(−2) j

j !

vanishes if n − i = 1, 2, 4 and when n − i > 0 is at most 2/3.
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Thus

||K r − π ||2 ≤ 1

6

n−3∑
i=1

i �=n−4

(
i

n

)2r n!
i !2n−i

≤ 1

6

n∑
j=3

(
1 − j

n

)2r n!
(n − j)!2 j

= 1

6

n∑
j=3

n!
(n − j)!2 j

e2r ·log(1− j/n)

≤ 1

6

n∑
j=3

n!
(n − j)!

e−2r j/n

2 j

= 1

6

n∑
j=3

n!
(n − j)!

e−2cj

n j 2 j

≤ 1

6

n∑
j=3

e−2cj

2 j

= e−6c

48(1 − e−2c/2)

≤ e−6c

24
.

Taking square roots completes the proof. ��
Remarks (1) One can prove that there are positive universal constants A, B such

that for all c > 0 and r = 1
2 n log(n)− cn with n large enough (depending on c),

||K r − π || ≥ 1 − Ae−Bc.

The proof method is analogous to that used in [22] for the case of Plancherel
measure of the symmetric group, but the combinatorics is more tedious. One can
compute the mean and variance of the eigenfunction ψ(3,1n−3) under both π and
the measure K r , and then deduce the lower bound from Chebyshev’s inequality.

(2) From commutation relation (6.1), the results in this section give (in the notation of
Proposition 6.3) that up–down walk on the Schur lattice has eigenvalues m1(µ)+1

n+1
and the same eigenfunctions as down–up walk. Arguing as in Theorem 6.4 gives
that the walks have the same convergence rate asymptotics.

To conclude this section, we mention that the techniques in it can be used to ana-
lyze total variation distance convergence rates for down–up walk on the Jack lattice.
Here the stationary distribution is the so-called Jackα measure on partitions, which
in the special case α = 1 gives the Plancherel measure of the symmetric group. The
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importance of Jackα measure is discussed in Okounkov [35], and some results about it
appear in [8,25]. In particular, Proposition 6.2 of [25] explicitly diagonalizes down–up
walk on the Jack lattice. The eigenvalues turn out to be independent of α and are 1
and i

n for 0 ≤ i ≤ n − 2. The eigenvectors are the coefficients of power sum symme-
tric functions in the Jack polynomials with parameter α. Further details may appear
elsewhere.

7 The Kingman lattice

This section uses commutation relations to study down–up walk on the Kingman
lattice. The stationary distribution is the Pitman distribution with parameters θ, α
where θ > 0 and 0 ≤ α < 1 (Example 2 in Sect. 3). We show that the eigenvalues
and separation distance do not depend on α and prove order n2 upper and lower
mixing time bounds. Very precise convergence rate results are given when θ = 1.
This is probably the most interesting case, since when α = 0, θ = 1 the stationary
distribution corresponds to the cycle structure of random permutations.

The down–up walk studied in this section is more “local” the the random transpo-
sition walk, in the sense that the underlying partition is changed by removing a single
box and then reattaching it somewhere. In the random transposition walk, the change
is more violent: two cycles can merge into one cycle or a single cycle can be broken
into two cycles. Local walks tend to be more useful for Stein’s method than non-local
walks (see [38] for some rigorous results in this direction), and this down–up walk
was described in Sect. 2 of [21] in the context of Stein’s method. The recent paper
[37] applies down–up walk on Kingman’s lattice to define a new family of infinite
dimensional diffusions, which includes the infinitely many-neutral-alleles-diffusion
model of Ethier and Kurtz.

Now we begin the analysis of the down–up chain corresponding to the Pitman
distribution with parameters θ > 0 and 0 ≤ α < 1. By the formulas in Sect. 3,
one sees that the down chain removes a box from a row of length j with probability
jm j (λ)

n and that the up chain adds a box to a row of λ of length k ≥ 1 with probability
(k−α)mk (λ)

θ+n or to a row of length 0 with probability θ+αl(λ)
θ+n , where l(λ) is the number

of parts of λ. In the biological context (α = 0), the rows of λ could represent the count
of individuals of each type in a population. Then the down move corresponds to the
death of a random individual, and the up move corresponds to a birth (which is the
same type as the random parent or a new type with probability θ

θ+n ).
Let P be the poset of partitions with the same partial order as in Kingman’s lattice,

where we disregard edge multiplicities; this is the same partial order as in Young’s
lattice. It is natural to define operators D,U : CP �→ CP as follows. The coefficient
of τ in Dn(λ) is defined to be the probability that from λ, the down-chain transitions
to τ . The coefficient of � in Un(λ) is defined to be the probability that from λ, the
up-chain transitions to �. Thus the down–up walk on Kingman’s lattice arising from
Pitman’s distribution is just the operator U Dn .

The following commutation relation is crucial. Note that a closely related commu-
tation relation appears in [37].
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Proposition 7.1 Consider down–up walk on the Kingman lattice with parameters
θ > 0 and 0 ≤ α < 1. Letting an = n(θ+n−1)

(n+1)(θ+n) , one has that

Dn+1Un = anUn−1 Dn + (1 − an)In,

for all n ≥ 0.

Proof First we consider the case that λ, ρ are distinct partitions of n. Then in order
to move from λ to ρ by going up and then going down, one must add a box to a row
of length k of λ and then remove a box from a row of length j . Similarly, in order to
move from λ to ρ by going down and then going up, one must remove a box from a
row of length j of λ, and then add a box to a row of length k. In both situations one
has that j ≥ 1, k ≥ 0 and j �= k + 1. From this it is straightforward to check (treating
separately the cases that k > 0 and k = 0), that the coefficient of ρ in

(n + 1)(θ + n)DUn(λ)− n(θ + n − 1)U Dn(λ)

is 0.
The second case to consider is thatλ = ρ are the same partition of n. Then j = k+1,

and the coefficient of λ in (n + 1)(θ + n)DUn(λ) is

[θ + αl(λ)][m1(λ)+ 1] +
∑
k≥1

[(k − α)mk(λ)][(k + 1)(mk+1(λ)+ 1)].

Similarly, the coefficient of λ in n(θ + n − 1)U Dn(λ) is

m1(λ)[θ + α(l(λ)− 1)] +
∑
k≥1

[(k + 1)mk+1(λ)][(k − α)(mk(λ)+ 1)].

Hence the coefficient of λ in

(n + 1)(θ + n)DUn(λ)− n(θ + n − 1)U Dn(λ)

is

θ + αl(λ)+ αm1(λ)+
∑
k≥1

(k − α)(k + 1)(mk(λ)− mk+1(λ))

= θ + αl(λ)− αm1(λ)+ 2m1(λ)

+
∑
k≥2

mk(λ)[(k + 1)(k − α)− k(k − 1 − α)]

= θ + αl(λ)− αm1(λ)+ 2m1(λ)+
∑
k≥2

(2k − α)mk(λ)

= θ + 2n.

��
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Corollary 7.2 determines the eigenvalues of the down–up walk on the Kingman
lattice with parameters θ, α. It is interesting that these are independent of the para-
meter α. We remark that since p(1) = p(0) = 1, the eigenvalue 1 − θ

n(θ+n−1) in
Corollary 7.2 has multiplicity 0.

Corollary 7.2 Let p( j) denote the number of integer partitions of j . Then the eigen-
values of U Dn are 1 − i(θ+i−1)

n(θ+n−1) with multiplicity p(i)− p(i − 1) (0 ≤ i ≤ n).

Proof This is immediate from Theorem 4.1 and Proposition 7.1. ��
Next we will study maximal separation distance for the down–up walk on the

Kingman lattice. The first step is to determine where this is attained. Given a linear
operator B : CP �→ CP , and partitions µ, λ, it is convenient to let B[µ, λ] denote
the coefficient of λ in B(µ).

Proposition 7.3 Let π be the Pitman distribution with parameters θ > 0 and 0 ≤
α < 1. Let r be a non-negative integer. The quantity (U D)r [µ,λ]

π(λ)
is minimized (among

partitions µ, λ of size n) by µ = (n), λ = (1n) or µ = (1n), λ = (n).

Proof Proposition 4.5 gives that

(U D)r [µ, λ]
π(λ)

=
n∑

k=0

An(r, k)
(U k Dk)[µ, λ]

π(λ)
,

with all An(r, k) ≥ 0. The proposition now follows from three observations:

• All terms in the sum are non-negative. Indeed, Proposition 4.5 gives that all
An(r, k) ≥ 0, and U, D were defined probabilistically.

• If µ = (n), λ = (1n) or µ = (1n), λ = (n), then the summands for 0 ≤ k ≤ n − 2
vanish. Indeed, for such k it is impossible to move from the partition µ to the
partition λ by removing k boxes one at a time and then reattaching k boxes one at
a time.

• The k = n −1 and k = n summands are each independent of bothµ and λ. Indeed,
Dn−1(µ) is equal to (1) for any partition µ of size n. Since the up chain preserves
the Pitman distribution, it follows that U n−1[(1), λ] = π(λ), so that the k = n − 1
summand is An(r, n − 1). Similarly, the k = n summand is An(r, n).

��
The following corollary will be helpful.

Corollary 7.4 Consider down–up walk with parameters θ > 0 and 0 ≤ α < 1 on
the nth level of the Kingman lattice. Then s∗(r) = P(T > r) where T is the sum of
independent geometrics with parameters i(θ+i−1)

n(θ+n−1) for 2 ≤ i ≤ n.

Proof By Proposition 7.3, s∗(r) = 1− (U D)r ((n),(1n))
π(1n)

. By Corollary 7.2, the down–up

walk has n distinct eigenvalues, namely 1 and 1 − i(θ+i−1)
n(θ+n−1) for 2 ≤ i ≤ n. Since

the distance between (n) and (1n) is n − 1, the result follows from Propositions 2.3
and 2.4. ��
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Theorem 7.5 gives the precise asymptotic behavior of s∗(r) in the special case that
θ = 1.

Theorem 7.5 Let s∗(r) be the maximal separation distance after r iterations of down–
up walk on the Kingman lattice, in the special case that θ = 1 and 0 ≤ α < 1.

(1)

s∗(r) = 2
n∑

i=2

(−1)i (i2 − 1)
(n!)2

(n − i)!(n + i)!
(

1 − i2

n2

)r

.

(2) For c > 0 fixed,

lim
n→∞ s∗(cn2) = 2

∞∑
i=2

(−1)i (i2 − 1)e−ci2
.

Proof By Proposition 7.3, one has that

s∗(r) = 1 − (U D)r [(n), (1n)]
π(1n)

.

By Corollary 7.2, the chain has n distinct eigenvalues. Since the distance between (n)
and (1n) is n − 1, it follows from Proposition 2.3 that

s∗(r) =
n∑

i=2

(
1 − i2

n2

)r ∏
2≤ j≤n

j �=i

j2

n2

j2

n2 − i2

n2

=
n∑

i=2

(
1 − i2

n2

)r ∏
2≤ j≤n

j �=i

j2

( j − i)( j + i)
,

and the first assertion follows by elementary simplifications.
For part 2 of the theorem, we claim that for c > 0 fixed there is a constant ic

(depending on c but not n) such that for i ≥ ic, the summands in

2
n∑

i=2

(−1)i (i2 − 1)
(n!)2

(n − i)!(n + i)!
(

1 − i2

n2

)cn2

are decreasing in magnitude (and alternating in sign). Part 2 of the theorem follows
from this claim, since then one can take limits for each fixed i . To prove the claim,
note that the summands are decreasing in magnitude if i ≥ √

n, since one checks that

(i2 − 1) (n!)2
(n−i)!(n+i)! is a decreasing function of i when i ≥ √

n. Since (n!)2
(n−i)!(n+i)! is a

decreasing function of i , to handle i ≤ √
n one needs only to show that
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i2 − 1

(i + 1)2 − 1
ecn2[log(1−i2/n2)−log(1−(i+1)2/n2)] > 1

for i ≥ ic, a constant depending on c but not n. Using that log(1 − x) ≥ −x − x2 for
0 < x < 1

2 and that log(1 − x) ≤ −x for 0 < x < 1, one has that

cn2
[
log(1 − i2/n2)− log(1 − (i + 1)2/n2)

]
≥ c(i + 1)2 − ci2 − c

i4

n2 ≥ 2ic

since i ≤ √
n. Clearly i2−1

(i+1)2−1
e2ic > 1 for i large enough, completing the proof. ��

For general values of θ , we do not have a result as precise as Theorem 7.5, but
obtain explicit upper and lower bounds for the separation distance mixing time. Note
that when θ is fixed and n is growing, these bounds are of order n2.

Corollary 7.6 Let n∗
1
2

be the separation distance mixing time for down–up walk (with

parameters θ > 0 and 0 ≤ α < 1) on the nth level of Kingman’s lattice. Then
E[T ]

2 ≤ n∗
1
2

≤ 2E[T ], where T is as in Corollary 7.4. Moreover if θ = 1 then

E[T ] =
n∑

i=2

n2

i2 ∼ n2
(
π2

6
− 1

)
,

and if θ �= 1 then

n(θ + n − 1)

θ − 1
log

(
(n + 1)(θ + 1)

2(n + θ)

)
≤ E[T ] =

n∑
i=2

n(θ + n − 1)

i(θ + i − 1)

≤ n(θ + n − 1)

θ − 1
log

(
nθ

n + θ − 1

)
.

Proof Lemma 2.2 gives that E[T ]
2 ≤ n∗

1
2

≤ 2E[T ] and Corollary 7.4 gives that E[T ] =∑n
i=2

n(θ+n−1)
i(θ+i−1) . To complete the proof of the upper bound, note that

n∑
i=2

1

i(θ + i − 1)
≤

n∫
1

1

t (θ + t − 1)
dt = 1

θ − 1
log

(
nθ

n + θ − 1

)
.

For the lower bound, note that

n∑
i=2

1

i(θ + i − 1)
≥

n+1∫
2

1

t (θ + t − 1)
dt = 1

θ − 1
log

(
(n + 1)(θ + 1)

2(n + θ)

)
.

��
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To conclude, we relate separation distance of the up–down chain to separation
distance of the down–up chain.

Proposition 7.7 Let s∗
U Dn

(r) be the maximal separation distance after r iterations of
the down–up chain (with parameters θ > 0 and 0 ≤ α < 1) on the Kingman lattice,
and let s∗

DUn
(r) be the corresponding quantity for the up–down chain. Then

s∗
DUn

(r) = s∗
U Dn+1

(r + 1)

for all n ≥ 1, r ≥ 0.

Proof The method is the same as for Proposition 5.7. The eigenvalues of DUn are 1
and t j := 1 − j (θ+ j−1)

(n+1)(θ+n) (for 2 ≤ j ≤ n) yielding that

s∗
DUn

(r) =
n∑

j=2

(t j )
r

∏
k �= j

2≤k≤n

(
1 − tk
t j − tk

)
.

The eigenvalues of U Dn+1 are 1 and t j (for 2 ≤ j ≤ n + 1) yielding that

s∗
U Dn+1

(r + 1) =
n+1∑
j=2

(t j )
r+1

∏
k �= j

2≤k≤n+1

(
1 − tk
t j − tk

)
.

The result follows since tn+1 = 0. ��

8 Other examples

This section treats other examples to which the commutation relation methodology
applies. After discussing two classical examples (Bernoulli–Laplace models and sub-
space walks), we determine precise separation distance asymptotics for a non-standard
hypercube example.

We focus on the down–up chain but for readers interested in the up–down chain
mention the relation s∗

DUn
(r) = s∗

U Dn+1
(r + 1) (which is true for the same reasons

as in the Young and Kingman examples). This holds for all examples in this section
except for the subset walk on 
 n

2 � sets or the subspace walk on 
 n
2 � spaces (in these

exceptional cases the two chains have the same separation distance asymptotics).

8.1 Bernoulli–Laplace models

We analyze random walk on size j subsets of an n element set, where 0 < 2 j ≤ n.
From a subset S of size j , a step proceeds by first removing one of the j elements
uniformly at random, and then randomly adding in one of the n − j + 1 elements in
S − j . The stationary distribution is the uniform distribution on subsets of size j . This
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chain appears when analyzing the Bernoulli–Laplace model, in which there are two
urns, the left containing j red balls, the right containing n − j black balls, and at each
step a ball is picked uniformly at random in each urn, and the two balls are switched.

It will be useful to let P be the Boolean lattice of rank n; the elements of P are the
subsets of {1, . . . , n} and S ≤ T in the partial order if S ⊆ T . Letting U, D be the up
and down operators for this poset, Stanley [43] observed that

D j+1U j = U j−1 D j + (n − 2 j)I j ,

for 0 ≤ j ≤ n. For our purposes, it is more convenient to work with the normalized
operators

Ũ j = 1

n − j
U j , D̃ j = 1

j
D j .

Then the random walk on size j subsets of {1, . . . , n} is given by the operator Ũ D̃ j .
Stanley’s commutation relation becomes

D̃ j+1Ũ j = a j Ũ j−1 D̃ j + (1 − a j )I j

with a j = j (n− j+1)
( j+1)(n− j) .

As a consequence of Theorem 4.1, one obtains the eigenvalues of Ũ D̃ j . This goes
back at least to Karlin and McGregor [28].

Corollary 8.1 The eigenvalues of Ũ D̃ j are

{
1 multiplicity 1
1 − i(n−i+1)

j (n− j+1) multiplicity
(n

i

) − ( n
i−1

)
(1 ≤ i ≤ j)

Proposition 8.2 gives information about separation distance. The proof in [15] used
the theory of birth–death chains, and the fact that the Bernoulli–Laplace chain can be
reduced to a birth death chain (look at the number of red balls in the right urn). Our
proof uses commutation relations.

Proposition 8.2 [15] Consider the random walk Ũ D̃ j on size j subsets of {1, . . . , n}.
Let r be a non-negative integer, and let π be the uniform distribution on j element
subsets of {1, . . . , n}.
(1) The quantity (Ũ D̃)r [S,T ]

π(T ) is minimized (among pairs of j element subsets of
{1, . . . , n}) by any S, T such that S ∩ T = ∅.

(2)

s∗(r) = P(X > r),

where X is the sum of independent geometrics having parameters i(n−i+1)
j (n− j+1) for

1 ≤ i ≤ j .
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Proof Given a linear operator A : CP �→ CP , and subsets S, T of {1, . . . , n} of size
j , let A[S, T ] denote the coefficient of T in A(S). Proposition 4.5 gives that

(Ũ D̃)r [S, T ]
π(T )

=
j∑

k=0

A j (r, k)
Ũ k D̃k[S, T ]

π(T )
,

with all A j (r, k) ≥ 0. The first part of the proposition now follows from three obser-
vations:

• All terms in the sum are non-negative. Indeed, all A j (r, k) ≥ 0 and Ũ , D̃ were
defined probabilistically.

• If S ∩ T = ∅, then the summands for 0 ≤ k ≤ j − 1 all vanish. This is clear since
for such k, Ũ k D̃k[S, T ] = 0.

• The k = j summand is independent of both S and T . Indeed, D̃ j (S) = ∅ for
any S of size j , and Ũ j (∅) is uniformly distributed among the size j subsets of
{1, . . . , n}. Hence the k = j summand is equal to A j (r, j).

For the second part of the proposition, Corollary 8.1 gives that Ũ D̃ j has j+1 distinct
eigenvalues. Letting x = S, y = T where S ∩ T = ∅, one has that dist(x, y) = j .
The result now follows from Propositions 2.3 and 2.4. ��

In fact there is another proof of part 2 of Proposition 8.2 which uses only combi-
natorial properties of the sequence A j (r, j).

Proof (Second proof of part 2 of Proposition 8.2) The proof of part 1 of Proposition
8.2 gives that s∗(r) = 1 − A j (r, j), where A j (r, j) is defined in Proposition 4.5.
Letting [xn] f (x) denote the coefficient of xn in a power series f (x), Proposition 4.6
gives that

A j (r, j) = [xr ] x j ∏ j
i=1

( j−i+1)(n− j+i)
j (n− j+1)∏ j

i=1 1 − x
(

1 − ( j−i)(n− j+i+1)
j (n− j+1)

)

= [xr ] 1

1 − x

j∏
i=1

x ( j−i+1)(n− j+i)
j (n− j+1)

1 − x
(

1 − ( j−i+1)(n− j+i)
j (n− j+1)

)

= [xr ] 1

1 − x

j∏
i=1

x i(n−i+1)
j (n− j+1)

1 − x
(

1 − i(n−i+1)
j (n− j+1)

) .

The last step used the change of variables i �→ j + 1 − i .
Note that if Z is geometric with parameter p, then Z has probability generating

function

∑
i≥0

xi
P(Z = i) = xp

1 − x(1 − p)
.
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Thus A j (r, j) is the probability that the convolution of geometrics with parameters
i(n−i+1)
j (n− j+1) is at most r , and the result follows. ��

The asymptotic behavior of s∗(r) (in continuous time) is studied in detail in [17],
using a continuous time analog of part 2 of Proposition 8.2 (in which geometrics
are replaced by exponentials). A similar analysis can be carried out in discrete time.
For instance if j ≤ n

2 tends to infinity, there is a separation cutoff at time tn, j =
j (n− j)

n log( j). For information concerning convergence in the total variation metric,
see [3] or [18].

8.2 Subspace walks

This is a q-analog of the previous example. The random walk is on j-dimensional
subspaces of an n-dimensional vector space over a finite field Fq , where 0 < 2 j ≤ n.
From a j-dimensional subspace S, a step of the walk proceeds by first choosing
uniformly at random a j−1 dimensional subspace W contained in S, and then choosing
uniformly at random a j dimensional subspace T containing W .

Up to holding, this random walk is equivalent to the nearest neighbor walk on the
graph of j dimensional subspaces, where two subspaces are connected by an edge
if their intersection has dimension j − 1. As discussed in [3,13], the eigenvalues of
this walk are known and sharp total variation distance estimates can be obtained by
studying a related birth–death chain on {0, . . . , j}, which is just the associated graph
distance process.

To revisit this example using commutation relations, let P be the subspace lattice
of an n-dimensional vector space over a finite field Fq . Letting U, D be the up and
down operators for the poset P , Stanley [43] observed that

D j+1U j = U j−1 D j +
(

qn− j − 1

q − 1
− q j − 1

q − 1

)
I j ,

for 0 ≤ j ≤ n. For our purposes it is convenient to renormalize the operators as

Ũ j = q − 1

qn− j − 1
U j , D̃ j = q − 1

q j − 1
D j .

Then the random walk on j dimensional subspaces is given by Ũ D̃ j , and one checks
that the commutation relation becomes

D̃ j+1Ũ j = a j Ũ j−1 D̃ j + (1 − a j )I j

where a j = (qn− j+1−1)(q j −1)
(qn− j −1)(q j+1−1)

.
As an immediate consequence of this commutation relation and Theorem 4.1, one

obtains the eigenvalues of the subspace walk.
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Corollary 8.3 The eigenvalues of Ũ D̃ j are

{
1 multiplicity 1

1 − (qn−i+1−1)(qi −1)
(qn− j+1−1)(q j −1)

multiplicity
[ n

i

] − [ n
i−1

]
(1 ≤ i ≤ j)

Here
[ n

i

]
denotes the number of i-dimensional subspaces of an n-dimensional vector

space over Fq .

Proposition 8.4 gives a result about separation distance. This also follows from the
birth–death chain theory in [15].

Proposition 8.4 Consider the random walk Ũ D̃ j on j-dimensional subspaces of an
n dimensional vector space V over Fq . Let r be a non-negative integer, and let π be
the uniform distribution on j-dimensional subspaces of V .

(1) The quantity (Ũ D̃)r [S,T ]
π(T ) is minimized (among pairs of j dimensional subspaces

of V ) by any S, T such that S ∩ T = 0.
(2) One has that s∗(r) = P(X > r), where X is the sum of independent geometrics

with parameters (qn−i+1−1)(qi −1)
(qn− j+1−1)(q j −1)

, for 1 ≤ i ≤ j .

Proof The proof method for both parts is the same as for the proof of Proposition
8.2; one need only replace the word “subset” by “subspace” and the word “size” by
“dimension”. Note that the second proof of part of Proposition 8.2 also carries over to
the subspace setting. ��

Concerning the asymptotic behavior of s∗(r), we note that [17] gives results (in
the continuous time case), using an analog of part 2 of Proposition 8.4 in which
the geometrics are replaced by exponentials. Their method can be transferred to the
discrete time setting. For instance if j ≤ n

2 tends to infinity, there is a separation cutoff
at time tn, j = j .

8.3 Gibbs sampler for hypercube

The main object of study in this example is the birth–death chain on the set {0, 1, . . . , n}
with transition probabilities

K (x, x − 1) = x

n
(1 − p), K (x, x) = x

n
p +

(
1 − x

n

)
(1 − p)

K (x, x + 1) = p
(

1 − x

n

)
.

Here 0 < p < 1 and the stationary distribution of this chain is the p-binomial distri-
bution π(x) = (n

x

)
px (1 − p)n−x .

We remark that this Markov chain is the distance chain for the Gibbs sampler on
the hypercube, used to sample from the distribution in which a length n 0-1 vector
is assigned probability px (1 − p)n−x , where x is the number of 1s in the vector.
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For general p we have not seen this exact analyzed chain in the literature (though
possibly it has been studied). Different birth–death chains with the same stationary
distribution are studied as examples in [17]. Our birth–death chain has the property
that the eigenvalues are independent of p (see Corollary 8.6); the examples in [17] do
not.

To motivate the definition of up and down operators, we note that the birth–death
chain in this section is, in the terminology of Sect. 3, an example of a down–up Markov
chain. The poset we use is Pascal’s lattice: the vertices of the nth level are labeled by
pairs (x, n) where x = 0, 1, . . . , n. The only edges are (x, n) ↗ (x, n + 1) and
(x, n) ↗ (x + 1, n + 1), each with multiplicity 1. Then the dimension of the vertex
(x, n) is

(n
x

)
. One checks that the probability distributions Mn(x, n) = (n

x

)
px (1−p)n−x

are coherent with respect to Pascal’s lattice [29], and computes that the corresponding
up and down chains are given by

Un[(x, n)] = (1 − p) · (x, n + 1)+ p · (x + 1, n + 1)

Dn[(x, n)] =
(

1 − x

n

)
· (x, n − 1)+ x

n
· (x − 1, n − 1).

From this one sees that our birth–death chain is precisely the down–up chain U Dn on
Pascal’s lattice.

Proposition 8.5 Letting an = n
n+1 , one has that

Dn+1Un = anUn−1 Dn + (1 − an)In .

Proof This is straightforward to check from the definitions of U and D. ��
Corollary 8.6 determines the eigenvalues of the down–up walk on Pascal’s lattice.

It is curious that they are independent of p.

Corollary 8.6 The eigenvalues of U Dn are 1 − i
n with multiplicity 1, for 0 ≤ i ≤ n.

Proof This is immediate from Theorem 4.1 and Proposition 8.5. ��
Proposition 8.7 determines where the maximal separation distance is attained.

Proposition 8.7 Let π be the p-binomial distribution and let r be a non-negative
integer. The quantity (U D)r [(x,n),(y,n)]

π((y,n)) is minimized (among 0 ≤ x, y ≤ n) by x = 0,
y = n or x = n, y = 0.

Proof Given a linear operator B : CPn �→ CPn , let B[(x, n), (y, n)] denote the
coefficient of (y, n) in B(x, n). Proposition 4.5 gives that

(U D)r [(x, n), (y, n)]
π(y, n)

=
n∑

k=0

An(r, k)
U k Dk[(x, n), (y, n)]

π(y, n)
,

with all An(r, k) ≥ 0. The proposition now follows from three facts:
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• All terms in the sum are non-negative. Indeed, all An(r, k) ≥ 0 and U, D were
defined probabilistically.

• If x = 0, y = n or x = n, y = 0, the summands for 0 ≤ k ≤ n − 1 all vanish.
• The k = n summand is independent of both x and y. Indeed, Dn(x, n) = (0, 0)

and the coefficient of (y, n) in U n(0, 0) is π(y, n). So the k = n summand is
exactly An(r, n).

��
Finally, we determine the exact asymptotic behavior of s∗(r) for this example.

Proposition 8.8 Consider the random walk U Dn corresponding to the p-binomial
distribution. Let r be a non-negative integer.

(1) s∗(r) = P(X > r)where X is the sum of independent geometrics with parameters
i
n for 1 ≤ i ≤ n.

(2) s∗(r) = 1 − n!S(r,n)
nr where S(r, k) is a Stirling number of the second kind (i.e.

the number of partitions of an r set into k blocks).
(3) For c fixed in R and n → ∞,

s∗(n log(n)+ cn) = 1 − e−e−c + O

(
log(n)

n

)
.

Proof Proposition 8.7 gives that s∗(r) = 1 − (U D)r ((0,n),(y,n))
π(y,n) . By Corollary 8.6 the

chain has n+1 distinct eigenvalues. Hence the first assertion follows from Proposition
2.3 (with x = (0, n) and y = (n, n)), and Proposition 2.4.

For the second assertion, it follows from the proof of Propositions 8.7 and 4.5 that
s∗(r) = 1 − An(r, n) where An(r, k) satisfies the recurrence

An(r, k) = n − k + 1

n
An(r − 1, k − 1)+ k

n
An(r − 1, k)

with initial condition An(0,m) = δ0,m . It is straightforward to check that An(r, k) =
n!S(r,k)
nr (n−k)! solves the recurrence, using the recurrence for Stirling numbers

S(r, k) = S(r − 1, k − 1)+ kS(r − 1, k)

on page 33 of [41].
For the third assertion, it follows from the second assertion and the argument in part

2 of Theorem 5.5 that s∗(r) = 1 − P(n, r, n), where P(n, r, n) is the probability of n
occupied boxes when r balls are dropped into n boxes. The result now follows from
asymptotics of the coupon collector’s problem, as in the proof of Theorem 5.5. ��
Remark The waiting time for n boxes to all be occupied when balls are randomly
dropped into them one at a time is a convolution of independent geometrics with
parameters i

n for 1 ≤ i ≤ n. Thus part 3 of Proposition 8.8 can be proved without
using part 2 of Proposition 8.8. Our reason for using part 2 was to illustrate that one
can sometimes usefully solve the recursion for the combinatorially defined quantities
An(r, k).
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