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Abstract We prove a Bahadur representation for a residual-based estimator of the
innovation distribution function in a nonparametric autoregressive model. The resi-
duals are based on a local linear smoother for the autoregression function. Our result
implies a functional central limit theorem for the residual-based estimator.
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1 Introduction

Regression models are described by their regression function and their error distri-
bution, and possibly by their covariate distribution. The object of primary statistical

The research of A. Schick was supported in part by NSF Grant DMS0405791.

U. U. Müller
Department of Statistics, Texas A&M University, College Station, TX 77843-3143, USA
e-mail: uschi@stat.tamu.edu
URL: http://www.stat.tamu.edu/∼uschi/

A. Schick (B)
Department of Mathematical Sciences, Binghamton University, Binghamton, NY 13902-6000, USA
e-mail: anton@math.binghamton.edu
URL: math.binghamton.edu/anton/

W. Wefelmeyer
Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Cologne, Germany
e-mail: wefelm@math.uni-koeln.de
URL: www.mi.uni-koeln.de/∼wefelm/

123



54 U. U. Müller et al.

interest is the regression function. Estimators of the error distribution function are
however also of interest, in particular for tests about the regression function and for
prediction intervals about future observations. There is a large literature on estimating
error distribution functions, but it is nearly exclusively concerned with cases in which
the regression function is parametric, in particular with linear regression. We refer
to [12,21,22,24,29,36], and for increasing dimension to [30,35]. Analogous results
exist for autoregressive time series with parametric autoregression function, and for
related time series models. For AR(p) models see [8,23,26]. For ARMA, ARCH and
GARCH models we refer to [3,9,19,25,28]. See also Chapts. 7 and 8 in [24]. Empirical
distribution functions of powers of residuals are studied by [4,18,27].

In these papers, the (auto-)regression function (and volatility) depends on a finite-
dimensional parameter, which can be estimated at the root-n rate. If this function is
nonparametric, different arguments are needed to obtain a stochastic expansion and
hence the root-n rate and asymptotic normality for the residual-based empirical dis-
tribution function. For heteroscedastic nonparametric regression [2] give a functional
central limit theorem for a residual-based empirical distribution function; see also
[20]. A related result is in [10] who uses separate parts of the sample for estimating
the regression function and the error distribution function. Müller et al. [32] consider
the partly linear regression model Y = ϑ�U + �(X) + ε with error ε independent
of the covariate pair (U, X). They use a local linear smoother for the regression func-
tion � and get by with weaker assumptions on the error distribution and the covariate
distribution. In these results, the distribution of the covariate X is assumed to have
bounded support.

We expect the results for nonparametric regression to have counterparts in nonpara-
metric autoregression. Indeed [16] show that nonparametric autoregression is (locally)
asymptotically equivalent, in the sense of Le Cam’s deficiency distance, to certain non-
parametric regression models. Below we study a stationary and ergodic nonparametric
autoregressive model

Xt = r(Xt−1)+ εt , t ∈ Z,

with independent and identically distributed innovations εt , t ∈ Z. We obtain a sto-
chastic expansion (“Bahadur representation”) and a functional central limit theorem
for a residual-based empirical distribution function, using a local linear smoother for
the function r . We assume that the innovations εt have mean zero, finite variance σ 2

and a distribution function F with positive density f . Compared to regression, two
technical difficulties arise. One is that the observations are dependent. Another is that
for regression we could assume that X is bounded, but the analogous assumption for
the process Xt is ruled out by our requirement that f is positive.

We want to estimate F based on observations X0, X1, . . . , Xn of the autoregressive
process. For this we need an estimator r̂ of r . Then we can form the residuals ε̂ j =
X j − r̂(X j−1), j = 1, . . . , n. Typically, the performance of the estimator r̂(x)will be
poor for large values of x . For this reason we shall use only the residuals ε̂ j for which
X j−1 falls into an interval In = [an, bn] where −an and bn tend to infinity slowly.
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Estimating innovation distributions 55

We achieve this by using random weights

w̄ j = wnj
∑n

i=1wni
, j = 1, . . . , n

with wnj = wn(X j−1) based on a Lipschitz-continuous weight function wn that
vanishes off In , is 1 on [an + γ, bn − γ ] for some fixed small positive γ and is linear
on the intervals [an, an + γ ] and [bn − γ, bn]. Our estimator will be of the form

F̂(t) =
n∑

j=1

w̄ j 1[ε̂ j ≤ t], t ∈ R.

We shall compare this estimator with the empirical distribution function based on the
true innovations,

F(t) = 1

n

n∑

j=1

1[ε j ≤ t], t ∈ R.

We take r̂ to be a local linear smoother. Recall that, for a fixed x ∈ R, the local
linear smoother r̂ satisfies r̂(x) = β̂0, where (β̂0, β̂1) denotes a minimizer of

n∑

j=1

(

X j − β0 − β1
X j−1 − x

cn

)2

K

(
X j−1 − x

cn

)

.

Here cn is a bandwidth and K is a kernel.
We impose the following conditions on the density f and the regression function r .

(F) The density f is positive, has mean zero and a finite moment of order greater than
8/3, and is Hölder with exponent ξ greater than 1/3.

(R) The function r has a bounded second derivative and satisfies the growth condition
|r(x)| ≤ c|x | + d for some c < 1 and d < ∞.

Assumption (F) without positivity of f was already used in [32]. Positivity of f
plays a role in guaranteeing ergodicity of the process. Indeed, together with the growth
condition on r it guarantees geometric ergodicity of the autoregressive model. The
growth condition could be replaced by any other condition on r that implies geometric
ergodicity. Sufficient conditions for geometric ergodicity of nonlinear autoregressive
models are in [1,5,6].

The above assumptions also guarantee the existence of a stationary density g that
satisfies

g(y) =
∫

f (y − r(x))g(x) dx, y ∈ R. (1.1)

Thus positivity and the Hölder property of f carry over to g and guarantee that the
latter is bounded and bounded away from zero on each compact subset of R. This
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56 U. U. Müller et al.

conforms with the customary assumption in nonparametric regression, namely that
the covariate density is bounded and bounded away from zero on its compact support;
see [32].

We impose the following conditions on the kernel K and the intervals In .

(K) The kernel K is a three times continuously differentiable density with mean zero
and support [−1, 1].

(I) The interval In = [an, bn] is such that −an and bn tend to infinity slowly enough
so that log n inf x∈In g(x) stays bounded away from zero.

Assumption (I) is used to obtain uniform rates of convergence for r̂ on the inter-
vals In . This is analogous to [17] who proves uniform convergence rates for kernel
estimators based on dependent data. Finally, in view of the inequality

inf
x∈In

g(x)(bn − an) ≤
bn∫

an

g(x) dx ≤ 1,

it follows from (I) that bn − an = O(log n).

Theorem 1 Suppose (F), (R), (K ) and (I ) hold and cn ∼ (n log n)−1/4.
Then

sup
t∈R

∣
∣
∣
∣
∣
∣
F̂(t)− F(t)− f (t)

1

n

n∑

j=1

ε j

∣
∣
∣
∣
∣
∣
= op(n

−1/2).

In view of the differentiability assumptions on r , an optimal choice of bandwidth for
r̂ would be proportional to n−1/5. Thus the present choice of bandwidth results in an
undersmoothed estimator of r . Undersmoothing is needed in our proofs to guarantee
that the bias is asymptotically negligible which amounts to the requirement nc4

n → 0
on the bandwidth. The choice of bandwidth in the theorem is made to accomplish
this and to make the bandwidth basically as large as possible. Actually, the choice
cn ∼ n−1/4 log−γ n works for any positive γ . We have taken γ = 1/4 for notational
simplicity.

We set X = X0 and ε = ε1. By Theorem 1,

sup
t∈R

∣
∣
∣
∣
∣
∣
F̂(t)− F(t)− 1

n

n∑

j=1

(
1[ε j ≤ t] − F(t)+ f (t)ε j

)
∣
∣
∣
∣
∣
∣
= op(n

−1/2).

The terms 1[ε j ≤ t]− F(t)+ f (t)ε j in this Bahadur representation of F̂(t)− F(t) are
martingale increments, and the density f is bounded under assumption (F). Hence by
Corollary 7.7.1 of [24], the residual-based empirical process n1/2(F̂ − F) converges
weakly in D[−∞,∞] to a centered Gaussian process with covariance function

(s, t) �→ F(s ∧ t)− F(s)F(t)+ f (s)c(t)+ f (t)c(s)+ f (s) f (t)σ 2,
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Estimating innovation distributions 57

where

c(t) =
t∫

−∞
x f (x) dx

is the mean of ε1[ε ≤ t].
Paradoxically, the asymptotic variance

F(t)(1 − F(t))+ 2 f (t)c(t)+ f 2(t)σ 2

of the residual-based weighted empirical distribution function F̂(t) can be smaller
than the asymptotic variance F(t)(1 − F(t)) of the empirical distribution function
F(t) based on the unobserved innovations. The explanation is that F(t) does not make
use of the assumption that the innovations have mean zero, while the linear smoother r̂
used for the residuals exploits this information (as do other nonparametric estimators
for the autoregression function). For nonparametric regression, a similar observation
is made in [31].

The estimator F̂(t) is efficient. Efficiency can be proved similarly as for nonpara-
metric regression in [31].

A result along the lines of Theorem 1 can be proved for higher lag nonparametric
regression. This requires additional smoothness of the underlying regression function r
of several variables and the use of appropriate multivariate local polynomial smoothers.
We will pursue this somewhere else.

Note that the conclusions of Theorem 1 remain valid if we replace the endpoints
of In by data-driven versions which take only finitely many values with high pro-
bability. This can be achieved by choosing In = [an, bn] at random from a col-
lection In = {[a, b] : a < b, a, b ∈ Gn} of intervals with Gn = {kη : k =
0, 1,−1, 2,−2, . . . , |ηk| ≤ C log n} for some small positive η and some constant C .
For this let

ĝ(x) = 1

ncn

n∑

j=1

K

(
X j − x

cn

)

, x ∈ R,

be a kernel density estimator of g. Under the assumptions of Theorem 1 we have

sup
|x |≤C log n

|ĝ(x)− g(x)| = op(n
−1/12);

see (3.1) and (3.2) below with i = 0. Now we can choose In as the interval with largest
length among the intervals I in In with log n inf x∈I ĝ(x) > η.

The remainder of the paper is organized as follows. Section 2 describes some
possible applications of Theorem 1. A proof of this theorem is presented in Sect. 3.
Technical details needed in the proof are provided in Sects. 4 and 5.
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2 Applications

In this section we describe some applications of residual-based empirical distribution
functions. These applications have versions in nonparametric regression and have been
extensively studied there.

Quantile functions. By Proposition 1 of [15] on compact differentiability of quantile
functions we obtain from Theorem 1 the following uniform stochastic expansion for
the residual-based empirical quantile function. For 0 < α < β < 1,

sup
α≤u≤β

∣
∣
∣
∣
∣
∣
F̂

−1(u)− F−1(u)+ 1

n

n∑

j=1

(
1[ε j ≤ F−1(u)] − u

f (F−1(u))
+ ε j

)
∣
∣
∣
∣
∣
∣
= op(n

−1/2).

Prediction intervals. A predictor for Xn+1 is r̂(Xn). By the above result on the
quantile function, the probability that Xn+1 lies in the prediction interval [r̂(Xn) +
F̂

−1(α/2), r̂(Xn)+ F̂
−1(1 − α/2)] converges to 1 − α. For a related result in nonpa-

rametric (and heteroscedastic) regression see [2].

Goodness-of-fit tests for the innovation distribution. In order to test for a specific
form of the innovation distribution function F , we can use, e.g. the Kolmogorov–
Smirnov statistic

n1/2 sup
t∈R

|F̂(t)− F(t)|

or the Cramér–von Mises statistic

n
∫

(F̂(t)− F(t))2dF̂(t).

Similarly, tests for parametric models Fϑ can be based, e.g. on

n1/2 sup
t∈R

|F̂(t)− F
ϑ̂
(t)|

or

n
∫

(F̂(t)− F
ϑ̂
(t))2dF̂(t)

for some estimator ϑ̂ , for example the residual-based maximum likelihood estimator.

Goodness-of-fit tests for the autoregression function. Suppose we want to test
the null hypothesis that we have a parametric form r = rϑ for the autoregres-
sion function. Let ϑ̂ denote the least squares estimator for ϑ , i.e. a minimizer of∑n

j=1(X j − rϑ(X j−1))
2. Let ε̂0 j = X j − r

ϑ̂
(X j−1) denote the residuals under the

null hypothesis, and let F̂0(t) = (1/n)
∑n

j=1 1[ε̂0 j ≤ t] denote the corresponding
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Estimating innovation distributions 59

empirical distribution function. We can then base a test for the null hypothesis on the
Kolmogorov–Smirnov statistic

n1/2 sup
t∈R

|F̂(t)− F̂0(t)|

or the Cramér–von Mises statistic

n
∫

(F̂(t)− F̂0(t))
2dF̂(t).

For a related approach in (heteroscedastic) regression see [38].
For other applications of residual-based empirical distribution functions we refer

to [11,13,33,34].

3 Proof of Theorem 1

In this section we give the proof of our theorem. We will make repeated use of the
following exponential inequality for martingales in [14].

Lemma 1 Let Y1, . . . ,Yn be a sequence of martingale increments (with respect to a
filtration F0, . . . ,Fn) bounded by c. Set Sn = ∑n

j=1 Y j and Tn = ∑n
j=1 E(Y 2

j |F j−1).
Then for positive s and t one has

P(Sn ≥ s, Tn ≤ t) ≤ exp

(

− s2

2sc + 2t

)

.

Throughout we assume that the assumptions of Theorem 1 are met. These imply
that the innovation density f is bounded:

‖ f ‖∞ = sup
t∈R

f (t) < ∞.

The stationary density g of our nonparametric autoregression model can and will be
chosen to satisfy (1.1) and is hence positive, bounded and Hölder with exponent ξ .
For a continuous function h on R and an interval I we let

‖h‖I = sup
x∈I

|h(x)|.

We begin by studying the behavior of the local linear smoother on the interval In . To
this end we introduce for a non-negative integer i the function Ki by Ki (u) = ui K (u)
and the random functions p̂i and q̂i by

p̂i (x) = 1

ncn

n∑

j=1

Ki

(
X j−1 − x

cn

)

, x ∈ R,
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60 U. U. Müller et al.

and

q̂i (x) = 1

ncn

n∑

j=1

X j Ki

(
X j−1 − x

cn

)

, x ∈ R.

It is easy to check that on the event { p̂2(x) p̂0(x)− p̂2
1(x) > 0} we have the identity

r̂(x) = p̂2(x)q̂0(x)− p̂1(x)q̂1(x)

p̂2 p̂0(x)− p̂2
1(x)

.

By the properties of f and K , we obtain from Lemmas 3 and 4 in Sect. 4 and the
choice of bandwidth that

sup
x∈In

∣
∣ p̂i (x)− E[ p̂i (x)]

∣
∣ = Op(n

−1/3), i = 0, 1, 2, . . . (3.1)

Let us now set

λi =
∫

Ki (u) du =
∫

ui K (u) du, i = 0, 1, 2, . . .

Since the density g is Hölder with exponent ξ and the kernel K has compact support,
we obtain in view of the identity

p̄i (x) = E[ p̂i (x)] =
∫

g(x − cnu)ui K (u) du, x ∈ R,

that

sup
x∈R

∣
∣E[ p̂i (x)] − λi g(x)

∣
∣ = O(cξn), i = 0, 1, 2, . . . (3.2)

It follows from (I), (3.1) and (3.2) that

‖ p̂i/g − λi‖In + ‖ p̄i/g − λi‖In = op(n
−1/12), i = 0, 1, 2, . . . (3.3)

As K is a density with mean zero, we have λ0 = 1, λ1 = 0 and λ2 > 0 and obtain

‖ p̂2 p̂0 − p̂2
1 − λ2g2‖In = op(n

−1/12).

Since log n inf x∈In g(x) is bounded away from zero and λ2 is positive, there exists an
α > 0 such that

P

(

log2 n inf
x∈In

∣
∣
∣ p̂2(x) p̂0(x)− p̂2

1(x)
∣
∣
∣ > α

)

→ 1. (3.4)
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Estimating innovation distributions 61

We can write q̂i = Ai + Bi , where

Ai (x) = 1

ncn

n∑

j=1

ε j Ki

(
X j−1 − x

cn

)

, x ∈ R,

and

Bi (x) = 1

ncn

n∑

j=1

r(X j−1)Ki

(
X j−1 − x

cn

)

, x ∈ R.

Since r has a bounded second derivative, a Taylor expansion shows that

‖(Bi − r p̂i − r ′cn p̂i+1)/g‖In ≤ sup
x∈R

|r ′′(x)|c2
n‖ p̂0/g‖In = Op(c

2
n). (3.5)

It follows from Lemma 5 in Sect. 4 that

‖Ai‖In = Op(n
−3/8 log5/8 n), i = 0, 1. (3.6)

Relations (3.1)–(3.6) imply that

�̂ = r̂ − r = û + v̂,

where

v̂(x) = p̄2(x)A0(x)− p̄1(x)A1(x)

p̄2(x) p̄0(x)− p̄2
1(x)

, x ∈ R, (3.7)

and

‖û‖In = Op((n log n)−1/2). (3.8)

Since K is three times continuously differentiable, so are p̄i and Ai . From Lemma 5
in Sect. 4 we derive the following rates for the derivatives of Ai ,

∥
∥
∥A(ν)i

∥
∥
∥ = O

(
c−ν

n n−3/8 log5/8 n
)
, ν = 0, 1, 2.

As K ′
i integrates to zero, we can write

cn p̄′
i (x) =

∫

g(x − cnu)K ′
i (u) du =

∫

(g(x − cnu)− g(x))K ′
i (u) du

and obtain ‖cn p̄′
i/g‖In = O(cξn log n) by (I) and the Hölder property of g. Simi-

larly one verifies ‖c2
n p̄′′

i /g‖In = O(cξn log n). By (3.3) we have ‖ p̄i/g‖In = O(1).
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We derive that si = p̄2−i/( p̄2 p̄0 − p̄2
1) satisfies

‖si‖In = O(log n), ‖cns′
i‖In = o(1) and ‖c2

ns′′
i ‖In = o(1), i = 0, 1.

As v̂ = s0 A0 − s1 A1, we conclude that

‖v̂‖In = op(n
−3/8 log2 n), (3.9)

‖v̂′‖In = op(n
−1/8 log2 n), (3.10)

‖v̂′′‖In = op(n
1/8 log3 n). (3.11)

Moreover, it follows from Lemma 6 that

1

n

n∑

j=1

wnj v̂(X j−1) = 1

n

n∑

j=1

ε j + op(n
−1/2). (3.12)

Let Fw denote the weighted empirical distribution function based on the unobserved
innovations, defined by

Fw(t) =
n∑

j=1

w̄ j 1[ε j ≤ t], t ∈ R.

It is easy to check that

sup
t∈R

|Fw(t)− F(t)| = op(n
−1/2)

and

W̄ = 1

n

n∑

j=1

wnj = 1 + op(1).

We have the identity

W̄
(
F̂(t)− Fw(t)

)
= H(t, �̂)− H(t, 0)+ B(t, �̂),

where

B(t,�) = 1

n

n∑

j=1

wnj
(
F(t +�(X j−1))− F(t)

)

and

H(t,�) = 1

n

n∑

j=1

wnj
(
1[ε j ≤ t +�(X j−1)] − F(t +�(X j−1))

)
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Estimating innovation distributions 63

for t in R and� in C(R), the set of continuous functions from R to R. As f is Hölder
of order ξ greater than 1/3, we derive

sup
t∈R

∣
∣
∣
∣
∣
∣
B(t, �̂)− f (t)

1

n

n∑

j=1

wnj �̂(X j−1)

∣
∣
∣
∣
∣
∣
≤ 1

n

n∑

j=1

wnj L|�̂(X j−1)|1+ξ ,

where L is the Hölder constant of f . In view of this, relations (3.8), (3.9) and (3.12)
yield

sup
t∈R

∣
∣
∣
∣
∣
∣
B(t, �̂)− f (t)

1

n

n∑

j=1

ε j

∣
∣
∣
∣
∣
∣
= op(n

−1/2).

Thus we are left to show that

sup
t∈R

∣
∣
∣H(t, �̂)− H(t, 0)

∣
∣
∣ = op(n

−1/2).

Since the innovations have a finite second moment, we have

max
1≤ j≤n

|ε j | = op(n
1/2).

Since ‖�̂‖In = op(1), the probability of the event

{

max
1≤ j≤n

|ε j | ≤ n1/2 − 1

}

∩ {‖�̂‖In < 1}

tends to one. On this event we have

sup
|t |>n1/2

|H(t, �̂)− H(t, 0)| = sup
|t |>n1/2

B(t, �̂)

≤ 2F(1 − n1/2)+ 2(1 − F(n1/2 − 1)).

Since F has a finite second moment, we have F(t) = o(t−2) as t → −∞ and
1 − F(t) = o(t−2) as t → ∞. This shows that

sup
|t |>n1/2

|H(t, �̂)− H(t, 0)| = op(n
−1).

Now fix a δ in the interval (1/3, 1/2). For an interval I , let C1+δ
1 (I ) be the set of

differentiable functions h on R that satisfy ‖h‖I,δ ≤ 1 where

‖h‖I,δ = ‖h‖I + ‖h′‖I + sup
x,y∈I,x =y

|h′(x)− h′(y)|
|y − x |δ .
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64 U. U. Müller et al.

It follows from (3.9)–(3.11) that v̂ belongs to C1+δ
1 (In) with probability tending to 1.

Indeed from (3.10) we obtain

sup
x,y∈In ,|y−x |>n−1/4

|v̂′(x)− v̂′(y)|
|y − x |δ ≤ 2nδ/4‖v̂′‖In = op(n

−1/8+δ/4 log2 n),

and from (3.11) we obtain

sup
x,y∈In ,|y−x |≤n−1/4

|v̂′(x)− v̂′(y)|
|y − x |δ ≤ n−(1−δ)/4‖v̂′′‖I = op(n

−1/8+δ/4 log3 n).

Since −1/8 + δ/4 < 0 by choice of δ, the above and relations (3.9) and (3.10) yield
that

‖v̂‖In ,δ = op(1). (3.13)

Now let Dn = {u + v : u ∈ Un, v ∈ Vn}, where

Un = {h ∈ C(R) : ‖h‖In ≤ n−1/2 log−1/4 n},
Vn = {h ∈ C1+δ

1 (In) : ‖h‖In ≤ n−3/8 log2 n}.

By (3.8), û belongs to Un with probability tending to one; by (3.9) and (3.13), v̂
belongs to Vn with probability tending to one. This shows that �̂ belongs to Dn with
probability tending to one. In view of this we are left to show

sup
|t |≤n1/2,�∈Dn

|H(t,�)− H(t, 0)| = op(n
−1/2). (3.14)

To this end set ηn = n−1/2 log−1/4 n. Let t1, . . . , tMn be an ηn-net of [−n1/2, n1/2],
and let v1, . . . , vNn denote an ηn-net for Vn for the pseudo-norm ‖·‖In . We can choose
the former net such that

Mn ≤ 2 + n log1/4 n, (3.15)

while we can take the latter net such that

Nn ≤ exp
(

K∗(2 + bn − an)(n log1/2 n)1/(2+2δ)
)

(3.16)

for some constant K∗; see Theorem 2.7.1 in [37]. Note also that v1, . . . , vNn is an
2ηn-net for Dn . We have

sup
|t |≤n1/2,�∈Dn

|H(t,�)− H(t, 0)| ≤ max
i,l

|H(ti , vl)− H(ti , 0)| + max
i,l

Di,l ,
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where

Di,l = sup
|t−ti |≤ηn ,‖�−vl‖In ≤2ηn

(|H(t,�)− H(ti , vl)| + |H(t, 0)− H(ti , 0)|) .

For |t − ti | ≤ ηn and ‖�− vl‖In ≤ 2ηn we have

1[y ≤ ti − 3ηn + vl(x)] ≤ 1[y ≤ t +�(x)] ≤ 1[y ≤ ti + 3ηn + vl(x)]

and

F(ti − 3ηn + vl(x)) ≤ F(t +�(x)) ≤ F(ti + 3ηn + vl(x))

for all y ∈ R and x ∈ In and thus obtain

|H(t,�)− H(ti , vl)| ≤ H(ti + 3ηn, vl)− H(ti − 3ηn, vl)+ 2Ri,l

with

Ri,l = 1

n

n∑

j=1

wnj
(
F(ti + 3ηn + vl(X j−1))− F(ti − 3ηn + vl(X j−1))

)

≤ 6‖ f ‖∞ηn .

Similarly, we derive the bound

|H(t, 0)− H(ti , 0)| ≤ H(ti + ηn, 0)− H(ti − ηn, 0)+ 4‖ f ‖∞ηn .

Thus we have the following bound:

sup
|t |≤n1/2,�∈Dn

|H(t,�)− H(t, 0)| ≤ T1 + T2 + T3 + 16‖ f ‖∞ηn,

where

T1 = max
i,l

|H(ti , vl)− H(ti , 0)|,
T2 = max

i,l
H(ti + 3ηn, vl)− H(ti − 3ηn, vl),

T3 = max
i,l

H(ti + ηn, 0)− H(ti − ηn, 0).

To continue we need the following lemma which follows from a simple application
of Freedman’s inequality.

Lemma 2 Let s, t be real numbers and u and v be continuous functions. Then, for
every β > 0 and every α ≥ |t − s| + ‖u − v‖In , we have
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P(|H(s, u)− H(t, v)| > βn−1/2) ≤ 2 exp

(

− β2n

4βn1/2 + 2nα‖ f ‖∞

)

.

Proof We apply Lemma 1 with

Y j = wnj
(
1[ε j ≤ s + u(X j−1)] − 1[ε j ≤ t + v(X j−1)]

−F(s + u(X j−1))+ F(t + v(X j−1))
)
.

We have |Y j | ≤ 2, E(Y j |X0, . . . , X j−1) = 0 and

Vn =
n∑

j=1

E(Y 2
j |X0, . . . , X j−1) ≤

n∑

j=1

wnj
∣
∣F(s + u(X j−1)− F(t + v(X j−1)

∣
∣

≤ n‖ f ‖∞(|t − s| + ‖u − v‖In ) ≤ nα‖ f ‖∞.

Since

P(|H(s, u)− H(t, v)| > βn−1/2) = P

⎛

⎝

∣
∣
∣
∣
∣
∣

n∑

j=1

Y j

∣
∣
∣
∣
∣
∣
> βn1/2, Vn ≤ n‖ f ‖∞α

⎞

⎠ ,

the desired result follows from an application of Lemma 1. ��
Note that ‖vl‖In ≤ n−3/8 log2 n + ηn . Thus we obtain from Lemma 2 that

P(T1 > βn−1/2) ≤
∑

i,l

P(|H(ti , vl)− H(ti , 0)| > βn−1/2)

≤ 2Mn Nn exp

(

− β2n

4βn1/2 + 2n‖ f ‖∞(n−3/8 log2 n + ηn)

)

.

Similarly,

P(T2 > βn−1/2) ≤ 2Mn Nn exp

(

− β2n

4βn1/2 + 12n‖ f ‖∞ηn

)

and

P(T3 > βn−1/2) ≤ 2Mn Nn exp

(

− β2n

4βn1/2 + 4n‖ f ‖∞ηn

)

.

As 1/(2 + 2δ) < 3/8, we obtain from the above and from relations (3.15) and (3.16)
and the fact that bn − an = O(log n) that

P(Ti > βn−1/2) → 0, i = 1, 2, 3, β > 0.

This completes the proof of (3.14) and hence the proof of Theorem 1.
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4 Technical details

Let v be a measurable function and cn a sequence of bandwidths. Let t1, t2, . . . be
measurable functions which are bounded by the same constant B. In this section we
study the behavior of the processes

T̂n(x) = 1

ncn

n∑

j=1

tn(X j )v

(
X j − x

cn

)

, x ∈ R, (4.1)

and

Un(x) = 1

ncn

n∑

j=1

ε jv

(
X j−1 − x

cn

)

, x ∈ R, (4.2)

on the interval In . For this we will use the following result.

Proposition 1 For each x in R, let hnx be a bounded and measurable function from
R

2 into R such that

E(hnx (X0, X1)|X0) = 0. (4.3)

Suppose there are positive numbers κ1, κ2 and C such that

sup
x∈In

|hnx (X0, X1)| ≤ C/ log n, (4.4)

P

⎛

⎝sup
x∈In

n∑

j=1

E(h2
nx (X j−1, X j )|X j−1) > C/ log n

⎞

⎠ → 0, (4.5)

|hny(X0, X1)− hnx (X0, X1)| ≤ Cnκ2 |y − x |κ1 , x, y ∈ R. (4.6)

Then there is a constant A such that

P

⎛

⎝sup
x∈In

∣
∣
∣
∣
∣
∣

n∑

j=1

hnx (X j−1, X j )

∣
∣
∣
∣
∣
∣
> A

⎞

⎠ → 0. (4.7)

Proof Let us set D j (x) = hnx (X j−1, X j ). Then Mn(x) = ∑n
j=1 D j (x) is a sum of

martingale differences with |D j (x)| ≤ C/ log n. Set Wn(x) = ∑n
j=1 E(D2

j (x)|X j−1).
It follows from Lemma 1 that

P

(

|Mn(x)| ≥ η, Wn(x) ≤ C

log n

)

≤ 2 exp

(

− η2 log n

2(1 + η)C

)

, η > 0.
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Now let xnk = an + k(bn − an)n−m for k = 0, 1, . . . , nm , with m an integer greater
than (1 + κ2)/κ1. We have

sup
x∈In

|Mn(x)| ≤ max
k=0,...,nm

|Mn(xnk)| + Qn,

where, in view of (4.6),

Qn = max
k=0,...,nm

sup
|x−xnk |≤(bn−an)n−m

|Mn(x)− Mn(xnk)|

≤ Cn1+κ2(bn − an)
κ1n−mκ1 → 0.

Now consider the events

An =
{

max
k=0,...,nm

|Mn(xnk)| > 1 + 2(m + 2)C

}

and

Bn =
{

sup
x∈In

Wn(x) ≤ C

log n

}

.

The above yields, with η = 1 + 2(m + 2)C ,

P(An) ≤ P(Bc
n)+ P(An ∩ Bn)

≤ P(Bc
n)+

nm
∑

k=0

P

(

|Mn(xnk)| > η, Wn(xnk) ≤ C

log n

)

≤ P(Bc
n)+ 2(1 + nm) exp

(

− (η − 1) log n

2C

)

= o(1).

Thus the desired result (4.7) holds with A = 2 + 2C(m + 2). ��
Let us now compare T̂n with T̃n , where

T̃n(x) = 1

ncn

n∑

j=1

E

(

tn(X j )v

(
X j − x

cn

) ∣
∣
∣X j−1

)

, x ∈ R.

Lemma 3 Suppose f is bounded and v is integrable and Lipschitz. Let cn → 0 and
ncn/ log n → ∞. Then

sup
x∈In

|T̂n(x)− T̃n(x)| = Op

((
log n

ncn

)1/2
)

.
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Proof We apply Proposition 1 with

hnx (X0, X1) = 1

sn

(

tn(X1)v

(
X1 − x

cn

)

− E

(

tn(X1)v

(
X1 − x

cn

) ∣
∣
∣X0

))

,

where sn = (ncn log n)1/2. Assumption (4.3) holds by construction. In order to show
(4.4) note that the assumptions on v imply that v is bounded and square-integrable.
We have

sup
x∈In

|hnx (X0, X1)| ≤ 2B‖v||∞√
ncn log n

.

This is of the desired order O(1/ log n) since log n/(ncn) → 0 by assumption. Next,
we have

n∑

j=1

E(h2
nx (X j , X j−1)|X j−1) ≤ B2

s2
n

n∑

j=1

E

(

v2
(

X j − x

cn

) ∣
∣
∣X j−1

)

, x ∈ R.

This yields the desired (4.5) in view of n/s2
n = 1/(cn log n), stationarity, and the bound

1

cn
E

(

v2
(

X1 − x

cn

) ∣
∣
∣X0

)

=
∫

1

cn
v2

(
y + r(X0)− x

cn

)

f (y) dy

=
∫

v2(u) f (x − r(X0)+ cnu) du

≤ ‖ f ‖∞
∫

v2(u) du.

Finally, relation (4.6) follows with κ1 = κ2 = 1 from the bound

|hny(X0, X1)− hnx (X0, X1)| ≤ 2B

sn
sup
z∈R

∣
∣
∣
∣v

(
z − y

cn

)

− v

(
z − x

cn

)∣
∣
∣
∣

≤ 2B�

sncn
|y − x |,

where � is the Lipschitz constant of v, and the fact that ncnsn → ∞. ��
Lemma 4 Suppose f is bounded and v is integrable and has a bounded derivative
v′ such that the integral V = ∫

(1 + |u|)|v′(u)| du is finite. Suppose the functions
t0 = f, t1, t2, . . . satisfy

|tm(y)− tm(x)| ≤ Hm |y − x |ξ0 , x, y ∈ R,m = 0, 1, 2 . . . ,

for some exponent ξ0, 0 ≤ ξ0 ≤ 1. Then

sup
x∈In

|T̃n(x)− E(T̃n(x))| = Op

(
(H0 + Hn)(bn − an)n

−1/2cξ0−1
n

)
.
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Proof For s ∈ R, let us define the function φn,s by

φn,s(x) = tn(x) f (x − s), x ∈ R.

By the properties of f and tn , the functions φn,s are bounded by B‖ f ‖∞ and Hölder
with exponent ξ0 and constant �n = B H0 + ‖ f ‖∞Hn ,

|φn,s(x)− φn,s(y)| ≤ �n|x − y|ξ0 . (4.8)

It is easy to see that

T̃n(x) = 1

n

n∑

j=1

ψn,r(X j−1)(x), x ∈ R,

where

ψn,s(x) =
∫

1

cn
v

(
y − x

cn

)

φn,s(y) dy =
∫

φn,s(x + cnu)v(u) du, x ∈ R.

By the properties of v, the functions ψn,s are bounded by B‖ f ‖∞‖v‖1 and differen-
tiable with derivatives

ψ ′
n,s(x) = − 1

cn

∫

φn,s(x + cnu)v′(u) du, x ∈ R.

In view of
∫
v′(u) du = 0 we obtain

ψ ′
n,s(x) = − 1

cn

∫

(φn,s(x + cnu)− φn,s(x))v
′(u) du, x ∈ R.

Thus (4.8) implies that

|ψ ′
n,s(x)| ≤ �ncξ0−1

n

∫

|u|ξ0 |v′(u)| du, x ∈ R.

Hence the functions ψn,s are Lipschitz with constant Ln = V�ncξ0−1
n .

Since the autoregressive process is geometrically ergodic, there is a constant D
such that

Var

⎛

⎝n−1/2
n∑

j=1

h(X j )

⎞

⎠ ≤ D‖h‖2∞

for every bounded measurable function h. Since

|ψn,r(y)(s)− ψn,r(y)(t))| ≤ Ln|s − t |, s, t, y ∈ R,
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we obtain that

Var
(

n1/2(T̃n(s)− T̃n(t))
)

≤ DL2
n(s − t)2, s, t ∈ In . (4.9)

Thus it follows from Theorem 12.3 in [7] that the sequence of C([0, 1])-valued pro-
cesses

n1/2

Ln(bn − an)

(
T̃n(an + (bn − an)x)− E[T̃n(an + (bn − an)x)]

)
, 0 ≤ x ≤ 1

is tight. This is the desired result. ��
Lemma 5 Suppose the function v is as in Lemma 4. Let f be bounded and have a
finite moment of order β > 2. Let cn → 0, n1/2cn/ log n → ∞ and c−1

n n−1+2/β log n
be bounded. Then

sup
x∈In

|Un(x)| = Op

((
log n

ncn

)1/2
)

.

Proof Let sn = (ncn log n)1/2. Define

Rnj (x) = 1

sn

(
ε j 1

[
|ε j | ≤ n1/β

]
− E

[
ε j 1

[
|ε j | ≤ n1/β

]])
v

(
X j−1 − x

cn

)

,

Snj (x) = 1

sn
ε j 1

[
|ε j | > n1/β

]
v

(
X j−1 − x

cn

)

,

S̄n j (x) = 1

sn
E

[
ε j 1

[
|ε j | > n1/β

]]
v

(
X j−1 − x

cn

)

.

Since ε has mean zero, it suffices to show that

sup
x∈In

∣
∣
∣
∣
∣
∣

n∑

j=1

Rnj (x)

∣
∣
∣
∣
∣
∣
= Op(1), (4.10)

sup
x∈In

∣
∣
∣
∣
∣
∣

n∑

j=1

Snj (x)

∣
∣
∣
∣
∣
∣
= op(1), (4.11)

sup
x∈In

∣
∣
∣
∣
∣
∣

n∑

j=1

S̄n j (x)

∣
∣
∣
∣
∣
∣
= op(1). (4.12)

We have

P

(

max
1≤ j≤n

|ε j | > n1/β
)

≤
n∑

j=1

P(|ε j | > n1/β) ≤ E
[
|ε|β1

[
|ε| > n1/β

]]
→ 0
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and thus

P

⎛

⎝sup
x∈In

∣
∣
∣
∣
∣
∣

n∑

j=1

Snj (x)

∣
∣
∣
∣
∣
∣
> 0

⎞

⎠ ≤ P

(

max
1≤ j≤n

|ε j | > n1/β
)

→ 0.

The assumptions on v imply that v is bounded, say by B. Hence we also have

sup
x∈In

∣
∣
∣
∣
∣
∣

n∑

j=1

S̄n j (x)

∣
∣
∣
∣
∣
∣
≤ nB

sn
E

[
ε1

[
|ε| > n1/β

]]

≤ E
[
|ε|β1

[
|ε| > n1/β

]] nB

snn(β−1)/β

= o
(

n1/βs−1
n

)
= o

((
n−1+2/βc−1

n log−1 n
)1/2

)

= o

(
1

log n

)

.

To show (4.10) we apply Proposition 1 with hnx (X j−1, X j ) = Rnj (x). We have

sup
x∈In

|hnx (X0, X1)| ≤ 2Bn1/β

sn
= O

(
1

log n

)

.

Next, for x in R, we have

n∑

j=1

E
(

h2
nx (X j−1, X j )|X j−1

)
≤ σ 2

log n
Hn(x) (4.13)

with

Hn(x) = 1

ncn

n∑

j=1

v2
(

X j−1 − x

cn

)

.

Note that v2 inherits the properties imposed on v. Thus Lemmas 3 and 4, applied with
v2 in place of v and with ξ0 = 0, yield

sup
x∈In

|Hn(x)− E[Hn(x)]| = op(1).

Finally,

E[Hn(x)] ≤ ‖ f ‖∞
∫

v2(u) du, x ∈ R.
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This shows that P(supx∈In
Hn(x) > C) → 0 for large enough C . This yields (4.5) in

view of (4.13).
Since v is Lipschitz for some constant �, we obtain

|hny(X0, X1)− hnx (X0, X1)| ≤ 2�n1/β

sncn
|y − x | ≤ Cn|y − x |.

Thus the assumptions of the Proposition 1 hold, and we obtain (4.10). ��

5 Proof of (3.12)

In this section we provide the proof of (3.12). More precisely, we prove the following
lemma.

Lemma 6 Suppose (F), (R), (K ) and (I ) hold and cn ∼ (n log n)−1/4. Then (3.12)
holds.

Proof Let us set

si (x) = p̄2−i (x)

p̄2(x) p̄0(x)− p̄2
1(x)

, x ∈ R, i = 0, 1.

Then we can write v̂ = s0 A0 − s1 A1. Changing the order of summation leads to the
identity

1

n

n∑

j=1

wnj v̂(X j−1) = 1

n

n∑

k=1

εk ĥ(Xk−1)

with ĥ = ĥ0 − ĥ1, where for i = 0, 1 and x ∈ R,

ĥi (x) = 1

ncn

n∑

j=1

wn(X j−1)si (X j−1)Ki

(
x − X j−1

cn

)

.

Let h̄n(x) = E[ĥ(x)]. We calculate

h̄n(x) =
∫

wn(x − cnu)g(x − cnu) (s0(x − cnu)− us1(x − cnu)) K (u) du.

It follows from (3.3) that

sup
x∈In

|g(x)s0(x)− 1| = o(n−1/12) and sup
x∈In

|g(x)s1(x)| = o(n−1/12).
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Using these properties it is easy to verify that E[(h̄n(X)− 1)2] → 0. Therefore

1

n

n∑

k=1

εk
(
h̄n(Xk−1)− 1

) = op(n
−1/2).

Indeed a martingale argument shows that the second moment of the left-hand side is
bounded by E[ε2]E[(h̄n(X)− 1)2]/n.

Thus we are left to show that

1

n

n∑

k=1

εk

(
ĥ(Xk−1)− h̄n(Xk−1)

)
= op(n

−1/2). (5.1)

Abbreviate ĥ − h̄n by ĥ∗. Note that ĥ∗(x) = 0 for x outside the interval Jn = [an −
cn, bn + cn] and that wns0/ log n and wns1/ log n are uniformly bounded and Hölder
with exponent ξ > 1/3 and constant Hn = O(log n). Applying Lemmas 3 and 4
with In replaced by Jn , with tn = wnsi/ log n and with the choices v = Ki , v = K ′

i
and v = K ′′

i for i = 0, 1, we obtain

‖ĥ∗‖∞ = op(n
−1/3), ‖ĥ′∗‖∞ = op(n

−1/12) and ‖ĥ′′∗‖∞ = op(n
1/6).

By (F), f has a finite moment of order β > 8/3. Hence we obtain maxk |εk | =
op(n−1/β) and µn = E[ε1[|ε| ≤ n1/β ]] = Op(n−(β−1)/β) = op(n−1/2) as shown in
the proof of Lemma 5. Thus the desired (5.1) follows if we show that

1

n

n∑

k=1

εn,k ĥ∗(Xk−1) = op(n
−1/2), (5.2)

where εn,k = εk1[|εk | ≤ n1/β ]−µn . To this end let us first show that P(ĥ∗ ∈ Hn)→1,
where Hn is the set of all differentiable functions h on R which vanish off Jn and
satisfy

‖h‖∞ ≤ n−1/3 and ‖h‖∞ + ‖h′‖∞ + sup
y =x

|h′(x)− h′(y)|
|x − y|1/3 ≤ 1.

Indeed, by the properties of ĥ∗ we obtain

sup
|y−x |>n−1/4

|ĥ′∗(x)− ĥ′∗(y)|
|y − x |1/3 ≤ 2n1/12‖ĥ′∗‖∞ = op(1)

and

sup
|y−x |≤n−1/4

|ĥ′∗(x)− ĥ′∗(y)|
|y − x |1/3 ≤ n−1/6‖ĥ′′∗‖∞ = op(1).
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Thus (5.2) follows if we show that

S∗
n = sup

h∈Hn

|Sn(h)| = op(n
−1/2), (5.3)

where

Sn(h) = 1

n

n∑

k=1

εn,kh(Xk−1).

Let ηn = (n log n)−1/2. Let h1, . . . , hNn denote an ηn-net of Hn . Then we have the
bound

S∗
n ≤ max

1≤ν≤Nn
|Sn(hν)| + 1

n

n∑

k=1

|εn,k |ηn = max
1≤ν≤Nn

|Sn(hν)| + op(n
−1/2).

If ‖h‖∞ ≤ n−1/3, we derive from Lemma 1 that

P(|Sn(h)| > sn−1/2) ≤ 2 exp

(

− s2n

4n1/βn−1/3sn1/2 + 2σ 2nn−2/3

)

≤ 2 exp

(

− s2n11/24

4s + 2σ 2

)

, s > 0.

In the last step we used the fact that β > 8/3. In view of Theorem 2.7.1 in [37], we
can take

Nn ≤ exp
(

K∗(2 + 2cn + bn − an)(n log n)3/8
)

(5.4)

for some constant K∗. Thus we obtain

P

(

max
1≤ν≤Nn

|Sn(hν)| > sn−1/2
)

≤ 2Nn exp

(

− s2n11/24

4s + 2σ 2

)

→ 0, s > 0.

This completes the proof of (5.3). ��
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