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Abstract We consider the wetting transition in the framework of an effective inter-
face model of gradient type, in dimension 2 and higher. We prove pathwise estimates
showing that the interface is localized in the whole thermodynamically defined partial
wetting regime considered in earlier works. Moreover, we study how the interface
delocalizes as the wetting transition is approached. Our main tool is reflection positi-
vity in the form of the chessboard estimate.

Keywords Interface · Wetting · Prewetting · Reflection positivity

Mathematics Subject Classification (2000) 60K35 · 82B41

1 Introduction and results

1.1 The model

Effective interface models of gradient type have been a very active field of research
in recent years. In particular, the understanding of the interaction of an interface
with various types of external potentials (wall, pinning potential, etc.) has motivated
numerous works, resulting in substantial progress on such issues. We refer to [12,13,
18] for reviews of the problems investigated and references.
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380 Y. Velenik

Among such questions, the analysis of the effect of an attractive wall on the behavior
of an interface is of particular relevance. Such a situation is commonly modeled as
follows. Let ΛL = {−�L/2� + 1, . . . , �L/2�}d , ΛL = {−�L/2�, . . . , �L/2� + 1}d

and ∂ΛL = ΛL \ ΛL . Interface configurations are given by ϕ = {ϕi }i∈ΛL ∈ R
ΛL .

Let also V : R → R be an even, convex function, with V �≡ 0 and V (0) = 0. Given
η, λ ≥ 0, we introduce the following probability measure on R

ΛL .

µ0
L;λ,η(dϕ) = 1

Z0
L;λ,η

exp

⎡
⎢⎢⎣− 1

8d

∑
i, j∈ΛL

i∼ j

(ϕi − ϕ j )
2 − λ

∑
i∈ΛL

V (ϕi )

⎤
⎥⎥⎦

×
∏

i∈ΛL

(dϕi + ηδ0(dϕi ))
∏

i∈∂ΛL

δ0(dϕi ),

where dϕi and δ0(dϕi ) denote, respectively, Lebesgue measure and the Dirac mass at
0, and i ∼ j means that ‖i − j‖1 = 1. Writing Ω+ = {ϕi ≥ 0,∀i ∈ ΛL}, we then
introduce the probability measure

µ
+,0
L;λ,η

( · ) = µ0
L;λ,η( · | Ω+).

This is the measure we shall be mostly interested in this work. We shall denote by

Z+,0
L;λ,η

= µ0
L;λ,η(Ω+) (1)

the associated partition function. Before going on, let us briefly describe the physical
meaning of all the pieces entering the definition of µ

+,0
L;λ,η

. Interpreting as usual ϕi as
the height of the interface above site i , the positivity constraint Ω+ corresponds to the
presence of a hard wall at height 0, which the interface cannot cross. The term

1

8d

∑
i, j∈ΛL

i∼ j

(ϕi − ϕ j )
2

represents the internal energy associated to deformation of the interface from the
horizontal plane. The term

λ
∑

i∈ΛL

V (ϕi )

represents the contribution to the energy coming from the presence of an external
potential. A common choice if V (x) = x2 (usually termed a mass term), but given the
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Wetting of gradient fields: pathwise estimates 381

situation we want to model here a more natural choice is V (x) = |x |. The latter choice
allows for the interpretation of the interface as separating a thermodynamically stable
phase (above) from a thermodynamically unstable phase (below), the latter being
stabilized locally because it is favored by the wall; λ then measures the difference of
free energies between the stable and unstable phases (both being stable when λ = 0);
see [17,18] for a more detailed explanation. Finally, for η > 0, the measure

∏
i∈ΛL

(dϕi + ηδ0(dϕi ))

models the local attractivity of the interface/wall interaction, by rewarding each contact
between the interface and the wall. One way to see this better (which also turns out
to be technically useful later) is to realize that µ0

L;λ,η
can be seen as the weak limit of

the measures

µ
0,(ε)
L;λ,η

(dϕ) = 1

Z0,(ε)
L;λ,η

exp

⎡
⎢⎢⎣− 1

8d

∑
i, j∈ΛL

i∼ j

(ϕi − ϕ j )
2 − λ

∑
i∈ΛL

V (ϕi ) −
∑

i∈ΛL

U (ε)
η (ϕi )

⎤
⎥⎥⎦

×
∏

i∈ΛL

dϕi

∏
i∈∂ΛL

δ0(dϕi ),

where e−U (ε)
η (ϕi ) = 1 + η

2ε
1{|ϕi |≤ε}, as ε ↓ 0. Similarly, µ

+,0
L;λ,η

is easily seen to be
given by the weak limit, as ε ↓ 0, of

µ
+,0,(ε)
L;λ,η

= µ
0,(ε)
L;λ,2η

( · | Ω+). (2)

1.2 Earlier results

Various aspects of this model have been studied in several papers. Let us briefly review
earlier works relevant to the present contribution. Many of the results quoted below
are valid in the more general context of gradient field with uniformly strictly convex
interactions, i.e., those for which the term (ϕi − ϕ j )

2 in the definition of the measure
is replaced by U (ϕi − ϕ j ) with U : R → R an even function with second derivative
uniformly bounded away from 0 and ∞. To keep the discussion short, we shall not
discuss this here (nor shall we discuss the case of non-nearest-neighbor interactions),
and refer to the cited papers, and to the reviews mentioned at the beginning, for more
information. Let us just remark that most of our analysis actually extends to this case
as well, the Gaussian character of the measure being used in an essential way only
in very few places. However, most earlier results about the free energy in the wetting
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382 Y. Velenik

problem, upon which our whole approach rests, concern exclusively the Gaussian
setting (or Lipschitz interactions).

1.2.1 Free interface

We very briefly recall what is known when λ = η = 0, for the measure without the
positivity constraint, i.e., for the measure µ0

L;0,0. In that case, the measure is Gaussian,
and therefore amenable to explicit computations. Many things are known, but for our
purposes here, it is enough to say that the variance of the field satisfies1

〈ϕ2
0〉0

L;0,0 =

⎧⎪⎨
⎪⎩

(g(1) + oL(1))L (d = 1),

(g(2) + oL(1)) log L (d = 2),

g(d) + oL(1) (d ≥ 3),

for explicit constants g(d) > 0, which shows that this measure describes a delocalized
interface, with unbounded fluctuations, in dimensions 1 and 2, and a localized interface
in dimension 3 and higher. In the latter case, although localized, the interface is strongly
correlated,

lim
L→∞〈ϕiϕ j 〉0

L;0,0 = (a(d) + o‖i− j‖2(1)) ‖i − j‖2−d
2 ,

with a(d) > 0, d ≥ 3.

1.2.2 Interface and pinning potential

Setting η > 0, keeping everything as before, changes dramatically the behavior of
the field however small η is chosen. More precisely, it is known that the interface is
localized in any dimension [2,10,11], and has exponentially decaying covariances [2,
15]. Moreover, detailed information on the critical behavior as η ↓ 0 is available [6],
showing for example that

lim
L→∞〈ϕ2

0〉0
L;0,η =

{
1
2η−2 + o(η−2) (d = 1),
1
π
| log η| + O(log | log η|) (d = 2),

and that the rate m(η) of exponential decay of limL→∞〈ϕiϕ j 〉0
L;0,0 satisfies

m(η) =

⎧⎪⎨
⎪⎩

1
2η2 + o(η2) (d = 1),

O(η1/2/| log η|3/4) (d = 2),

O(η1/2) (d ≥ 3).

1 We write o
(1) to denote a function such that lim
→∞ o
(1) = 0.
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Wetting of gradient fields: pathwise estimates 383

1.2.3 Interface and hard-wall

The measure with hard-wall constraint, but no external potentials, i.e., µ
+,0
L;0,0 has

been the subject of numerous works, focusing on the associated entropic repulsion
phenomenon. Among the results that have been obtained, we highlight the two most
relevant in the present context. Let d ≥ 3; then [4,8]

lim
L→∞

∣∣∣∣∣
〈ϕ0〉+,0

L;0,0√
log L

− 2
√

g(d)

∣∣∣∣∣ = 0.

The corresponding result in dimension 2, whose proof is substantially more intricate,
is proved in [3] and takes the form

lim
L→∞

∣∣∣∣∣
〈ϕ0〉+,0

L;0,0

log L
− 2

√
g(2)

∣∣∣∣∣ = 0.

(Actually, the statement in [3] has only been proved when the positivity constraint acts
on the sub-box ΛδL , 0 < δ < 1, but it is clear that the previous result is true, and that it
should be provable in the same way, with some additional, but minor, complications.)

The main thing to observe here is the fact that the interface is repelled by the
wall, at a distance that is much larger than its typical fluctuations (which are of order√

log L when d = 2, and of order 1 when d ≥ 3). This is the phenomenon of entropic
repulsion. Of course, this does not happen when d = 1, since the pinned random
walk conditioned to be positive converges under diffusive scaling to the Brownian
excursion.

1.2.4 Interface and attractive hard-wall: wetting transition

We want to describe the behavior of the field when both a hard-wall and a pinning
potential are present, µ

+,0
L;0,η

. In this situation, there is a competition between the
entropic repulsion due to the hard-wall constraint and the localizing effect of the
pinning potential.

Let us introduce the finite-volume average density of pinned sites

ρL(η) =
〈
|ΛL |−1

∑
i∈ΛL

1{ϕi =0}
〉+,0

L;0,η

,

and its limit ρ(η) = limL→∞ ρL(η). It is easy to show that ρ is non-decreasing in η,
so the following critical value is well-defined,

ηc = inf {η : ρ(η) > 0} .
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384 Y. Velenik

This critical point can be given an equivalent definition (the equivalence is proved,
e.g., in [7]). Let us introduce the free energy (or surface tension, or wall free energy)

fL(λ, η) = |ΛL |−1 log
Z+,0

L;λ,η

Z+,0
L;λ,0

,

and f (λ, η) = limL→∞ fL(λ, η). Then

ηc = inf {η : f (0, η) > 0} .

The sets {η ≤ ηc}, respectively, {η > ηc}, are called regimes of complete wetting,
respectively, partial wetting. They are supposed to correspond to regimes in which the
interface is delocalized, respectively, localized. The phase transition taking place at
ηc is known as the wetting transition. It is known that ηc = 0 when d ≥ 3 [5], while
ηc > 0 when d = 2 [7].2 The fact that ηc > 0 in dimension 1 is easily checked, and
has been proved long ago by physicists.

Contrarily to the results described above, there are only very few pathwise results
in this setting, except in dimension 1, where specific features (in particular, a natu-
ral renewal structure) makes it possible to fully describe the process [9]. Before the
present paper, the only pathwise results available are those of [17], and state that, in
dimension 2,

– For all η sufficiently large, the interface is localized, and covariances decay expo-
nentially.

– For all η < ηc, the interface delocalizes, in the sense that limL→∞〈ϕ0〉+,0
L;0,η

= ∞.

– For η sufficiently small,3 〈ϕ0〉+,0
L;0,η

� log L .

Notice that ηc = 0 in dimensions 3 and higher, and thus the analogue of the last
statement reduces to the entropic repulsion estimate given above.

The main goal of the present paper is to provide detailed pathwise information
on the localized regime in the whole partial wetting regime and in any dimensions.
Moreover, we shall give some information on the rate of divergence of the height as the
wetting transition is approached (implying among other things that divergence does
occur also in dimension 2).

1.2.5 Interface, attractive hard-wall, away from coexistence: prewetting

Finally, letting λ > 0 introduces another source of localization of the interface. Of
course, under our assumptions on this potential, it is not surprising that it always yields
localization of the interface, which corresponds to the impossibility of growing a large
film of thermodynamically unstable phase. The main question here is to understand
what happens as the system is brought close to phase coexistence, i.e., when λ ↓ 0.

2 Actually, it is interesting to observe that it is also proved in [7] that ηc > 0 in any dimensions if the
interaction term (ϕi − ϕ j )

2 is replaced by, say, |ϕi − ϕ j |.
3 a � b meaning here and in the rest of this paper, that there exists a constant c > 0, depending on nothing
except possibly the dimension, such that ac ≤ b ≤ a/c.
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Wetting of gradient fields: pathwise estimates 385

The situation studied in [14,17] is the following: fix 0 ≤ η < ηc, in dimension 1 or
2, or take η = 0 in dimension 3 and larger. Set also λ > 0. Then, as λ ↓ 0, the system
gets closer and closer to the regime of phase coexistence, and in that regime, because
of the choice for η, the interface is delocalized. The problem was then to determine
the rate at which this delocalization takes place. The main result of [17] can be stated
as follows: For all λ > 0 sufficiently small,

lim
L→∞〈ϕ0〉+,0

L;λ,η
�

{
| log λ| (d = 2),

| log λ|1/2 (d ≥ 3).

This result is valid for any even, convex, not identically zero, external potential V satis-
fying some mild growth condition (e.g., any polynomial growth is fine). In dimension
1, on the other hand, the critical behavior does depend on the choice of V , see [14];
in this case, it has also been possible to prove exponential decay of covariances.

1.3 New results

We consider the measure µ
+,0
L;λ,η

. Let η > ηc and λ > 0. When λ = 0 (i.e., at phase
coexistence), the system is in the partial wetting regime, and the interface is expected
to be localized. The next theorem shows that this is indeed the case. Moreover, it
relates the rate of vanishing of the free energy to the divergence rate of the interface
height, as η is sent to ηc.

Theorem 1 There exist T0 > 0, η̄ > ηc, λ0 > 0, αd > 0 and Cd < ∞ such that, for
any T > T0, η ∈ (ηc, η̄), λ ∈ (0, λ0) and L ≥ 1,

µ
+,0
L;λ,η (ϕi ≥ T | log f (λ, η)|) ≤ C2 exp

(−α2T 2| log f (λ, η)|2/(log T + | log f (λ, η)|)) ,

for d = 2, and

µ
+,0
L;λ,η

(
ϕi ≥ T

√| log f (λ, η)|
)

≤ Cd exp
(
−αd T 2| log f (λ, η)|

)
,

for d ≥ 3. In particular, there exist c′
d < ∞ such that, for all η ∈ (ηc, η̄) and all

L ≥ 1,

〈ϕ0〉+,0
L;0,η

≤ c′
2| log f (0, η)|,

when d = 2, while

〈ϕ0〉+,0
L;0,η

≤ c′
d

√| log f (0, η)|,

when d ≥ 3.
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Remark 1 Since 〈ϕ0〉+,0
L;λ,η

is non-increasing in η and in λ (by FKG inequality), it
follows, for example, that

sup
λ≥0
L≥1

〈ϕ0〉+,0
L;λ,η

< ∞,

for any η > ηc and in any dimension d ≥ 2.

We expect that the | log f (0, η)| and
√| log f (0, η)| upper bounds are of the correct

order. We now state lower bounds of this type.

Theorem 2 Let α > 1. There exists η̄ > ηc and c′′
d = c′′

d(α) > 0 such that, for all
η ∈ (ηc, η̄) and all L ≥ L0(η, α),

〈ϕ0〉+,0
L;0,η

≥ c′′
2 | log f (0, αη)|,

when d = 2, while

〈ϕ0〉+,0
L;0,η

≥ c′′
d

√| log f (0, αη)|,

when d ≥ 3.

Remark 2 Although these results are interesting, it would be more informative to
have estimates of the height that are expressed directly in terms of the microscopic
parameter η, and not in terms of the free energy. To do this, one needs to understand
the dependence of the latter on η close to the wetting transition, a task that seems too
hard for the moment. It is however possible to extract a lower bound of this type from
the proof in [5], which shows that, for d ≥ 3,

f (0, η) ≥ c1(d)e−c2/η, (3)

for some constants 0 < c1, c2 < ∞. This, combined with the above estimates, implies
that

〈ϕ0〉+,0
L;λ,η

≤ c3η
−1/2,

for some constant c3 < ∞. Observe that if, as we believe, the estimate (3) is of the
correct order, then the rate of divergence of the interface height is much faster than
the logarithmic divergences seen in the results described in the previous section. This
would of course be due to the very low density of pinned sites as η gets close to ηc.

Remark 3 Observe also that the introduction of the parameter α in the lower bound
should be irrelevant. Indeed, if the logarithm of the free energy behaves (as indicated
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Wetting of gradient fields: pathwise estimates 387

by the lower bound of [5] for d ≥ 3) like a polynomial function of 1/η, as η ↓ ηc, our
upper and lower bounds would actually differ only by a multiplicative constant.

1.4 Open problems

Even though the results presented here substantially improve the description of the
wetting transition in these effective models, a number of open problems remain.

– It would also be desirable to remove the factor α in Theorem 2. As remarked above,
we expect that the latter plays no role, but the verification of this hinges on the next
open problem.

– Obtain information on the behavior of the free energy as a function of η close to the
wetting transition. This seems too hard at the present time when d = 2, but there
might be some way to prove upper bounds when d ≥ 3. At a future stage, it would
of course be extremely interesting to determine the critical exponent describing
the divergence of the height.

– Prove that the covariances are exponentially decaying with the distance. It is not
clear how this should be tackled. The only non-perturbative methods to prove this
type of result we are aware of apply only when a suitable graphical representation is
available (a random walk representation, for example). However, all the represen-
tations available for this model only apply to two-point functions, not covariances,
and therefore do not seem very helpful.

– The present work deals only with the partial wetting regime. The situation concer-
ning the complete wetting regime is still not as satisfactory as we would like. In
particular, it would be quite desirable to prove that, in the whole complete wetting
regime (or at least in the interior of this domain), the interface height diverges like
log L under the measure µ

+,0
L;0,η

in dimension 2. This is only known to hold far
from the critical point. Of course, one expects even more, namely that the fields
under µ

+,0
L;0,η

and µ
+,0
L;0,0 should be very close.

2 Proofs

The main tools used in the proofs below are FKG inequality and the chessboard esti-
mate. Both hold for the measures considered here, because they do for the Gaussian
measure, and are insensitive to perturbation of the form

∏
i eU (ϕi ) (after suitably smoo-

thing our potential—in particular the positivity constraint and the pinning potential—
and taking weak limits). We refer, e.g., to Appendix B of [13] for additional information
and references on the validity and use of FKG inequality in the context of gradient
fields, and to [1] for a nice review on reflection positivity (and, in particular, the chess-
board estimate). Let us also emphasize, to make the following arguments clearer, that
in all the applications of the chessboard estimates in the present work, we are using
reflection through planes between lattice sites.

In order to use reflection positivity, we shall need to work with periodic boundary
condition. Let us quickly recall the corresponding definitions. We denote by T

d
L the

torus Z
d/(LZ

d). Configurations are then given by ϕ ∈ R
T

d
L . The measures µ

per
L;λ,η

and

µ
+,per
L;λ,η

are defined precisely as before,
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µ
per
L;λ,η

(dϕ) = 1

Zper
L;λ,η

exp

⎡
⎢⎢⎢⎣− 1

8d

∑

i, j∈T
d
L

i∼ j

(ϕi − ϕ j )
2 − λ

∑

i∈T
d
L

V (ϕi )

⎤
⎥⎥⎥⎦

×
∏

i∈T
d
L

(dϕi + ηδ0(dϕi )) ,

µ
+,per
L;λ,η

( · ) = µ
per
L;λ,η

( · | Ω+),

reinterpreting i ∼ j to mean that i and j are neighboring vertices on T
d
L . Notice that

for these measures to be well-defined, it is necessary that λ > 0.
We denote by Zper

L;λ,η
and Z+,per

L;λ,η
the corresponding partition functions, and by

f per
L (λ, η) = L−d log

(
Z+,per

L;λ,η
/Z+,per

L;λ,0

)

the corresponding free energy. In the thermodynamic limit, this free energy and the
one defined with 0-boundary condition agree.

Lemma 1 For all λ ≥ 0, η ≥ 0, the limit f (λ, η) = limL→∞ f 0
L (λ, η) exists and

is convex and increasing in η and λ. Moreover, for all λ > 0, η ≥ 0, the limit
limL→∞ f per

L (λ, η) also exists and coincides with f (λ, η).

Proof The existence of limL→∞ f 0
L (λ, η) follows, for example, by FKG inequa-

lity and completely standard superadditivity arguments. Its monotonicity in λ is also
immediate

∂

∂λ
f 0
L (λ, η) = L−d

∑
i∈ΛL

{
〈V (ϕi )〉+,0

L;λ,0 − 〈V (ϕi )〉+,0
L;λ,η

}
≥ 0,

by FKG inequality, since V is increasing on R
+. To check the monotonicity in η, it

suffices to observe that η∂/∂η f 0
L (λ, η) is simply the density of pinned sites, and thus

positive. Second derivatives yielding variances, convexity also follows.
Let us denote by Z[A] the restriction of the partition function Z to configurations

satisfying the condition A. With this notation, we have,

1
2 Z+,per

L;λ,η
≤ Z+,per

L;λ,η

[
ϕi ≤ V −1((2d/λ) log L),∀i ∈ T

d
L

]
≤ Z+,per

L;λ,η
, (4)
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for all L large enough. Indeed,

Z+,per
L;λ,η

[
ϕi ≤V −1

( 2d
λ

log L
)
,∀i ∈ T

d
L

]

Z+,per
L;λ,η

= µ
+,per
L;λ,η

(
ϕi ≤V −1

(
2d

λ
log L

)
,∀i ∈T

d
L

)
,

which proves the second inequality, and, by FKG inequality,

µ
+,per
L;λ,η

(ϕi ≤ V −1(
2d

λ
log L),∀i ∈ T

d
L)) ≥

∏

i∈T
d
L

µ
+,per
L;λ,η

(ϕi ≤ V −1(
2d

λ
log L)).

But another application of FKG, and the chessboard estimate yield

µ
+,per
L;λ,η

(ϕi > V −1(
2d

λ
log L)) ≤ µ

+,per
L;λ,0(ϕi > V −1(

2d

λ
log L))

≤ µ
+,per
L;λ,0(ϕ j > V −1(

2d

λ
log L),∀ j ∈ T

d
L)1/|Td

L |

≤ exp
(−λV (V −1(

2d

λ
log L))

)

= L−2d .

Therefore,

µ
+,per
L;λ,η

(ϕi ≤ V −1((2d/λ) log L),∀i ∈ T
d
L)) ≥ e−2L−d ≥ 1

2
,

for all L large enough. This proves (4). Notice now that the same also holds for
0-boundary condition. Indeed, the upper bound is again trivial, and for the lower
bound, we can use FKG inequality to get

µ
+,0
L;λ,η

(
ϕi ≤V −1

(
2d

λ
log L

)
, ∀i ∈ T

d
L

)
≥µ

+,per
L+1;λ,η

(
ϕi ≤V −1

((
2d

λ

)
log L

)
, ∀i ∈ T

d
L

)
.

It is thus sufficient to compare the partition function with periodic and 0-boundary
conditions, under the constraint that all spins satisfy ϕi < V −1

( 2d
λ

log L
)
. However,

for a configuration ϕ on the torus satisfying this constraint, the change in energy
resulting from setting one height to 0 is bounded above by 1

2

(
V −1

( 2d
λ

log L
))2 and

bounded below by

−1

2

(
V −1

(
2d

λ
log L

))2

− 2d log L .

Since |∂ΛL | = O(Ld−1), this shows that, for all fixed λ > 0,

L−d

∣∣∣∣∣log
Z+,0

L;λ,η

[
ϕi ≤ V −1

( 2d
λ

log L
)
,∀i ∈ T

d
L

]

Z+,per
L+1;λ,η

[
ϕi ≤ V −1

( 2d
λ

log L
)
,∀i ∈ T

d
L

]
∣∣∣∣∣ = oL(1),
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implying that the limiting free energies coincide. By the above considerations, this is
also true for the unrestricted partition functions and free energies. This concludes the
proof of Lemma 1. ��

2.1 Upper bound on the height: proof of Theorem 1

In this section, we prove the upper tail estimate for the height at the origin, and the
resulting upper bound on the height of the interface.

In the proof, it will be convenient to assume from the start that the free energy is
small enough; more precisely, we shall always assume that η̄ and λ0 are chosen in such
a way that f (λ0, η̄) ≤ e−1, which ensures that | log f (λ, η)| ≥ 1 and f (λ, η)−1/d ≥ 1,
for all η ∈ (ηc, η̄) and all λ ∈ (0, λ0).

Let us first observe that FKG inequality implies that limL→∞〈ϕ0〉+,0
L;λ,η

exists in
R ∪ {+∞}. It is therefore sufficient for us to restrict our attention to boxes of size
L + 1 = 2N , N ≥ 0, when d = 2, and L = 2N , N ≥ 0, when d ≥ 3. This will
be useful to ensure that the sizes of the blocks used when applying the chessboard
estimate divide the size of the torus.

2.1.1 The two-dimensional case

Let us fix λ > 0 and η > ηc as above. Expanding over pinned sites (see [6,10,15], for
example), we have

µ
+,0
L;λ,η (ϕ0 ≥ T | log f (λ, η)|)
=

∑
k≥1

∑
A∩Bk−1=∅
A∩Bk �=∅

ζ
+,0
L;λ,η

(A) µ
+,0
L;λ,0

(
ϕ0 ≥ T | log f (λ, η)| ∣∣ ϕi = 0,∀i ∈ A

)
,

where we used the notation Bk = {
i ∈ T

d
L : ‖i‖∞ ≤ k

}
, k ≥ 0.

By FKG and Lemma 2 below (provided that T is large enough), we can find c1
such that

µ
+,0
L;λ,0

(
ϕ0 ≥ T | log f (λ, η)| ∣∣ ϕi = 0,∀i ∈ A

)

≤ sup
‖i‖∞=k

µ
+,0
L;0,0

(
ϕ0 ≥ T | log f (λ, η)| ∣∣ ϕi = 0

)

≤ exp
(
−c1T 2| log f (λ, η)|2/ log k

)
,

uniformly in A such that A ∩ Bk−1 = ∅ and A ∩ Bk �= ∅. This implies that

µ
+,0
L;λ,η

(ϕ0 ≥ T | log f (λ, η)|) ≤
∑
k≥1

exp
(
−c1T 2| log f (λ, η)|2/ log k

) ∑
A∩Bk−1=∅

ζ
+,0
L;λ,η

(A).
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But, for all k ≥ 1,

∑
A∩Bk−1=∅

ζ
+,0
L;λ,η

(A) = Z+,0
L;λ,η

(
Bc

k−1

)

Z+,0
L;λ,η

,

where Z+,0
L;λ,η

(
Bc

k−1

)
is defined as in (1) but with the pinning potential acting only on

Bc
k−1.
To estimate this last ratio, we would like to follow the idea in [2] and use reflexion

positivity of the Gibbs measure (which holds, since we are considering a nearest-
neighbor gradient field, with on-site potentials). Of course, the pinning potential is a
bit singular, and makes the application of this inequality awkward, so we first replace
it by its more regular approximation (2). The only remaining obstacle now is that we
have 0-boundary condition instead of periodic boundary conditions. To remove this
problem, we use once more FKG inequality to obtain, for any k ≥ 1,

Z+,0,(ε)
L;λ,η

Z+,0,(ε)
L;λ,η

(
Bc

k−1

) =
〈 ∏

i∈Bk−1

e−U (ε)
2η (ϕi )

〉+,0,(ε)

L;λ,η

(
Bc

k−1

)

≥
〈 ∏

i∈Bk−1

e−U (ε)
2η (ϕi )

〉+,per,(ε)

L+1;λ,η

(
Bc

k−1

) = Z+,per,(ε)
L+1;λ,η

Z+,per,(ε)
L+1;λ,η

(
Bc

k−1

) .

Let n ∈ N be such that 2n ≤ k < 2n+1, and set R̄ = 2n−1. Applying the chessboard
estimate starting with the block {−R̄ + 1, . . . , R̄}2, we get

Z+,per,(ε)
L+1;λ,η

(
Bc

k−1

)

Z+,per,(ε)
L+1;λ,η

=
〈 ∏

i∈Bk−1

eU (ε)
2η (ϕi )

〉+,per,(ε)

L+1;λ,η

≤
〈 ∏

i∈BR̄

eU (ε)
2η (ϕi )

〉+,per,(ε)

L+1;λ,η

≤

⎧⎪⎨
⎪⎩

〈 ∏

i∈T
2
L+1

eU (ε)
2η (ϕi )

〉+,per,(ε)

L+1;λ,η

⎫⎪⎬
⎪⎭

|BR̄ |/|T2
L+1|

≤
⎧⎨
⎩

Z+,per,(ε)
L+1;λ,0

Z+,per,(ε)
L+1;λ,η

⎫⎬
⎭

|BR̄ |/|T2
L+1|

.

123



392 Y. Velenik

We now obtain the result for our original ratio by taking the limit ε ↓ 0, which yields

Z+,0
L;λ,η

(
Bc

k−1

)

Z+,0
L;λ,η

≤
{

Z+,per
L+1;λ,0

Z+,per
L+1;λ,η

}|BR̄ |/|T2
L+1|

= e−|BR̄ | f per
L+1(λ,η)

≤ e− 1
4 |Bk−1| f per

L+1(λ,η)
.

Collecting these estimates, and using Lemma 1, we obtain finally that

∑
A∩Bk−1=∅

ζ
+,0
L;λ,η

(A) ≤ e− 1
4 |Bk−1| ( f (λ,η)−oL (1)) ≤ e−c2 f (λ,η)k2

,

for all L > L0(λ, η) large enough. Consequently, setting

k̄ = T | log f (λ, η)|√
f (λ, η)(log T + | log f (λ, η)|) ,

we obtain the bound, valid for all L > L0(λ, η),

µ
+,0
L;λ,η (ϕ0 ≥ T | log f (λ, η)|) ≤

∑
k≥1

e−c1T 2| log f (λ,η)|2/ log ke−c2 f (λ,η)k2

≤
k̄∑

k=1

e−c1T 2| log f (λ,η)|2/ log k +
∑

k>k̄

e−c2 f (λ,η)k2

≤ k̄e−c1T 2| log f (λ,η)|2/ log k̄ + e−c2 f (λ,η)k̄2
∞∑

k=1

e−c2 f (λ,η)k2

≤ c3e−c4T 2| log f (λ,η)|2/(log T +| log f (λ,η)|).

However, this probability is increasing in L (by FKG), so that the above bound actually
holds for all L ≥ 1. We can now also easily deduce the stated upper bound on the
mean height: For all L ≥ 1,

〈ϕ0〉+,0
L;λ,η

≤ T0| log f (λ, η)| +
∞∫

T0| log f (λ,η)|
µ

+,0
L;λ,η (ϕ0 ≥ t) dt

≤ c5| log f (λ, η)|.

In particular, taking the limit as λ ↓ 0, we get

〈ϕ0〉+,0
L;0,η

≤ c5| log f (0, η)|.
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All statements have been proved now, except for the following lemma, which was
used in the above argument.

Lemma 2 There exists T0 and c > 0 such that, for all T > T0 and L > R ≥ 1,

sup
‖i‖∞=R

µ
+,0
L;0,0

(
ϕ0 ≥ T log R

∣∣ ϕi = 0
) ≤ R−cT 2

.

Proof The proof is a variant of the one given in [13, Lemma 4.4]. Let i be such that
‖i‖∞ = R. We first use FKG inequality to center the box around i (at the cost of
replaing L by 2L),

µ
+,0
L;0,0

(
ϕ0 ≥ T log R

∣∣ ϕi = 0
) ≤ µ

+,0
2L;0,0

(
ϕ−i ≥ T log R

∣∣ ϕ0 = 0
)
.

Using again FKG inequality, we can also deduce that the latter probability only
increases if we replace the 0-boundary condition with α log L-boundary condition,
α > 0,

µ
+,0
2L;0,0

(
ϕ−i ≥ T log R

∣∣ ϕ0 = 0
) ≤ µ

+,α log L
2L;0,0

(
ϕ−i ≥ T log R

∣∣ ϕ0 = 0
)
.

Choosing α large enough, one can guarantee that µ
+,α log L
2L;0,0

(
Ω+ ∣∣ ϕ0 = 0

)
> 1

2 ,
see [13, Lemma 4.4]. Consequently, we can remove the positivity constraint,

µ
+,α log L
2L;0,0

(
ϕ−i ≥ T log R

∣∣ ϕ0 = 0
) ≤ 2µ

α log L
2L;0,0

(
ϕ−i ≥ T log R

∣∣ ϕ0 = 0
)
.

Now, under µ
α log L
2L;0,0

( · ∣∣ ϕ0 = 0
)
, ϕ−i is Gaussian and the random walk representa-

tion implies that its mean is at most c′α log R, while its variance is at least c′′ log R.
Therefore, provided that T is large enough,

µ
α log L
2L;0,0

(
ϕ−i ≥ T log R

∣∣ ϕ0 = 0
) ≤ exp

(
−cT 2 log R

)
,

which proves the claim. ��

2.1.2 Dimension 3 and higher

The argument in dimensions 3 and higher is unfortunately more involved, due to the
fact that pinning a single point does not localize the interface anymore. One way to
solve this problem would be to use reflection positivity to deduce that the distribution of
pinned sites dominates (in a suitable sense) some Bernoulli percolation-type process,
and then study the entropic repulsion problem for an interface with a such a random
distribution of pinned sites. This certainly looks feasible, but we decided to try a
different path relying more on reflection positivity, but in our opinion technically
simpler.

We start in a way similar to what we did in dimension 2. We fix λ > 0 and η > ηc so
that the free energy is sufficiently small. We write R(k) = �k f (λ, η)−1/d�. For k ≥ 0,
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let E1(k) = {ϕ j > 0, ∀ j ∈ BR(k)} and E2(k) = {∃i ∈ BR(k+1) \ BR(k), ϕi = 0}. It
follows from Cauchy–Schwarz inequality that

µ
+,per
L;λ,η

(
ϕ0 ≥ T

√| log f |)

=
∑
k≥0

µ
+,per
L;λ,η

(
ϕ0 ≥ T

√| log f |,E1(k),E2(k)
)

≤
∑
k≥0

[
µ

+,per
L;λ,η

(
ϕ0 ≥ T

√| log f |,E2(k)
)
µ

+,per
L;λ,η

(E1(k))
]1/2

.

First, observe that applying the chessboard estimate similarly as was done in the two-
dimensional case, we obtain

µ
+,per
L;λ,η

(E1(k)) ≤
[
µ

+,per
L;λ,η

(
ϕ j > 0, ∀ j ∈ T

d
L

)]c1

(
R(k)

L

)d

≤
[

Z+,per
L;λ,0

Z+,per
L;λ,η

]c1

(
R(k)

L

)d

≤ exp
(
−c2( f (λ, η) − oL(1))R(k)d

)

≤ exp
(
−c3 kd

)
,

for all L large enough.
It remains to estimate µ

+,per
L;λ,η

(ϕ0 ≥ T
√| log f |,E2(k)). To lighten notations, let

us write h = T
√| log f |. Let n ∈ N be such that 2n ≥ 2R(k) + 1 > 2n−1, and set

R̄ = 2n . Let us fix i ∈ BR(k+1) \ BR(k). Applying once more the chessboard estimate,
starting this time with the block i + {−R̄ + 1, . . . , R̄}d , yields

µ
+,per
L;λ,η

(ϕ0 ≥h, ϕi = 0)≤
[
µ

+,per
L;λ,η

(
ϕ j ≥h,∀ j ∈ R(0), ϕk =0,∀k ∈ R(i)

)]|BR̄ |/|Td
L |

,

where, for j a site of the original block, R( j) is the set of sites obtained after applying
all the reflections to j .

We can now get rid of the mass and the pinning potential. Using FKG inequality,

µ
+,per
L;λ,η

(
ϕ j ≥ h,∀ j ∈ R(0), ϕk = 0,∀k ∈ R(i)

)

≤ µ
+,per
L;λ,η

(
ϕ j ≥ h,∀ j ∈ R(0) | ϕk = 0,∀k ∈ R(i)

)

≤ µ
+,per
L;0,0

(
ϕ j ≥ h,∀ j ∈ R(0) | ϕk = 0,∀k ∈ R(i)

)
.

For technical reasons, we shall need the distance between the points of R(i) to be
larger than R0, for some constant R0 = R0(d) to be fixed later. In order to do that, let
us introduce ∆(d) = min

{
n ≥ 1 : 2n R̄ ≥ R0

}
and let us denote by R∆(i) the subset
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of R(i) obtained by replacing R̄ by ∆R̄ in the construction. Of course, the distance
between points in R∆(i) is at least R0. By FKG inequality,

µ
+,per
L;0,0

(
ϕ j ≥ h,∀ j ∈ R(0)

∣∣ ϕk = 0,∀k ∈ R(i)
)

≤ µ
+,per
L;0,0

(
ϕ j ≥ h,∀ j ∈ R(0)

∣∣ ϕk = 0,∀k ∈ R∆(i)
)
.

We want now to deal with the positivity constraint.

µ
+,per
L;0,0

(
ϕ j ≥ h,∀ j ∈ R(0)

∣∣ ϕk = 0,∀k ∈ R∆(i)
)

≤ µ
per
L;0,0

(
ϕ j ≥ h,∀ j ∈ R(0)

∣∣ ϕk = 0,∀k ∈ R∆(i)
)

µ
per
L;0,0

(
Ω+

∣∣ ϕk = 0,∀k ∈ R∆(i)
) .

The denominator in the last expression has already been bounded below in [5] in
the case of 0-boundary condition (it is here that we need 2∆R̄ ≥ R0). Using FKG
inequality to change correspondingly the boundary condition, this yields

µ
per
L;0,0 (Ω+ | ϕk = 0,∀k ∈ R∆(i)) ≥ µ0

L−1;0,0 (Ω+ | ϕk = 0,∀k ∈ R∆(i))

≥ exp(−c4 (L/(∆R̄))d log(∆R̄))

≥ exp(−c5 (L/R(k))d log R(k)).

Obviously,

µ
per
L;0,0

(
ϕ j ≥ h,∀ j ∈ R(0)

∣∣ ϕk = 0,∀k ∈ R∆(i)
)

≤ µ
per
L;0,0

⎛
⎝ ∑

j∈R(0)

ϕ j ≥ h|R(0)| ∣∣ ϕk = 0,∀k ∈ R∆(i)

⎞
⎠ .

Under µ
per
L;0,0

( · ∣∣ ϕk = 0,∀k ∈ R∆(i)
)
,
∑

j∈R(0) ϕ j is a Gaussian random variable
of mean 0, and variance

∑
j,k∈R(0)

∑
n≥0

P j (Xn = k, τR∆(i) > n),

where P j is the law of the simple random walk (Xn)n≥0 on T
d
L with X0 = j , and

τR(i) = min {n ≥ 0 : Xn ∈ R∆(i)}. Lemma 3 below implies that this variance is
bounded above by c6|R(0)|, and thus

µ
per
L;0,0

(
ϕ j ≥ h,∀ j ∈ R(0) | ϕk = 0,∀k ∈ R∆(i)

) ≤ exp(−c7 (L/R(k))d h2).

Putting all together, we have shown that

µ
+,per
L;λ,η

(ϕ0 ≥ h, ϕi = 0) ≤ exp(−c8 T 2| log f (λ, η)|),
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provided that log k ≤ c8T 2| log f (λ, η)| ≡ log kmax, with c8 = c7/4c5, and T ≥√
2c5/dc7 ≡ T1. Thus,

µ
+,per
L;λ,η

(
ϕ0 ≥ T

√| log f (λ, η)|,E2(k)
) ≤ exp(−c8 T 2| log f (λ, η)|),

for all k < kmax.
We have proved that, for all L ≥ L0(η, λ),

µ
+,per
L;λ,η

(
ϕ0 ≥T

√| log f (λ, η)|)≤exp(−c8 T 2| log f (λ, η)|)
kmax∑
k=1

e−c3kd +
∑

k>kmax

e−c3kd

≤ c11 exp(−c8 T 2| log f (λ, η)|),

provided that T ≥ T1.
Proceeding as in the two-dimensional case, one finally obtains that, for all L ≥

L0(η, λ),

〈ϕ0〉+,per
L;λ,η

≤ c12
√| log f (λ, η)|.

The results stated for 0-boundary condition follows from FKG inequality (first to
change the boundary condition, and then to argue as in the two-dimensional case).

To complete the proof, it only remains to prove the following lemma.

Lemma 3 For R(0) and R∆(i) defined as above,

∑
j,k∈R(0)

∑
n≥0

P j (Xn = k, τR∆(i) > n) ≤ c6|R(0)|.

Proof Of course,

∑
j,k∈R(0)

∑
n≥0

P j (Xn = k, τR∆(i) > n) =
∑

j∈R(0)

∑
n≥0

P j (Xn ∈ R(0), τR∆(i) > n).

We start by periodizing the sets R∆(i) and R(0).
R∆(i) contains exactly one image of i in each of the blocks used during its construc-

tion; it can thus be partitioned into 2d disjoint periodic subsets of equal sizes. We denote
by Si the subset containing i . If we only kill the random walk once it enters Si , then
the sum we want to control is only made bigger.

Similarly, the set R(0) contains a fixed number of sites in each of these blocks
(their number depending on the value of ∆). As before, we can decompose R0 as a
finite union of disjoint periodic arrays of sites, with the same period as Si . We can of
course restrict our attention to one of these subsets only, because if we show separately
for each of these subsets that the average number of times they are visited by the walk,
before it dies, is bounded above uniformly in everything but the dimension, then the
same will be true for their union. Let us therefore consider one of these subsets, which
we call S0.
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To prove the lemma, we are going to show that after each visit of the random walk
to the set S0, the walk has a positive probability, depending only on the dimension
of the lattice, of hitting Si before reentering S0. This will show that the number of
visits to R(0) before entering Si is stochastically dominated by a geometric random
variable of positive parameter (uniformly in everything, but the dimension), which
immediately implies the claim.

Now, the periodicity of R0 and Ri allows us to reinterpret the problem as being
on a torus of size the common period of these two sets, with two distinguished sites,
s0 and si , coming from S0 and Si , respectively. In these terms, the problem can be
reformulated as follows: prove that starting from s0, the random walk has a positive
probability of hitting s1 before returning to s0, and this probability is uniform in the
size of the torus.

But this is easy. Indeed, by symmetry, at least one half of the sites of the torus
satisfy

Px (τs0 > τsi ) ≥ 1/2,

where τy = min {n ≥ 1 : Xn = y}. Let us call this set G . It is therefore possible to
find r such that at least half of the sites in

{x : ‖x‖∞ = r}

belong to G (otherwise it would be impossible for G to contain at least half of the sites
of the torus). But the probability that the random walk starting at 0 exits the box of
radius r at one of the sites belonging to G before returning to 0, is bounded away from
0, uniformly in everything but the dimension [since (i) the random walk is transient,
and (ii) the probabilities that the random walk exits the box through any given site are
comparable (see, e.g., [16, Lemma 1.7.4])]. The conclusion follows, for once the walk
has reached a site of G , it hits si first with probability at least 1/2. ��

2.2 Lower bound on the height: proof of Theorem 2

Let α > 1 and set R = ⌊(
K f (0, αη)

)−1/d⌋, where K will be chosen (large enough)
later (depending on α). Let us define the subset ΛR

L of ΛL by the requirement that
ΛL = ⋃

i∈ΛR
L

BR(i), where the boxes BR(i) (cubes of radius R centered at i) are
disjoint (we assume, without loss of generality, that L is a suitable multiple of R).
Let Bi

R be the event that there are no pinned sites at distance less than R from i ,
Bi

R = {ϕ j > 0, ∀ j ∈ BR(i)}. We also denote by A the (random) set of pinned sites.
We first observe that

µ
+,0
2L;0,η

(B0
R) ≥ µ

+,0
L;0,η

(Bi
R),
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for all i ∈ ΛR
L , thanks to FKG inequality. This implies that

µ
+,0
2L;0,η

(B0
R) ≥

〈
|ΛR

L |−1
∑

i∈ΛR
L

1Bi
R

〉+,0

L;0,η

≥
〈
|ΛR

L |−1
∑

i∈ΛR
L

1Bi
R
| E

〉+,0

L;0,η

µ
+,0
L;0,η

(E ),

where E =
{ |A |

|ΛL | ≤ 2
log α

f (0, αη)
}

.

Let us now consider the average density of pinned sites,

ρL(η) = |ΛL |−1〈|A |〉+,0
L;0,η

.

This density can easily be bounded above (just use the standard integration–
differentiation trick, or see [7]):

f +,0
L (0, αη) =

αη∫

0

1

t
ρL(t) dt ≥

αη∫

η

1

t
ρL(t) dt ≥ log(α) ρL(η),

where we used the fact that ρL(η) is a non-negative and non-decreasing function of
η. Since, for all L ≥ L0(η, α), f (0, αη) ≥ 1

2 f +,0
L (0, αη), Markov inequality implies

that

µ
+,0
L;0,η

(E c) ≤ µ
+,0
L;0,η

(
|A | > 2−2d−2 K log αρL(0, η) |ΛL |

)
≤ 1

2
,

as soon as K > 22d+3/ log α and L ≥ L0.
On the other hand, we claim that on the event E ,

|ΛR
L |−1

∑

i∈ΛR
L

1Bi
R

≥ 1 − 2−2d−2.

Indeed, were it not the case, then |A | > 2−2d−2|ΛR
L | = (2/ log α) f (0, αη)|ΛL |, and

thus E would not occur. Collecting all these estimates, we have proved that

µ
+,0
2L;0,η

(B0
R) ≥ 1 − 2−2d−2.

The conclusion now follows easily. Indeed, FKG implies that pinning all the sites
outside BR(0) only reduces the expectation. Therefore

〈ϕ0〉+,0
L;0,η

≥ (1 − 2−2d−2)〈ϕ0 | B0
R〉+,0

L;0,η
≥ (1 − 2−2d−2)〈ϕ0〉+,0

2R+1;0,0.

123



Wetting of gradient fields: pathwise estimates 399

Now, standard entropic repulsion estimate imply that

〈ϕ0〉+,0
2R+1;0,0 ≥

{
ĉ2 log R (d = 2),

ĉd
√

log R (d ≥ 3),

for suitable constants ĉd > 0. Of course, log R � | log f (0, αη)|, and the claim is
proved.
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