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Abstract We prove a precision of large deviation principle for current-valued
processes such as shown in Bolthausen et al. (Ann Probab 23(1):236–267, 1995)
for mean empirical measures. The class of processes we consider is determined by
the martingale part of stochastic line integrals of 1-forms on a compact Riemannian
manifold. For the pair of the current-valued process and mean empirical measures, we
give an asymptotic evaluation of a nonlinear Laplace transform under a nondegeneracy
assumption on the Hessian of the exponent at equilibrium states. As a direct conse-
quence, our result implies the Laplace approximation for stochastic line integrals or
periodic diffusions. In particular, we recover a result in Bolthausen et al. (Ann Probab
23(1):236–267, 1995) in our framework.

Keywords Laplace approximation · Large deviation · Stochastic line integral ·
Empirical measure
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1 Introduction

Let M be a compact connected Riemannian manifold. Consider a diffusion process
({zt }t≥0, {Px }x∈M ) associated with the generator L = ∆/2+b. Here∆ is the Laplace-
Beltrami operator and b a smooth vector field. Our result is an asymptotic evaluation
of a functional of {zt }t≥0 determined by stochastic line integrals. In what follows,
we will give a rough sketch of it. For the precise framework, see Sect. 1.1. Let Dp
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2 K. Kuwada

be a L2-Sobolev space of 1-forms on M with the differentiability order p. Then, for
sufficiently large p > 0, there is a D−p-valued process {Yt }t≥0 such that Yt (α) equals
the martingale part of the stochastic line integral

∫
z[0,t] α for each α ∈ Dp Px -almost

surely. We are interested in asymptotic behavior of Yt as t → ∞. Such a process is
first introduced in [21] and we know several limit theorems including the law of large
numbers [10], the central limit theorem [10,12,21] and the large deviation principle
[16–18]. As shown in [16,17,21], the limit theorems for Yt as stated above involve
the corresponding limit theorems for each stochastic line integral or for the empirical
measure lt = ∫ t

0 δzs ds.
Let us consider the pair Yt := (Yt , lt ) of Yt and the empirical measure. We realize lt

as an element of a negatively ordered Sobolev space H−p′ of scalar functions. Then Yt

becomes a D−p × H−p′ -valued random functional. Let Ȳt := t−1Yt . Then Ȳt satisfies
the large deviation principle with the rate function I explicitly given in (1.10). In this
paper, we will investigate a precision of the large deviation principle in the following
sense. Take a “sufficiently regular” function F on D−p × H−p′ . Then the Varadhan
lemma asserts

lim
t→∞

1

t
log Ex

[
et F(Ȳt )

]
= sup

w∈D−p×H−p′
(F(w)− I (w)) =: κF . (1.1)

Our goal is to give an asymptotic evaluation of exp (−κF t)Ex
[
exp

{
t F(Ȳt )

}]

as t → ∞.
Let us define the set of equilibrium states KF by

KF := {
w ∈ D−p × H−p′ ; F(w)− I (w) = κF

}
. (1.2)

Then KF is nonempty and compact (Lemma 1). Our main theorem will be proved
under the condition that, for each w ∈ KF , “Hessian of F − I ” at w is nondegenerate.
Under this assumption, KF must be a finite set (Lemma 12). In this paper, we will
show the following theorem, so-called “Laplace approximation” for Yt .

Theorem 1 Suppose that “Hessian of F − I ” is nondegenerate on KF . Then, for
each w = (w,µ) ∈ KF , there is a constant DF,w > 0 and hw ∈ C+(M) such that

lim
t→∞ e−tκF Ex

[
et F(Ȳt )

]
=

∑

w=(w,µ)∈KF

DF,w hw(x)
∫

M

1

hw
dµ. (1.3)

This is a rough version of Theorem 4 and we will describe the precise meaning later.
Note that, by the same argument as given in [2], Theorem 1induces a convergence

of path measures associated with F(Ȳt ) (cf.[4]; see Corollary 4 for details). Let Px,F,T

be a probability measure on C([0,∞) → M) given by

Px,F,T [dz] = exp
(
T F(ȲT )

)

Ex
[
exp

(
T F(ȲT )

)]Px [dz] (1.4)

for each Borel set A ⊂ C([0,∞) → M).
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Laplace approximation for stochastic line integrals 3

Corollary 1 Suppose the same condition as in Theorem 1. Then we have

lim
T →∞ Px,F,T = 1

Z

∑

w=(w,µ)∈KF

⎛

⎝DF,w hw(x)
∫

M

1

hw
dµ

⎞

⎠P
αw
x ,

with respect to the weak convergence on C([0,∞) → M). Here Z equals the right-
hand side of (1.3), αw = ∇F(w) ∈ Dp × Hp′ and P

α
x is defined by (2.6) for each

α ∈ Dp × Hp′ .

Let {Xt }t≥0 be a D−p-valued process determined by Xt (α) = ∫
z[0,t] α for each

α ∈ Dp Px -almost surely. This is a realization of stochastic line integrals itself as
D−p-valued process. We can obtain a result corresponding to Theorem 1 for (Xt , lt )
(Theorem 5). As a result, we can obtain the Laplace approximation for a finite number
of stochastic line integrals by taking F which depends only on a finite dimensional
subspace of D−p. The key ingredient is the expression of Xt by a sum of a linear
functional of Yt and a remainder term. To see the result and its proof, we can observe
an effect of the remainder term. It should be noted that the emergence of the effect is a
result of precision of the limit theorem. The remainder term is negligible in considering
other known limit theorems including the large deviation for Xt .

Our approach formulated by means of Yt has an advantage to the analysis of rate
function. Actually, if we consider the problem for each individual stochastic line
integral or Xt , the rate function corresponding to it is expressed by a variational formula
in general (see [1,16,18]). Then computing a perturbation of the rate function seems to
be complicated. It should be emphasized that our rate function can be written without
any variational expression. This representation enables us to compute an infinitesimal
behavior of the rate function near the equilibrium states. An intuition from observations
in [16] says that the emergence of variational expression comes from the lack of
information about lt . Actually, the pair (Xt , lt ) has an non-variational expression. But
we choose to analyse (Yt , lt ) since the derivation of the Laplace approximation for Yt

from that for (Xt , lt ) is much more involved than the converse derivation. Note that
Yt itself has information about lt . Indeed, the rate function corresponding to the large
deviation for Yt also needs no variational expression. Thus, in the theoretical point of
view, we can derive all the results stated above from the Laplace approximation for
Yt . But it is not easy to identify the influence of lt in the expression of the rate function
for Yt . Dealing with the pair (Yt , lt ) helps us to understand the connection between Yt

and lt . This is a reason why we consider the pair (Yt , lt ) instead of Yt only. As another
by-product, we can easily obtain the Laplace approximation for lt by considering the
case F(w,µ) = F0(µ) for a functional F0. In fact, we can derive the same result from
the Laplace approximation for Yt though the calculation is much more involved.

Laplace approximation for mean empirical measures of a (discontinuous) Markov
process is intensively studied in connection with some problems in statistical mechan-
ics, for instance, mean field potential or polaron [2,4,14]. In these works, the asymp-
totic behavior of the same type is obtained for mean empirical measures on a compact
metric space in more general situations. The above observation says that our result
recovers that in [4] in the case of a diffusion process on a compact manifold. On the

123



4 K. Kuwada

other hand, we should mention that more general results [3,15] are known for mean
empirical measures even for diffusions on a manifold. These results do not require the
nondegeneracy assumption as we impose on the “Hessian of F − I ” on KF .

Now we concentrate our attention on the constant DF,w appeared in Theorem 1.
Set αw := ∇F(w). Note that DF,w is expressed by

DF,w = det
(

1 − G F
w ◦ Sµ

)−1/2
. (1.5)

Here Sµ is a covariance operator of a Gaussian distribution on D−p. As we will give
in (2.19), G F

w is a composite of an operator Γ ∗
αw

from D−p to D−p × H−p′ and
∇2 F(w), the second Fréchet derivative of F at w. In the framework of [4], the term
corresponding to G F

w also appears but it is given only by the second Fréchet derivative.
We will explain below the reason why such a operation appears. We remark that Γ ∗

αw

consists of two operators Γ ∗
αw

and (dGαw )
∗; Γ ∗

αw
(η, ν) = (Γ ∗

αw
η, (dGαw )

∗ν). Thus we
observe the role of each component respectively. As a matter of fact, the principle
behind the derivation of our result is the same as in the case of empirical measures.
That is, to evaluate the asymptotic behavior of Ex

[
exp

{
t F(Ȳt )

}]
, we reduce the

problem to the estimate of the asymptotic behaviors of Ȳt near w = (w,µ) ∈ KF

in the scaling of the central limit theorem. Indeed, Sµ is the covariance operator of
the Gaussian distribution appearing in the central limit theorem on D−p near w. For
this purpose, we will transform the measure Px so that Ȳt converges to w almost
surely. We can naturally establish such a transformation of measure by the Girsanov
transform associated with αw. Then the operation of Γ ∗

αw
to Yt − tw corresponds to the

transformation of martingale Yt 
→ Y αw
t under the Girsanov transform (Lemma 7) up

to a negligible remainder term. This is the role of the first component Γ ∗
αw

of Γ ∗
αw

. To
explain the role of the second component, we observe that the central limit theorem
for lt near µ will be shown via the Itô formula for the generator Lαw obtained as the
result of the Girsanov transform:

u(zt )− u(z0) = Y αw
t (du)+

∫

M

Lαw u dlt .

Since the left hand side is negligible in the scaling of the central limit theorem, we
can reduce the central limit theorem for lt to that for Yt . By using the Green operator
Gαw = (−Lαw )−1, we can write du = −dGαwLαw u. Hence the second component
(dGαw )

∗ of Γ ∗
αw

connects the central limit theorem for lt with that for Y αw
t . Note that

we can avoid to use the operation (dGαw )
∗ from H−p′ to D−p. Actually, the covariance

of the central limit theorem for lt near µ can be described in the framework of H−p′
as we will show in Sect. 6 (cf. [4]). But, if we goes in this direction, we need to use
two covariance operators, Sµ and the other one on H−p′ to describe the result. To
clarify the fact that the central limit theorem for Yt near (w,µ) is reduced to that only
for Y αw

t , we adopt the above expression as (1.5). In this sense, the emergence of the
second component of Γ ∗

αw
is not essential for the problem.

Different from the situation on the second component, the emergence of Γ ∗
αw

in
our result is essential. It comes from the fact that the definition of Yt itself depends
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Laplace approximation for stochastic line integrals 5

on Px . When we consider only the empirical measure lt , it is invariant under the
change of measures. Thus there appears no correction term corresponding to Γ ∗

αw
.

We should remark that, even in the Laplace approximation for X , some operator like
Γ ∗

αbw
depending on αw also appears. The property that Xt (α) is a stochastic line

integral of α is independent of the change of measure via Girsanov transform. Thus
the transformation of measure causes no change like the operation of Γ ∗

αw
. But, as

we stated above, we need to reduce the central limit theorem for Xt to that for a
linear functional of Y αw

t . This reduction is based on the Itô formula stated above, and
therefore it depends on Lαw or αw (see Remark 6 for more details). These observations
tell us that it is natural and inevitable that some additional operation like Γ ∗

αw
appears

when we deal with the long time asymptotic behavior of stochastic line integrals or
its martingale parts.

The organization of this paper is as follows. In the rest of this section, we will intro-
duce the precise framework of our results. We review there a series of limit theorems
for a current-valued process Y or the pair (Yt , lt ), including the law of large num-
bers, the central limit theorem and the large deviation principle. Section 2 is devoted
to a functional calculus of a perturbation near an equilibrium state. The argument is
based on the analytic perturbation theory of differential operators. Such an approach
is available since our state space has a differentiable structure. We should remark that
the functional Yt is not bounded as a random variable while the empirical measure
is bounded; | ∫M f dlt | ≤ t sup | f |. Thus it is not obvious whether a probabilistic
perturbation argument based on the boundedness of functionals as used in [4] is also
effective or not. In Sect. 3, we will establish the uniform moderate deviation estimate.
Such estimates are essentially shown in [17], but we need more precise estimate con-
cerning the uniformity on scale parameters. Our main theorem (Theorem 4) is proved
in Sect. 4 with the aid of the estimate obtained in Sects. 2 and 3. The proof goes along
the same idea as in [4]. We prove there the Laplace approximation for Y . The Laplace
approximation for X will be shown in Sect. 5 as a corollary of our main theorem. In
Sect. 6, we consider some special cases of our result. First we show that the Laplace
approximation for only lt . Next we consider the case where F depends only on a finite
dimensional subspaces. In particular, we consider the periodic diffusion on R

k .

1.1 Preliminaries

Let d0 = dim M . For a smooth differential 1-form α and r ∈ R, we define a norm
‖α‖r by

‖α‖r :=
⎧
⎨

⎩

∫

M

|(1 −∆1)
r/2α|2dv

⎫
⎬

⎭

1/2

,

where ∆1 is the Hodge-Kodaira Laplacian on 1-forms and v is the normalized
Riemannian measure. Let Dr be the completion of the space of smooth 1-forms by
‖ · ‖r . We identify D−r with D∗

r . In the same way, let us define the L2-Sobolev space
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6 K. Kuwada

Hr of scalar functions. That is, Hr is the completion of the space of smooth functions
by the L2-Sobolev norm given by

‖ f ‖Hr :=
⎧
⎨

⎩

∫

M

|(1 −∆)r/2 f |2dv

⎫
⎬

⎭

1/2

.

Throughout this paper except for Sect. 5, we take p > 0 and p′ > 0 large enough to
satisfy

(D) p > d0 and p′ > inf{n ∈ N ; n ≥ p − 1}.
For such p, we can realize a D−p-valued continuous process Yt introduced in Sect. 1
(see [21]). It means that, for each α ∈ Dp, Yt (α) is the martingale part of the sto-
chastic line integral

∫
z[0,t] α of α along the diffusion path {zs}s∈[0,t] Px -almost surely.

Recall that
∫

z[0,t] α is defined via the Stratonovich stochastic integral and it becomes
a semimartingale. We can realize stochastic line integrals themselves also as D−p-
valued process. We deal with it in Sect. 5. Let lt be the empirical measure defined by
lt = ∫ t

0 δzs ds. By the Sobolev embedding, we can realize lt as a H−p′ -valued process.
Set Yt = (Yt , lt ) and Dp,p′ := Dp × Hp′ . Then Yt becomes a D∗

p,p′ -valued process.
For later use, we review some known facts for Y . For 1-forms α and β, (α, β)(x)

stands for the inner product at a cotangent space T ∗
x M . Let |α|(x) = (α, α)(x)1/2.

Then (α, β) and |α| become a scalar function on M . First, for each α ∈ Dp, Yt (α) is a
square-integrable martingale and the quadratic variation 〈Y (α)〉t of Yt (α) is given by

〈Y (α)〉t =
t∫

0

|α|2(zs)ds.

Next we will review some known limit theorems for Y . Set Ȳt = t−1Yt . The law of
large numbers asserts that limt→∞ Ȳt = 0 in D−p almost surely. To state the central
limit theorem, we introduce a Gaussian measure on D−p. We denote the inner product
on a Hilbert space H and the dual pairing between H∗ and H by (·, ·)H and 〈·, ·〉H
respectively. For simplicity, we write (·, ·)Dp =: (·, ·)p. and 〈·, ·〉Dp

= 〈·, ·〉. For
α ∈ H , we denote the conjugate element by α∗ ∈ H∗. We denote by νS the centered
Gaussian distribution with a covariance operator S : D−p → D−p. That is, S is a
nonnegative definite, symmetric bounded linear operator satisfying

∫

D−p

exp
(√−1 〈w, α〉

)
νS(dw) = exp

(

−1

2

(
α∗, S(α∗)

)
−p

)

. (1.6)

We denote the normalized invariant measure of L by m. The central limit theorem (see
[10,21]) for Y asserts that the law of

√
t Ȳt weakly converges to νSm as t → ∞, where
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Laplace approximation for stochastic line integrals 7

Sm is given by

〈
Sm(α

∗), β
〉 :=

∫

M

(α, β) dm.

We now refer to the large deviation principle and its rate function studied in [16]. Let
M1 be the set of all Borel probability measures on M . For µ ∈ M1, let L2

1(dµ) be the
space of every measurable 1-form α on M with |α| ∈ L2(dµ). We sayw ∈ H′

µ if and
only if there is ŵ ∈ L2

1(dµ) such that, for all α ∈ Dp,

〈w, α〉 =
∫

M

(ŵ, α)dµ. (1.7)

It means that w acts on Dp as an inner product on L2
1(dµ). Let us define a functional

I ′
µ on D−p by

I ′
µ(w) =

⎧
⎪⎨

⎪⎩

1

2

∫

M

|ŵ|2 dµ if w ∈ H′
µ,

∞ otherwise.

(1.8)

We denote by Ṁ1 the totality of µ ∈ M1 which is absolutely continuous with respect
to v and

√
dµ/dv ∈ H1. For µ ∈ M1 and w ∈ D−p, we say w ∈ Ωµ if and only if

〈w, du〉 +
∫

M

Lu dµ = 0 (1.9)

holds for all u ∈ C∞(M). Here d means the exterior derivative. We can easily verify
that for each w ∈ D−p, such µ ∈ M1 as w ∈ Ωµ is unique if it exists. Set Hµ =
H′
µ ∩Ωµ. Let us define a functionals Ĩ on D−p by

Ĩ (w) :=
{

Iµ(w) if w ∈ Hµ for some µ ∈ Ṁ1,

∞ otherwise.

As shown in [16], Ĩ is a convex good rate function and this rate function controls the
large deviation principle for Ȳ . It means that for each Borel subset A ⊂ D−p,

lim sup
t→∞

1

t
log

(

sup
x∈M

Px
[
Ȳt ∈ A

]
)

≤ − inf
w∈Ā

Ĩ (w),

lim inf
t→∞

1

t
log

(

inf
x∈M

Px
[
Ȳt ∈ A

]
)

≥ − inf
w∈A◦ Ĩ (w).
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8 K. Kuwada

Set l̄t := t−1lt and Ȳt := t−1Yt = (Ȳt , l̄t ). We extend the large deviation for Ȳt to that
for Ȳt to consider the Laplace approximation for Ȳt .

Definition 1 A functional I on D∗
p,p′ is defined by

I (w,µ) :=
{

Iµ(w) if (w,µ) ∈ H,

∞ otherwise,
(1.10)

where we say (w,µ) ∈ H if and only if µ ∈ Ṁ1 and w ∈ Hµ.

Theorem 2 Ȳt satisfies the Large deviation principle in D∗
p,p′ with the convex good

rate function I .

Before the proof, we give a remark on uniform embeddings. For a bounded mea-
surable function f , set ‖ f ‖B := supx∈M | f (x)|. For a bounded 1-form α, we use
the same symbol: ‖α‖B := supx∈M |α|(x). By (D), the Sobolev embedding theorem
yields that there is a constant CS > 0 such that

‖α‖B ≤ CS‖α‖p, ‖ f ‖B ≤ CS min{‖ f ‖Hp′ , ‖ f ‖Hp+1} (1.11)

for all α ∈ Dp and f ∈ Hp′ .

Proof The method we will use here is similar to that used in [16] for proving large
deviations for stochastic line integrals or empirical measures from that for Yt . You can
refer to it for technical details. For ϕ ∈ Hp′ , let us consider the differential equation

−Lu = ϕ −
∫

M

ϕ dm.

Note that this equation has a unique solution up to additive constants (see [9], for
example). We denote the solution u with

∫
M u dm = 0 by G0ϕ. We should remark

that G0 is bounded operator from Hp′ to Hp+1 and that dG0ϕ ∈ Dp follows from it.
By the Itô formula, we have

G0ϕ(zt )− G0ϕ(z0) = Yt (dG0ϕ)+
t∫

0

LG0ϕ(zs)ds

= Yt (dG0ϕ)−
∫

M

ϕ dlt + t
∫

M

ϕ dm

= 〈
(dG0)

∗Yt − lt + tm, ϕ
〉
Hp′ .

This equation connects the large deviation for Yt with that for Yt . By the contraction
principle, (Ȳt , (dG0)

∗Ȳt + m) satisfies the large deviation principle in D∗
p,p′ . The Itô
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Laplace approximation for stochastic line integrals 9

formula yields

∥
∥(dG0)

∗Ȳt − l̄t + m
∥
∥

H−p′ = sup
ϕ∈Hp′

‖ϕ‖Hp′ ≤1

∣
∣
∣
∣
∣
∣
Ȳt (dG0ϕ)−

∫

M

ϕ dl̄t +
∫

M

ϕ dm

∣
∣
∣
∣
∣
∣

= 1

t
sup
ϕ∈Hp′

‖ϕ‖Hp′ ≤1

|G0ϕ(zt )− G0ϕ(z0)| ≤ CS‖G0‖Hp′→Hp+1

t
.

This estimate implies that the approximation of Ȳt by (Ȳt , (dG0)
∗Ȳt + m) is superex-

ponential. Thus Ȳt satisfies the large deviation principle with the same rate function
as that for (Ȳt , (dG0)

∗Ȳt + m). Let us denote the rate function for (Ȳt , (dG0)
∗Ȳt + m)

by J . Note that J is a convex good rate function because so is Ĩ . The contraction
principle involves

J (w,µ) = inf
η∈D−p

(η,(dG0)
∗η+m)=(w,µ)

Ĩ (η) =
{

Ĩ (w) if (dG0)
∗w = µ− m,

∞ otherwise.

Suppose J (w,µ) < ∞. Then w ∈ Hν for some ν ∈ Ṁ1 and (dG0)
∗w = µ − m.

These two conditions on w implies

∫

M

ϕ dµ = 〈
(dG0)

∗w + m, ϕ
〉
Hp′ = 〈w, dG0ϕ〉 +

∫

M

ϕ dm

= −
∫

M

LG0ϕ dν +
∫

M

ϕ dm =
∫

M

ϕ dν

for any ϕ ∈ Hp′ . It immediately implies µ = ν and therefore (w,µ) ∈ H. By a
similar argument, we can easily show that (w,µ) ∈ H implies J (w,µ) < ∞ and
J (w,µ) = I (w,µ). It means J = I and therefore the conclusion follows. ��
Remark 1 For (w,µ) ∈ H, we have a different expression of (1.9), which will be
used later. For a nonnegative function f ∈ H1, let us denote by Pf the orthogonal
projection on L2

1( f 2dv) to the closure of the space of smooth exact 1-forms. We
denote ξ f = limε→0( f + ε)−1d f . Here we take the limit in L2

1( f 2dv). When f is
essentially strictly positive, ξ f equals the logarithmic derivative of f . Let b̂ be a 1-form
corresponding to the vector field b in the canonical way. Then, the Green formula and
(1.7) imply that, for (w,µ) ∈ H, (1.9) means

Pf ŵ + Pf b̂ − ξ f = 0 (1.12)

(cf. Lemma 4.3 and the proof of Proposition 5.1 in [16]).
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10 K. Kuwada

Now we will try to explain an intuitive interpretation of the large deviation for Yt

and Yt . Let {Bt }t≥0 be the stochastic development of the diffusion {zt }t≥0 and {Zt }t≥0
the horizontal lift of {zt }t≥0 to the orthonormal frame bundle O(M). As shown in
[11], stochastic line integral is represented by means of a stochastic integral of Bt .
Indeed, for each 1-form α, there exists a scalarization ᾱ = (ᾱ1, . . . , ᾱd0) of α, which
is R

d0 -valued 1-form on O(M), such that

∫

z[0,t]
α =

d0∑

i=1

t∫

0

ᾱi (Zs) ◦ d Bi
s ,

Yt (α) =
d0∑

i=1

t∫

0

ᾱi (Zs)d Bi
s

hold. As a result, conditioned that the mean empirical measure l̄t approximately equals
g2dv for g > 0, Yt (α) behaves like Gaussian with the covariance

∫
M |α|2g2dv if we

can regard Bt and l̄t to be nearly independent in long time. This is an intuitive reason
why I (w,µ) looks like quadratic with respect to w for fixed µ in viewing only (1.7),
(1.8) and (1.10). But this observation is not sufficient because we have one additional
condition (1.9), which gives a relation between w and µ. In fact, when α is exact,
namely α = du for a scalar function u, Yt (α) heavily depends on lt since the Itô
formula asserts

1

t
(u(zt )− u(z0)) = Ȳt (du)+

∫

M

Lu dl̄t .

Letting t → ∞, the left hand sides degenerates to 0 while each term of the right
hand side has the large deviations. Comparing it with (1.9), we can interpret that (1.9)
inherits this relation. To observe more details, we decompose a 1-form ŵ into the exact
component and its orthogonal complement. By using (1.12), we can rewrite I (w,µ)
for (w,µ) ∈ H with dµ = f 2dv as follows:

I (w,µ) = 1

2

⎛

⎝
∫

M

|(1 − Pf )ŵ|2dµ+
∫

M

|Pf ŵ|2dµ

⎞

⎠

= 1

2

∫

M

|(1 − Pf )ŵ|2dµ+ 1

2

∫

M

|Pf b̂ − ξ f |2dµ. (1.13)

The second term of this expression depends only on µ. Indeed, this part is the rate
function for l̄t (see [5]); when b̂ = 0, this functional is nothing but the L2-energy
functional of

√
dµ/dv. Since (1− Pf )ŵ is free from (1.9), I is quadratic with respect

to (1 − Pf )ŵ. Thus, intuitively saying, under the condition l̄t ≈ g2dv, Yt (α) behaves
as Gaussian if and only if α is orthogonal to exact 1-forms in L2

1(g
2dv).
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Laplace approximation for stochastic line integrals 11

Let F : D∗
p,p′ → [−∞,∞) be a continuous function. We consider the following

three conditions on F :

(F1) F is three times Fréchet differentiable at each w ∈ D∗
p,p′ with F(w) ∈ R,

(F2)

lim
R→∞ lim sup

t→∞
1

t
log Ex

[
exp

(
t F(Ȳt )

) ; ‖Ȳt‖D∗
p,p′ ≥ R

]
= −∞,

(F3) for each R > 0,
sup

‖w‖D∗
p,p′ ≤R

F(w) < ∞.

When F has at most linear growth, (F2) and (F3) hold by Lemma 8 below. Note that
the Varadhan lemma (1.1) holds under (F2). Thus we can define κF and KF by (1.1)
and (1.2).

Lemma 1 Suppose (F2) and (F3). Then KF is nonempty and compact.

Proof Let {wn}n∈N ⊂ D∗
p,p′ be a sequence so that F(wn)− I (wn) → κF as n → ∞.

By (F2), there is R > 0 such that F(w)− I (w) < κF − 1 holds when ‖w‖D∗
p,p′ > R.

Hence {wn}n∈N is bounded in D∗
p,p′ . Then (F3) implies that {F(wn)}n∈N is bounded

above and hence {I (wn)}n∈N is. Since I is good, {wn}n∈N has a convergent subse-
quence. By the upper semi-continuity of F − I , its subsequential limit of {wn}n∈N is
in KF and hence KF �= ∅. The compactness of KF follows from the same argument.

��

Remark 2 The assumption (F3) is rather technical and it is used only in the proof of
Lemma 1. Instead of (F2) and (F3), we may assume that

lim sup
R→∞

lim
t→∞

1

t
log Ex

[
exp

(
t F(Ȳt )

) ; ‖Ȳt‖D∗
p0,p

′ ≥ R
]

= −∞ (1.14)

for some d0 < p0 < p. We show that (1.14) implies (F2) and Lemma 1. Since
the embedding D∗

p0,p′ → D∗
p,p′ is continuous, (F2) follows from (1.14). For proving

Lemma 1, it suffices to show supn∈N F(wn) < ∞ for each sequence {wn}n∈N ⊂ D∗
p,p′

with limn→∞ F(wn)− I (wn) = κF . Indeed, (1.14) implies supn∈N ‖wn‖D∗
p0,p

′ < ∞.

Since the embedding D∗
p0,p′ → D∗

p,p′ is compact, the desired result follows.

2 Perturbation

2.1 Regularity of principal eigenfunction

Here we consider the existence and regularity of the principal eigenfunction associated
with an operator obtained by lower-order perturbation of the generator L. In the rest
of this paper, we abbreviate L2(dv) as L2. Take α ∈ Dq and V ∈ Hq ′ , where d0 < q
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12 K. Kuwada

and d0 < q ′. We consider a family of operators {T̃ (α,V )t }t>0 given as follows:

T̃ (α,V )t ϕ(x) := Ex

⎡

⎣exp

⎛

⎝Yt (α)+
t∫

0

V (zs)ds

⎞

⎠ϕ(zt )

⎤

⎦ (2.1)

for ϕ ∈ C(M). We can easily verify that

sup
x∈M

Ex

⎡

⎣exp

⎧
⎨

⎩
a

⎛

⎝Yt (α)+
t∫

0

V (zs)ds

⎞

⎠

⎫
⎬

⎭

⎤

⎦ < ∞ (2.2)

for any a > 0. Recall that the semigroup T̃ (0,0)t is ultracontractive and has an extension
on Lr as a compact operator for any r ∈ [1,∞]. Combining it with (2.2), we can show
that the same is true for T̃ (α,V )t . In addition, by a standard argument, we can show
that T̃ (α,V )t is a Feller semigroup, i.e., T̃ (α,V )t f ∈ C(M) if f ∈ C(M). The generator
L̃
(α,V )
(2) of {T̃ (α,V )t |L2→L2}t>0 is given by

L̃
(α,V )
(2) u := Lu + (α, du)+

(
|α|2

2
+ V

)

u

for u ∈ C∞(M). Note that the domain of L̃
(α,V )
(2) coincides with H2, the domain of the

closure of ∆ on L2. For simplicity, we abbreviate L̃
(α,V )
(2) as L̃(α,V ).

In the following, we discuss the existence and regularity of the principal eigenfunc-
tion of T̃ (α,V )t and its logarithm. Though it may be a kind of well-known argument,
we should mention it since α and V are not infinitely differentiable.

Since T̃ (α,V )t is positivity preserving, the Krein-Rutman theorem (see [22] for exam-
ple) yields that T̃ (α,V )t has a principal eigenvalue λ and a v-a.e. nonnegative eigen-
function h ∈ L2 which is unique up to multiplicative constant. By definition, h ∈ H2
and

1

2
∆h = λh − bh − (α, dh)−

(
|α|2

2
+ V

)

h. (2.3)

By virtue of the theory of multipliers (see [19]), if u ∈ Hr with r ∈ N, then (α, du) ∈
H(r−1)∧[q] and (|α|2 /2 + V )u ∈ Hr∧[q]∧[q ′]. Here [a] stands for the integer part
of a ≥ 0. Thus, combining this fact with the hypoellipticity of ∆, we obtain h ∈
H[q+2]∧[q ′+2] by a recursive argument using (2.3). By the choice of q, the Sobolev

embedding theorem implies h ∈ C(M). Note that the ultracontractivity of T̃ (α,V )t
implies the Lr -independence of the logarithmic spectral radius:

λ = lim
t→∞

1

t
log ‖T̃ (α,V )t ‖L2→L2 = lim

t→∞
1

t
log ‖T̃ (α,V )t ‖Lr →Lr
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Laplace approximation for stochastic line integrals 13

for any 1 ≤ r ≤ ∞. Thus λ is also a principal eigenvalue of the Feller semigroup
T̃ (α,V )t |C(M)→C(M). Therefore the Krein-Rutman theorem for T̃ (α,V )t |C(M)→C(M)

implies that h is strictly positive. The property of the principal eigenfunction h obtained
above is summarized in the following proposition.

Proposition 1 Take α ∈ Dq and V ∈ Hq ′ , where q > d0 and q ′ > d0. Let T̃ (α,V )t be a
semigroup defined by (2.1). Then there is a unique continuous principal eigenfunction
h ∈ H[q+2]∧[q ′+2] of T̃ (α,V )t |L2→L2 with ‖h‖L2 = 1 and h > 0.

Since h > 0, we can consider log h and
√

h. We claim log h,
√

h ∈ H[q+2]∧[q ′+2].
Let ϕ be a bounded smooth function with bounded derivative of each order satisfying
ϕ(r) = log r for inf x∈M h(x) ≤ r ≤ supx∈M h(x). Then we have ϕ(h) = log h. Thus
we can reduce the proof of the claim to the following lemma.

Lemma 2 Let g be a bounded smooth function on R with bounded derivative of any
order. Then, for each f ∈ Hr , r ∈ N with d/2 < r , we have g ◦ f ∈ Hr .

By virtue of the equivalence of Sobolev norms [23], we can prove this in the same
way as in Chapter 1,§2 of [20].

Corollary 2 Let h be given in Proposition 1. Then log h ∈ H[q+2] and
√

h ∈ H[q+2].

2.2 Hessian at equilibrium states

For each α = (α, V ) ∈ Dp,p′ , let Λ(α) be the principal eigenvalue of L̃α , where L̃α

is defined in Sect. 1.1. As shown in [16], we have

I (w) = sup
α∈Dp,p′

(
〈w,α〉Dp,p′ −Λ(α)

)
, (2.4)

Λ(α) = sup
w∈D∗

p,p′

(
〈w,α〉Dp,p′ − I (w)

)
. (2.5)

The L2-normalized principal eigenfunction of L̃α is denoted by hα . By Proposition 1,
we can choose hα as a strictly positive continuous function. We give a probability
measure P

α
x on C([0,∞) → M) by

P
α
x [zt ∈ E] := e−Λ(α)t 1

hα(x)
Ex
[
hα(zt ) exp(Yt (α)+ lt (V ))1{zt ∈E}

]
. (2.6)

Set ψα = − log hα . We define a differential operator Lα as follows:

Lαu := Lu + (α − dψα, du).

Note that dψα ∈ Dp by Corollary 2. Under P
α
x , {zt }t≥0 is a diffusion process associated

with the generator Lα . The normalized invariant measure of Lα is denoted by mα .
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14 K. Kuwada

We define Λα : Dp,p′ → R and I α : D∗
p,p′ → [0,∞] by

Λα(β) := lim
t→∞

1

t
log E

α
x

[
eYt (β)

]
,

I α(w) := sup
β∈Dp,p′

(
〈w,β〉Dp,p′ −Λα(β)

)
.

Since

Λα(β) = lim
t→∞

1

t
log

(

sup
x∈M

E
α
x

[
eYt (β)

])

= lim
t→∞

1

t
log

(

inf
x∈M

E
α
x

[
eYt (β)

])

,

we can easily verify that Λα(β) = Λ(α + β)−Λ(α). In addition, (2.4) yields

I α(w) = I (w)− 〈w,α〉Dp,p′ +Λ(α). (2.7)

In the rest of this section, we suppose (F1) and we set w0 = (w0, µ0) ∈ KF and
α0 = (α0, V0) := ∇F(w0) ∈ (D∗

p,p′)∗ = Dp,p′ .

Lemma 3 (i) I α0(w0) = 0.

(ii) For each (β,U ) ∈ Dp,p′ , 〈w0, (β,U )〉 =
∫

M

((
α0 − dψα0 , β

)+ U
)

dmα0 . In

particular, µ0 = mα0 .

Proof Let α ∈ Dp,p′ . By (2.5), I α ≥ 0 and I α(w) = 0 holds if and only if a functional
〈·,α〉Dp,p′ − I (·) attains its supremum at w. Thus, to prove the first assertion, it suffices
to show that w0 is the maximizer of 〈·,α0〉Dp,p′ − I (·). The fact w0 ∈ KF implies
that, for each w ∈ D∗

p,p′ and 0 < ε < 1,

F(w0)− I (w0) ≥ F((1 − ε)w0 + εw)− I ((1 − ε)w0 + εw)

≥ F((1 − ε)w0 + εw)− (1 − ε)I (w0)− ε I (w).

The last inequality follows from the convexity of I . Thus we have

F(w0)− F(w0 − ε(w0 − w))− ε I (w0) ≥ −ε I (w).

Dividing both sides by ε and ε → 0, we obtain ∇F(w0)(w0)−I (w0) ≥ ∇F(w0)(w)−
I (w). Since α0 = ∇F(w0), the first assertion holds.

123



Laplace approximation for stochastic line integrals 15

Set α = (α, V ) ∈ Dp,p′ . By using (2.5), (1.7) and (1.10), we have

Λ(α) = sup
w∈D∗

p,p′

(
〈w,α〉Dp,p′ − I (w)

)

= sup
(w,µ)∈H

⎛

⎝
∫

M

((
ŵ, α

)+ V
)

dµ− 1

2

∫

M

|ŵ|2dµ

⎞

⎠

= sup
(w,µ)∈H

⎛

⎝
∫

M

( |α|2
2

+ V

)

dµ− 1

2

∫

M

|ŵ − α|2dµ

⎞

⎠ .

When α = α0, w0 is the maximizer of the right hand side. Thus we will consider the
condition on the maximizer. By (1.12), forµ ∈ Ṁ1 with

√
dµ/dv = f , the functional

w 
→
∫

M

|ŵ − α|2dµ

on Hµ attains its minimum only at w with (1 − Pf )ŵ = (1 − Pf )α. Using (1.12)
again, we obtain

Λ(α) = sup
f ∈H1

⎛

⎝
∫

M

( |α|2
2

+ V

)

f 2dv − 1

2

∫

M

|Pf α + Pf b̂ − ξ f |2 f 2dv

⎞

⎠ . (2.8)

We now remark that ψα satisfies

Lαψα + 1

2

∣
∣dψα

∣
∣2 −

(
|α|2

2
+ V

)

= −Λ(α). (2.9)

Substituting (2.9) to (2.8), we obtain

sup
f ∈H1

⎛

⎝
∫

M

∆ψα f 2dv −
∫

M

∣
∣dψα

∣
∣2 f 2dv + 2

∫

M

(b̂ + α, dψα) f 2dv

−
∫

M

|Pf α + Pf b̂ − ξ f |2 f 2dv

⎞

⎠ = 0.
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16 K. Kuwada

By the Green formula,

∫

M

∆ψα f 2dv −
∫

M

∣
∣dψα

∣
∣2 f 2dv + 2

∫

M

(
b̂ + α, dψα

)
f 2dv

−
∫

M

|Pf α + Pf b̂ − ξ f |2 f 2dv

= −2
∫

M

(dψα, ξ f ) f 2dv −
∫

M

|dψα|2 f 2dv

+ 2
∫

M

(
Pf b̂ + Pf α, dψα

)
f 2dv −

∫

M

|Pf b̂ + Pf α − ξ f |2 f 2dv

= −
∫

M

|Pf b̂ + Pf α − ξ f − dψα|2 f 2dv.

Thus the maximizer f of the functional must satisfy Pf b̂+ Pf α−ξ f −dψα = 0.We
can see that this condition is equivalent to f = √

dmα/dv, that is, f 2dv = dmα . Note
that

√
dmα/dv ∈ H1 holds by Corollary 2. Set f0 = √

dµ0/dv. These observations
conclude that the maximizer w0 = (w0, µ0) ∈ H of 〈·,α0〉Dp,p′ − I (·) is expressed
as follows:

〈w0, (β,U )〉Dp,p′ =
∫

M

(ŵ0, β)dµ0 +
∫

M

U dµ0

=
∫

M

((1 − Pf0)ŵ0, β)dµ0 +
∫

M

(Pf0ŵ0, β)dµ0 +
∫

M

U dµ0

=
∫

M

((1 − Pf0)α, β)dmα0 −
∫

M

(Pf0 b̂ − ξ f0 , β)dmα0 +
∫

M

U dmα0

=
∫

M

(
(α0 − dψα0 , β)+ U

)
dmα0 .

Thus the second assertion follows. ��
Let C be a Banach space which consists of continuous 1-forms with the supremum

norm ‖ · ‖B . The following proposition provides an infinitesimal behavior of our rate
function I near w0 ∈ KF .

Proposition 2 For ε′ > 0, let γ· : (−ε′, ε′) → C be a C-valued function with
γ0 = α0 − dψα0 . We denote by µε the unique probability measure which satisfies the
following relation:

∫

M

(Lu + (γε, du)) dµε = 0 (2.10)
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Laplace approximation for stochastic line integrals 17

for each u ∈ H2. Suppose that γε and µε depend smoothly on ε and that µε ∈ Ṁ1.
Here we regard µε as a C(M)∗-valued functional with weak topology. We denote by
γ
(i)
ε or µ(i)ε the i-th order derivative of γε or µε respectively. Let us give a current
wε ∈ D−p as follows:

〈wε, β〉 =
∫

M

(γε, β) dµε. (2.11)

Then, for wε = (wε, µε), we have

I α0(wε) = ε2

2

∫

M

|γ (1)0 |2dmα0 + o(ε2).

Proof Since wε ∈ Hµε and ŵε = γε, we have

I (wε) = 1

2

∫

M

|γε|2 dµε. (2.12)

Thus, by the assumption, I α0(wε) = I (wε) − 〈wε,α0〉Dp,p′ + Λ(α0) is smooth at
ε = 0. With the aid of Lemma 3, (2.11) and (2.12),

d

dε

∣
∣
∣
∣
ε=0

I α0(wε) = 1

2

∫

M

|α0−dψα0 |2dµ(1)0 −
∫

M

(α0 − dψα0 , α0)dµ
(1)
0 −

∫

M

V0dµ(1)0

+
∫

M

(γ
(1)
0 , α0 − dψα0)dµ0 −

∫

M

(γ
(1)
0 , α0)dµ0

= 1

2

∫

M

|dψα0 |2dµ(1)0 −
∫

M

( |α0|2
2

+ V0

)

dµ(1)0

−
∫

M

(γ
(1)
0 , dψα0)dµ0.

Differentiating (2.10) once at ε = 0, we obtain

∫

M

Lα0 u dµ(1)0 +
∫

M

(γ
(1)
0 , du)dµ0 = 0. (2.13)

Applying (2.13) to the case u = ψα0 and substituting (2.9) to it, we obtain

1

2

∫

M

∣
∣dψα0

∣
∣2 dµ(1)0 −

∫

M

(
|α0|2

2
+ V0

)

dµ(1)0 −
∫

M

(γ
(1)
0 , dψα0)dµ0 = 0
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18 K. Kuwada

since µ(1)0 (M) = 0. It means

d

dε

∣
∣
∣
∣
ε=0

I α0(wε) = 0. (2.14)

For the second derivative,

d2

dε2

∣
∣
∣
∣
ε=0

I α0(wε) = 1

2

∫

M

|α0−dψα0 |2dµ(2)0 −
∫

M

(α0 − dψα0 , α0)dµ
(2)
0 −

∫

M

V0dµ(2)0

+ 2
∫

M

(γ
(1)
0 , α0 − dψα0)dµ(1)0 − 2

∫

M

(γ
(1)
0 , α0)dµ

(1)
0

+
∫

M

(γ
(2)
0 , α0 − dψα0)dµ0 −

∫

M

(γ
(2)
0 , α0)dµ0+

∫

M

|γ (1)0 |2dµ0

= 1

2

∫

M

∣
∣dψα0

∣
∣2 dµ(2)0 −

∫

M

(
|α0|2

2
+ V0

)

dµ(2)0

− 2
∫

M

(γ
(1)
0 , dψα0)dµ(1)0

−
∫

M

(γ
(2)
0 , dψα0)dµ0 +

∫

M

|γ (1)0 |2dµ0. (2.15)

Differentiating (2.10) twice at ε = 0, we have

∫

M

Lα0 u dµ(2)0 + 2
∫

M

(γ
(1)
0 , du)dµ(1)0 +

∫

M

(γ
(2)
0 , du)dµ0 = 0. (2.16)

Applying (2.16) to the case u = ψα0 and substituting (2.9) to it, we obtain

1

2

∫

M

∣
∣dψα0

∣
∣2 dµ(2)0 −

∫

M

(
|α0|2

2
+ V0

)

dµ(2)0

= 2
∫

M

(γ
(1)
0 , dψα0)dµ(1)0 +

∫

M

(γ
(2)
0 , dψα0)dµ0. (2.17)

Thus, combining (2.15) with (2.17), we obtain

d2

dε2

∣
∣
∣
∣
ε=0

I α0(wε) =
∫

M

|γ (1)0 |2dµ0. (2.18)
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Laplace approximation for stochastic line integrals 19

Since µ0 = mα0 by Lemma 3, the Taylor expansion of I α0(wε), (2.14) and (2.18)
imply the desired result. ��

For α = (α, V ) ∈ Dp,p′ and ϕ ∈ Hp′ , let us denote the solution of the following
differential equation

−Lαu = ϕ −
∫

M

ϕ dmα

with
∫

M u dmα = 0 by Gαϕ. As mentioned in the proof of Theorem 2, the above
equation has a unique solution up to additive constants. Thus Gαϕ is well-defined. In
addition, Gα is a bounded linear operator from Hp′ to Hp+1. We defineΓα : Dp → Dp

by Γαβ := β + dGα(α − dψα, β). It should be noted that Γα is a bounded linear
operator. We define Γα : Dp,p′ → Dp by Γα(β,U ) = Γαβ + dGαU .

For each w ∈ D∗
p,p′ , let G F

w be a bounded symmetric operator on D−p defined by

(
η,G F

wη
)

−p
:= ∇2 F(w)(Γ ∗

∇F(w)η,Γ
∗
∇F(w)η) (2.19)

for each η ∈ D−p.

Proposition 3 Let γε, µε be as in Proposition 2. We define w̃0 ∈ D−p by

〈w̃0, β〉 :=
∫

M

(γ
(1)
0 , β)dmα0 . (2.20)

Then we have

(i) w
(1)
0 = Γ ∗

α0
w̃0,

(ii)
∫

M

|γ (1)0 |2dµ0 ≥
(
w̃0,G F

w0
w̃0

)

−p
.

Proof Set uα0,β = Gα0(α− dψα0 , β). For β = (β,U ) ∈ Dp,p′ , the definition of µ0,
Gα0 and µε implies

〈wε − w0,β〉 =
∫

M

(
γε − α0 + dψα0 , β

)
dµε

+
∫

M

⎛

⎝
(
α0 − dψα0 , β

)−
∫

M

(
α0 − dψα0 , β

)
dµ0

⎞

⎠ dµε

+
∫

M

⎛

⎝U −
∫

M

U dµ0

⎞

⎠ dµε
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=
∫

M

(
γε − α0 + dψα0 , β

)
dµε −

∫

M

Lα0(uα0,β + Gα0U )dµε

=
∫

M

(
γε − α0 + dψα0 , β

)
dµε

+
∫

M

(
γε − α0 + dψα0 , duα0,β + dGα0U

)
dµε

=
∫

M

(
γε − γ0,Γα0β

)
dµε.

To obtain the third equality, we used (2.10) for u = uα0,β + Gα0U . Dividing by ε and
taking ε → 0, we obtain w

(1)
0 = Γ ∗

α0
w̃0. Thus (i) follows.

Since w0 ∈ KF , we have

F(w0)− I (w0) ≥ F(wε)− I (wε).

By using (2.7) and Lemma 3 (i), we have

I α0(wε) ≥ F(wε)− F(w0)− ∇F(w0)(wε − w0).

The Taylor expansion of F yields

F(wε)− F(w0)− ∇F(w0)(wε − w0)

= 1

2
∇2 F(w0)(wε − w0,wε − w0)+ o(‖wε − w0‖2−p).

Thus the conclusion follows from Proposition 2 and (i). ��
In the following lemma, we will construct a smooth perturbation explicitly. This

construction asserts that, for any α ∈ Dp, a perturbation infinitesimally toward
α-direction is possible.

Lemma 4 For each α ∈ Dp, there is ε′ > 0 and a smooth perturbation γ· :
(−ε′, ε′) → C with γ (1)0 = α which satisfies the assumption of Proposition 2.

Proof Fix α ∈ Dp. For each ζ ∈ C, we define a differential operator L̃
α0
ζ by

L̃
α0
ζ u := Lα0 u + ζ (α, du)+ ζ 2

2
|α|2u.

We can easily show that {Lα0
ζ }ζ∈C is a holomorphic family of type (A) defined in

VII §2 of [13]. Thus we can apply the analytic perturbation theory. With the aid of
Proposition 1, it yields that there is a small neighborhood U of 0 in C and a family of
functions {hζ }ζ∈U ⊂ H[p+2] such that hζ satisfies the following:
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Laplace approximation for stochastic line integrals 21

(i) hζ is an eigenfunction of L
α0
ζ ,

(ii) hζ analytically depends on ζ as H[p+2]-valued function,
(iii) h0 ≡ 1 and
(iv) infζ∈U,x∈M |hζ (x)| > 0.

Note that the general analytic perturbation theory only guarantees that hζ is analytic
as L2-valued function. In this case, however, it implies (ii) (cf. III Sect. 1 Remark 1.38
of [13]). In the same way as we introduced Lα by using hα , we define L

α0
ζ by

L
α0
ζ u := Lα0 u +

(

ζα − dhζ
hζ

, du

)

.

By Corollary 2, h−1
ζ dhζ is analytic as a H[p+1]-valued function. By applying the

analytic perturbation theory to (Lα0
ζ )

∗, the dual operator of L
α0
ζ in L2, we obtain a

family of H[p+1]-valued function {gζ }ζ∈U ′ indexed by an open neighborhood U ′ ⊂ C

of 0 which satisfies the following:

(i) gζ is an eigenfunction of (Lα0
ζ )

∗,
(ii) gζ is anti-analytically depends on ζ as H[p+1]-valued function,

(iii) g0 = dmα0

dv
and

(iv)
∫

M

gζ dv = 1 for each ζ ∈ U ′ and gζ takes its value in R if ζ ∈ U ′ ∩ R.

Indeed, there exists a family of functions {g̃ζ }ζ∈U ′ satisfying (i)–(iii) and
∫

M g̃ζ dv �=0.
Hence gζ := g̃ζ /

∫
M g̃ζ dv satisfies (i)–(iv). Take ε ∈ U ∩ U ′ ∩ R. By the continuity

argument for the spectra of perturbed operators, we can choose a neighborhood U1 ⊂U
of 0 in R so that hε is a principal eigenfunction if ε ∈ U1. By the same argument, we
obtain a neighborhood U ′

1 ⊂ U ′ so that gεdv is the normalized invariant measure of
L

α0
ε if ε ∈ U ′

1. It follows from the fact, which is a consequence of the Krein-Rutman
theorem, that the principal eigenvalue of (Lα0

ε )
∗ is 0.

We take ε′ > 0 so that (−ε′, ε′) ⊂ U1 ∩ U ′
1 ∩ R. Set ψε := − log hε. We claim

that γε := εα − dψε fulfills all our requirements. By the choice of hε, gε and ε′,
dψε = h−1

ε dhε and the invariant measure gεdv of L
α0
ε are smooth. In order to complete

the proof, it suffices to show that ψ(1)0 is a constant function. Note that ψε satisfies

Lα0ψε − 1

2
|εα − dψε|2 = Λα0(εα). (2.21)

Obviously ψ0 is a constant function. Differentiating (2.21) at ε = 0, we have

Lα0ψ
(1)
0 = d

dε

∣
∣
∣
∣
ε=0

Λα0(εα).

Integrating this equality by mα0 , we obtain Lα0ψ
(1)
0 = 0 and hence ψ(1)0 is also a

constant function. ��
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22 K. Kuwada

In order to express the result of Proposition 3 in more useful form, we will introduce
an operator Sµ and a functional Lµ forµ ∈ M1. We take an orthonormal basis {αn}n∈N

of L2
1 such that αn is an n-th eigenform of −∆1 corresponding to the n-th eigenvalue

λn (counting multiplicity) for each n ∈ N. Obviously αn ∈ Dp for each n ∈ N. Letting
ᾱn := (1 + λn)

−p/2αn , we obtain an orthonormal basis {ᾱn}n∈N of Dp. Let {ωn}n∈N

be the dual basis of {ᾱn}n∈N. For each µ ∈ M1, a linear operator Sµ : D−p → D−p

is given by

Sµωn :=
∑

m∈N

sµ(n,m)ωm,

sµ(n,m) :=
∫

M

(ᾱn, ᾱm) dµ.

Lemma 5 Let µ ∈ M1.

(i) Sµ is a symmetric, nonnegative definite operator of trace class. In particular, Sµ
is positive if supp[µ] = M.

(ii)
〈
Sµ(α

∗), β
〉 =

∫

M

(α, β) dµ for each α, β ∈ Dp.

Proof (i): Sµ is obviously symmetric. First we show that Sµ is of trace class. Take
q > 0 with d0/2 < q < p − d0/2. Then we have

∑

n∈N

| (Sµωn, ωn
)
−p | ≤

∑

n,m∈N

∣
∣sµ(n,m) (ωm, ωn)−p

∣
∣

=
∑

n∈N

sµ(n, n) =
∑

n∈N

∫

M

|ᾱn|2dµ ≤ C
∑

n∈N

‖ᾱn‖2
q .

Here C > 0 is a constant of the Sobolev embedding from Dq to C. By the definition
of ᾱn , ‖ᾱn‖2

q = (1 + λn)
−p+q . The asymptotic formula for {λn}n∈N (see [8]) implies

(1+λn)
−p+q ≤ C ′n2(q−p)/d0 for some constant C ′ > 0. It yields

∑
n∈N

‖ᾱn‖2
q < ∞.

Hence Sµ is of trace class. Next we show that Sµ is nonnegative definite. For w =∑
n∈N

anωn ∈ D−p,

(
w, Sµw

)
−p =

∑

n,m∈N

anamsµ(n,m) =
∫

M

∣
∣
∣
∑

n∈N

anᾱn

∣
∣
∣
2
dµ ≥ 0.

Thus the desired result follows. The final part of the assertion is now obvious.
(ii): It suffices to prove the assertion in the caseα = ᾱn andβ = ᾱm . Since ᾱ∗

n = ωn ,
we have

〈
Sµωn, ᾱm

〉 =
∑

k∈N

sµ(n, k) 〈ωk, ᾱm〉 = sµ(n,m) =
∫

M

(ᾱn, ᾱm) dµ.

Thus all assertions are proved. ��
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Laplace approximation for stochastic line integrals 23

Take α ∈ Dp. Let w̃0 be defined by (2.20) with γε constructed in Lemma 4 so as to

satisfy γ (1)0 = α. By virtue of Lemma 5 (i), we can easily verify that w̃0 = Sµ0(α
∗).

Thus, for α ∈ Dp, Proposition 2 and Lemma 5 (ii) imply

(
α∗, Sµ0(α

∗)
)
−p ≥

(
Sµ0(α

∗),G F
w0

◦ Sµ0(α
∗)
)

−p
.

Since ∗ is bijective, for each w ∈ D−p,

(
w, Sµ0w

)
−p ≥

(
Sµ0w,G F

w0
◦ Sµ0w

)

−p
. (2.22)

For µ ∈ M1, let us define Lµ : D−p → [0,∞] by

Lµ(w) :=
⎧
⎨

⎩

1

2
inf
{
‖η‖2−p ; w = √

Sµη
}

if w ∈ Range(
√

Sµ) ,

∞ otherwise.
(2.23)

By definition, 2Lµ(Sµw) = (
Sµw,w

)
−p follows.

Lemma 6 Lµ = I ′
µ. In particular, Range(

√
Sµ) = H′

µ.

Proof Note that Range(Sµ) ⊂ H′
µ. It follows from Lemma 5 (ii). In addition, for

Sµw ∈ H′
µ, Ŝµw = w∗ holds. Thus

I ′
µ(Sµw) = 1

2

∫

M

|w∗|2dµ = 1

2

〈
Sµw,w

∗〉 = 1

2

(
Sµw,w

)
−p = Lµ(Sµw).

That is, Lµ|Range(Sµ) = I ′
µ|Range(Sµ).

We can easily verify that the functional (I ′
µ)

1/2 defines a norm on Range(Sµ),
and that its closure by (I ′

µ)
1/2 coincides with H′

µ. On the other hand, by using the

spectral decomposition of Sµ, we can show that the functional L1/2
µ defines a norm

on Range(Sµ) and that its completion by L1/2
µ coincides with Range(

√
Sµ). Through

these observations, we obtain the conclusion. ��
Remark 3 By the observation in the above proof, H′

µ becomes an Hilbert space with

norm induced from
√

2L1/2
µ when supp[µ] = M . We can easily show that the triplet

(D−p,H
′
µ, νSµ) becomes an abstract Wiener space. Here the Gaussian measure νSµ

is defined by (1.6).

For µ ∈ M1, w ∈ Range(
√

Sµ) and β ∈ Dp, we have

|〈w, β〉|=
∣
∣
∣
∣
∣
∣

∫

M

(
ŵ, β

)
dµ

∣
∣
∣
∣
∣
∣
≤
⎧
⎨

⎩

∫

M

|ŵ|2dµ

⎫
⎬

⎭

1/2⎧
⎨

⎩

∫

M

|β|2dµ

⎫
⎬

⎭

1/2

≤√
2‖β‖B Lµ(w)

1/2.
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24 K. Kuwada

Hence we obtain

‖w‖−p ≤ √
2CS Lµ(w)

1/2. (2.24)

Thus, for each w ∈ Range(
√

Sµ), we can take a sequence {wn}n∈N ⊂ Range(Sµ) so
that ‖wn −w‖−p and Lµ(wn −w) converge to 0 as n → ∞. Thus, by Lemma 6 and
(2.22), we obtain

Lµ0(w) ≥ 1

2

(
w,G F

w0
w
)

−p
(2.25)

for each w0 ∈ KF and w ∈ D−p.

3 Uniform moderate deviation estimate

Take w0 ∈ KF and set α0 = ∇F(w0) as in Sect. 2.2. For α = (α, V ) ∈ Dp,p′ , let Y α

be a D−p-valued process defined by

Y α
t (β) := Yt (β)−

t∫

0

(
α − dψα, β

)
(zs)ds.

Also, let Rα
t be a D∗

p,p′ -valued process defined by

Rα
t (β,U ) := Gα((α − dψα, β)+ U )(z0)− Gα((α − dψα, β)+ U )(zt ).

Recall that ψα is defined in Sect. 2.2. In fact, {Y α
t }t≥0 is a D−p-valued martingale

under P
α
x . We prove the following auxiliary lemma which explains how Yt changes

under the Girsanov transform driven by w0.

Lemma 7 Yt − tw0 = Γ ∗
α0

Y α0
t + Rα0

t .

Proof Note that µ0 = mα0 by Lemma 3. The definition of Gα0 and the Itô formula
imply

〈lt − tµ0,U 〉 =
t∫

0

⎛

⎝U (zs)−
∫

M

U dmα0

⎞

⎠ ds = −
t∫

0

Lα0Gα0U (zs)ds

= Gα0U (z0)− Gα0U (zt )+ Y α0
t (dGα0U ). (3.1)
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Similarly, Lemma 3 implies

Yt (β)− t 〈w0, β〉 = Y α0
t (β)+

⎛

⎝
t∫

0

(
α0 − dψα0 , β

)
(zs)ds

−t
∫

M

(
α0 − dψα0 , β

)
dµ0

⎞

⎠

= Y α0
t (β)−

t∫

0

Lα0Gα0(α0 − dψα0 , β)(zs)ds

= Y α0
t (Γα0β)+

(
Gα0(α0−dψα0 , β)(z0)−Gα0(α0−dψα0 , β)(zt )

)
.

(3.2)

Combining (3.1) with (3.2), the conclusion follows. ��
Note that there exists a constant CR = CR(α0) > 0 such that

sup
β∈Dp,p′

|Rα0
t (β)| ≤ CR (3.3)

for each t ≥ 0 by the Sobolev embedding. The following lemma, obtained as a
corollary of Lemma 3.3 of [17], plays a crucial role in the proof of Proposition 4
below.

Lemma 8 For d0 < p′ ≤ p, there is a constant C1 = C1(p′) so that

sup
x∈M

P
α0
x

[∥
∥
∥
∥

1√
t
Y α0

t

∥
∥
∥
∥−p′

≥ r

]

≤ C1 exp

(

− r2

C1

)

.

Proposition 4 For each closed set A ⊂ D−p,

lim sup
c→∞

(

sup
c≤s≤√

t/c

1

s2 log P
α0
x

[
1√
t
Y α0

t ∈ sA

])

≤ − inf
w∈A

Lµ0(w).

Proof For simplicity of notation, we assume that α0 = 0. Our proof also works for
the case α0 �= 0 in the same way. We divided the proof into two steps.

Step 1: the case A is compact. For δ > 0, set L(δ)m := (Lm − δ) ∧ (1/δ). The
functional Ξ : Dp → R given by

Ξ(β) := 1

2

∫

M

|β|2dm
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26 K. Kuwada

is the Legendre conjugate of Lm . It means

Lm(w) = sup
β∈Dp

(〈w, β〉 −Ξ(β))

Thus, for each w ∈ D−p, there is αw ∈ Dp such that

〈w, αw〉 −Ξ(αw) ≥ L(δ)m (w).

Since αw : η 
→ 〈η, αw〉 is continuous, there is a neighborhood Uw of w in D−p so
that

sup
η∈Uw

(〈w, αw〉 − 〈η, αw〉) ≤ δ.

For each α ∈ Dp,

Px

[
1

s
√

t
Yt ∈ Uw

]

≤Ex

[

exp

(
1

s
√

t
Yt (α)−〈w, α〉

)]

exp

(

sup
η∈Uw

(〈w, α〉−〈η, α〉)
)

.

Substituting α = s2αw,

1

s2 log Px

[
1

s
√

t
Yt ∈ Uw

]

≤ 1

s2 log Ex

[

exp

(
s√
t
Yt (αw)

)]

− 〈w, αw〉 + δ.

Choose a finite subcover {Uwi }n
i=1 of a covering {Uw}w∈A of A. Then

1

s2 log Px

[
1

s
√

t
Yt ∈ A

]

≤ 1

s2 log n + δ − min
1≤i≤n

(
〈
wi , αwi

〉

− 1

s2 log Ex

[

exp

(
s√
t
Yt (αwi )

)])

. (3.4)

Now we claim the following:

lim sup
c→∞

sup
c≤s≤√

t/c

(
1

s2 log Ex

[

exp

(
s√
t
Yt (α)

)])

≤ Ξ(α). (3.5)

If (3.5) holds true, (3.4) implies

lim sup
c→∞

sup
c≤s≤√

t/c

(
1

s2 log Px

[
1

s
√

t
Yt ∈ A

])

≤ δ − min
1≤i≤n

L(δ)m (wi ) ≤ δ − inf
w∈A

L(δ)m (w).

Hence, as δ → 0, the conclusion follows.
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Set

Aε,t :=
⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

1

t
〈Y (α)〉t −

∫

M

|α|2 dm

∣
∣
∣
∣
∣
∣
< ε

⎫
⎬

⎭
.

By the Schwarz inequality,

Ex

[

exp

(
s√
t
Yt (α)

)

; Ac
ε,t

]

≤
{

Ex

[

exp

(
2s√

t
Yt (α)

)]}1/2

Px
[
Ac
ε,t

]1/2

≤ exp
(

s2C2
S‖α‖2

p

)
Px
[
Ac
ε,t

]1/2 (3.6)

holds. Since 〈Y (α)〉t = 〈lt , |α|2〉, the large deviation for l̄t yields that there is r > 0
such that

Px
[
Ac
ε,t

] ≤ exp (−r t) (3.7)

for sufficiently large t . On the other hand,

Ex

[

exp

(
s√
t
Yt (α)

)

; Aε,t

]

≤ exp

⎛

⎝ s2

2

∫

M

|α|2 dm + s2ε

2

⎞

⎠ . (3.8)

By (3.6), (3.7) and (3.8), we obtain

sup
c≤s≤√

t/c

(
1

s2 log Ex

[

exp

(
s√
t
Yt (α)

)])

≤ sup
c≤s≤√

t/c

{
1

s2 log 2 +
(
Ξ(α)+ ε

2

)
∨
(

C2
S‖α‖2

p − r t

2s2

)}

.

Since

C2
S‖α‖2

p − r t

2s2 ≤ C2
S‖α‖2

p − rc2

2
→ −∞

as c → ∞, we have

lim sup
c→∞

sup
c≤s≤√

t/c

(
1

s2 log Ex

[

exp

(
s√
t
Yt (α)

)])

≤ Ξ(α)+ ε

2
.

By letting ε → 0, (3.5) follows.
Step 2: the case A is closed. Choose p1 > 0 with d0 < p1 < p. For r > 0, We

write B p1
r = {w ∈ D−p ; ‖w‖−p1 ≤ r}. Then we have A ⊂ (B p1

r ∩ A) ∪ (B p1
r )c.

123



28 K. Kuwada

By Lemma 8,

1

s2 log Px

[
1

s
√

t
Yt ∈ A

]

≤ 1

s2 log 2 +
(

1

s2 log C1 − r2

C1

)

∨
(

1

s2 log Px

[
1

s
√

t
Yt ∈ A ∩ B p1

r

])

.

Since A ∩ B p1
r is compact, this estimate implies

lim sup
c→∞

sup
c≤s≤√

t/c

(
1

s2 log Px

[
1

s
√

t
Yt ∈ A

])

≤
(

− r2

C1

)

∨
(

− inf
w∈A∩B

p1
r

Lm(w)

)

≤
(

− r2

C1

)

∨
(

− inf
w∈A

Lm(w)

)

.

As r → ∞, the desired result follows. ��
Let LΓ

γ be the rate function determined by the contraction principle for Lmγ via Γ ∗
γ :

LΓ
γ (w) := inf

Γ ∗
γ η=w

Lmγ (η). (3.9)

Corollary 3 For each closed set A ⊂ D∗
p,p′ ,

lim sup
c→∞

sup
c≤s≤√

t/c

(
1

s2 log P
α0
x

[
1√
t
Yt − √

tw0 ∈ sA

])

≤ − inf
w∈A

LΓ
α0
(w).

Proof Take δ > 0. Set A(δ) ⊂ D∗
p,p′ by

A(δ) :=
{

w ∈ D∗
p,p′ ; inf

η∈A
‖w − η‖−p ≤ δ

}

.

Lemma 7 and (3.3) imply that, for t, s > 0 with CR ≤ δs
√

t , we have

{
1√
t
Yt − √

tw0 ∈ sA

}

⊂
{

1

s
√

t
Y α0

t ∈ (Γ ∗
α0
)−1A(δ)

}

.

Hence, by Proposition 4,

lim sup
c→∞

sup
c≤s≤√

t/c

(
1

s2 log P
α0
x

[
1√
t
Yt − √

tw0 ∈ sA

])

≤ − inf
w∈(Γ ∗

α0
)−1A(δ)

Lµ0(w) = − inf
w∈A(δ)

LΓ
α0
(w).

By letting δ ↓ 0, the conclusion follows. ��
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4 Proof of main theorems

In addition to (D) and (F1)-(F3), the argument in this section requires the follow-
ing assumption concerning the nondegeneracy of the Hessian at equilibrium states
(cf. (2.25)):

Assumption 1 For each w0 = (w0, µ0) ∈ KF , there exists δw0 > 0 such that

Lµ0(w) ≥ 1

2

(
w,G F

w0
w
)

−p
+ δw0 ‖w‖2−p (4.1)

holds for all w ∈ D−p.

Remark 4 In order to verify Assumption 1, it suffices to show (4.1) forw ∈ (H′
µ0

∩Ker

G F
w0

)⊥, the orthogonal complement of H′
µ0

∩ Ker G F
w0

in H′
µ0

with respect to the
inner product induced from Lµ0 . To show the assertion, we take w ∈ H′

µ0
and write

w = wK + wC , where wK ∈ H′
µ0

∩ Ker G F
w0

and wC ∈ (H′
µ0

∩ Ker G F
w0
)⊥. Then

(2.24) implies

1

2
(w , G F

w0
w)−p + 1

2

{

δw0 ∧
(

1

2C2
S

)}

‖w‖2−p

≤ 1

2C2
S

‖wK ‖2−p + δw0‖wC‖2−p + 1

2
(wC , G F

w0
wC )−p

≤ Lµ0(wK )+ Lµ0(wC ) = Lµ0(w).

Hence Assumption 1 holds with the constant (δw0 ∧ (C−2
S /2))/2.

First we consider the simplest case, that is, the case #KF = 1.

Theorem 3 Let ϕ : M → R be a positive continuous function. Suppose that (D),
(F1)–(F3) and Assumption 1 hold. Assume #KF = 1. Set w0 = (w0, µ0) ∈ KF . Then

lim
t→∞ e−tκF Ex

[
et F(Ȳt )ϕ(zt )

]
= 1

det(1 − G F
w0

◦ Sµ0)
1/2 h∇F(w0)(x)

∫

M

ϕ

h∇F(w0)
dµ0.

In order to give a proof, let us decompose the left hand side into three parts. For
c1, c2 > 0,

J1(c1, t) := e−tκF Ex

[

et F(Ȳ t )ϕ(zt ) ; ‖Ȳt − w0‖D∗
p,p′ ≤ c1√

t

]

,

J2(c1, c2, t) := e−tκF Ex

[

et F(Ȳt )ϕ(zt ) ; c1√
t
< ‖Ȳt − w0‖D∗

p,p′ ≤ c2

]

,

J3(c2, t) := e−tκF Ex

[
et F(Ȳt )ϕ(zt ) ; c2 < ‖Ȳt − w0‖D∗

p,p′

]
.
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Associated with this decomposition, the proof is divided into the following three
lemmas.

Lemma 9 lim supt→∞ J3(c2, t) = 0 for all c2 > 0.

Proof The large deviation principle for Ȳt implies

lim sup
t→∞

1

t
log J3(c2, t) ≤ −κF + sup

{
F(w)− I (w) ; ‖w − w0‖D∗

p,p′ ≥ c2

}
< 0.

This estimate yields the conclusion. ��
For simplicity of notation, we set α0 = ∇F(w0) as in Sects. 2.2 and 3.

Lemma 10 There exists Ĵ1(c1) := limt→∞ J1(c1, t) for all but countably many c1>0,
and

lim
c1→∞ Ĵ1(c1) = 1

det(1 − G F
w0

◦ Sµ0)
1/2 hα0(x)

∫

M

ϕ

hα0
dµ0.

Proof Let A := {‖Ȳt − w0‖D∗
p,p′ ≤ c1t−1/2}. The Taylor expansion of F near w0 up

to the second order yields

J1(c1, t) = exp
{

t (I (w0)− 〈w0,α0〉Dp,p′ )
}

× Ex
[
ϕ(zt ) exp

{
Yt (α0)+ t

(
F(Ȳt )− F(w0)

−∇F(w0)(Ȳt − w0)
)} ; A

]

= hα0(x)Eα0
x

[
ϕ(zt )

hα0(zt )
exp

{

t

(
1

2
∇2 F(w0)(Ȳt − w0 , Ȳt − w0)

+ rF (Ȳt − w0)

)}

; A

]

. (4.2)

Here rF (w) is the remainder term satisfying rF (w) = o(‖w‖2
D∗

p,p′
) as ‖w‖D∗

p,p′ goes

to 0. Take δ > 0. Since t |rF (Ȳt − w0)| ≤ δ holds on A for all sufficiently large t , we
obtain

lim sup
t→∞

J1(c1, t) ≤ eδ lim sup
t→∞

hα0(x)Eα0
x

[
ϕ(zt )

hα0(zt )

× exp

(
t

2
∇2 F(w0)(Ȳt − w0 , Ȳt − w0)

)

; A

]

.

By Lemma 7 and (3.3), if t > C2
Rδ

−2,

∥
∥
∥
∥

1√
t
Γ ∗

α0
Y α0

t

∥
∥
∥
∥

D∗
p,p′

≤ c1 + δ (4.3)
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holds on A. Let CF := sup‖w‖D∗
p,p′ ≤1 |∇2 F(w0)(w, w)|. Then we have

lim sup
t→∞

J1(c1, t) ≤ exp

{

δ + CF

2
δ(2c1 + 3δ)

}

× hα0(x) lim sup
t→∞

E
α0
x

[
ϕ(zt )

hα0(zt )
exp

(
1

2t
(Y α0

t ,G F
w0

Y α0
t )−p

)

;A

]

.

(4.4)

In the same way as we derive the estimate (4.4) from (4.2), we obtain

lim inf
t→∞ J1(c1, t) ≥ exp

{

−δ − CF

2
δ(2c1 + 3δ)

}

× hα0(x) lim inf
t→∞ E

α0
x

[
ϕ(zt )

hα0(zt )
exp

(
1

2t
(Y α0

t ,G F
w0

Y α0
t )−p

)

;A

]

.

(4.5)

Note that the integrand of the expectation in the right hand side of (4.4) or (4.5) is
bounded.

We set

Eδ :=
{∥
∥
∥
∥

1√
t
(Y α0

t − Y α0

t−√
t
)

∥
∥
∥
∥−p

≤ δ

}

.

For each random variable W with |W | ≤ C for some constant C > 0, Lemma 8
implies

∣
∣Eα0

x

[
W ; Ec

δ

]∣∣ ≤ CP
α0
x

[
P

α0
zt−√

t

[
‖Y α0√

t
‖−p > δ

√
t
]]

≤ CC1 exp

(

−δ
2√t

C1

)

.

Thus

lim
t→∞ E

α0
x

[
W ; Ec

δ

] = 0. (4.6)

We write δ′ = δ‖Γ ∗
α0

‖D−p→D∗
p,p′ . Note that (4.3) implies that, if t > C2

Rδ
−2,

A ∩ Eδ ⊂
⎧
⎨

⎩

∥
∥
∥
∥

1√
t
Γ ∗

α0
Y α0

t−√
t

∥
∥
∥
∥

D∗
p,p′

≤ c1 + δ + δ′
⎫
⎬

⎭
=: Aδ. (4.7)
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Thus, by virtue of (4.6), we have

lim sup
t→∞

E
α0
x

[
ϕ(zt )

hα0(zt )
exp

(
1

2t

(
Y α0

t ,G F
w0

Y α0
t

)

−p

)

; A

]

= lim sup
t→∞

E
α0
x

[
ϕ(zt )

hα0(zt )
exp

(
1

2t

(
Y α0

t ,G F
w0

Y α0
t

)

−p

)

; A ∩ Eδ

]

≤ exp

{
CF

2
δ′(2c1 + 2δ + 3δ′)

}

× lim sup
t→∞

E
α0
x

[
ϕ(zt )

hα0(zt )
exp

(
1

2t

(
Y α0

t−√
t
,G F

w0
Y α0

t−√
t

)

−p

)

; Aδ

]

. (4.8)

Since A−δ ∩ Eδ ⊂ A ∩ Eδ holds if t > C2
Rδ

−2, we have

lim inf
t→∞ E

α0
x

[
ϕ(zt )

hα0(zt )
exp

(
1

2t

(
Y α0

t ,G F
w0

Y α0
t

)

−p

)

; A

]

= lim inf
t→∞ E

α0
x

[
ϕ(zt )

hα0(zt )
exp

(
1

2t

(
Y α0

t ,G F
w0

Y α0
t

)

−p

)

; A ∩ Eδ

]

≥ exp

{

−CF

2
δ′(2c1 + 2δ + 3δ′)

}

× lim inf
t→∞ E

α0
x

[
ϕ(zt )

hα0(zt )
exp

(
1

2t

(
Y α0

t−√
t
,G F

w0
Y α0

t−√
t

)

−p

)

; A−δ ∩ Eδ

]

= exp

{

−CF

2
δ′(2c1 + 2δ + 3δ′)

}

× lim inf
t→∞ E

α0
x

[
ϕ(zt )

hα0(zt )
exp

(
1

2t

(
Y α0

t−√
t
,G F

w0
Y α0

t−√
t

)

−p

)

; A−δ
]

. (4.9)

The last equality follows from (4.6).
We choose c1 and δ so that νSµ0

({w ∈ D−p ; ‖Γ ∗
α0
w‖D∗

p,p′ = a}) = 0 for

a = c1, c1 + δ + δ′, c1 − δ − δ′. Recall that νSµ0
is given by (1.6) for S = Sµ0 . Since

{zt }t≥0 is strongly mixing under P
α0
x (see [5,6]), zt and Y α0

t−√
t

are asymptotically

independent as t → ∞. Therefore, the central limit theorem for Y α0 yields that

lim sup
t→∞

E
α0
x

[
ϕ(zt )

hα0(zt )
exp

(
1

2t

(
Y α0

t−√
t
,G F

w0
Y α0

t−√
t

)

−p

)

; Aδ

]

=
∫

M

ϕ

hα0
dµ0

∫

‖Γ ∗
α0
w‖D∗

p,p′ ≤c1+δ+δ′
exp

(
1

2
(w,G F

w0
w)−p

)

νSµ0
(dw),

lim inf
t→∞ E

α0
x

[
ϕ(zt )

hα0(zt )
exp

(
1

2t

(
Y α0

t−√
t
,G F

w0
Y α0

t−√
t

)

−p

)

; A−δ
]
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=
∫

M

ϕ

hα0
dµ0

∫

‖Γ ∗
α0
w‖D∗

p,p′ ≤c1−δ−δ′
exp

(
1

2
(w,G F

w0
w)−p

)

νSµ0
(dw).

Combining this fact with (4.4), (4.5), (4.8) and (4.9) and letting δ → 0, we obtain

Ĵ1(c1) = lim
t→∞ J1(c1, t) = hα0(x)

∫

M

ϕ

hα0
dµ0

×
∫

‖Γ ∗
α0
w‖D∗

p,p′ ≤ c1

exp

(
1

2
(w,G F

w0
w)−p

)

νSµ0
(dw)

(4.10)

by the choice of c1. Since we have

∫

D−p

exp

(
1

2
(w,G F

w0
w)−p

)

νSµ0
(dw) = 1

det
(
1 − G F

w0
◦ Sµ0

)1/2

as a result of Lemma 4.4 in [7], the conclusion follows as c1 → ∞ in (4.10). ��
Lemma 11 For sufficiently small c2 > 0, limc1→∞ supt>1 J2(c1, c2, t) = 0.

Proof For ε > 0, let

Aε :=
{

w ∈ D∗
p,p′ ; 1

2
∇2 F(w0)(w,w)+ ε

2
‖w‖2

D∗
p,p′ ≥ 1

}

.

First we will show

inf
w∈Aε

LΓ
α0
(w) > 1 (4.11)

provided ε is sufficiently small. Recall that LΓ
α0

is given by (3.9). For δ > 0 we define

Ãδ by

Ãδ :=
{

w ∈ D∗
p,p′ ; 1

2
∇2 F(w0)(w,w) ≥ 1 − δ

}

.

Then, for all r > 0, we have

inf
w∈Aε

LΓ
α0
(w) ≥

⎛

⎝ inf‖w‖D∗
p,p′ ≥r

LΓ
α0
(w)

⎞

⎠ ∧
(

inf
w∈Ãrε/2

LΓ
α0
(w)

)

.
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Since (2.24) involves

lim
r→∞ inf‖w‖D∗

p,p′ ≥r
LΓ

α0
(w) = ∞,

we take r > 1 sufficiently large so that inf‖w‖D∗
p,p′ ≥r LΓ

α0
(w) > 1. Since

inf
w∈Ãrε/2

LΓ
α0
(w) =

(
1 − rε

2

)
inf

w∈Ã0

LΓ
α0
(w)

for ε < 2r−1, it suffices to show that inf
w∈Ã0

LΓ
α0
(w) > 1. Actually, this assertion

follows from Assumption 1. Thus we obtain (4.11) for sufficiently small ε > 0.
Fix such a small ε > 0. If c2 is small enough, the Taylor expansion implies

F(Ȳt )− F(w0)− ∇F(w0)(Ȳt − w0)

≤ 1

2
∇2 F(w0)(Ȳt − w0 , Ȳt − w0)+ ε

2
‖Ȳt − w0‖2

D∗
p,p′

for ‖Ȳt − w0‖D∗
p,p′ ≤ c2. Thus, we have

J2(c1, c2, t) ≤ C2E
α0
x

⎡

⎣exp

⎧
⎨

⎩
1

2
∇2 F(w0)

(
1√
t
Yt − √

tw0 ,
1√
t
Yt − √

tw0

)

+ε
2

∥
∥
∥
∥

1√
t
Yt − √

tw0

∥
∥
∥
∥

2

D∗
p,p′

⎫
⎬

⎭
; c1 ≤

∥
∥
∥
∥

1√
t
Yt − √

tw0

∥
∥
∥
∥

D∗
p,p′

≤ c2
√

t

⎤

⎦

= C2

∫

R

ds es
P

α0
x

⎡

⎣ 1√
t
Yt − √

tw0 ∈ √
sAε,

c1 ≤
∥
∥
∥
∥

1√
t
Yt − √

tw0

∥
∥
∥
∥

D∗
p,p′

≤ c2
√

t

⎤

⎦ , (4.12)

where C2 := ‖hα0‖B ‖ϕ/hα0‖B . By Corollary 3 and (4.11), there exists r > 1 and
c > 0 so that for each t, s > 0 with c ≤ √

s ≤ √
t/c,

P
α0
x

[
1√
t
Yt − √

tw0 ∈ √
sAε

]

≤ exp(−rs).

Note that infw∈Aε
‖w‖D∗

p,p′ ≥ √
2/(CF + ε) holds. Take c2 sufficiently small so that

c2 < c−1√2/(CF + ε) holds. Then we have

√
sAε ∩

{
w ; ‖w‖D∗

p,p′ ≤ c2
√

t
}

= ∅ if
√

s ≥
√

t

c
.
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Take a constant c0 > c and set

J2,1 :=
c2

0∫

−∞
ds es

P
α0
x

⎡

⎣ 1√
t
Yt − √

tw0 ∈ √
sAε,

c1 ≤
∥
∥
∥
∥

1√
t
Yt − √

tw0

∥
∥
∥
∥

D∗
p,p′

≤ c2
√

t

⎤

⎦ ,

J2,2 :=
∞∫

c2
0

ds es
P

α0
x

⎡

⎣ 1√
t
Yt − √

tw0 ∈ √
sAε,

c1 ≤
∥
∥
∥
∥

1√
t
Yt − √

tw0

∥
∥
∥
∥

D∗
p,p′

≤ c2
√

t

⎤

⎦ .

By Lemma 7 and Lemma 8,

lim sup
c1→∞

sup
t>1

J2,1 ≤ lim sup
c1→∞

sup
t>1

P
α0
x

⎡

⎣
∥
∥
∥
∥

1√
t
Yt − √

tw0

∥
∥
∥
∥

D∗
p,p′

≥ c1

⎤

⎦

c2
0∫

−∞
es ds = 0.

(4.13)

For J2,2,

sup
t>1

J2,2 = sup
t>1

t/c2∫

c2
0

ds es
P

α0
x

⎡

⎣ 1√
t
Yt − √

tw0 ∈ √
sAε,

c1 ≤
∥
∥
∥
∥

1√
t
Yt − √

tw0

∥
∥
∥
∥

D∗
p,p′

≤ c2
√

t

⎤

⎦

≤ sup
t>1

t/c2∫

c2
0

ds es
P

α0
x

[
1√
t
Yt − √

tw0 ∈ √
sAε

]

≤
∞∫

c2
0

e(1−r)sds = 1

r − 1
e(1−r)c2

0 . (4.14)

Combining (4.13) and (4.14) with (4.12), we obtain

lim sup
c1→∞

sup
t>1

J2(c1, c2, t) ≤ 1

r − 1
e(1−r)c2

0 .
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Thus the conclusion follows as c0 → ∞. ��
Before discussing the general case, we will prove the following lemma.

Lemma 12 Suppose that (D), (F1)–(F3) and Assumption 1 hold. Then KF has no
accumulation point.

Proof Take w = (w,µ) ∈ KF and wn = (wn, µn) ∈ KF for n ∈ N so that wn

converges to w as n → ∞. We write αn = (αn, Vn) := ∇F(wn) and α := (α, V ) =
∇F(w). By Lemma 3, for β = (β,U ) ∈ Dp,p′ ,

〈wn,β〉D∗
p,p′ =

∫

M

((
αn − dψαn , β

)+ U
)

dmµn ,

〈w,β〉D∗
p,p′ =

∫

M

((
α − dψα, β

)+ U
)

dmµ

holds. For ε ∈ [0, 1], we write wn,ε = εwn + (1 − ε)w. Let fn := dµn/dv and
f := dµ/dv. Then (wn,ε, µn,ε) := wn,ε ∈ H and

µn,ε = εµn + (1 − ε)µ,

ŵn,ε = 1

ε fn + (1 − ε) f

{
ε fn(αn − dψαn )+ (1 − ε) f (α − dψα)

}
.

Obviously, wn,ε satisfies the assumption of Proposition 2. Thus, by the Taylor expan-
sion of I (wn,ε) by ε, there is a constant 0 ≤ ε1 ≤ 1 so that

I α(wn) = 1

2

∫

M

|ŵ(1)n,0|2 f dv + 1

6

d3

dε3

∣
∣
∣
∣
ε=ε1

I α(wn,ε). (4.15)

Note that we have

ŵ
(1)
n,0 = fn

f
(αn − dψαn − α + dψα).

It yields

∫

M

|ŵ(1)n,0|2 f dv =
∫

M

f 2
n

f

∣
∣α − dψα − αn + dψαn

∣
∣2 dv. (4.16)

By the direct calculation, the remainder term in (4.15) is written by

d3

dε3

∣
∣
∣
∣
ε=ε1

I α(wn,ε) = 3
∫

M

( f − fn) f 2 f 2
n

((1 − ε1) f + ε1 fn)4

∣
∣α − dψα − αn + dψαn

∣
∣2 dv.

(4.17)
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Since wn converges to w in D∗
p,p′ as n →∞, αn converges to α in Dp,p′ as n →∞.

Then, by the stability theorem ([13] Chapter IV §3.5), we can show that dψαn con-
verges to dψα in Dp and fn converges to f in Hp′ as n → ∞ (cf. Lemma 5.2 of
[16]). As a result, we have C3 := supn,x ( fn(x)∧ f (x))−1 < ∞. Then, by (4.16) and
(4.17),

∣
∣
∣
∣
∣

d3

dε3

∣
∣
∣
∣
ε=ε1

I α(wn,ε)

∣
∣
∣
∣
∣
≤ 3‖ f − fn‖Hp′ C

4
3C3

S‖ f ‖3
Hp′

∫

M

|ŵ(1)n,0|2 f dv.

Take δ > 0 arbitrary. Then, the argument above provides that there is N1 ∈ N such
that, for all n ≥ N1, we have

∣
∣
∣
∣
∣

d3

dε3

∣
∣
∣
∣
ε=ε1

I (wn,ε)

∣
∣
∣
∣
∣
≤ δ

2

∫

M

|ŵ(1)n,0|2 f dv. (4.18)

Let us turn our attention to the estimate of F(wn,ε). The Taylor expansion of F(wn,ε)

by ε yields that there is 0 ≤ ε2 ≤ 1 such that

F(wn)− F(w) = ∇F(w)(wn − w)+ 1

2
∇2 F(w)(wn − w,wn − w)

+ 1

6
∇3 F(w)(wn,ε2 − w,wn,ε2 − w,wn,ε2 − w). (4.19)

We define w̃n ∈ D−p by

〈w̃n, β〉 =
∫

M

(ŵ
(1)
n,0, β)dµ.

By Proposition 3 (i), we have wn − w = Γ ∗
α w̃n . Thus we have

1

2
∇2 F(w)(wn − w,wn − w) = (w̃n,G F

ww̃n)−p. (4.20)

In addition, there is N2 ∈ N such that, for all n ≥ N2, we have

1

6

∣
∣
∣∇3 F(w)(wn,ε2 − w,wn,ε2 − w,wn,ε2 − w)

∣
∣
∣ ≤ δ ‖w̃n‖2−p . (4.21)

Take n ∈ N with n ≥ N1 ∨ N2. Since we have

∫

M

|ŵ(1)n,0|2 f dv = 2Lµ(w̃n),
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(4.15), (4.18), (4.19), (4.20) and (4.21) yield

F(wn)−F(w)− I (wn)+ I (w) ≤ 1

2

(
w̃n,G F

ww̃n

)

−p
− (1 − δ)Lµ(w̃n)+ δ‖w̃n‖2−p.

(4.22)

By Assumption 1,

1

2
(w̃n,G F

ww̃n)−p − Lµ(w̃n) ≤ −δw ‖w̃n‖2−p . (4.23)

Then (4.22) and (4.23) yield

F(wn)− F(w)− I (wn)+ I (w) ≤ 1

2
δ(w̃n,G F

ww̃n)−p + (δ − (1 − δ)δw)‖w̃n‖2−p

≤
{(

1 + δw + ‖G F
w‖

2

)

δ − δw

}

‖w̃n‖2−p.

(4.24)

Choose δ > 0 so that δ < δw(1 + δw + ‖G F
w‖/2)−1. Then w̃n = 0 and wn = w for

n ≥ N1 ∨ N2 since the left hand side of (4.24) is 0. Thus w is an isolated point in KF .
��

By virtue of Lemma 12, the general case easily follows from Theorem 3.

Theorem 4 Let ϕ : M → R be a positive continuous function. Under (D), (F1)–(F3)
and Assumption 1,

lim
t→∞ e−tκF Ex

[
et F(Ȳt )ϕ(zt )

]

=
∑

w=(w,µ)∈KF

1

det(1 − G F
w ◦ Sµ)1/2

h∇F(w)(x)
∫

M

ϕ

h∇F(w)
dµ. (4.25)

Obviously, this theorem is a refined version of Theorem 1.

Proof To begin with, we should remark that Lemma 12 together with Lemma 1 implies
that KF is a finite set. We write Br (η) := {w ∈ D∗

p,p′ ; ‖w − η‖D∗
p,p′ < r}. Take

ε > 0 so that Bε(w) ∩ KF = {w} for each w ∈ KF . Take a smooth function f
on R which satisfies f |(−1/2, 1/2) ≡ 1, f |(−1, 1)c ≡ 0 and 0 ≤ f ≤ 1. We define
Fw : D∗

p,p′ → R as follows:

Fw(η) := F(η)+ log f

(
1

ε2
‖η − w‖2

D∗
p,p′

)

.
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Then

e−tκF Ex

[
et F(Ȳt )ϕ(zt )

]

=
∑

w∈KF

e−tκF Ex

[
et Fw(Ȳt )ϕ(zt )

]

+e−tκF Ex

⎡

⎣et F(Ȳt )ϕ(zt )

⎧
⎨

⎩
1 −

∑

w∈KF

f

(
1

ε2

∥
∥Ȳt − w

∥
∥2

D∗
p,p′

)t
⎫
⎬

⎭

⎤

⎦ . (4.26)

The large deviation principle for Ȳt implies

lim
t→∞

1

t
log Ex

[
et F(Ȳt )1{⋂w∈KF

Bε/2(w)c}(Ȳt )
]

= sup

⎧
⎨

⎩
F(η)− I (η) ; η ∈

⋂

w∈KF

Bε/2(w)
c

⎫
⎬

⎭
< κF .

Hence we have

0 ≤ lim
t→∞ e−tκF Ex

⎡

⎣et F(Ȳt )ϕ(zt )

⎧
⎨

⎩
1 −

∑

w∈KF

f

(
1

ε2

∥
∥Ȳt − w

∥
∥2

D∗
p,p′

)t
⎫
⎬

⎭

⎤

⎦

≤ lim
t→∞ e−tκF Ex

[
et F(Ȳt )1{⋂w∈KF

Bε/2(w)c}(Ȳt )
]

= 0. (4.27)

We can easily verify κF = κFw , KFw = {w} and ∇2 F(w) = ∇2 Fw(w) for each
w ∈ KF . Hence (4.26), (4.27) and Theorem 3 imply the conclusion. ��

From Theorem 4, we can obtain the convergence of path measure as announced in
Sect. 1:

Corollary 4 Suppose the same condition as in Theorem 4. Let Px,F,T be given by
(1.4). Then we have

lim
T →∞ Px,F,T

= 1

Z

∑

w=(w,µ)∈KF

⎛

⎝ 1

det(1 − G F
w ◦ Sµ)1/2

h∇F(w)(x)
∫

M

1

h∇F(w)
dµ

⎞

⎠P
∇F(w)
x ,

with respect to the weak convergence on C([0,∞) → M). Here Z equals the right-
hand side of (4.25).
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5 The case for stochastic line integrals

The same idea as used in Sect. 4 also works in dealing with the case for D−p-valued
process defined by stochastic line integrals. In this section, we assume

(D’) p > d0 + 1 and p′ > inf{n ∈ N ; n ≥ p − 1}
instead of (D). Under (D’), we can realize a D−p-valued continuous process Xt which
is characterized by the following property: Xt (α) = ∫

z[0,t] α for each α ∈ Dp Px -
almost surely (see [21]).

5.1 Preliminaries

We will review some properties for X as we did in Sect. 1.1 for Y . Recall that ∆ =
−d†d, where d† is the adjoint derivative of the exterior derivative d in L2, that is,

∫

M

(d f, α) dv =
∫

M

f d†α dv.

First we see that, for each exact 1-form du, we have

Xt (du) = u(zt )− u(z0). (5.1)

To state the next property, we will introduce an operator Γ̂ and a functional e. Recall
that b̂ is a 1-form corresponding to the vector field b. Let us define an operator Γ̂ by
Γ̂ α := α+dG0((b̂, α)−d†α/2). Note that Γ̂ becomes a continuous linear idempotent
operator on Dp. When β = 0, Γ̂ is the orthonormal projection to co-exact 1-forms.
Let us define e : Dp → R by

e(α) =
∫

M

(

(b̂, α)− 1

2
d†α

)

dm.

Then Xt (Γ̂ α) − te(Γ̂ α) = Yt (Γ̂ α) holds for any α ∈ Dp. Since e((1 − Γ̂ )α) = 0,
we have

Xt − te = Γ̂ ∗Yt + (1 − Γ̂ ∗)Xt (5.2)

(see [21] for example). Note that

‖(1 − Γ̂ ∗)Xt‖−p ≤ C ′ (5.3)

holds for some constant C ′ > 0. This estimate comes from (5.1) and the continuity
of G0. These properties mean that Xt equals Γ̂ ∗Yt plus a remainder term.

Next we see limit theorems for X . Set X̄t := t−1 Xt − e. The law of large numbers
[10] asserts limt→∞ X̄t = 0 in D−p Px -almost surely. The central limit theorem for
X asserts that the law of

√
t X̄t weakly converges to ν

Γ̂ ∗Sm
as t → ∞ respectively.

As shown in [21], these limit theorems for X is resulted from that for Y . Indeed, (5.2)
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and (5.3) imply the desired result. The same idea as stated above involves the large
deviation principle for X̄t := (X̄t , l̄t ). via the contraction principle (see [16] for more
details). Set Γ̂ : Dp,p′ → Dp,p′ by Γ̂ (β,U ) = (Γ̂ β,U ). Then the rate function IX

for X̄ is given by IX (w) := inf
Γ̂ ∗η=w

I (η). We should remark that, there appears no

influence from the term (1 − Γ̂ ∗)X̄t in above-mentioned limit theorems for X .

5.2 Laplace approximation for currents of stochastic line integrals

As in the beginning of Sect. 4, we suppose the following assumption concerning the
nondegeneracy of the Hessian at equilibrium states. We write F1 := F ◦ Γ̂ ∗ and

Assumption 2 For each w0 = (w0, µ0) ∈ KF1 , there exists δ(1)w0 > 0 such that

Lµ0(w) ≥ 1

2

(
w,G F1

w0
w
)

−p
+ δ(1)w0

‖w‖2−p

holds for each w ∈ D−p.

Theorem 5 Letϕ : M → R be a positive continuous function. Under (D’), (F1)–(F3)
and Assumption 2,

lim
t→∞ e−tκF1 Ex

[
et F(X̄t )ϕ(zt )

]

=
∑

w=(w,µ)∈KF1

1

det(1 − G F1
w ◦ Sµ)1/2

hαw(x)e−uα̃w (x)
∫

M

ϕ

hαw
euα̃w dµ,

where αw := ∇F1(w), α̃w is a projection of ∇F(Γ̂ ∗w) to Dp and uα̃w =
−G0((b̂, α̃w)− d†α̃w/2).

Remark 5 A similar result also holds for the bounded variation part of Xt . But this
part is nothing but a different realization of the mean empirical measure lt . Thus we
omit it because it is not important.

Proof In the following, we assume KF1 = {w0}. The extension to the general case is
now obvious. Set η0 = Γ̂ ∗w0 and (w0, µ0) := w0. As in the proof of Theorem 3, we
decompose the left hand side into three parts. For c1, c2 > 0,

e−tκF1 Ex

[
et F(X̄t )ϕ(zt )

]
= J ′

1(c1, t)+ J ′
2(c1, c2, t)+ J ′

3(c2, t),
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where

J ′
1(c1, t) := e−tκF1 Ex

[

et F(X̄ t )ϕ(zt ) ; ‖X̄t − η0‖D∗
p,p′ ≤ c1√

t

]

,

J ′
2(c1, c2, t) := e−tκF1 Ex

[

et F(X̄t )ϕ(zt ) ; c1√
t
< ‖X̄t − η0‖D∗

p,p′ ≤ c2

]

,

J ′
3(c2, t) := e−tκF1 Ex

[
et F(X̄t )ϕ(zt ) ; c2 < ‖X̄t − η0‖D∗

p,p′

]
.

Since

κF1 = sup
w∈D∗

p,p′
{F1(w)− I (w)} = sup

η∈D∗
p,p′

{F(η)− IX (η)} ,

the large deviation principle for X̄t implies lim supt→∞ J ′
3(c2, t) = 0 for each c2 > 0.

Let us turn to the estimate of J ′
1(c1, t). Let α0 = (α0, V0) := ∇F1(w0), α̃0 =

(α̃0, V0) := ∇F(η0) and uα̃0 := −G0((b̂, α̃0) − d†α̃0/2). Note that α0 = Γ̂ α̃0 and
(1 − Γ̂ )α̃0 = duα̃0 . Then, by (5.1) and (5.2),

J ′
1(c1, t) = exp

(
t
(

I (w0)− 〈w0,α0〉D∗
p,p′

))
Ex

[

ϕ(zt ) exp
(
t X̄t (α̃0)

)

× exp
(
t
{

F(X̄t )− F(η0)− ∇F(η0)(X̄t − η0)
}) ;

∥
∥X̄t − η0

∥
∥

D∗
p,p′

≤ c1√
t

]

= hα0(x)Eα0
x

[
ϕ(zt )

hα0(zt )
exp

(
uα̃0(zt )− uα̃0(z0)

)

× exp
{

t
(
∇2 F(η0)(X̄t − η0, X̄t − η0)+ rF (X̄t − η0)

)}
;

∥
∥X̄t − η0

∥
∥

D∗
p,p′

≤ c1√
t

]

,

where rF is the remainder term of the Taylor expansion satisfying rF (w)=o(‖w‖2
D∗

p,p′).

Thus (5.2) and the remark after (5.2) imply

lim
t→∞ J ′

1(c1, t) = hα0(x) exp
(
−uα̃0(x)

)
lim

t→∞ E
α0
x

[
ϕ(zt )

hα0(zt )
exp

(
uα̃0(zt )

)

× exp
{

t
(
∇2 F1(w0)(Ȳt − w0, Ȳt − w0)

)}
;

∥
∥
∥Γ̂ ∗(Ȳt − w0)

∥
∥
∥

D∗
p,p′

≤ c1√
t

]

.
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Therefore, as in Lemma 10, the central limit theorem and the mixing property of
{zt }t≥0 induce that there exists Ĵ ′

1(c1) := limt→∞ J ′
1(c1, t) for all but countably many

c1 > 0 and

lim
c1→∞ Ĵ ′

1(c1) = 1

det(1 − G F1
w0 ◦ Sµ0)

1/2
hα0(x)e−uα̃0 (x)

∫

M

ϕ

hα0
euα̃0 dµ0.

Finally, we will estimate J ′
3(c1, c2, t). Let A′

ε be given by

A′
ε :=

{

w ∈ D∗
p,p′ ; 1

2
∇2 F1(w0)(w,w)+ ε

2
‖w‖2

D∗
p,p′ ≥ 1

}

.

As in the proof of Lemma 11, we can show

inf
w∈A′

ε

inf
Γ̂ ∗η=w

LΓ
α0
(η) > 1 (5.4)

for sufficiently small ε > 0. With the aid of (5.2), almost the same argument as used
in Corollary 3 implies the following uniform moderate deviation estimate

lim sup
c→∞

(

sup
c≤s≤√

t/c

1

s2 log P
α0
x

[
1√
t

Xt − √
tη0 ∈ sA

])

≤ − inf
w∈A

inf
Γ̂ ∗η=w

LΓ
α0
(w)

(5.5)

for each closed set A ⊂ D∗
p,p′ . Then we obtain limc1→∞ supt>1 J ′

3(c1, c2, t) = 0 in
the same way as in Lemma 11 by using (5.4) and (5.5) instead of (4.11) and Corollary 3.
On the basis of these estimates on J ′

1, J ′
2 and J ′

3, the desired result follows. ��

For α = (α, V ) ∈ Dp,p′ , let us define Γ̂α : Dp → Dp by Γ̂αβ := β + dGα((b̂ +
α− dψα, β)− d†β/2). Note that Γ̂0 = Γ̂ holds. The following lemma characterizes
the influence of Γα in Theorem 5.

Lemma 13 ΓαΓ̂ = Γ̂α .
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Proof By the definition of Γα and Γ̂ ,

ΓαΓ̂ β = Γ̂ β + dGα(α − dψα, Γ̂ β)

= Γ̂ β + dGα

(

α − dψα, β + dG0

(

(b̂, β)− 1

2
d†β

))

= Γ̂ β + dGα

(
α − dψα, β

)+ dGαLαG0

(

(b̂, β)− 1

2
d†β

)

− dGαLG0

(

(b̂, β)− 1

2
d†β

)

= β + dGα

(
α − dψα, β

)+ dGα

(

(b̂, β)− 1

2
d†β

)

= Γ̂αβ.

Hence the desired result follows. ��
Remark 6 Let us define a operator Γ̂α : Dp,p′ → Dp by Γ̂α(β,U ) = Γ̂αβ + dGαU .
Note that Lemma 13 asserts ΓαΓ̂ = Γ̂α . By using this notation, we obtain

(
η,G F1

w η
)

−p
= ∇2 F(Γ̂ ∗w)(Γ̂ ∗

∇F1(w)
η, Γ̂ ∗

∇F1(w)
η). (5.6)

As we have seen in (5.1), Xt degenerates on exact 1-forms in long time. The equation
(5.2) together with (5.3) means that the range of Γ̂ determines the complementary
subspace to degenerate parts. To see the definition of Γ̂α , we can say that a transform
of operator Γ̂0 
→ Γ̂α corresponds to the transform of generator L 
→ Lα . Thus
ΓαΓ̂ = Γ̂α means that the change of generator causes the change of the complementary
subspace.

Recall that the emergence of Γ ∗· in the Laplace approximation for Yt comes from the
transformation of martingales driven by the Girsanov transform. Since the definition
of stochastic line integral is invariant under the Grisanov transform, it it natural thatΓ ∗·
does not appear in the Laplace approximation for Xt . Indeed, if we rewrites Theorem 5
by using (5.6),Γ ∗· actually disappears. But as a result, the transform Γ̂ 
→ Γ̂αw emerges
instead of it.

Remark 7 In our framework, we have considered a (nonsymmetric) diffusion process
{zt }t≥0 with the generator∆/2+b. But, when we consider the Laplace approximation
for Yt or Xt , it is sufficient to consider the case b = 0, that is, {zt }t≥0 is the Brownian
motion. Let {P̂x }x∈M be the Wiener measure of the Brownian motion. We define a
map�b : H−p′ → D−p by 〈�b(µ), β〉 = 〈µ, (b̂, β)〉Hp′ . Then the Girsanov formula
implies

Ex
[
exp(t F(Yt ))ϕ(zt )

]

= Êx

[

exp

{

t

(

F(Ȳt −�b(l̄t ), l̄t )+ Ȳt (b̂)− 1

2
〈l̄t , |b̂|2〉Hp′

)}

ϕ(zt )

]

.
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Thus letting a functional F̃ on D∗
p,p′ by F̃(w,µ) := F(w − �b(µ), µ) + 〈w, b̂〉

− 1
2 〈µ, |b̂|2〉Hp′ , we obtain

Ex
[
exp(t F(Yt ))ϕ(zt )

] = Êx

[
exp(t F̃(Yt ))ϕ(zt )

]
.

Thus we can reduce the Laplace approximation to the case b = 0. The same argument
also works for Xt . We remark that Xt is invariant under the Girsanov transform and
therefore �b does not appear in this case.

6 Some special cases

6.1 Functional of empirical measures

In this section we consider the Laplace approximation only for mean empirical mea-
sures l̄t . This problem is nothing but considering Theorem 4 under the following
additional assumption:

Assumption 3 there exists F0 : H−p′ → [−∞,∞) such that F(w,µ) = F0(µ)

holds for any (w,µ) ∈ D∗
p,p′ .

Of course, Theorem 4 implies the Laplace approximation for lt under Assumption 1.
The aim in this section is to reveal that our result recovers that in [4], which is obtained
as an example of the general Laplace approximation result for mean empirical mea-
sures of a Markov process.

Note that all the derivatives in D−p direction vanishes under Assumption 3. It
means that for w = (w,µ), ∇F(w) = (0,∇F0(µ)) holds. Thus the Varadhan lemma
asserts that

lim
t→∞

1

t
log Ex

[
exp

(
t F0(l̄t )

)] = κF

holds. Let I0 be the rate function for l̄t . Set

κ0
F0

:= sup
µ∈H−p′

(F0(µ)− I0(µ)) ,

K0
F0

:= {µ ∈ H−p′ ; F0(µ)− I0(µ) = κ0
F0

}.

Let ι : D∗
p,p′ → H−p′ be the canonical projection.

Lemma 14 In the above framework, κF = κ0
F0

holds. In addition, ι maps KF to K0
F0

as a homeomorphism.

Proof By the contraction principle, we have I0(µ) = infw∈D−p I (w,µ). Thus κF =
κ0

F0
immediately follows. Since ι is continuous and open mapping, it suffices to show
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that ι is bijective. By (1.12), (1.13) and a remark after that, we have I (w,µ) = I0(µ)

if and only if w ∈ D−p is given by

〈w, β〉 = −
∫

M

(Pf b̂ − ξ f , β)dµ, (6.1)

where f = √
dµ/dv. We denotew defined by (6.1) bywµ. Then the above observation

yields that (w,µ) ∈ KF holds if and only ifw = wµ andµ ∈ KF0 . Thus the bijectivity
of ι is now obvious. ��

For V ∈ Hp′ , we simply denote L(0,V ), h(0,V ), m(0,V ), G(0,V ) and Γ(0,V ) by LV ,

hV , mV , GV and ΓV respectively. Set ḠV = GV + G
†
V , where G

†
V means the adjoint of

GV on L2(dmV ).

Lemma 15 Under Assumption 3 and (F1), (4.1) is equivalent to the following: for
any µ0 ∈ K0

F0
, there exists δµ0 > 0 such that

1

2

∫

M

f Ḡ∇F0(µ0) f dµ0

≥ 1

2
∇2 F0(µ0)(Ḡ∇F0(µ0) f µ0, Ḡ∇F0(µ0) f µ0)+ δµ0‖Ḡ∇F0(µ0) f µ0‖2

H−p′ (6.2)

holds for any f ∈ Hp′ .

Proof First we derive (6.2) from Assumption 1. Take µ0 ∈ K0
F0

. By Lemma 14, there
exists w0 ∈ KF such that ι(w0) = µ0 holds. Then Lemma 3 asserts µ0 = mV0 . For
f ∈ Hp′ , let w ∈ D−p be given by 〈w, β〉 = ∫

M

(
dGV0 f, β

)
dµ0. Note that Hp+1 is

closed under multiplication and p + 1 > 2 because p > d0. Thus we have

2Lµ0(w) =
∫

M

|dGV0 f |2dµ0 =
∫

M

LV0(GV0 f )2dµ0 − 2
∫

M

GV0 f LV0GV0 f dµ0

=
∫

M

f ḠV0 f dµ0. (6.3)

In a similar way, for g ∈ Hp′ , we have

〈
ι ◦ Γ ∗

V0
w, g

〉
Hp′ = 〈

w, dGV0 g
〉 =

∫

M

(
dGV0 f, dGV0 g

)
dµ0 =

∫

M

gḠV0 f dµ0. (6.4)

Thus we obtain ι ◦ Γ ∗
V0
w = ḠV0 f µ0. Hence Assumption 3 yields

(
w,G F

w0
w
)

−p
= ∇2 F0(µ0)(ι ◦ Γ ∗

V0
w, ι ◦ Γ ∗

V0
w) = ∇2 F0(µ0)(ḠV0 f µ0, ḠV0 f µ0).

(6.5)
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Note that there is a constant C > 0 such that

‖w‖−p = sup
α∈Dp

‖α‖p≤1

| 〈w, α〉 | ≥ sup
g∈Hp′∥

∥dGV0 g
∥
∥

p≤1

∣
∣〈w, dGV0 g

〉∣∣

≥ C sup
g∈Hp′

‖g‖Hp′ ≤1

∣
∣
∣
∣
∣
∣

∫

M

(
dGV0 g, dGV0 f

)
dµ0

∣
∣
∣
∣
∣
∣
= C

∥
∥ḠV0 f µ0

∥
∥

H−p′ . (6.6)

By substituting (6.3), (6.5) and (6.6) to Assumption 1, we obtain (6.2).
Next we show the converse implication. Take w0 ∈ KF . By Lemma 14, µ0 :=

ι(w0) ∈ K0
F0

holds. For µ0 ∈ K0
F0

, set V0 = ∇F0(µ0). Lemma 3 asserts µ0 = mV0 .
By Remark 4, it suffices to show that there is a constant δ′w0

> 0 such that for any w

with Sµ0w ∈ (H′
µ0

∩ Ker G F
w0

)⊥
,

Lµ0(Sµ0w) ≥ 1

2

(
Sµ0w,G F

w0
◦ Sµ0w

)

−p
+ δ′w0

∥
∥Sµ0w

∥
∥2

−p . (6.7)

Indeed, once we obtain (6.7), we can replace Sµ0w with w ∈ H′
µ0

as we obtained
(2.25) from (2.22). Takew as above. Assumption 3 implies Ker G F

w0
⊃ Ker(dGV0)

∗ =
Ker d∗. Thus we have (H′

µ0
∩ Ker G F

w0
)⊥ ⊂ (H′

µ0
∩ Ker d∗)⊥. We set α = w∗ and

dµ0 = f 2
0 dv. Then we have

〈
Sµ0w, β

〉 = ∫
M (α, β) dµ0. Since η ∈ Ker d∗ means

〈η, du〉 = 0 for any u ∈ Hp′ , Pf0α = α holds. A regularity argument as we did in
Sect. 2.1 implies f0 ∈ Hp′ and f0 > 0. Set f = ( f −1

0 d f0, α)− d†α/2. Then we can
show Pf0α = dGV0 f . Since

〈
Sµ0w, β

〉 =
∫

M

(α, β) dµ0 =
∫

M

(
dGV0 f, β

)
dµ0,

(6.3), (6.4) and (6.5) imply

Lµ0(Sµ0w) = 1

2

∫

M

f ḠV0 f dµ0,

(
Sµ0w,G F

w0
◦ Sµ0w

)
= ∇F0(µ0)(ḠV0 f µ0, ḠV0 f µ0).

Since there is a constant C ′ > 0 such that ‖g‖Hp′ ≤ C ′‖dGV0 g‖p for any g ∈ Hp′ ,
there exists a constant C ′′ > 0 such that we have
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∥
∥ḠV0 f µ0

∥
∥

H−p′ = sup
g∈Hp′

‖g‖Hp′ ≤1

∣
∣
∣
∣
∣
∣

∫

M

(
dGV0 g, dGV0 f

)
dµ0

∣
∣
∣
∣
∣
∣

= sup
g∈Hp′

‖g‖Hp′ ≤1

| 〈Sµ0w, dGV0 g
〉 | ≥ C ′′ ∥∥Sµ0w

∥
∥−p .

Therefore, substituting these estimates to (6.2) yields Assumption 1. ��
For V ∈ Hp′ , let S0

V : H−p′ → H−p′ be defined by

〈
S0

V ( f ∗), g
〉

Hp′
=
∫

M

f ḠV g dmV

for any f, g ∈ Hp′ .

Lemma 16 S0
V is a symmetric, nonnegative definite operator of trace class.

Proof By (6.3), symmetricity and nonnegativity obviously follow. Take q > 0 such
that d0/2 < q < p − d0/2. Since dGV : Hq−1 → Dq is continuous, the Sobolev
embedding from Dq to C yields

(
S0

V ( f ∗), f ∗)

H−p′
=
∫

M

f ḠV f dmV =
∫

M

|dGV f |2dmV ≤ C‖dGV f ‖2
q ≤ C ′‖ f ‖2

Hq−1

for some constants C,C ′ > 0. Since p′ − (q − 1) ≥ p − q > d0/2 by (D), the
conclusion follows from a similar argument as in the proof of Lemma 5 by calculating
the trace norm with respect to an orthonormal basis of Hp−1 consisting of normalized
eigenfunctions of −∆. ��
Theorem 6 ([4]) Let ϕ : M → R be a positive continuous function. Suppose that
(D), (F1)–(F3) and Assumption 3 hold. Suppose that, for each µ0 ∈ K0

F0
, (6.2) holds

for any f ∈ Hp′ . Then #K0
F0
< ∞ and

lim
t→∞ e−tκ0

F0 Ex

[
et F0(l̄t )ϕ(zt )

]

=
∑

µ∈K̂F̂

1

det
(
1 − ∇2 F0(µ) ◦ S0

µ

)1/2 h∇F0(µ)(x)
∫

M

ϕ

h∇F0(µ)
dµ.

Here, we identify the quadratic form ∇2 F0(µ) on H−p′ with the operator from H−p′
to itself.

Proof By Lemma 15, Assumption 1 holds. In particular KF is a finite set by Lemma 12.
Thus Lemma 14 asserts #K0

F0
< ∞. Moreover, we have κF = κ0

F0
and Theorem 4
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yields

lim
t→∞ e−tκ0

F0 Ex

[
et F0(l̄t )ϕ(zt )

]

= lim
t→∞ e−tκF Ex

[
et F(Ȳt )ϕ(zt )

]

=
∑

w0=(w0,µ0)∈KF

h∇F0(µ0)(x)
∫

M

ϕ

h∇F0(µ0)
dµ0

∫

D−p

exp

(
1

2
(w,G F

w0
w)−p

)

νSµ0
(dw).

(6.8)

For simplicity we set V0 := ∇F0(µ0). By the definition of Γ ∗· and G F
w0

, we have

(
w,G F

w0
w
)

−p
= ∇2 F0(µ0)((dGV0)

∗w, (dGV0)
∗w).

By (6.3) we have

∫

M

exp
(√−1

〈
(dGV0)

∗w, g
〉
Hp′

)
νSV0

(dw) =
∫

M

exp
(√−1

〈
w, dGV0 g

〉)
νSV0

(dw)

= exp

⎛

⎝−1

2

∫

M

|dGV0 g|2dµ0

⎞

⎠

= exp

⎛

⎝−1

2

∫

M

gḠV0 g dµ0

⎞

⎠

= exp

(

−1

2

(
g∗, S0

V0
(g∗)

)

H−p′

)

.

Thus the induced measure νSV0
◦ ((dGV0)

∗)−1 on H−p′ is also a Gaussian measure

with the covariance S0
V0

. Hence the conclusion follows from (6.8). ��

6.2 Finite dimensional case

Let f : R
k → R be a smooth function. Let F ′ : D−p → R be defined by

F ′(w) = f (〈w, α1〉 , . . . 〈w, αk〉) for some αi ∈ Dp, i = 1, . . . , k. In what follows,
we consider the case that F is given by F(w,µ) = F ′(w). In this case, some parts of
our argument are reduced to the calculus on a finite dimensional space. Indeed, since
we have

∇F ′(w) =
k∑

i=1

∂ f

∂xi
(〈w, α1〉 , . . . , 〈w, αk〉)αi ,
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{αw}w∈KF , which appeared in Theorem 4, are all written by linear combinations of
(αi , 0)ki=1. For each w = (w,µ) ∈ KF , Remark 4 says that it suffices to verify
Assumption 1 whenw ∈ D−p acts on Dp as an inner product on L2(dµ)with a linear
combination of {Γαwαi }k

i=1. Note that, when we consider Theorem 5, all elements in
{αw}w∈KF1

are written by linear combinations of (Γ̂ αi , 0)ni=1. In this case, we only
need to verify Assumption 2 for each w = (w,µ) ∈ KF1 when w acts as an inner
product on L2(dµ) with a linear combination of {Γ̂αwαi }k

i=1.
We remark that this framework includes the case of periodic diffusions on R

k . Let zt

be a solution of the following stochastic differential equation on k-dimensional torus
T

k = [0, 1)k :

⎧
⎪⎪⎨

⎪⎪⎩

dzi
t =

k∑

j=1

σ i
j (zt ) ◦ dz j

t + θ i (zt )dt,

z0 = x .

(6.9)

Here {σ i
j }k

i, j=1 and {θ i }k
i=1 are smooth functions on T

k . Let gi j = ∑k
l=1 σ

i
l σ

j
l . Assume

that {gi j }k
i, j=1 is nondegenerate at each point. Then {gi j } = {gi j }−1 induces a

Riemannian metric on T
k . With respect to this metric, the generator of zt is of the form

∆/2 + b for some smooth vector field b. We take 1-forms αi = dxi , i = 1, . . . , k.
Then, the Stokes formula for stochastic line integrals on R

k implies Xt (αi ) = z̄i
t − z̄i

0,
where z̄t is a solution of the following stochastic differential equation on R

k , which
is a periodic extension of (6.9):

⎧
⎪⎪⎨

⎪⎪⎩

dz̄i
t =

k∑

j=1

σ̄ i
j (z̄t ) ◦ dz̄ j

t + θ̄ i (z̄t )dt,

z̄0 = x̄ .

Here σ̄ and θ̄ are a periodic extension of σ and θ respectively. Note that, if we denote
the canonical projection from R

k to T
k by P , P(x̄) = x and P(z̄t ) = zt . These

arguments and the remark at the beginning of this subsection tell us that the Laplace
approximation for t−1 z̄t follows as a corollary of Theorem 5.
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