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Abstract The aim of this paper is to study the d-dimensional stochastic heat equation
with a multiplicative Gaussian noise which is white in space and has the covariance
of a fractional Brownian motion with Hurst parameter H ∈ (0, 1) in time. Two types
of equations are considered. First we consider the equation in the Itô-Skorohod sense,
and later in the Stratonovich sense. An explicit chaos expansion for the solution is
obtained. On the other hand, the moments of the solution are expressed in terms of
the exponential moments of some weighted intersection local time of the Brownian
motion.

Mathematics Subject Classification (2000) 60H15 · 60H07

1 Introduction

This paper deals with the d-dimensional stochastic heat equation

∂u

∂t
= 1

2
�u + u � ∂

2W H

∂t∂x
(1.1)

driven by a Gaussian noise W H which is a white noise in the spatial variable and a
fractional Brownian motion with Hurst parameter H ∈ (0, 1) in the time variable (see
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286 Y. Hu, D. Nualart

(2.1) in the next section for a precise definition of this noise). The initial condition
u0 is a bounded continuous function on R

d , and the solution will be a random field
{ut,x , t ≥ 0, x ∈ R

d}. The symbol � in Eq. (1.1) denotes the Wick product. For

H = 1
2 , ∂

2W H

∂t∂x is a space-time white noise, and in this case, Eq. (1.1) coincides with
the stochastic heat equation considered by Walsh (see [20]). We know that in this case
the solution exists only in dimension one (d = 1).

There has been some recent interest in studying stochastic partial differential equa-
tions driven by a fractional noise. Linear stochastic evolution equations in a Hilbert
space driven by an additive cylindrical fBm with Hurst parameter H were studied
by Duncan et al. [3] in the case H ∈ ( 1

2 , 1) and by Tindel et al. [18] in the general
case, where they provide necessary and sufficient conditions for the existence and
uniqueness of an evolution solution. In particular, the heat equation

∂u

∂t
= 1

2
�u + ∂2W H

∂t∂x

on R
d has a unique solution if and only if H > d

4 . The same result holds when one
adds to the above equation a nonlinearity of the form b(t, x, u), where b satisfies the
usual linear growth and Lipschitz conditions in the variable u, uniformly with respect
to (t, x) (see Maslowski and Nualart [9]). The stochastic heat equation on [0,∞)×R

d

with a multiplicative fractional white noise of Hurst parameter H = (H0, H1, . . . , Hd)

has been studied by Hu [5] under the conditions 1
2 < Hi < 1 for i = 0, . . . , d and

∑d
i=0 Hi < d − 2

2H0−1 . Another important and relevant paper is [11].
The main purpose of this paper is to find conditions on H and d for the solution

to Eq. (1.1) to exist as a real-valued stochastic process, and to relate the moments of
the solution to the exponential moments of weighted intersection local times. This
relation is based on Feynman-Kac’s formula applied to a regularization of Eq. (1.1).
In order to illustrate this fact, consider the particular case d = 1 and H = 1

2 . It is
known that there is no Feynman-Kac’s formula for the solution of the one-dimensional
stochastic heat equation driven by a space-time white noise. Nevertheless, using an
approximation of the solution by regularizing the noise we can establish the following
formula for the moments:

E
[
uk

t,x

]
= E B

⎡

⎣
k∏

j=1

u0(x + B j
t ) exp

⎛

⎝
k∑

i, j=1,i< j

t∫

0

δ0

(
Bi

s − B j
s

)
ds

⎞

⎠

⎤

⎦ , (1.2)

for all k ≥ 2, where Bt is a k-dimensional Brownian motion independent of the space-

time white noise W
1
2 . In the case H > 1

2 and d ≥ 1, a similar formula holds but
∫ t

0 δ0(Bi
s − B j

s )ds has to be replaced by the weighted intersection local time

Lt (i, j) = H(2H − 1)

t∫

0

t∫

0

|s − r |2H−2 δ0

(
Bi

s − B j
r

)
dsdr, (1.3)
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Stochastic heat equation driven by fractional noise and local time 287

where
{

B j , j ≥ 1
}

are independent d-dimensional Brownian motions (see Theo-
rem 5.3).

The solution of Eq. (1.1) has a formal Wiener chaos expansion ut,x = ∑∞
n=0 In

( fn(·, t, x)). Then, for the existence of a real-valued square integrable solution we
need ∞∑

n=0

n! ‖ fn(·, t, x)‖2
H⊗n

d
< ∞, (1.4)

where Hd is the Hilbert space associated with the covariance of the noise W H (see
(2.2) in the next section). It turns out that, if H > 1

2 , the asymptotic behavior of the
norms ‖ fn(·, t, x)‖H⊗n

d
is similar to the behavior of the nth moment of the random

variable Lt defined in (1.3). More precisely, if u0 is a constant K , for all n ≥ 1 we
have

(n!)2 ‖ fn(·, t, x)‖2
H⊗n

d
= K 2 E(Ln

t ).

These facts lead to the following results:

(i) If d = 1 and H > 1
2 , the series (1.4) converges, and there exists a solution to

Eq. (1.1) which has moments of all orders that can be expressed in terms of the
exponential moments of the weighted intersection local times Lt . In the case
H = 1

2 we just need the local time of a one-dimensional standard Brownian
motion (see 1.2).

(ii) If H > 1
2 and d < 4H , the norms ‖ fn(·, t, x)‖H⊗n

d
are finite and E(Ln

t ) < ∞
for all n. In the particular case d = 2, the series (1.4) converges if t is small
enough, and the solution exists in a small time interval. Similarly, if d = 2 the
random variable Lt satisfies E(exp λLt ) < ∞ if λ and t are small enough.

(iii) If d = 1 and 3
8 < H < 1

2 , the norms ‖ fn(·, t, x)‖H⊗n
d

are finite and E(Ln
t ) < ∞

for all n.

A natural problem is to investigate what happens if we replace the Wick product
by the ordinary product in Eq. (1.1), that is, we consider the equation

∂u

∂t
= 1

2
�u + u

∂2W H

∂t∂x
. (1.5)

In terms of the mild formulation, the Wick product leads to the use of Itô-Skorohod
stochastic integrals, whereas the ordinary product requires the use of Stratonovich
integrals. For this reason, if we use the ordinary product we must assume d = 1 and
H > 1

2 . In this case we show that the solution exists and its moments can be computed
in terms of exponential moments of weighted intersection local times and weighted
self-intersection local times in the case H > 3

4 .
The paper is organized as follows. Section 2 contains some preliminaries on the

fractional noise W H and the Skorohod integral with respect to it. In Sect. 3 we present
the results on the moments of the weighted intersection local times assuming H ≥ 1

2 .
Section 4 is devoted to study the Wiener chaos expansion of the solution to Eq. (1.1).
The case H < 1

2 is more involved because it requires the use of fractional derivatives.
We show here that if 3

8 < H < 1
2 , the norms ‖ fn(·, t, x)‖H⊗n

d
are finite and they are
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288 Y. Hu, D. Nualart

related to the moments of a fractional derivative of the intersection local time. We
derive the formulas for the moments of the solution in the case H ≥ 1

2 in Sect. 5.
Finally, Sect. 6 deals with equations defined by using ordinary product and Stratonovich
integrals.

2 Preliminaries

Suppose that W H = {
W H (t, A), t ≥ 0, A ∈ B(Rd), |A| < ∞}, where B(Rd) is the

Borel σ -algebra of R
d , is a zero mean Gaussian family of random variables with the

covariance function

E(W H (t, A)W H (s, B)) = 1

2

(
t2H + s2H − |t − s|2H

)
|A ∩ B|, (2.1)

defined in a complete probability space (�,F , P), where H ∈ (0, 1), and |A| denotes
the Lebesgue measure of A. Thus, for each Borel set A with finite Lebesgue measure,
{W H (t, A), t ≥ 0} is a fractional Brownian motion (fBm) with Hurst parameter H
and variance t2H |A|, and the fractional Brownian motions corresponding to disjoint
sets are independent.

Then, the multiplicative noise ∂2W H

∂t∂x appearing in Eq. (1.1) is the formal derivative
of the random measure W H (t, A):

W H (t, A) =
∫

A

t∫

0

∂2W H

∂s∂x
dsdx .

We know that there is an integral representation of the form

W H (t, A) =
t∫

0

∫

A

K H (t, s)W (ds, dx),

where W is a space-time white noise, and the square integrable kernel K H is given by

K H (t, s) = cH

⎛

⎝
(

t

s

)H− 1
2

(t − s)H− 1
2 −
(

H − 1

2

)

s
1
2 −H

t∫

s

(u − s)H− 1
2 u H− 3

2 du

⎞

⎠ ,

for some constant cH . We will set K H (t, s) = 0 if s > t .
Denote by E the space of step functions on R+. Let H be the closure of E with

respect to the inner product induced by

〈
1[0,t], 1[0,s]

〉
H = K H (t, s).

The operator K ∗
H : E → L2(R+) defined by K ∗

H (1[0,t])(s) = K H (t, s) provides a
linear isometry between H and L2(R+).
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Stochastic heat equation driven by fractional noise and local time 289

Define the tensor product
Hd = H ⊗ L2(Rd). (2.2)

The mapping 1[0,t]×A → W H (t, A) extends to a linear isometry between Hd and the
Gaussian space spanned by W H . We will denote this isometry by W H . Then, for each
ϕ ∈ Hd we have

W H (ϕ) =
∞∫

0

∫

Rd

(
K ∗

H ⊗ I
)
ϕ(t, x)W (dt, dx).

We will make use of the notation W H (ϕ) = ∫∞
0

∫
Rd ϕdW H .

If H = 1
2 , then H = L2(R+), and the operator K ∗

H is the identity. In this case, we
have Hd = L2(R+ × R

d).
Suppose now that H > 1

2 . The operator K ∗
H can be expressed as a fractional integral

operator composed with power functions (see [13]). More precisely, for any function
ϕ ∈ E with support included in the time interval [0, T ] we have

(
K ∗

Hϕ
)
(t) = c′

H t
1
2 −H I

H− 1
2

T −
(
ϕ(s)s H− 1

2

)
(t),

where I
H− 1

2
T − is the right-sided fractional integral operator defined by

I
H− 1

2
T − f (t) = 1

�
(

H− 1
2

)

T∫

t

(s − t)H− 3
2 f (s)ds.

In this case the space H is not a space of functions (see [16]) because it contains
distributions. Denote by |H| the space of measurable functions on R+ such that

∞∫

0

∞∫

0

|r − u|2H−2|ϕr ||ϕu |drdu < ∞.

Then, |H| ⊂ H and the inner product in the space H can be expressed in the following
form for ϕ,ψ ∈ |H|

〈ϕ,ψ〉H =
∞∫

0

∞∫

0

φ(r, u)ϕrϕudrdu, (2.3)

where φ(s, t) = H(2H − 1)|t − s|2H−2.
Using Hölder and Hardy-Littlewood inequalities, one can show (see [10]) that

‖ϕ‖Hd
≤ βH ‖ϕ‖

L
1
H (R+;L2(Rd ))

, (2.4)
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290 Y. Hu, D. Nualart

and this easily implies that

‖ϕ‖H⊗n
d

≤ βn
H ‖ϕ‖

L
1
H (Rn+;L2(Rnd ))

. (2.5)

If H < 1
2 , the operator K ∗

H can also be expressed as a fractional derivative operator
composed with power functions. More precisely, for any function ϕ ∈ E with support
included in the time interval [0, T ] we have

(
K ∗

Hϕ
)
(t) = c′′

H t
1
2 −H D

1
2 −H
T −

(
ϕ(s)s H− 1

2

)
(t),

where D
1
2 −H
T − is the right-sided fractional derivative operator defined by

D
1
2 −H
T − f (t) = 1

�
(

H+ 1
2

)

⎛

⎝ f (t)

(T − t)
1
2 −H

−
(

1

2
− H

) T∫

t

f (s)− f (t)

(s − t)H− 3
2

ds

⎞

⎠ .

Moreover, for any γ > 1
2 − H and any T > 0 we have Cγ ([0, T ]) ⊂ H =

I
1
2 −H

T −
(
L2(R+

)
.

If ϕ is a function with support on [0, T ], we can express the operator K ∗
H in the

following form

K ∗
Hϕ(t) = K H (T, t)ϕ(t)+

T∫

t

[ϕ(s)− ϕ(t)]∂K H

∂s
(s, t)ds. (2.6)

Let us now present some preliminaries on the Skorohod integral and the Wick
product. The nth Wiener chaos, denoted by Hn , is defined as the closed linear span
of the random variables of the form Hn(W H (ϕ)), where ϕ is an element of Hd with
norm one and Hn is the nth Hermite polynomial. We denote by In the linear isometry
between H⊗n

d (equipped with the modified norm
√

n! ‖·‖H⊗n
d

) and the nth Wiener

chaos Hn , given by In(ϕ
⊗n) = n!Hn(W H (ϕ)), for any ϕ ∈ Hd with ‖ϕ‖Hd

= 1. Any
square integrable random variable, which is measurable with respect to the σ -field
generated by W H , has an orthogonal Wiener chaos expansion of the form

F = E(F)+
∞∑

n=1

In( fn),

where fn are symmetric elements of H⊗n
d , uniquely determined by F .
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Stochastic heat equation driven by fractional noise and local time 291

Consider a random field u = {ut,x , t ≥ 0, x ∈ R
d} such that E

(
u2

t,x

)
< ∞ for all

t, x . Then, u has a Wiener chaos expansion of the form

ut,x = E(ut,x )+
∞∑

n=1

In( fn(·, t, x)), (2.7)

where the series converges in L2(�).

Definition 2.1 We say the random field u satisfying (2.7) is Skorohod integrable if
E(u) ∈ Hd , for all n ≥ 1, fn ∈ H⊗(n+1)

d , and the series

W H (E(u))+
∞∑

n=1

In+1( f̃n)

converges in L2(�), where f̃n denotes the symmetrization of fn .We will denote the
sum of this series by δ(u) = ∫∞

0

∫
Rd uδW H .

The Skorohod integral coincides with the adjoint of the derivative operator. That is,
if we define the space D

1,2 as the closure of the set of smooth and cylindrical random
variables of the form

F = f
(

W H (h1), . . . ,W H (hn)
)
,

hi ∈ Hd , f ∈ C∞
p (R

n) ( f and all its partial derivatives have polynomial growth)
under the norm

‖DF‖1,2 =
√

E(F2)+ E(‖DF‖2
Hd
),

where

DF =
n∑

j=1

∂ f

∂x j

(
W H (h1), . . . ,W H (hn)

)
h j ,

then, the following duality formula holds

E(δ(u)F) = E
(〈DF, u〉Hd

)
, (2.8)

for any F ∈ D
1,2 and any Skorohod integrable process u.

If F ∈ D
1,2 and h is a function which belongs to Hd , then Fh is Skorohod

integrable and, by definition, the Wick product equals to the Skorohod integral of Fh:

δ(Fh) = F � W H (h). (2.9)

This formula justifies the use of the Wick product in the formulation of Eq. (1.1).
Finally, let us remark that in the case H = 1

2 , if ut,x is an adapted stochastic
process such that E

(∫∞
0

∫
Rd u2

t,x dxdt
)
< ∞, then u is Skorohod integrable and δ(u)
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292 Y. Hu, D. Nualart

coincides with the Itô stochastic integral:

δ(u) =
∞∫

0

∫

Rd

ut,x W (dt, dx).

3 Weighted intersection local times for standard Brownian motions

In this section we will introduce different kinds of weighted intersection local times
which are relevant in computing the moments of the solutions of stochastic heat equa-
tions with multiplicative fractional noise.

Suppose first that B1 and B2 are independent d-dimensional standard Brownian
motions. Consider a nonnegative measurable function η(s, t) on R

2+. We are interested
in the weighted intersection local time formally defined by

I =
T∫

0

T∫

0

η(s, t)δ0(B
1
s − B2

t )dsdt. (3.1)

We will make use of the following conditions on the weight η:

(C1) For all T > 0

‖η‖1,T := max

⎛

⎝ sup
0≤t≤T

T∫

0

η(s, t)ds, sup
0≤s≤T

T∫

0

η(s, t)dt

⎞

⎠ < ∞.

(C2) For all T > 0 there exist constants γT > 0 and H ∈ (0, 1) such that

η(s, t) ≤ γT |s − t |2H−2 ,

for all s, t ≤ T .

Clearly, when H > 1
2 , (C2) is stronger than (C1). We will denote by pt (x) the

d-dimensional heat kernel pt (x) = (2π t)− d
2 e− |x |2

2t . Consider the approximation of
the weighted intersection local time (3.1) defined by

Iε =
T∫

0

T∫

0

η(s, t)pε(B
1
s − B2

t )dsdt. (3.2)
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Let us compute the kth moment of Iε, where k ≥ 1 is an integer. For this we will
follow the approach used in Sect. 2 of [6]. We can write

E
(

I k
ε

)
=

∫

[0,T ]2k

k∏

i=1

η(si , ti )ψε(s, t)dsdt, (3.3)

where s = (s1, . . . , sk), t = (t1, . . . , tk) and

ψε (s, t) = E
(

pε
(

B1
s1

− B2
t1

)
· · · pε

(
B1

sk
− B2

tk

))
. (3.4)

We denote by ψ(s, t) the density at the origin of the kd-dimensional Gaussian
vector

(
B1

s1
− B2

t1, . . . , B1
sk

− B2
tk

)
, that is,

ψ(s, t) = (2π)−
kd
2 [det M(s, t)]−

d
2 , (3.5)

where M(s, t) is the k × k matrix whose entries are Mi j (s, t) = si ∧ s j + ti ∧ t j . We
claim that

ψε(s, t) ≤ ψ(s, t). (3.6)

In fact, notice first that

ψε(s, t) =
(

E
(

pε
(

b1
s1

− b2
t1

)
· · · pε

(
b1

sk
− b2

tk

)))d
, (3.7)

where bi
t , i = 1, 2, are independent one-dimensional Brownian motions, and in (3.7)

pε denotes the one-dimensional heat kernel. Using the Fourier transform of the heat
kernel, with the notation ι = √−1, we can write

E
(

pε
(

b1
s1

− b2
t1

)
· · · pε

(
b1

sk
− b2

tk

))

= 1

(2π)k

∫

Rk

E

⎛

⎝exp

⎛

⎝ι

k∑

j=1

(
ξ j

(
b1

s j
− b2

t j

)
− ε

2
ξ2

j

)
⎞

⎠

⎞

⎠ dξ

≤ 1

(2π)k

∫

Rk

e− 1
2

∑k
j,l=1 ξ j(s j ∧sl+t j ∧tl)ξl dξ

= (2π)−
k
2 [det(M(s, t))]−

1
2 , (3.8)

where ξ = (ξ1, . . . , ξk). In view of (3.5) and (3.7), this implies (3.6). From (3.3) and
(3.6) we obtain

E
(

I k
ε

)
≤ αk, (3.9)
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294 Y. Hu, D. Nualart

where

αk =
∫

[0,T ]2k

k∏

i=1

η(si , ti )ψ(s, t)dsdt. (3.10)

Then, if αk < ∞ for all k ≥ 1, the family Iε converges in L p, for all p ≥ 2, to a limit
I and E(I k) = αk . In fact,

lim
ε,δ↓0

E(Iε Iδ) = α2,

so Iε converges in L2, and the convergence in L p follows from the boundedness in
Lq for q > p. Then the following result holds.

Proposition 3.1 Suppose that (C1) holds and d = 1. Then, for all λ > 0 the random
variable defined in (3.2) satisfies

sup
ε>0

E (exp (λIε)) ≤ 1 +�

(√
T

2
‖η‖1,T λ

)

, (3.11)

where �(x) = ∑∞
k=1

xk

�( k
2 +1)

. Also, Iε converges in L p for all p ≥ 2, and the limit,

denoted by I , satisfies the estimate (3.11).

Proof Taking into account the above discussion on the convergence of Iε, it suffices
to show the estimate (3.11). We have, using (3.9)

E (exp (λIε)) =
∞∑

k=0

λk E(I k
ε )

k! ≤ 1 +
∞∑

k=1

λkαk

k! , (3.12)

where αk has been introduced in (3.10). Thus, in order to show the inequality (3.11)
we have to estimate the terms αk . For any s = (s1, . . . , sk) we denote by M(s) the
k ×k matrix whose entries are Mi j (s) = si ∧ s j . If s and t are two elements in (0,∞)k

with pairwise distinct components, the associated matrices M(s) and M(t) are positive
definite, and by A8, (viii) in [12] we have

det M(s, t) ≥ det M(s)+ det M(t),

which implies

ψ(s, t) ≤ (2π)−
k
2 [det M(s) det M(t)]−

1
4 .

We recall that (2π)− k
2 [det M(s)]− 1

2 is the density at the origin of the Gaussian vector

(b1
s1
, . . . , b1

sk
). This density is equal to (2π)− k

2 β(s)− 1
2 , where β(s) = sσ(1)(sσ(2) −

sσ(1)) · · · (sσ(k) − sσ(k−1)), and we denote by σ the permutation of {1, . . . , k} such
that sσ(1) < · · · < sσ(k). Hence,

ψ(s, t) ≤ (2π)−
k
2 [β(s)β(t)]−

1
4 . (3.13)
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Therefore, from (3.13) and (3.10) we obtain

αk ≤ (2π)−
k
2

∫

[0,T ]2k

k∏

i=1

η(si , ti ) [β(s)β(t)]−
1
4 dsdt. (3.14)

Applying Cauchy–Schwarz inequality yields

αk ≤ (2π)−
k
2

⎧
⎪⎨

⎪⎩

∫

[0,T ]2k

k∏

i=1

η(si , ti )β(s)−
1
2 dsdt

⎫
⎪⎬

⎪⎭

1
2

×

⎧
⎪⎨

⎪⎩

∫

[0,T ]2k

k∏

i=1

η(si , ti )β(t)−
1
2 dsdt

⎫
⎪⎬

⎪⎭

1
2

≤
(
(2π)−

1
2 ‖η‖1,T

)k
k!
∫

Tk

β(s)−
1
2 ds

= k!2− k
2 T

k
2 ‖η‖k

1,T

�( k
2 + 1)

, (3.15)

where Tk = {s = (s1, . . . , sk) : 0 < s1 < · · · < sk < T }. Substituting (3.15) into
(3.12) leads to the estimate (3.11). ��

This result can be extended to the case of a d-dimensional Brownian motion under
the stronger condition (C2):

Proposition 3.2 Suppose that (C2) holds and 2 ≤ d < 4H. Then, limε↓0 Iε = I ,
exists in L p, for all p ≥ 2. Moreover, if d = 2 and λ < λ0(T ), where

λ0(T ) = H(2H − 1)2π

γTβ
2
H�
(
1 − 1

2H

)2H

(

1 − 1

2H

)2H−1

T 1−2H , (3.16)

and βH is the constant appearing in the inequality (2.4), then

sup
ε>0

E (exp (λIε)) < ∞, (3.17)

and I satisfies E (exp (λI )) < ∞.

Proof As in the proof of Proposition 3.1, using condition (C2) and inequality (2.5)
we obtain the estimates
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αk ≤ γ k
T (2π)

− kd
2

∫

[0,T ]2k

k∏

i=1

|ti − si |2H−2 [β(s)β(t)]−
d
4 dsdt

≤ γ k
T (2π)

− kd
2 αk

H

⎛

⎜
⎝

∫

[0,T ]k

β(s)−
d

4H ds

⎞

⎟
⎠

2H

=
(
γTαH (2π)−

d
2

)k
(k!)2H �

(
1 − d

4H

)k2H
T

k
(

1− d
4H

)
2H

�
(
k
(
1 − d

4H

)+ 1
)2H

= ck
H,d,T

(k!)2H

�
(
k
(
1 − d

4H

)+ 1
)2H

, (3.18)

where αH = β2
H

H(2H−1) and cH,d,T = γTαH (2π)−
d
2 �
(
1 − d

4H

)2H
T

(
2H− d

2

)

. For any
a ∈ (0, 1) we have

lim
k→∞

�(ak + 1)

aakk
1
2 − a

2 (k!)a
= ca, (3.19)

where ca is a positive constant. Therefore, from (3.18) and (3.19) we deduce that there
exists a constant kH,d such that

αk ≤ kH,dck
H,d,T

(

1 − d

4H

)
(

d
2 −2H

)
k

k
d
4 (k!) d

2 .

Combining this estimate with (3.12) allows us to conclude the proof. ��
If d =2 andη(s, t)=1 it is known that the intersection local time

∫ T
0

∫ t
0 δ0

(
B1

s −B2
t

)

dsdt exists and it has finite exponential moments up to a critical exponent λ0 (see
[1,7]).

Consider now a one-dimensional standard Brownian motion B, and the weighted
self-intersection local time

I =
T∫

0

T∫

0

η(s, t)δ0(Bs − Bt )dsdt.

As before, set

Iε =
T∫

0

T∫

0

η(s, t)pε (Bs − Bt ) dsdt.

Proposition 3.3 Suppose that (C2) holds. If H > 1
2 , then we have

sup
ε>0

E (exp (λ [Iε − E (Iε)])) < ∞, (3.20)
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for all λ > 0. Moreover, the normalized local time I − E (I ) exists as a limit in L p of
Iε − E (Iε), for all p ≥ 2, and it has exponential moments of all orders.

If H > 3
4 , then we have for all λ > 0

sup
ε>0

E (exp (λIε)) < ∞, (3.21)

for all λ > 0, and the local time I exists as a limit in L p of Iε, for all p ≥ 2, and it is
exponentially integrable.

Proof We will follow the ideas of Le Gall in [7]. Suppose first that H > 1
2 and let us

show (3.20). To simplify the proof we assume T = 1. It suffices to show these results
for

Jε :=
1∫

0

t∫

0

η(s, t)pε(Bs − Bt )dsdt.

Denote, for n ≥ 1, and 1 ≤ k ≤ 2n−1

An,k =
[

2k − 2

2n
,

2k − 1

2n

]

×
[

2k − 1

2n
,

2k

2n

]

(Fig. 1).
Set

αεn,k =
∫

An,k

η(s, t)pε(Bs − Bt )dsdt

and
ᾱεn,k = αεn,k − E

(
αεn,k

)
.

Notice that the random variables αεn,k , 1 ≤ k ≤ 2n−1, are independent. We have

Jε =
∞∑

n=1

2n−1
∑

k=1

αεn,k,

and

Jε − E (Jε) =
∞∑

n=1

2n−1
∑

k=1

ᾱεn,k .

We can write

αεn,k = 2−2n

1∫

0

1∫

0

η

(
2k − 1

2n
− s

2n
,

2k − 1

2n
+ t

2n

)

pε
(

B 2k−1
2n − s

2n
−B 2k−1

2n + t
2n

)
dsdt

≤ γ12−2n−(2H−2)n

1∫

0

1∫

0

|t + s|2H−2 pε
(

B 2k−1
2n − s

2n
− B 2k−1

2n + t
2n

)
dsdt,
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Fig. 1 Plot of the domains An,k

which has the same distribution as

βεn,k = γ12

(
1
2 −2H

)
n

1∫

0

1∫

0

|t + s|2H−2 pε2n

(
B1

s − B2
t

)
dsdt,

where B1 and B2 are independent one-dimensional Brownian motions. Notice that

E
(
ᾱεn,k

)
= 0, and for any integer j ≥ 2,

E
((
ᾱεn,k

) j
)

≤ 2 j−1
[

E
((
αεn,k

) j
)

+ (E (αεn,k
)) j
]

≤ 2 j E
((
αεn,k

) j
)

= 2 j E
((
βεn,k

) j
)
.

Thus,

E
(
exp

(
λᾱεn,k

)) = 1 +
∞∑

j=2

λ j

j ! E
((
ᾱεn,k

) j
)
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≤ 1 +
∞∑

j=2

(2λ) j

j ! E
((
βεn,k

) j
)
. (3.22)

The moment of order j of βεn,k can be estimated from (3.15) with the weight η̂(s, t) =
γ12

(
1
2 −2H

)
n|t + s|2H−2, which satisfies ‖η̂‖1,1 ≤ C12

(
1
2 −2H

)
n
, where C1 = γ1

2H−1 .
Thus,

E
((
βεn,k

) j
)

≤
j !2− j

2

(

C12

(
1
2 −2H

)
n
) j

�(
j
2 + 1)

, (3.23)

and substituting (3.23) into (3.22) yields

E
(
exp

(
λᾱεn,k

)) ≤ 1 + cλ,n, (3.24)

where

cλ,n =
∞∑

j=2

(

C22

(
1
2 −2H

)
n
λ

) j

�
(

j
2 + 1

) ,

with C2 = 2− 1
2 C1. Notice that cλ,n is finite for any λ > 0, because the radius of

convergence of this power series is infinity.
Fix a > 0 such that a < min

( 1
2 − 2H, 4H − 2

)
. For any N ≥ 2 define

bN =
N∏

j=2

(
1 − 2−a( j−1)

)
,

and notice that limN→∞ bN = b∞ > 0. Then, by Hölder’s inequality, for all N ≥ 2
we have

E

⎡

⎣exp

⎛

⎝λbN

N∑

n=1

2n−1
∑

k=1

ᾱεn,k

⎞

⎠

⎤

⎦

≤
⎧
⎨

⎩
E

⎡

⎣exp

⎛

⎝ λbN

1 − 2−a(N−1)

N−1∑

n=1

2n−1
∑

k=1

ᾱεn,k

⎞

⎠

⎤

⎦

⎫
⎬

⎭

1−2−a(N−1)

×
⎧
⎨

⎩
E

⎡

⎣exp

⎛

⎝λbN 2a(N−1)
2N−1
∑

k=1

ᾱεN ,k

⎞

⎠

⎤

⎦

⎫
⎬

⎭

2−a(N−1)
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≤
⎧
⎨

⎩
E

⎡

⎣exp

⎛

⎝λbN−1

N−1∑

n=1

2n−1
∑

k=1

ᾱεn,k

⎞

⎠

⎤

⎦

⎫
⎬

⎭

×
{

E
[
exp

(
λbN 2a(N−1)ᾱεN ,k

)]}2(1−a)(N−1)

= AN BN .

Using (3.24), the second factor in the above expression can be dominated by

BN ≤ (1 + cλbN 2a(N−1),N

)2(1−a)(N−1)
.

Taking into account that a < 2H − 1
2 we can write

cλbN 2a(N−1),N =
∞∑

j=2

(

C22

(
1
2 −2H+a

)
N−a

bNλ

) j

�
(

j
2 + 1

) ≤ C3 2(1−4H+2a)N ,

for some constant C3. Hence, using that log(1 + x) ≤ x we obtain

BN ≤ exp
(

C42(a+2−4H)N
)
,

where C4 = C32a−1. Thus by induction we have

E

⎡

⎣exp

⎛

⎝λbN

N∑

n=1

2n−1
∑

k=1

ᾱn,k

⎞

⎠

⎤

⎦ ≤ exp

{
N∑

n=2

C42(a+2−4H)n

}

E
(
exp ᾱ1,1

)

≤ exp

(

C4

(
1 − 2a+2−4H

)−1
)

×E
(
exp

(
ᾱ1,1

))
< ∞,

because a < 4H − 2. By Fatou lemma we see that

sup
ε>0

E (exp (λb∞ (Jε − E (Jε)))) < ∞,

and (3.20) follows.
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On the other hand, one can easily show that

lim
ε,δ↓0

E((Jε − E (Jε)) (Jδ − E (Jδ)))

= 1

2π

∫

s<t<1,s′<t ′<1

η(s, t)η
(
s′, t ′

)

×
[(

det

[
t − s

∣
∣[s, t] ∩ [s′, t ′]∣∣∣

∣[s, t] ∩ [s′, t ′]∣∣ t ′ − s′
])− 1

2

− ((t − s)(t ′ − s′)
)− 1

2

]

dsdtds′dt ′ < ∞,

which implies the convergence of Jε− E (Jε) in L2. The convergence in L p for p ≥ 2
and the estimate (3.20) follow immediately.

The proof of the inequality (3.21) is similar. The estimate (3.24) is replaced by

E
(
exp

(
λ
(
αεn,k

))) ≤ 1 + dλ,n, (3.25)

where

dλ,n =
∞∑

j=1

(

C22

(
1
2 −2H

)
n
λ

) j

�
(

j
2 + 1

) ,

and, assuming that a < 2H − 1
2 and using that H > 3

4 , we obtain

E

⎡

⎣exp

⎛

⎝λbN

N∑

n=1

2n−1
∑

k=1

αεn,k

⎞

⎠

⎤

⎦

≤ exp

{
N∑

n=2

C42

(
3
2 −2H

)
n

}

E
(
exp

(
α1,1

))

≤ exp

{

C4(1 − 2

(
3
2 −2H

)

)−1
}

E
(
exp

(
α1,1

))
< ∞.

By Fatou lemma we see that

sup
ε>0

E (exp (λb∞ Jε)) < ∞,

which implies (3.21). The convergence in L p of Jε is proved as usual. ��
Notice that condition H > 3

4 cannot be improved because

E

⎛

⎝

T∫

0

T∫

0

|t − s|− 1
2 δ0(Bs − Bt )dsdt

⎞

⎠ = 1√
2π

T∫

0

T∫

0

|t − s|−1dsdt = ∞.
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4 Stochastic heat equation in the Itô-Skorohod sense

In this section we study the stochastic partial differential equation (1.1) on R
d , where

W H is a zero mean Gaussian family of random variables with the covariance function
(2.1), defined on a complete probability space (�,F , P), and the initial condition
u0 belongs to Cb(R

d). First we give the definition of a solution using the Skorohod
integral, which corresponds formally to the Wick product appearing in Eq. (1.1).

For any t ≥ 0, we denote by Ft the σ -field generated by the random variables
{W (s, A), 0 ≤ s ≤ t, A ∈ B(Rd), |A| < ∞} and the P-null sets. A random field
u = {ut,x , t ≥ 0, x ∈ R} is adapted if for any (t, x), ut,x is Ft -measurable.

For any bounded Borel function ϕ on R we write ptϕ(x) = ∫
Rd pt (x − y)ϕ(y)dy.

Definition 4.1 An adapted random field u = {ut,x , t ≥ 0, x ∈ R
d} such that

E(u2
t,x ) < ∞ for all (t, x) is a solution to Eq. (1.1) if for any (t, x) ∈ [0,∞)× R

d ,
the process {pt−s(x − y)us,y1[0,t](s), s ≥ 0, y ∈ R

d} is Skorohod integrable, and the
following equation holds:

ut,x = pt u0(x)+
t∫

0

∫

Rd

pt−s(x − y)us,yδW H
s,y . (4.1)

The fact that Eq. (1.1) contains a multiplicative Gaussian noise allows us to find
recursively an explicit expression for the Wiener chaos expansion of the solution. This
approach has extensively used in the literature. For instance, we refer to the papers
by Hu [5], Buckdahn and Nualart [2], Nualart and Zakai [15], Nualart and Rozovskii
[14], and Tudor [19], among others.

4.1 General chaos expansions

Suppose that u = {ut,x , t ≥ 0, x ∈ R
d} is a solution to Eq. (1.1). Then, for any fixed

(t, x), the random variable ut,x admits the following Wiener chaos expansion

ut,x =
∞∑

n=0

In( fn(·, t, x)), (4.2)

where for each (t, x), fn(·, t, x) is a symmetric element in H⊗n
d . To find the explicit

form of fn we substitute (4.2) in the Skorohod integral appearing in (4.1), and we
obtain

t∫

0

∫

Rd

pt−s(x − y)us,yδW H
s,y =

∞∑

n=0

t∫

0

∫

Rd

In(pt−s(x − y) fn(·, s, y)) δW H
s,y

=
∞∑

n=0

In+1( ˜pt−s(x − y) fn(·, s, y)).
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Here, ˜pt−s(x − y) fn(·, s, y) denotes the symmetrization of the function

pt−s(x − y) fn(s1, x1, . . . , sn, xn, s, y)

in the variables (s1, x1), . . . , (sn, xn), (s, y), that is,

˜pt−s(x − y) fn(·, s, y) = 1

n + 1

⎡

⎣pt−s(x − y) fn(s1, x1, . . . , sn, xn, s, y)

+
n∑

j=1

pt−s j (x − y j )

× fn(s1, x1, . . . , s j−1, x j−1, s, y, s j+1,

x j+1, . . . , sn, yn, s j , y j )

⎤

⎦ .

Thus, Eq. (4.1) is equivalent to say that f0(t, x) = pt u0(x), and

fn+1(·, t, x) = ˜pt−s(x − y) fn(·, s, y) (4.3)

for all n ≥ 0. Notice that, the adaptability property of the random field u implies that
fn(s1, x1, . . . , sn, xn, t, x) = 0 if s j > t for some j .

This leads to the following formula for the kernels fn , for n ≥ 1

fn(s1, x1, . . . , sn, xn, t, x) = 1

n!
×pt−sσ(n) (x − xσ(n)) · · · psσ(2)−sσ(1) (xσ(2) − xσ(1))psσ(1)u0(xσ(1)), (4.4)

where σ denotes the permutation of {1, 2, . . . , n} such that 0<sσ(1) < · · · < sσ(n) < t .
This implies that there is a unique solution to Eq. (4.1), and the kernels of its chaos
expansion are given by (4.4). In order to show the existence of a solution, it suffices to
check that the kernels defined in (4.4) determine an adapted random field satisfying
the conditions of Definition 4.1. This is equivalent to show that for all (t, x) we have

∞∑

n=1

n! ‖ fn(·, t, x)‖2
H⊗n

d
< ∞. (4.5)

4.2 Case H ≥ 1
2

Suppose first that H = 1
2 and d = 1. In this case it is easy to show that (4.5) holds.

In fact, we have, assuming |u0| ≤ K , and with the notation x = (x1, . . . , xn), and
s = (s1, . . . , sn):
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‖ fn(·, t, x)‖2
H⊗n

1
= 1

(n!)2
∫

[0,t]n

∫

Rn

pt−sσ(n) (x − xσ(n))
2 · · · psσ(2)−sσ(1) (xσ(2) − xσ(1))

2

×psσ(1)u0(xσ(1))
2 dxds

≤ K 2 (4π)
− n

2

(n!)2
∫

[0,t]n

n∏

j=1

(sσ( j+1) − sσ( j))
− 1

2 ds

= K 2 (4π)− n
2

n!
∫

Tn

n∏

j=1

(s j+1 − s j )
− 1

2 ds,

where Tn = {(s1, . . . , sn) ∈ [0, t]n : 0 < s1 < · · · < sn < t} and by convention
sn+1 = t . Hence,

‖ fn(·, t, x)‖2
H⊗n

1
≤ K 22−nt

n
2

n!�( n+1
2 )

,

which implies (4.5). On the other hand, if H = 1
2 , u0 = 1, and d ≥ 2, these norms

are infinite.
Notice that if u0 = 1, then (n!)2 ‖ fn(·, t, x)‖2

H⊗n
1

coincides with the moment of

order n of the local time at zero of the one-dimensional Brownian motion with variance
2t , that is,

(n!)2 ‖ fn(·, t, x)‖2
H⊗n

1
= E

⎡

⎣

⎛

⎝

t∫

0

δ0(B2s)ds

⎞

⎠

n⎤

⎦ .

To handle the case H > 1
2 , we need the following technical lemma.

Lemma 4.2 Set

gs(x1, . . . , xn) = pt−sσ(n) (x − xσ(n)) · · · psσ(2)−sσ(1) (xσ(2) − xσ(1))). (4.6)

Then,
〈gs, gt〉L2(Rnd ) = ψ(s, t),

where ψ(s, t) is defined in (3.5).

Proof By Plancherel’s identity

〈gs, gt〉L2(Rnd ) = (2π)−dn 〈Fgs,Fgt〉L2(Rnd ) ,

where F denotes the Fourier transform, given by

Fgs(ξ1, . . . , ξn) = (2π)−
nd
2

n∏

j=1

(sσ( j+1) − sσ( j))
− d

2

×
∫

Rnd

n∏

j=1

exp

(

i
〈
ξ j , x j

〉−
∣
∣xσ( j+1) − xσ( j)

∣
∣2

2
(
sσ( j+1) − sσ( j)

)

)

dx,
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with the convention xn+1 = x and sn+1 = t . Making the change of variables u j =
xσ( j+1) − xσ( j) if 1 ≤ j ≤ n − 1, and un = x − xσ(n), we obtain

Fgs(ξ1, . . . , ξn) = (2π)−
nd
2

n∏

j=0

(sσ( j+1) − sσ( j))
− d

2

×
∫

Rnd

n∏

j=1

exp

(

i
〈
ξσ( j), x − un − · · · − u j

〉

−
∣
∣u j
∣
∣2

2
(
sσ( j+1) − sσ( j)

)

)

du

= E

⎛

⎝
n∏

j=1

exp
(
i
〈
ξσ( j), x − Bt − Bsσ( j)

〉)
⎞

⎠

= E

⎛

⎝
n∏

j=1

exp
(
i
〈
ξ j , x − Bt − Bs j

〉)
⎞

⎠ .

As a consequence,

〈gs, gt〉L2(Rnd ) = (2π)−nd
∫

Rnd

E

⎛

⎝
n∏

j=1

exp
(

i
〈
ξ j , B1

s j
− B2

t j

〉)
⎞

⎠ dξ,

which implies the desired result. ��
In the case H > 1

2 , and assuming that u0 = 1, the next proposition shows that the
norm (n!)2 ‖ fn(·, t, x)‖2

H⊗n
d

coincides with the nth moment of the intersection local

time of two independent d-dimensional Brownian motions with weight φ(t, s) =
H(2H − 1)|t − s|2H−2.

Proposition 4.3 Suppose that H > 1
2 and d < 4H. Then, for all n ≥ 1

(n!)2 ‖ fn(·, t, x)‖2
H⊗n

d
≤ ‖u0‖2∞ E

⎡

⎣

⎛

⎝

t∫

0

t∫

0

φ(s, r)δ0(B
1
s − B2

r )dsdr

⎞

⎠

n⎤

⎦ < ∞,

(4.7)
with equality if u0 is constant. Moreover, we have:

1. If d = 1, there exists a unique solution to Eq. (4.1).
2. If d = 2 , then there exists a unique solution in an interval [0, T ] provided T < T0,

where

T0 = 2H

2H − 1

(
2H(2H − 1)π

γTβ
2
H

(

�

(

1 − 1

2H

))2H
)1/(2H−1)

. (4.8)
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Proof From (4.4) we deduce

(n!)2 ‖ fn(·, t, x)‖2
H⊗n

d
≤ ‖u0‖2∞

∫

[0,t]2n

n∏

j=1

φ(s j , t j ) 〈gs, gt〉L2(Rnd ) dsdt, (4.9)

where gs is defined in (4.6). Then the results follow easily from from Lemma 4.2,
Eq. (3.10) and Proposition 3.2. ��

4.3 Case H < 1
2 and d = 1

We know that in this case, the norm in the space H is defined in terms of fractional
derivatives. The aim of this section is to show that ‖ fn(·, t, x)‖2

H⊗n
1

is related to the nth

moment of a fractional derivative of the self-intersection local time of two independent
one-dimensional Brownian motions, and these moments are finite for all n ≥ 1,
provided 3

8 < H < 1
2 .

Consider the operator
(
K ∗

H

)⊗2 on functions of two variables defined as the action
of the operator K ∗

H on each coordinate. That is, using the notation (2.6) we have

(
K ∗

H

)⊗2
f (r1, r2) = K H (T, r1)K H (T, r2) f (r1, r2)

+ K H (T, r1)

t∫

r2

∂K H

∂s
(s, r2) ( f (r1, s)− f (r1, r2)) ds

+ K H (T, r2)

t∫

r1

∂K H

∂s
(v, r1) ( f (v, r2)− f (r1, r2)) dv

+
t∫

r2

t∫

r1

∂K H

∂s
(s, r2)

∂K H

∂v
(v, r1) [ f (v, s)− f (r1, s)− f (v, r2)

+ f (r1, r2)] dsdv.

Suppose that f (s, t) is a continuous function on [0, T ]2. Define the Hölder norms

‖ f ‖1,γ = sup

{ | f (s1, t)− f (s2, t)|
|s1 − s2|γ , s1, s2, t ∈ [0, T ], s1 �= s2

}

,

‖ f ‖2,γ = sup

{ | f (s, t1)− f (s, t2)|
|t1 − t2|γ , t1, t2, s ∈ [0, T ], t1 �= t2

}

and

‖ f ‖1,2,γ = sup
| f (s1, t1)− f (s1, t2)− f (s2, t1)+ f (s2, t2)|

|s1 − s2|γ |t1 − t2|γ ,
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where the supremum is taken in the set {t1, t2, s2, s2 ∈ [0, T ], s1 �= s2, t1 �= t2}. Set

‖ f ‖0,γ = ‖ f ‖1,γ + ‖ f ‖2,γ + ‖ f ‖1,2,γ .

Then,
(
K ∗

H

)⊗2
f is well defined if ‖ f ‖0,γ < ∞ for some γ > 1

2 − H . As a con-
sequence, if B1 and B2 are two independent one-dimensional Brownian motions, the
following random variable is well defined for all ε > 0

Jε =
T∫

0

[(
K ∗

H

)⊗2
qε
]
(r, r)dr, (4.10)

where qε(s, t) = pε(B1
s − B2

t ). The next theorem asserts that Jε converges in L p for
all p ≥ 2 to a fractional derivative of the intersection local time of B1 and B2.

Proposition 4.4 Suppose that 3
8 < H < 1

2 .Then, for any integer k ≥ 1 and, T > 0
we have E

(
J k
ε

) ≥ 0 and

sup
ε>0

E
(

J k
ε

)
< ∞. (4.11)

Moreover, for all p ≥ 2, Jε converges in L p as ε tends to zero to a random variable
denoted by

T∫

0

(
K ∗

H

)⊗2
δ0(B

1· − B2· )(r, r)dr.

Proof Fix k ≥ 1. The proof of the estimate (4.11) is technical will be done in several
steps. Before proceeding to the proof, we will give the main ideas.

In order to compute the k moment of J ε we have to apply the operator K ∗
H

to all the coordinates of the function ψε(s, t). First we show that we can replace
ψε(s, t) by ψ(s, t), and it suffices to consider the restriction of this function to T 2

k ,

which equals (up to a constant) to
∏k

j=1(s j − s j−1 + t j − t j−1)
− 1

2 . Then, although
the operator K ∗

H is not positivity preserving, we show that we get the same esti-

mates if we work with
∏k

j=1((s j − s j−1)(t j − t j−1))
− 1

4 . Thus we have to estimate

(K ∗
H )

⊗k
(∏k

j=1(s j − s j−1)
− 1

4 1{s∈Tk }
)

. The operator K ∗
H behaves as fractional deriv-

ative of order 1
2 − H , and when we apply it to a product of functions, it will give rise to

several terms. The worst case is when it acts on both coordinates of one of the factors
(s j − s j−1)

− 1
4 . In this case (K ∗

H )
⊗2
(
(s j − s j−1)

− 1
4

)
behaves as (s j − s j−1)

γ , where

γ = − 1
4 + 2(H − 1

2 ) = 2H − 5
4 . Twice this quantity, 4H − 5

2 , must be larger that
−1, which leads to the condition H > 3

8 .
Step 1. Let us first compute the moment of order k of Jε. We can write

E
(

J k
ε

)
=

∫

[0,T ]k

E

(
k∏

i=1

[(
K ∗

H

)⊗2
qε
]
(ri , ri )

)

dr. (4.12)
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Using the definition of ψε(s, t) given in (3.4), we obtain

E

(
k∏

i=1

[(
K ∗

H

)⊗2
qε
]
(ri , ri )

)

=
[(

K ∗
H

)⊗2k
ψε

]
(r, r),

where
(
K ∗

H

)⊗2k
ψε(s, t) is defined as the action of the operator

(
K ∗

H

)⊗2 in the coor-
dinates (s1, t1), . . . , (sk, tk). The operator K ∗

H does not preserve positivity. However,
we claim that this expression is nonnegative, and

[(
K ∗

H

)⊗2k
ψε

]
(r, r) ≤

[(
K ∗

H

)⊗2k
ψ
]
(r, r). (4.13)

In fact, from (3.8) we obtain

[(
K ∗

H

)⊗2k
ψε

]
(r, r)

= (2π)−k
∫

Rk

[(
K ∗

H

)⊗2k
e− 1

2

∑k
j,l=1 ξ j ξl (s j ∧sl+t j ∧tl )

]
(r, r)e− ε

2 |ξ |2 dξ

= (2π)−k
∫

Rk

[(
K ∗

H

)⊗k
e− 1

2

∑k
j,l=1 ξ j ξl (s j ∧sl )

]2
(r)e− ε

2 |ξ |2 dξ

≤ (2π)−k
∫

Rk

[(
K ∗

H

)⊗k
e− 1

2

∑k
j,l=1 ξ j ξl (s j ∧sl )

]2
(r)dξ, (4.14)

which leads to (4.13). Therefore, it suffices to show that

∫

[0,T ]k

[(
K ∗

H

)⊗2k
ψ
]
(r, r)dr < ∞. (4.15)

Step 2. If the points s and t belong to the simplex Tk = {0 < t1 < · · · < tk < T },
then the function ψ(s, t) has the simple expression

ψ(s, t) = (2π)−
k
2

k∏

j=1

[
s j − s j−1 + t j − t j−1

]− 1
2 .

We are going to show that in order to prove (4.15) we can replace ψ by its restriction
to T 2

k .

Set g(ξ, s) =e− 1
2

∑k
j,l=1 ξ j ξl (s j ∧sl ). Then, we have

(
K ∗

H

)⊗k
g(ξ, s) =

∑

σ

[(
K ∗

H

)⊗k
g(ξ, s)1{σ(s)∈Tk }

]
(r)
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=
∑

σ

[(
K ∗

H

)⊗k
g(σ (ξ), σ (s))1{σ(s)∈Tk }

]
(r)

=
∑

σ

[(
K ∗

H

)⊗k
g(σ (ξ), s)1{s∈Tk }

]
(σ (r)),

where σ runs over all permutations of {1, . . . , k}, sσ(1), . . . , sσ(k), and σ(ξ) and σ(r)
are defined in the same way. In fact, the second equality follows from g(ξ, s) =
g(σ (ξ), σ (s)), and the third one is a consequence of the definition of the tensor product
(
K ∗

H

)⊗k . Then, from (4.14) we obtain

∫

[0,T ]k

[(
K ∗

H

)⊗2k
ψ
]
(r, r)dr

=(2π)−k
∫

[0,T ]k

∫

Rk

(
∑

σ

[(
K ∗

H

)⊗k
g(σ (ξ), s)1{s∈Tk }

]
(σ (r))

)2

dξdr

≤ (2π)−kk!
∑

σ

∫

[0,T ]k

∫

Rk

[(
K ∗

H

)⊗k
g(σ (ξ), s)1{s∈Tk }

]2
(σ (r))dξdr

= (2π)−k (k!)2
∫

[0,T ]k

∫

Rk

[(
K ∗

H

)⊗k
g(ξ, s)1{s∈Tk }

]2
(r)dξdr. (4.16)

Finally,

∫

Rk

[(
K ∗

H

)⊗k
g(ξ, s)1{s∈Tk }

]2
(r)dξ

=
⎡

⎢
⎣
(
K ∗

H

)⊗2k

⎛

⎜
⎝1{s,t∈Tk }

∫

Rk

g(ξ, s)g(ξ, t)dξ

⎞

⎟
⎠

⎤

⎥
⎦ (r)

= (2π)
k
2

⎡

⎣
(
K ∗

H

)⊗2k

⎛

⎝1{s,t∈Tk }
k∏

j=1

[
s j − s j−1+t j − t j−1

]− 1
2

⎞

⎠

⎤

⎦ (r). (4.17)

Substituting (4.17) into (4.16) it suffices to show that the integral

∫

Tk

⎡

⎣
(
K ∗

H

)⊗2k

⎛

⎝1{s,t∈Tk }
k∏

j=1

[
s j − s j−1 + t j − t j−1

]− 1
2

⎞

⎠

⎤

⎦ (r)dr (4.18)

is finite.
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Step 3. Again, although the operator
(
K ∗

H

)⊗2k is not positivity preserving, we claim
that the proof that (4.18) is finite can be reduced to show that

∫

Tk

⎡

⎣
(
K ∗

H

)⊗k

⎛

⎝1{s∈Tk }
k∏

j=1

[
s j − s j−1

]− 1
4

⎞

⎠

⎤

⎦

2

(r)dr (4.19)

is finite. In order to show this claim, we fix a constant a and we are going to compute

(
K ∗

H

)⊗k

⎛

⎝1{t∈Tk }
k∏

j=1

[
t j − t j−1 + a

]− 1
2

⎞

⎠ (r). (4.20)

To do this we need some notation. Let� j and I j be the operators defined on a function
f (t1, . . . , tk) by

� j f = f − f |t j =r j ,

and
I j f = f |t j =r j .

The operator K ∗
H is the sum of two components (see 2.6), and it suffices to consider

only the second one because the first one is easy to control. In this way, substituting
the expression

∂K H

∂t
(t, s) = cH

(

H − 1

2

)

t H− 1
2 s

1
2 −H (t − s)H− 3

2

in (4.20), and considering only the second component of the operator K ∗
H , we obtain,

up to a constant, a term of the form

∫

Tk

⎡

⎢
⎣

∫

[0,T ]k

�1 · · ·�k

⎛

⎝
k∏

j=1

t
H− 1

2
j

[
t j − t j−1 + a

]− 1
2 1{t j−1<t j }

⎞

⎠

×
k∏

j=1

(t j − r j )
H− 3

2 r
1
2 −H
j 1{r j<t j }

⎤

⎦

2

dr.

Because t
H− 1

2
j r

1
2 −H
j ≤ 1, we can disregard the factors r

1
2 −H
j and t

H− 1
2

j . Using the
rule

� j (FG) = F(t j )G(t j )− F(r j )G(r j )

= [
F(t j )− F(r j )

]
G(t j )+ F(r j )

[
G(t j )− G(r j )

]

= � j FG + I j F� j G,
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we obtain

�1 · · ·�k

(
k∏

i=1

[
t j − t j−1 + a

]− 1
2 1{t j−1<t j }

)

=
∑

S

k∏

j=1

S j

(
[
t j − t j−1 + a

]− 1
2 1{t j−1<t j }

)

,

where S j is an operator of the form:

I I j , I� j ,� j−1 I j ,� j−1� j ,

where I denotes the identity, and for each j ,� j must appear only once in the product
∏k

j=1 S j . Let us estimate each one of the possible four terms. Fix ε > 0 such that

H − 3
8 > 2ε.

1. Term I I j :

I I j

(
[
t j − t j−1 + a

]− 1
2 1{t j−1<t j }

)

= [r j − t j−1 + a
]− 1

2 1{t j−1<r j },

2. Term I� j :

∣
∣
∣
∣I� j

(
[
t j − t j−1 + a

]− 1
2 1{t j−1<t j }

)∣
∣
∣
∣

=
∣
∣
∣
∣
[
t j − t j−1 + a

]− 1
2 1{t j−1<t j } − [r j − t j−1 + a

]− 1
2 1{t j−1<r j }

∣
∣
∣
∣

≤ C
[
t j − r j

] 1
2 −H+ε [

r j − t j−1 + a
]H−1−ε 1{t j−1<r j }

+C
[
t j − t j−1 + a

]− 1
2 1{r j<t j−1}.

3. Term � j−1 I :

∣
∣
∣
∣� j−1 I

(
[
t j − t j−1 + a

]− 1
2 1{t j−1<t j }

)∣
∣
∣
∣

=
∣
∣
∣
∣
[
t j − t j−1 + a

]− 1
2 1{t j−1<t j } − [t j − r j−1 + a

]− 1
2 1{r j−1<t j }

∣
∣
∣
∣

≤ C
[
t j−1 − r j−1

] 1
2 −H+ε [

t j − t j−1 + a
]H−1−ε 1{r j−1<t j−1<t j }.
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4. Term � j−1� j :

∣
∣
∣
∣� j−1� j

(
[
t j − t j−1 + a

]− 1
2 1{t j−1<t j }

)∣
∣
∣
∣

=
∣
∣
∣
∣
[
t j − t j−1 + a

]− 1
2 1{t j−1<t j } − [r j − t j−1 + a

]− 1
2 1{t j−1<r j }

− [t j − r j−1 + a
]− 1

2 1{r j−1<t j } + [r j − r j−1 + a
]− 1

2 1{r j−1<r j }
∣
∣
∣
∣

≤ C
[
t j − r j

] 1
2−H+ε [

t j−1 − r j−1
] 1

2−H+ε [
r j − t j−1 + a

]2H− 3
2 −2ε 1{t j−1<r j<t j }

+C
[
t j−1 − r j−1

] 1
2 −H+ε [

t j − t j−1 + a
]H−1−ε 1{r j<t j−1<t j }

+C
[
r j − r j−1 + a

]− 1
2 1{r j−1<r j<t j−1<t j }.

If we replace the constant a by s j − s j−1 and we treat the term s j − s j−1 in the
same way, using the inequality

(a + b)−α ≤ a− α
2 b− α

2 ,

we obtain the same estimates as if we had started with (4.19) instead of (4.18).
Step 4. As a consequence of the previous estimates, in order to show that (4.19) is

finite it suffices to control the following integral

∫

Tk

⎛

⎜
⎝

∫

Tk

k∏

j=1

Aa,b
j (t, r)dt

⎞

⎟
⎠

2

dr, (4.21)

where a, b ∈ {0, 1}, and A j has one of the following forms

A0,0
j = [

r j − t j−1
]− 1

4 1{t j−1<r j },

A0,1
j,1 = [

t j − r j
]−1+ε [

r j − t j−1
]H− 3

4 −ε 1{t j−1<r j }

A0,1
j,2 = [

t j − t j−1
]− 1

4
[
t j − r j

]H− 3
2 1{r j<t j−1},

A1,0
j = [

t j−1 − r j−1
]−1+ε [

t j − t j−1
]H− 3

4 −ε 1{r j−1<t j−1<t j },

A1,1
j,1 = [

t j − r j
]−1+ε [

t j−1 − r j−1
]−1+ε [

r j − t j−1
]2H− 5

4 −2ε 1{t j−1<r j<t j },

A1,1
j,2 = [

t j−1 − r j−1
]−1+ε [

t j − t j−1
]H− 5

4 −ε [
t j − r j

]H− 3
2 1{r j<t j−1<t j },

A1,1
j,3 = [

r j − r j−1
]− 1

4
[
t j − r j

]H− 3
2
[
t j−1 − r j−1

]H− 3
2 1{r j−1<r j<t j−1<t j },

and with the convention that any term of the form A0,1
j or A1,1

j must be followed by

A0,0
j or A0,1

j and any term of the form A0,0
j or A1,0

j must be followed by A1,0
j or A1,1

j .
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It is not difficult to check that the integral (4.21) is finite. For instance, for a product
of the form A0,0

j−1 A1,1
j,1 we get

∫

{r j−1<t j−1<r j<t j }

[
r j−1 − t j−2

]− 1
4
[
t j−1 − r j−1

]−1+ε [
r j − t j−1

]2H− 5
4 −2ε

× [t j − r j
]−1+ε

dt j−1

= [r j−1 − t j−2
]− 1

4 [r j − r j−1]2H− 5
4 −ε [t j − r j

]−1+ε
,

and the integral in the variable r j of the square of this expression will be finite because
4H − 5

2 − 2ε > −1.
So, we have proved that supε E(J k

ε ) < ∞ for all k. Notice that all these moments
are positive. It holds that limε,δ↓0 E(Jε Jδ) exists, and this implies the convergence in
L2, and also in L p, for all p ≥ 2. ��

On the other hand, if the initial condition of Eq. (1.1) is a constant K , then for all
n ≥ 1 we have

(n!)2 ‖ fn(·, t, x)‖2
H⊗n

1
= K 2 E

⎡

⎣

⎛

⎝

t∫

0

(
K ∗

H

)⊗2
δ0(B

1· − B2· )(r, r)dr

⎞

⎠

n⎤

⎦ < ∞,

provided H ∈ ( 3
8 ,

1
2

)
. In fact, by Lemma 4.2 we have

(n!)2 ‖ fn(·, t, x)‖2
H⊗n

1
= K 2

∫

[0,t]2n

〈gs, gt〉L2(Rn)

n∏

i=1

K ∗
H (dti , ri )

×
n∏

i=1

K ∗
H (dsi , ri )dsdt

= K 2
∫

[0,t]2n

ψ(s, t)
n∏

i=1

K ∗
H (dti , ri )

n∏

i=1

K ∗
H (dsi , ri )dsdt,

and it suffices to apply the above proposition. Here
∫∞

0 ϕ(t)K ∗
H (dt, r) is a notation

for (K ∗
Hϕ)(r).

However, we do not know the rate of convergence of the sequence ‖ fn(·, t, x)‖2
H⊗n

1
as n tends to infinity, and for this reason we are not able to show the existence of a
solution to Eq. (1.1) in this case.

5 Moments of the solution

In this section we introduce an approximation of the Gaussian noise W H by means
of an approximation of the identity. In the space variable we choose the heat kernel
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to define this approximation and in the time variable we choose a rectangular kernel.
In this way, for any ε > 0 and δ > 0 we set

Ẇ ε,δ
t,x =

t∫

0

∫

Rd

ϕδ(t − s)pε(x − y)dW H
s,y, (5.1)

where

ϕδ(t) = 1

δ
1[0,δ](t).

Now we consider the approximation of Eq. (1.1) defined by

∂uε,δt,x

∂t
= 1

2
�uε,δt,x + uε,δt,x � Ẇ ε,δ

t,x . (5.2)

We recall that the Wick product uε,δt,x � Ẇ ε,δ
t,x is well defined as a square integrable

random variable provided the random variable uε,δt,x belongs to the space D
1,2 (see

2.9), and in this case we have

uε,δs,y � Ẇ ε,δ
s,y =

s∫

0

∫

Rd

ϕδ(s − r)pε(y − z)uε,δs,yδW H
r,z . (5.3)

The mild or evolution version of Eq. (5.2) will be

uε,δt,x = pt u0(y)+
t∫

0

∫

Rd

pt−s(x − y)uε,δs,y � Ẇ ε,δ
s,y dsdy. (5.4)

Substituting (5.3) into (5.4), and formally applying Fubini’s theorem yields

uε,δt,x = pt u0(y)+
t∫

0

∫

Rd

⎛

⎜
⎝

t∫

0

∫

Rd

pt−s(x − y)ϕδ(s − r)pε(y − z)uε,δs,ydsdy

⎞

⎟
⎠ δW H

r,z .

(5.5)
This leads to the following definition.

Definition 5.1 An adapted random field uε,δ = {uε,δt,x , t ≥ 0, x ∈ R
d} is a mild

solution to Eq. (5.2) if for each (r, z) ∈ R+ × R
d the integral

Y t,x
r,z =

t∫

0

∫

R

pt−s(x − y)ϕδ(s − r)pε(y − z)uε,δs,ydsdy

exists and Y t,x is a Skorohod integrable process such that (5.5) holds for each (t, x).
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The above definition is equivalent to saying that uε,δt,x ∈ L2(�), and for any random
variable F ∈ D

1,2 , we have

E(Fuε,δt,x ) = E(F)pt u0(y)

+
〈
⎛

⎜
⎝

t∫

0

∫

Rd

pt−s(x−y)ϕδ(s−·)pε(y−·)uε,δs,ydsdy

⎞

⎟
⎠ , DF

〉

Hd

, (5.6)

where Hd = H ⊗ L2(Rd) (see 2.2).
Our aim is to construct a solution of Equation (5.2) using a suitable version of

Feynman-Kac’s formula. Suppose that B = {Bt , t ≥ 0} is a d-dimensional Brownian
motion starting at 0, independent of W . Set

t∫

0

Ẇ ε,δ
t−s,x+Bs

ds =
t∫

0

t∫

0

∫

Rd

ϕδ(t − s − r)pε(Bs + x − y)dW H
r,yds

=
t∫

0

∫

Rd

Aε,δr,ydW H
r,y,

where

Aε,δr,y =
t∫

0

ϕδ(t − s − r)pε(Bs + x − y)ds. (5.7)

Define

uε,δt,x = E B

⎛

⎜
⎝u0(x + Bt ) exp

⎛

⎜
⎝

t∫

0

∫

Rd

Aε,δr,ydW H
r,y − 1

2
αε,δ

⎞

⎟
⎠

⎞

⎟
⎠ , (5.8)

where αε,δ = ∥∥Aε,δ
∥
∥2

Hd
.

Proposition 5.2 The random field uε,δt,x given by (5.8) is a solution to Eq. (5.2).

Proof It suffices to show that (5.6) holds for a random variable of the form Fϕ , where
for any ϕ ∈ H1 we set

Fϕ = exp

(

W H (ϕ)− 1

2
‖ϕ‖2

Hd

)

,
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because the set of these random variables spans a dense subset of D
1,2. We will make

use of the notation St,x (ϕ) = E
(

uε,δt,x Fϕ
)

. From (5.8) we have

St,x (ϕ) = E E B
(

u0(x + Bt ) exp

(

W H (Aε,δ + ϕ)− 1

2
αε,δ − 1

2
‖ϕ‖2

Hd

))

= E B
(

u0(x + Bt ) exp
(〈

Aε,δ, ϕ
〉
Hd

))

= E B

⎛

⎝u0(x + Bt ) exp

⎛

⎝

t∫

0

〈ϕδ(t − s − ·)pε(Bs + x − ·), ϕ〉Hd
ds

⎞

⎠

⎞

⎠ .

By the classical Feynman-Kac’s formula, St,x (ϕ) satisfies the heat equation with
potential V (t, x) = 〈ϕδ(t − ·)pε(x − ·), ϕ〉Hd

, that is,

∂St,x (ϕ)

∂t
= 1

2
�St,x (ϕ)+ St,x (ϕ) 〈ϕδ(t − ·)pε(x − ·), ϕ〉Hd

.

As a consequence,

St,x (ϕ) = pt u0(x)+
t∫

0

∫

Rd

pt−s(x − y)Ss,y(ϕ) 〈ϕδ(s − ·)pε(y − ·), ϕ〉Hd
dsdy,

which implies Eq. (5.6) because DFϕ = ϕFϕ . ��

The next theorem says that the random variables uε,δt,x have moments of all orders,
uniformly bounded in ε and δ, and converge to the solution to Eq. (1.1), which is
unique by Proposition 4.3, as δ and ε tend to zero. Moreover, it provides an expression
for the moments of the solution to Eq. (1.1).

Theorem 5.3 Suppose that H ≥ 1
2 and d = 1. Then, for any integer k ≥ 1 we have

sup
ε,δ

E

[∣
∣
∣uε,δt,x

∣
∣
∣
k
]

< ∞, (5.9)

and the limit limε↓0 limδ↓0 uε,δt,x exists in L p, for all p ≥ 1, and it coincides with the

solution ut,x of Eq. (4.1). Furthermore, if U B
0 (t, x) = ∏k

j=1 u0(x + B j
t ), where B j

are independent d-dimensional Brownian motions, we have for any k ≥ 2

E
[
uk

t,x

]
= E B

⎡

⎣U B
0 (t, x) exp

⎛

⎝
∑

i< j

t∫

0

δ0(B
i
s − B j

s )ds

⎞

⎠

⎤

⎦ , (5.10)

123



Stochastic heat equation driven by fractional noise and local time 317

if H = 1
2 , and

E
[
uk

t,x

]
= E B

⎡

⎣U B
0 (t, x) exp

⎛

⎝
∑

i< j

t∫

0

t∫

0

φ(s, r)δ0(B
i
s − B j

r )dsdr

⎞

⎠

⎤

⎦ , (5.11)

if H > 1
2 .

In the case d = 2, for any integer k ≥ 2 there exists t0(k) > 0 such that for all
t < t0(k) (5.9) holds. If t < t0(M) for some M ≥ 3 then the limit limε↓0 limδ↓0 uε,δt,x
exists in L p for all 2 ≤ p < M, and it coincides with the solution ut,x of Eq. (1.1).
Moreover (5.11) holds for all 1 ≤ k ≤ M − 1.

Proof Fix an integer k ≥ 2. Suppose that Bi = {
Bi

t , t ≥ 0
}
, i = 1, . . . , k are inde-

pendent d-dimensional standard Brownian motions starting at 0, independent of W H .
Then, using (5.8) we have

E

[(
uε,δt,x

)k
]

= E

⎛

⎝
k∏

j=1

E B

⎡

⎣u0(x + B j
t ) exp

⎛

⎝

t∫

0

∫

R

Aε,δ,B
j

r,y dW H
r,y − 1

2
αε,δ,B

j

⎞

⎠

⎤

⎦

⎞

⎠,

where Aε,δ,B
j

r,y and αε,δ,B
j

are computed using the Brownian motion B j . Therefore,

E

[(
uε,δt,x

)k
]

= E B

⎡

⎢
⎣ exp

⎛

⎜
⎝

1

2

∥
∥
∥
∥
∥
∥

k∑

j=1

Aε,δ,B
j

∥
∥
∥
∥
∥
∥

2

Hd

− 1

2

k∑

j=1

αε,δ,B
j

⎞

⎟
⎠

k∏

j=1

u0(x + B j
t )

⎤

⎥
⎦

= E B

⎡

⎣ exp

⎛

⎝
∑

i< j

〈
Aε,δ,B

i
, Aε,δ,B

j
〉

Hd

⎞

⎠
k∏

j=1

u0(x + B j
t )

⎤

⎦ .

That is, the correction term 1
2α

ε,δ in (5.8) due to the Wick product produces a cancel-

lation of the diagonal elements in the square norm of
∑k

j=1 Aε,δ,B
j
. The next step is

to compute the scalar product
〈
Aε,δ,B

i
, Aε,δ,B

j
〉

Hd
for i �= j . We consider two cases.

Case 1. Suppose first that H = 1
2 and d = 1. In this case we have

〈
Aε,δ,B

i
, Aε,δ,B

j
〉

H1
=
∫

R

t∫

0

t∫

0

t∫

0

ϕδ(t − s1 − r)pε(B
i
s1

+ x − y)

×ϕδ(t − s2 − r)pε(B
j

s2 + x − y)ds1ds2drdy

=
t∫

0

t∫

0

t∫

0

ϕδ(t − s1 − r)ϕδ(t − s2 − r)

×p2ε(B
i
s1

− B j
s2)ds1ds2dr.
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We have

t∫

0

ϕδ(t − s1 − r)ϕδ(t − s2 − r)dr

= δ−2 [(t − s1) ∧ (t − s2)− (t − s1 − δ)+ ∨ (t − s2 − δ)+
]+

= ηδ(s1, s2).

It is easy to check that ηδ is a a symmetric function on [0, t]2 such that for any
continuous function g on [0, t]2,

lim
δ↓0

t∫

0

t∫

0

ηδ(s1, s2)g(s1, s2)ds1ds2 =
t∫

0

g(s, s)ds.

As a consequence the following limit holds almost surely

lim
δ↓0

〈
Aε,δ,B

i
, Aε,δ,B

j
〉

H1
=

t∫

0

p2ε(B
i
s − B j

s )ds,

and by the properties of the local time of the one-dimensional Brownian motion we
obtain that, almost surely.

lim
ε↓0

lim
δ↓0

〈
Aε,δ,B

i
, Aε,δ,B

j
〉

H1
=

t∫

0

δ0(B
i
s − B j

s )ds.

The function ηδ satisfies

sup
0≤r≤t

t∫

0

ηδ(s, r)ds ≤ 1,

and, as a consequence, the estimate (3.11) implies that for all λ > 0

sup
ε,δ

E B
[

λ exp
〈
Aε,δ,B

i
, Aε,δ,B

j
〉

H1

]

< ∞.

Hence (5.9) holds and limε↓0 limδ↓0 uε,δt,x := vt,x exists in L p, for all p ≥ 1. Moreover,
E(vk

t,x ) equals to the right-hand side of Eq. (5.10). Finally, Eq. (5.5) and the duality
relationship (2.8) imply that for any random variable F ∈ D

1,2 with zero mean we
have

E
(

Fuε,δt,x

)
= E

⎛

⎜
⎝

〈

DF,

⎛

⎝

t∫

0

∫

R

pt−s(x − y)ϕδ(s−·)pε(y−·)uε,δs,ydsdy

⎞

⎠

〉

H1

⎞

⎟
⎠,
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and letting δ and ε tend to zero we get

E
(
Fvt,x

) = E
(〈

DF, vpt−·(x−·)
〉
H1

)

which implies that the process v is the solution of Eq. (1.1), and by the uniqueness of
solution proved in Proposition 4.3, vt,x = ut,x .

Case 2. Consider now the case H > 1
2 and d = 2. We have

〈
Aε,δ,B

i
, Aε,δ,B

j
〉

Hd
=
∫

R2

t∫

0

t∫

0

t∫

0

t∫

0

ϕδ(t − s1 − r1)pε(B
i
s1

+ x − y)

×ϕδ(t − s2 − r2)pε(B
j

s2 + x − y)ds1ds2 φ(r1, r2)dr1dr2dy

=
t∫

0

t∫

0

t∫

0

t∫

0

ϕδ(t − s1 − r1)ϕδ(t − s2 − r2)

×p2ε(B
i
s1

− B j
s2)ds1ds2φ(r1, r2)dr1dr2.

This scalar product can be written in the following form

〈
Aε,δ,B

i
, Aε,δ,B

j
〉

Hd
=

t∫

0

t∫

0

ηδ(s1, s2)p2ε(B
i
s1

− B j
s2)ds1ds2,

where

ηδ(s1, s2) =
t∫

0

t∫

0

ϕδ(t − s1 − r1)ϕδ(t − s2 − r2) φ(r1, r2)dr1dr2. (5.12)

We claim that there exists a constant γ such that

ηδ(s1, s2) ≤ γ |s1 − s2|2H−2. (5.13)

In fact, we can assume that s = s2 − s1 ≥ 0. We have

ηδ(s1, s2) ≤ H(2H − 1)δ−2

s1+δ∫

s1

s2+δ∫

s2

|u − v|2H−2dudv

= δ−2 E
[(

B H
s2+δ − B H

s2

) (
B H

s1+δ − B H
s1

)]

= 1

2δ2

[
(s + δ)2H − |s − δ|2H − 2s2H

]
,
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where B H is a fractional Brownian motion with Hurst parameter H . Then, if s ≥ δ

ηδ(s1, s2) ≤ Hδ−2

s+δ∫

s

(
y2H−1 − (y − δ)2H−1

)
dy ≤ Hδ2H−2 ≤ H22−2H s2H−2,

which implies (5.13). On the other hand, if s < δ, clearly (s+δ)2H −|s − δ|2H −2s2H

is bounded by a constant times δ2H , and again (5.13) holds.
It it easy to check that for any continuous function g on [0, t]2,

lim
δ↓0

t∫

0

t∫

0

ηδ(s1, s2)g(s1, s2)ds1ds2 =
t∫

0

t∫

0

φ(s1, s2)g(s1, s2)ds1ds2.

As a consequence the following limit holds almost surely

lim
ε↓0

lim
δ↓0

〈
Aε,δ,B

i
, Aε,δ,B

j
〉

Hd
=

t∫

0

t∫

0

φ(s1, s2)δ0(B
i
s1

− B j
s2)ds1ds2.

From (5.13) and the estimate (3.17) we get

sup
ε,δ

E B
[

exp

(

λ
〈
Aε,δ,B

i
, Aε,δ,B

j
〉

Hd

)]

< ∞, (5.14)

if λ < λ0(t), where λ0(t) is defined in (3.16) with γT replaced by γ .
Hence, for any integer k ≥ 2, if t < t0(k), where k(k−1)

2 = λ0(t0(k)), then (5.9)
holds because

E

[(
uε,δt,x

)k
]

≤ ‖u0‖k
(

E B
[

exp

(
k(k − 1)

2

〈
Aε,δ,B

1
, Aε,δ,B

2
〉

Hd

)]) 2
k(k−1)

.

Finally, if t < t0(M) and M ≥ 3, the limit limε↓0 limδ↓0 uε,δt,x := vt,x exists in L p,
for all 2 ≤ p < M and it is equal to the right-hand side of Eq. (5.11). Finally, we
conclude that vt,x = ut,x by the same arguments as in the case 1. ��

6 Pathwise heat equation

In this section we consider the one-dimensional stochastic partial differential equation

∂u

∂t
= 1

2
�u + uẆ H

t,x , (6.1)

where the product between the solution u and the noise Ẇ H
t,x is now an ordinary

product. We first introduce a notion of solution using the Stratonovich integral and a
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weak formulation of the mild solution. Given a random field v = {vt,x , t ≥ 0, x ∈ R}
such that

∫ T
0

∫
R

∣
∣vt,x

∣
∣ dxdt < ∞ a.s. for all T > 0, the Stratonovich integral

T∫

0

∫

R

vt,x ◦ dW H
t,x

is defined as the following limit in probability if it exists

lim
ε↓0

lim
δ↓0

T∫

0

∫

R

vt,x Ẇ ε,δ
t,x dxdt,

where W ε,δ
t,x is the approximation of the noise W H introduced in (5.1). This generalized

integral has been defined through the regularization method studied, among others, by
Russo and Vallois in [17].

Definition 6.1 A random field u = {ut,x , t ≥ 0, x ∈ R} is a weak solution to Eq. (6.1)
if for any C∞ function ϕ with compact support on R, we have

∫

R

ut,xϕ(x)dx =
∫

R

u0(x)ϕ(x)dx +
t∫

0

∫

R

us,xϕ
′′(x)dxds +

t∫

0

∫

R

us,xϕ(x) ◦ dW H
s,x .

Consider the approximating stochastic heat equation

∂uε,δ

∂t
= 1

2
�uε,δ + uε,δẆ ε,δ

t,x . (6.2)

Theorem 6.2 Suppose that H > 3
4 . For any p ≥ 2, the limit

lim
ε↓0

lim
δ↓0

uε,δt,x = ut,x

exists in L p, and defines a weak solution to Eq. (6.2) in the sense of Definition 6.1.
Furthermore, for any positive integer k

E
(

uk
t,x

)
= E B

⎡

⎣U B
0 (t, x) exp

⎛

⎝
k∑

i, j=1

t∫

0

t∫

0

φ(s1, s2)δ(B
i
s1

− B j
s2)ds1ds2

⎞

⎠

⎤

⎦ ,

where U B
0 (t, x) has been defined in Theorem (5.3).
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Proof By Feynman-Kac’s formula we can write

uε,δt,x = E B

⎧
⎨

⎩
u0(x + Bt ) exp

⎛

⎝

t∫

0

∫

R

Aε,δr,ydW H
r,y

⎞

⎠

⎫
⎬

⎭
, (6.3)

where Aε,δr,y has been defined in (5.7). We will first show that for all k ≥ 1

sup
δ,ε

E

[∣
∣
∣uε,δt,x

∣
∣
∣
k
]

< ∞. (6.4)

Suppose that Bi = {
Bi

t , t ≥ 0
}
, i = 1, . . . , k are independent standard Brownian

motions starting at 0, independent of W H . Then, we have, as in the proof of
Theorem 5.3

E

( (
uε,δt,x

)k
)

= E B

⎡

⎣ exp

⎛

⎝1

2

k∑

i, j=1

〈
Aε,δ,B

i
, Aε,δ,B

j
〉

H1

⎞

⎠U B
0 (t, x)

⎤

⎦ . (6.5)

Notice that

〈
Aε,δBi

, Aε,δB j
〉

H1
=

t∫

0

t∫

0

ηδ(s1, s2)p2ε(B
i
s1

− B j
s2)ds1ds2,

where ηδ(s1, s2) satisfies (5.13). As a consequence, the inequalities (3.11) and (3.21)
and the fact that H > 3

4 , imply that for all λ > 0, and all i , j we have

sup
ε,δ

E

(

exp λ
〈
Aε,δBi

, Aε,δB j
〉

H1

)

< ∞.

Thus, (6.4) holds, and

lim
ε↓0

lim
δ↓0

E

[(
uε,δt,x

)k
]

= E B exp

⎡

⎣U B
0 (t, x) exp

⎛

⎝1

2

k∑

i, j=1

t∫

0

t∫

0

φ(s1, s2)δ0(B
i
s1

− B j
s2)ds1ds2

⎞

⎠

⎤

⎦ . (6.6)

In a similar way we can show that the limit limε,ε′↓0 limδ,δ′↓0 E
(

uε,δt,x uε
′,δ′

t,x

)
exists.

Therefore, the iterated limit limε↓0 limδ↓0 uε,δt,x exists in L2. Furthermore, the conver-
gence also holds in L p, for all p ≥ 2, and from (6.5) it follows that this convergence
is uniform in (t, x), if 0 ≤ t ≤ T and |x | ≤ K .
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Finally, in order to show that u solves Eq. (6.1) we need to show that

lim
ε↓0

lim
δ↓0

⎛

⎝

t∫

0

∫

R

us,xϕ(x) ◦ dW H
s,x −

t∫

0

∫

R

uε,δs,xϕ(x)Ẇ
ε,δ
s,x dsdx

⎞

⎠ = 0,

in probability.
From the weak equation satisfied by uε.δt,x , it follows that

∫ t
0

∫
R

uε,δs,xϕ(x)Ẇ
ε,δ
s,x dsdx

converges in L2 to some random variable G as δ ↓ 0 and ε ↓ 0. Hence, if

Bε,δ =
t∫

0

∫

R

(
uε,δs,x − us,x

)
ϕ(x)Ẇ ε,δ

s,x dsdx (6.7)

converges in L2 to zero, us,xϕ(x) will be Stratonovich integrable and

t∫

0

∫

R

us,xϕ(x) ◦ dW H
s,x = G.

In order to show the convergence to zero of (6.7), we will express the product(
uε,δs,x − us,x

)
Ẇ ε,δ

s,x as the sum of a divergence integral plus a trace term (see, for

instance, Proposition 1.3.3 in [13]). In this way we obtain

(
uε,δs,x − us,x

)
Ẇ ε,δ

s,x =
t∫

0

∫

R

(
uε,δs,x − us,x

)
ϕδ(s − r)pε(x − z)δW H

r,z

+ 〈D (uε,δs,x − us,x
)
, ϕδ(s − ·)pε(x − ·)〉H1

. (6.8)

Substituting (6.8) into (6.7) yields

Bε,δ =
t∫

0

∫

R

φε,δr,z δW H
r,z

+
t∫

0

∫

R

ϕ(x)
〈
D
(
uε,δs,x − us,x

)
, ϕδ(s − ·)pε(x − ·)〉H1

dsdx

= B1
ε,δ + B2

ε,δ,

where

φε,δr,z =
t∫

0

∫

R

(
uε,δs,x − us,x

)
ϕ(x)ϕδ(s − r)pε(x − z)dsdx .
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For the term B1
ε,δ , using the estimates on the L2 norm of the Skorohod integral (see

(1.47) in [13]), we obtain

E

[(
B1
ε,δ

)2
]

≤ E
(∥
∥φε,δ

∥
∥2

H1

)
+ E

(∥
∥Dφε,δ

∥
∥2

H1⊗H1

)
.

We have

E
(∥
∥φε,δ

∥
∥2

H1

)
=

t∫

0

∫

R

t∫

0

∫

R

E
((

uε,δs,x − us,x
) (

uε,δr,y − ur,y

))
ϕ(x)ϕ(y)

×〈ϕδ(s − ·)pε(x − ·), ϕδ(r − ·)pε(y − ·)〉H1
dsdxdrdz

=
t∫

0

∫

R

t∫

0

∫

R

E
((

uε,δs,x − us,x
) (

uε,δr,y − ur,y

))
ϕ(x)ϕ(y)

×ηδ(s − r)p2ε(x − y)dsdxdrdz,

where ηδ(s − r) has been defined in (5.12). Then, applying the estimate (5.13) and
assuming that ϕ(x) = 0 if |x | > K , yields

E
(∥
∥φε,δ

∥
∥2

H1

)
≤ C sup

0≤s≤t
|x |≤K

E
((

uε,δs,x − us,x
)2)

,

which converges to zero as δ ↓ 0, and ε ↓ 0. On the other hand, we have

D
(
uε,δs,x

) = E B

⎧
⎨

⎩
u0(x + Bt ) exp

⎛

⎝

t∫

0

∫

R

Aε,δs,ydW H
s,y

⎞

⎠ Aε,δ

⎫
⎬

⎭

and similarly to (6.6) we can show that

lim
ε,ε′↓0

lim
δ.δ′↓0

E

(〈
D
(
uε,δs,x

)
, D
(

uε
′,δ′

s,x

)〉2

H1

)

= E B

⎡

⎣u0(x + B1
t )u0(x + B2

t ) exp

⎛

⎝
2∑

i, j=1

t∫

0

t∫

0

φ(s1, s2)δ0(B
i
s1

− B j
s2)ds1ds2

⎞

⎠

×
t∫

0

t∫

0

φ(s1, s2)δ0(B
1
s1

− B2
s2
)ds1ds2

⎤

⎦ .

This implies that uε,δs,x converges in the space D
1,2 to us,x as δ ↓ 0 and ε ↓ 0, and the

convergence is uniform in (t, x), whenever 0 ≤ t ≤ T and |x | ≤ K . Then,
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E
(∥
∥Dφε,δ

∥
∥2

H1⊗H1

)

=
t∫

0

∫

R

t∫

0

∫

R

E

(〈
D
(
uε,δs,x − us,x

)
, D
(

uε,δr,y − ur,y

)〉

H1

)

ϕ(x)ϕ(y)

×〈ϕδ(s − ·)pε(x − ·), ϕδ(r − ·)pε(y − ·)〉H1
dsdxdrdz

converges to zero as δ ↓ 0 and ε ↓ 0. Finally, notice that

〈
Aε,δ, ϕδ(s − ·)pε(x − ·)〉H1

=
t∫

0

ηδ(t − s, s)p2ε(Bs)ds,

and

〈
D
(
uε,δs,x

)
, ϕδ(s − ·)pε(x − ·)〉H1

= E B

⎧
⎨

⎩
u0(x + Bt )

⎡

⎣exp

⎛

⎝

t∫

0

∫

R

Aε,δs,ydW H
s,y

⎞

⎠

t∫

0

ηδ(t − s, s)p2ε(Bs)ds

⎤

⎦

⎫
⎬

⎭
.

From this expression, it follows easily that

lim
ε↓0

lim
δ↓0

E
[
(B2
ε,δ)

2
]

= 0.

This completes the proof. ��
Since the solution is square integrable it admits a Wiener-Itô chaos expansion. The

explicit form of the Wiener chaos coefficients are given below.

Theorem 6.3 The solution to (6.1) is given by

ut,x =
∞∑

n=0

In( fn(·, t, x)) (6.9)

where

fn(t1, x1, . . . , tn, xn, t, x)

= E B

⎡

⎣u0(x + Bt ) exp

⎛

⎝1

2

t∫

0

t∫

0

φ(s1, s2)δ0(Bs1 − Bs2)ds1ds2

⎞

⎠

×δ0(Bt1 + x − x1) · · · δ0(Btn + x − xn)

⎤

⎦ . (6.10)
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Proof From the Feynman-Kac formula it follows that

uε,δt,x = E B

⎛

⎜
⎝u0(x + Bt ) exp

⎛

⎜
⎝

∫

R2

Aε,δr,ydW H
r,y

⎞

⎟
⎠

⎞

⎟
⎠

= E B

⎧
⎨

⎩
u0(x + Bt ) exp

(
1

2
‖Aε,δ‖2

H1

)

exp

⎛

⎝

t∫

0

∫

R

Aε,δr,ydW H
r,y − 1

2
‖Aε,δ‖2

H1

⎞

⎠

⎫
⎬

⎭

=
∞∑

n=0

In( f ε,δn (t, x)),

where

f ε,δn (t1, x1, . . . , tn, xn, t, x) = E B
[

u0(x + Bt ) exp

(
1

2
‖Aε,δ‖2

H1

)

Aε,δt1,x1
· · · Aε,δtn ,xn

]

.

Letting δ and ε go to 0, we obtain the chaos expansion of ut,x . ��
Consider the stochastic partial differential equation (6.1) and its approximation

(6.2). Assume that the initial condition u0(x) is nonnegative and not identically zero.
We shall study the strict positivity of the solution. In particular we shall show that
E
[
ut (x)−p

]
< ∞.

Theorem 6.4 Let H > 3/4. Assume that u0 ≥ 0, and u0 is not identically zero. Then
for any 0 < p < ∞, we have that

E
(

u−p
t,x

)
< ∞ (6.11)

and moreover,

E
[
ut (x)

−p] ≤ (Eu0(x + Bt ))
−p−1 E B

⎡

⎣|u0(x + Bt )|

× exp

⎛

⎝ p2

2

t∫

0

t∫

0

δ(Bs1 − Bs2)φ(s1, s2)ds1ds2

⎞

⎠

⎤

⎦ . (6.12)

Proof Denote κp = (
E Bu0(x + Bt )

)−p−1
. Then, Jensen’s inequality applied to the

equality uε,δt,x = E B
{

u0(x + Bt ) exp
(∫ t

0

∫
R

Aε,δr,ydW H
r,y

)}
implies that

(
uε,δt,x

)−p ≤ κp E B

⎧
⎨

⎩
u0(x + Bt ) exp

⎛

⎝−p

t∫

0

∫

R

Aε,δr,ydW H
r,y

⎞

⎠

⎫
⎬

⎭
.
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Therefore

E

[(
uε,δt,x

)−p
]

≤ κp E E B

⎧
⎨

⎩
u0(x + Bt )E

⎡

⎣exp

⎛

⎝−p

t∫

0

∫

R

Aε,δr,ydW H
r,y

⎞

⎠

⎤

⎦

⎫
⎬

⎭

= κp E B
{

u0(x + Bt )E

[

exp

(
p2

2

∥
∥Aε,δ

∥
∥2

H1

)]}

,

and we can conclude as in the proof of Theorem 6.2. ��
Using the theory of rough path analysis (see [8]) and p-variation estimates, Gubinelli

et al. [4] have proved that for H > 3
4 , the equation

∂u

∂t
= 1

2
�u + σ(u)Ẇ H

t,x

had a unique mild solution up to a random explosion time T > 0, provided σ ∈ C2
b (R).

In this sense, the restriction H > 3
4 , that we found in the case σ(x) = x is natural, and

in this particular case, using chaos expansion and Feynman-Kac’s formula we have
been able to show the existence of a solution for all times.
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