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Abstract The notion of a surface-order specific entropy hc(P) of a two-dimensional
discrete random field P along a curve c is introduced as the limit of rescaled entropies
along lattice approximations of the blowups of c. Existence is shown by proving a
corresponding Shannon–McMillan theorem. We obtain a representation of hc(P) as
a mixture of specific entropies along the tangent lines of c. As an application, the
specific entropy along curves is used to refine Föllmer and Ort’s lower bound for the
large deviations of the empirical field of an attractive Gibbs measure from its ergodic
behaviour in the phase-transition regime.
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60G60 · 94A17 · 82B26 · 82B20

1 Introduction

The entropy of a stationary random field P indexed by a lattice is usually defined
as a limit of entropies on an increasing sequence of boxes, rescaled by the volume
of the boxes. Shannon–McMillan theorems describe this convergence on a deeper
level, as L1-convergence of rescaled information quantities. In the context of large
deviations for Gibbs measures the volume-order entropies may not provide enough
information when a phase transition occurs. Instead, Föllmer and Ort [9] introduced
the concept of surface-order entropy on boxes, proved a corresponding version of the
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444 J. Brettschneider

Shannon–McMillan theorem and used it to estimate large-deviation probabilities. The
construction of the Wulff shape by Dobrushin et al. [4] suggests that such estimates
can be improved if boxes are replaced by more general shapes.

We investigate the problem of constructing entropies on general surfaces, proving
appropriate versions of the Shannon–McMillan theorem, and using these constructions
to refine the large deviation lower bound. We carry out this program in the two-
dimensional case, where surfaces reduce to contour curves. The existence of a surface-
order specific entropy does not simply follow from a subadditivity argument. Instead,
we prove a corresponding Shannon–McMillan theorem, that is, L1(P)-convergence of
rescaled information quantities along lattice approximations of the successive blowups
of the curve c. This is accomplished in three steps. The first main result is a Shannon–
McMillan theorem along lines; cf. Theorem 3.5 for rational slopes and Theorem 3.6
for irrational slopes. The proof relies on uniform convergence in ergodic theorems for
a suitable skew product transformation. The second step is to extend the results to
polygons under the assumption of a strong 0-1 law on P. Finally, we obtain an explicit
formula for the specific entropy hc(P) as a mixture of the conditional entropies of
the random field restricted to the origin, given suitably defined past-σ -algebras along
tangent lines of the curve (Theorem 4.3). Under certain conditions, this construction
can be extended to relative entropies of one random field with respect to another. This
will be the key to our proof of a refined lower bound for large deviations in the phase
transition regime (Theorem 6.2).

The role of Shannon–McMillan theorems in the refined analysis of large deviations
provided the original motivation for this work. It seems, however, that the study of
entropies along surfaces may hold independent interest. This paper lays some of the
groundwork for such a general theory of specific entropies along shapes. The key
to this theory is a careful combination of probabilistic arguments and non-standard
discrete geometrical constructions. We now explain our approach and our results in
more detail.

Shannon–McMillan theorems and entropy. Consider a random sequence ω of
letters from a finite alphabet ϒ, modelled by a probability measure P on the space
� := ϒ {1,2,... }. For any finite n, the information provided by the first n letters can be
described by the function − log P[ ω{1,...,n}], where ω{1,...,n} denotes the restriction of
ω to {1, . . . , n}, and P [(y1, . . . , yn)] is the probability that the pattern (y1, . . . , yn)

appears in the first n trials. In the classical case, when the letters are independent and
identically distributed according to a measure µ, the classical Shannon–McMillan
theorem states that the rescaled information functions −n−1 log P[ ω{1,...,n}], con-
verge in L1(P) to the entropy H(µ) := −∑y∈ϒ µ(y) log µ(y) of the measure
µ. The theorem can be extended to a general ergodic sequence. In the bilateral
case, when P is an ergodic measure on ϒZ, the limiting quantity takes the form
h(P) := E [H (P0[ · |P](ω))] , where P0[ · |P] is the distribution of the random field
in (0, 0) conditioned on the “past” σ -algebra P generated by the projection of ω to
the set {−1,−2, . . . }.

These constructions can be extended to a spatial setting when the random field is
given by a stationary probability measure P on a configuration space ϒZ

d
. Thouvenot

[27] and Föllmer [6] proved spatial extensions of Shannon and McMillan’s result. The
specific entropy h(P) is introduced as the limit of |Vn|−1 HVn (P), where Vn is the set
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Shannon–McMillan theorems for discrete random fields for surface-order large deviations 445

of all lattice sites in the box [−n, n]d , and HVn (P) is the entropy of the measure P
restricted to Vn . The existence of the limit follows from the subadditivity of HV with
respect to V . What is more, the corresponding Shannon–McMillan theorem shows
L1(P)-convergence of the rescaled information functions −|Vn|−1 log P[ωVn ]. If P
is ergodic we obtain the formula h(P) = E

[
H
(
P0[ · |Pd ](ω)

)]
, where Pd is a

σ -algebra representing a spatial version of the “past”. More precisely, Pd is generated
by the projections of ω to the sites preceding the origin in the lexicographical ordering
of Z

d .

Surface entropy. Our goal is to derive refined versions of the Shannon–McMillan
theorem, where the information functions are observed along surfaces. This was carried
out in [9] for the surfaces of boxes parallel to the axes. In this paper, we focus on the two-
dimensional case. We develop a construction of surface entropy where rectangles are
replaced by general curves. More precisely, following a suggestion by Hans Föllmer,
we introduce the specific entropy along sets generated by lattice approximations to
lines, and then extend this to polygons and piecewise smooth curves.

Most of the work here goes into our first result, a Shannon–McMillan theorem for
the specific entropy hλ(P) of a stationary random field P along a line (Theorem 3.5 if
the slope is rational and Theorem 3.6 if the slope is irrational). We prove the L1(P)-
convergence of the rescaled information functions along increasing segments of the
line’s lattice approximation {(z, [λz + a]) | z ∈ Z}, where [x] denotes the integer part
of x . If P fulfills a 0-1 law on the tail field, we obtain the formula

hλ(P) =
1∫

0

E
[
H
(
P0[ · |Pλ,t ](ω)

)]
dt,

where Pλ,t is the σ -algebra generated by those approximating sites which precede 0
in the lexicographical ordering of Z

2. If λ is rational, it suffices for P to be ergodic.
Furthermore, the specific entropy along the line can be written as

hλ(P) = 1

q

q−1∑

ν=0

E
[
H
(
P0
[· |Pp/q, νp/q

]
(ω)
)]

,

where p/q is the unique representation of λ by integers p ∈ N and q ∈ Z having
no common divisor. The past σ -algebras Pp/q, νp/q correspond to the q different
possibilities to start the q-periodic pattern of the lattice approximation.

The idea to investigate such a specific entropy along lines has two precursors. The
first is a volume-order directional entropy, which Milnor [16,17] introduced in the
context of cellular automata. The second is the specific entropy along hyperplanes
perpendicular to an axis, which was defined by [9] as a step toward their surface
entropy along boxes. It may be noted that a distinction between rational and irrational
slopes was also made by Sinai in his work [25] on Milnor’s directional entropy for
cellular automata. This construction was further developed by Park [19–21] and Sinai
[26]. The original problem of continuity with respect to the direction was finally solved
in Park [22].
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Our next result is a Shannon–McMillan theorem along polygons (Theorem 4.2). In
particular, we obtain a representation of the specific entropy of P along a polygon as a
mixture of entropies along lines corresponding to its edges. The extension to polygons
requires a strong form of the 0-1 law on the tail field, which was introduced in [9]. It
says that, for any subset J of Z

2, the σ -algebra generated by the sites in J does not
increase if we add information about the tail behaviour outside of J ; cf. Definition 2.2.
Finally, we come to the main result in this section. Theorem 4.3 says that the specific
entropy along a curve c : [0, T ] −→ R

2 is a mixture of entropies along the tangent
lines:

hc(P) =
T∫

0

hc′(t)(P) dt (1)

Here, hc′(t)(P) denotes the specific entropy along a line having the same slope as the
tangent of c in t; cf. (32) for the exact definition.

About the proofs of the Shannon–McMillan theorems. We will proceed in several
steps, first for lines, then for polygons and finally for curves.

(i) Lines: The lattice approximation of a line with slope λ ∈ [0, 1] and y-intercept a
on an interval [0, n] is defined by Lλ,a(I ) = {(z, [λz +a]) | z = 1, . . . , n}. We want to
prove the convergence of the rescaled information content−(n+1)−1logP

[
ωLλ,a([0,n])

]

along successively larger segments of the line. To make this problem accessible to
ergodic theory, we have to find a transformation which captures the stair climbing
pattern along the lattice approximation of the line. If the slope is rational, the steps
become periodic, and we proceed by combining a finite number of different transfor-
mations. In the case of an irrational slope, no such simplification is possible. We need
to keep track not only of the integer part but also of the fractional part {λz +a} in each
step. We can realize this by introducing the skew product transformation

Sλ : T × � −→ T × �

(t, ω) �−→ (
τλ(t), ϑ(1,[t+λ])ω

)
,

where T is the one-dimensional torus, equipped with the Borel σ -algebra and the
Haar measure, and τλ is the translation by λ. Using appropriate ergodic theorems on
the product space with the skew product we obtain a Shannon–McMillan theorem
along the lattice approximation of the line. In view of the extension of this result to
polygons, we further need a variation of this result. Instead of lattice approximations of
increasing parts of a line, we use lattice approximations of blow-ups of a line segment.

(ii) Polygons: Consider a polygon π, parametrized on [0, T ], and its blowups
Bnπ(t) = nπ (t/n) , parametrized on [0, nT ]. We study the sequence − log P

[
ωLπ

n

]

(n ∈ N) of rescaled information of P restricted to its lattice approximations Lπ
n .

Conditioning site by site, the problem can be reduced to the Shannon–McMillan
theorem along the edges, which is essentially covered by the Shannon–McMillan
theorem along lines that we already established. One difficulty remains, which is
getting around the corners. It can be overcome by the technique which [9] used in
the case of boxes. We need the additional assumption of a strong form of a 0-1 law
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(Definition 2.2). Under this condition, the entropy along a polygon is represented as a
mixture of the entropies of its edges (Theorem 4.2).

(iii) Curves: Our last step is the entropy along a piecewise smooth curve. After
having established the results for lines and polygons, this part has become easy. We
obtain (1) by approximating the curve with polygons.

Relative entropy and large deviations. Shannon–McMillan theorems for the
specific relative entropy h(Q, P) of two probability measures Q and P on the
sequence space ϒ {1,2,... } are based on the functions − log(d Q/d P) [ ω{1,...,n}] (n ∈ N)

describing the relative information gained from the first n trials of an experiment.
They are a key tool in the search for estimates in the theory of large deviations. By a
large deviation we mean a rare event, or an untypical behavior occurring in a random
sequence. Consider the empirical distributions µn(ω) := n−1∑n

i=1 δωi (n ∈ N) of a
stationary random sequence ωi (i ∈ N). If the measure P is ergodic then µn converges
to the marginal distribution µ of P, P-almost surely and in L1(P). Large deviations
are events like [µn ∈ A], A being a set in the space of probability measures on ϒ

whose closure does not contain µ (cf. for instance [3]).
The aim of large deviation theory is to find lower and upper bounds which

describe the asymptotic decay of the probabilities of such large deviations. In the
classical case of a sequence of independent and identically distributed random vari-
ables, the decay of large deviations of the empirical distribution is described by Sanov’s
theorem. Cramèr’s theorem addresses similar questions for the empirical averages. As
a third level for investigating large deviations, Donsker and Varadhan [5] initiated the
investigation of large deviations of empirical processes.

We replace the random sequence by a random field, and the empirical processes by
the empirical fields Rn(ω) := |Vn|−1∑

i∈Vn
δϑi ω (n ∈ N), where ϑi (i ∈ Z

d) denotes
the group the shift transformations. Comets [2], Föllmer and Orey [8], and Olla [18]
found the following large deviation principle for the empirical fields of a stationary
Gibbs measure: For any open subset A of the space M1(�) of probability measures
on � = ϒZ

d
,

lim inf
n→∞

1

|Vn| log P[Rn ∈ A] ≥ − inf
Q∈A

h(Q, P), (2)

and for any closed set C ∈ M1(�),

lim sup
n→∞

1

|Vn| log P[Rn ∈ C] ≤ − inf
Q∈C

h(Q, P), (3)

where the rate function is based on the specific relative entropy h(Q, P) := limn→∞
| Vn |−1 HVn (Q, P).

Large deviations in the phase transition regime. In the case of phase transi-
tion, there exists more than one Gibbs measure with respect to the same poten-
tial. Due to the variational principle for Gibbs measures (cf. Lanford and Ruelle
[15] and, in purely information theoretical terms, Föllmer [6]), the specific relative
entropy of P to another stationary Gibbs measure Q with the same interaction
potential vanishes. Thus, the relative entropy h(Q, P) appearing in (2) and (3) may
be zero even though Q is not contained in the closure of A. This suggests we need a
refined analysis of large deviations in terms of surface-order rather than volume-order
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entropies. Assume in fact that the interaction satisfies the local Markov property. Then
HV (Q, P) = H∂V (Q, P) for any finite subset V of Z

2, where ∂V is the bound-
ary of V, i.e., the set of all sites outside of V which have distance 1 to V (cf. the
end of Sect. 2 in [9]). Consequently, this relative entropy is in fact a surface-order
term, and so it should be rescaled not by the size of the volume |V | but by the size
of the surface |∂V |. This observation was the main motivation for introducing the
concept of surface entropy, and for proving the corresponding Shannon–McMillan
theorem.

In the context of the two-dimensional Ising model, Schonmann [24] showed the
existence of surface-order upper and lower bounds for the large deviations of the
empirical means. For attractive models with a totally ordered state space, Föllmer
and Ort [9] found a lower bound for the large deviations of the empirical field in
terms of the relative surface entropies along boxes (recalled as Theorem 6.1 in this
paper). In their detailed analysis of the two-dimensional Ising model, Dobrushin et
al. [4] justified on the basis of local interactions, that the phase-separating curve has
the form of a Wulff shape. They proved a large deviation principle with a rate func-
tion in terms of the surface tension along the Wulff shape. Using different meth-
ods, Ioffe [11,12] was able to extend their result up to the critical temperature. The
appearance of such shapes suggests to revisit the approach of [9] but using the gener-
alized surface entropies introduced in Sect. 4 instead of the surface entropies based on
boxes.

This extension is carried out in the last section of this work, for the case of Gibbs
measures with attractive interactions on a two-dimensional lattice. We study the large
deviations for its empirical measure. The main result of this part of the paper is
Theorem 6.2, which provides a lower bound in terms of the specific relative entropies
along curves. One of the ingredients in the proof is the well known strategy of switch-
ing to a measure under which the large deviation becomes normal behavior, and then
applying a Shannon–McMillan theorem. Making use of the global Markov property,
we pass from densities restricted to the lattice points inside of a polygon to densities
on the lattice approximations of its boundary. In this context, we prove an appropri-
ate relative version of the Shannon–McMillan theorem, in analogy to the results in
Sect. 4. Other major ingredients in the proof are geometrical observations concerning
the interplay of the random field and the lattice approximations of curves. In particular,
in Lemma 6.5 we compute the asymptotic ratio of the length of a line segment and
its lattice approximation. These quantities merge into a factor in the lower bound in
Theorem 6.2 involving the derivative of the curve. We will further touch on the case
when the Markov property is only satisfied with respect to a boundary that is a contour
in the sense of statistical mechanics.

Outline of the paper. The first section reviews some basic notions and properties
of discrete random fields, information and entropy. In Sect. 2, we introduce a specific
entropy of a random field along a line. In Sect. 4 we construct the specific entropy of a
random field along a curve proceeding in three steps: line segments, polygons, curves.
Section 5 recalls some basic notions about Gibbs measures and phase transitions.
In Sect. 6 we prove the refined large deviations lower bound. The case of contour
boundaries is briefly discussed in Sects. 4.4 and 6.

123



Shannon–McMillan theorems for discrete random fields for surface-order large deviations 449

2 Random fields

Consider � := ϒZ
d
, where ϒ is a finite set. For any subset V of Z

d define �V := ϒV .

Let ωV be the projection of ω to V, PV the distribution of ωV with respect to P, and
FV := σ(ωV ) the σ -algebra generated by this projection. A probability measure P
on (�,F) is called a two-dimensional discrete random field. The transformations
(θv)v∈Zd defined by θvω(u) = ω(u + v) (u ∈ Z

d) form a group of transformations
on �, called shift transformations. We assume P is stationary, that is, invariant with
respect to the shift transformations. There are different levels of Markov properties
for random fields: when the subset of the lattice which generates the condition has to
be finite, and when it can be any type of subset of the lattice. They both involve the
boundary ∂V := { j ∈ Z

d\V | distV ( j) = 1 } of a subset V of the lattice Z
d .

Definition 2.1 A random field P has the local Markov property if, for any finite
V ⊂ Z

d and for any nonnegative FV -measurable φ, E[φ | FZd\V ] = E[φ | F∂V ]. A
random field P which fulfills the local Markov property is called a Markov field. If
the local Markov property holds for all any V ⊂ Z

d , then P has the global Markov
property.

In Sect. 5, we will introduce the class of Gibbs measures in terms of interaction
potentials. Any Gibbs measure belonging to a nearest-neighbor potential is a Markov
field. Examples of random fields which have the local Markov property but not the
global Markov property were given by Weizsäcker [28] and Israel [13]. P is called
tail-trivial if it fulfills a 0-1 law on the tail field

T :=
⋂

V ⊂Zd finite

FZd\V =
⋂

n∈N

FZd\Vn
, (4)

where Vn := ([−n, n] ∩ Z)d . Due to the spatial structure of a random field, tail-
triviality is equivalent (cf. Proposition 7.9 from [10]) to a mixing condition called
short-range correlations :

sup
A∈FZd \Vn

| P(A ∩ B) − P(A)P(B) | n→∞−−−−→ 0 for all B ∈ F .

The following strong version of a 0-1 law was introduced by Föllmer and Ort [9]. For
J = ∅ it reduces to the classical 0-1 law on F . Remark 3.2.3 from [9] shows that it
implies the global Markov property provided P has the local Markov property.

Definition 2.2 P satisfies the strong 0-1 law if for any subset J of Z
d the σ -algebra

FJ coincides modulo P with the σ -algebra

F∗
J :=

⋂

V ⊂Zd finite

FJ∪(Zd\V ).

Let V and W be subsets of Z
d . The information in ω restricted to V, with respect to

P, is given by the random variable I(PV )(ω) := − log P[ωV ], and the information
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conditioned on FW is defined as I (PV [ · |FW ](ω)) := − log P[ωV | ωW ]. The entropy
of P restricted to V is defined as

HV (P) := E[I(PV )(ω)] = −
∑

ω∈ϒZd

P[ωV ] log P[ωV ],

and the conditional entropy of P to FW is HV (P[ · |FW ]) := E[− log P[ωV | ωW ]] =
H(PV [ · |FW ]). The specific entropy h(P) of P is defined as the limit of | Vn |−1 H(PVn )

for n to infinity. Its existence can be proved by a subadditivity property (cf. for instance,
Theorem 15.12 in [10]), but it also follows from a Shannon–McMillan theorem by
Föllmer [6] and Thouvenot [27]. They showed that the specific entropy for ergodic
P is E [H (P0[ · |P](ω))] , where P0[ · |P](ω) is the conditional distribution of the
random field in the origin with respect to the σ -algebra P generated by all sites
which are smaller than the origin with respect to the lexicographical ordering on Z

d .

Moreover, they showed that for all stationary P

1

| Vn| I(PVn )
n→∞−−−−→ E

[
H (P0[ · |P](ω))

∣
∣J
]

in L1(P), (5)

where J is the σ -algebra of all sets invariant with respect to the transformations
θv (v ∈ Z

d).

A lemma from [9] will be used in some of the proofs in this paper. We recall it here
for the reader’s convenience.

Lemma 2.3 Consider σ -algebras Bi ⊆ B∗
i (i ∈ N) increasing to B∞, respectively

decreasing to B∗∞, and assume that B∞ = B∗∞ mod P. Then for any φ ∈ L1(P),

lim
i→∞ sup

Bi ⊆Ci ⊆B∗
i

∥
∥E[φ | Ci ] − E[φ | B∞]∥∥L1(P)

= 0. (6)

3 A Shannon–McMillan theorem along lines

From now on we will consider the two dimensional case. The line with slope λ and
y-intercept a is described by the function

lλ,a(x) := λx + a (x ∈ R). (7)

Using [x] and {x} for the integer and the fractional part of x, respectively, the two-sided
sequences

([lλ,a(z)])z∈Z
and

({lλ,a(z)})z∈Z
are the line’s integer and fractional parts

at the integer points z ∈ Z. In the case when 0 ≤ λ ≤ 1, the lattice approximation of
lλ,a on U ⊆ Z and on an interval I ⊆ R are given by

Lλ,a(U ) := {
(z, [lλ,a(z)]) | z ∈ U

}
and Lλ,a(I ) := Lλ,a(I ∩ Z). (8)

In the case when −1 ≤ λ < 0, we use the lattice approximation Lλ,a(I ) := −L−λ,a(I ).
If |λ| > 1, we represent the line as a function of the y-axis with the new slope 1/λ (or
0 in the case of a parallel to the y-axis) and proceed as before.
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We want to show the L1(P)-convergence of the sequence of rescaled information
along successively increased parts of the lattice approximation to the line

|Lλ,a([0, n])|−1 I
(
PLλ,a([0,n])

)
(n ∈ N).

In order to make our problem accessible to ergodic theory, we need to create a trans-
formation that follows the stair climbing pattern along the lattice approximation of
the line. Lemma 3.2 will introduce a transformation that follows the desired path. To
get there we need a mechanism to keep track not only of the integer part, but also of
the fractional part. Let τλ(t) := {t + λ} (t ∈ T) be the translation by λ on the torus
T := [0, 1] with its ends identified and equipped with the Borel σ -algebra B and the
Lebesgue measure µ. Consider the product space T × �, equipped with the product
σ -algebra F , and the product measure P = µ⊗ P. We will now show a few technical
lemmata that are needed to prove the main results in this section.

Lemma 3.1 For λ ∈ R, z, z̃ ∈ Z, a ∈ T and I ⊂ Z we have the following:
(i) τ z

λ(a) = {lλ,a(z)}.
(ii) The function τ z

λ has a unique zero. More explicitly: If z and λ are both positive
or both negative, the zero is at a = 1 − {zλ}. If one is negative and the other is
positive, the zero is at a = −{zλ}. If one of them is zero, then the unique zero is
at a = 0.

(iii) lλ,a(z + z̃ ) = lλ,a(z) + λ̃z and lλ,a+̃z(z) = lλ,a(z) + z̃.
(iv) [lλ,a(z + z̃ )] = [lλ,a(z)] + [lλ,τ z

λ(a)(̃z )] and [lλ,a+̃z(z)] = [lλ,a(z)] + z̃.
(v) Lλ,a(I + z) = Lλ,τ z

λ(a)(I ) + Lλ,a(z).
(vi) Lλ,a+z(I ) = Lλ,a(I ) + (0, z).

Proof (i) By induction over z. (ii) The case z = 0 and the case λ = 0 are triv-
ial. Let z ∈ Z\{0}. By (i), τ z

λ has a zero at a if and only if {a + zλ} = 0. The
latter is equivalent to a + {zλ} ∈ Z (∗). If z and λ are both positive then 0 <

a + {zλ} < 2. Therefore, condition (∗) is equivalent to a = 1 − {zλ}. If z and λ

are both negative, {zλ} is again positive and the argument works as well. If one is
negative and the other positive, then −1 < a + {zλ} < 1, and (∗) is equivalent to
a + {zλ} = 0. (iii) lλ,a(z + z̃ ) = λ(z + z̃ ) + a = lλ,a(z) + λ̃z and lλ,a+̃z(z) =
λz + a + z̃ = lλ,a(z) + z̃. (iv) [lλ,a(z + z̃ )] = [[lλ,a(z)] + {lλ,a(z)} + λ̃z

] =
[lλ,a(z)] + [τ z

λ(a) + λ̃z] = [lλ,a(z)] + [lλ,τ z
λ(a)(̃z )], using (iii), (i) and (7). The

second statement is an immediate consequence of (iii). (v) Using (8) and (iv), Lλ,a(I +
z)= {(̃z, [lλ,a (̃z )])∣∣ z̃ ∈ I+z

}= {(̃z + z, [lλ,a (̃z+z)])∣∣ z̃ ∈ I
}=
{
(̃z, [lλ,τ z

λ(a)(̃z )]) +
(z, [lλ,a(z)])∣∣ z̃ ∈ I

}
= Lλ,τ z

λ(a)(I ) + Lλ,a(z). (vi) Lλ,a+z(I ) = {
(̃z, [lλ,a+z (̃z )) |

z̃ ∈ I
} = {

(̃z, [lλ,a+z (̃z )) + (0, z) | z̃ ∈ I
} = Lλ,a(I ) + (0, z), using (8) and (iv). ��

Lemma 3.2 The iterates of the transformation Sλ(a, ω) := (τλ(a), θ(1,[a+λ])ω) (a ∈
T, ω ∈ �) are given by Sn

λ(a, ω) = (
τ n
λ (a), θLλ,a(n)ω

)
for all n ∈ N0.

Proof With κ(a) := (1, [a + λ]), we get Sλ(a, ω) = (τλ(a), θκ(a)ω) and Sn
λ(a, ω) =

(τ n
λ (a), θκn(a)ω) where κn;= ∑n−1

i=0 κ ◦ τ i
λ (n ∈ N). It remains to show that κn(a) =

(n, [lλ,a(n)]) for all a ∈ T. For the first component this is obvious. For the second
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component it follows by induction: Trivial for n = 0. Then, because of Lemma 3.1(iv),
κ

(2)
n+1(a) = κ

(2)
n (a)+ κ(2)(τ n

λ (a)) = [lλ,a(n)]+ [τ n
λ (a)+λ] = [lλ,a(n)]+ [lλ,τ n

λ (a)] =
[lλ,a(n + 1)]. ��

We use the short forms Pλ,a := FLλ,a((−∞,−1]) and P(i)
λ,a := FLλ,a((−i,−1]) (i ∈ N)

for the various past σ -algebren indexed by the lattice approximation along of line with
slope λ and intercept a. They play a central role in the representation of the limits in
the following two Shannon–McMillan type theorems. We further define the functions

F(a, ω) := I
(
P0[ · |Pλ,a]) (ω),

Fi (a, ω) := I
(

P0[ · |P(i)
λ,a]

)
(ω) (i ∈ N) with a ∈ T, ω ∈ �. (9)

Lemma 3.3 For all a ∈ T, ω ∈ �, and n ∈ N, I(PLλ,a([0,n]))(ω) = ∑n
i=0 Fi ◦

Si
λ(a, ω).

Proof By conditioning and shifting

P[ωLλ,a([0,n])] =
n∏

i=0

P[ωLλ,a(i)|ωLλ,a([0,i−1])]

=
n∏

i=0

P[ω(0,0)|ωLλ,a([0,i−1])−Lλ,a(i)] ◦ θLλ,a(i).

By Lemma 3.1(v), Lλ,a([0, i − 1]) − Lλ,a(i) = Lλ,τ i
λ(a)([−i,−1]), so

I(PLλ,a([0,n]))(ω) =
n∑

i=0

I
(

P0[ · |P(i)
λ,τ i

λ(a)
]
)

(θLλ,a(i)ω),

and Lemma 3.2 concludes the proof. ��

We will also need the following result about the asymptotic behavior of the functions
Fi as i goes to infinity and about their properties as functions of the first parameter.
Recall that P0 is the marginal distribution of P restricted to the origin.

Lemma 3.4 Assume that

∀ A ∈ FZ2\{(0,0)} : P0[ · |A] > 0. (10)

Then, (Fi )i∈N converge to F, P-almost surely and in L1(P). For any fixed ω ∈ �, the
functions Fi (·, ω) (i ∈ N) are piecewise constant on T. If λ is rational then F(·, ω)

is piecewise constant as well, and the convergence is uniform in t. If λ is irrational,
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if P fulfills the strong 0-1 law and if

∃ c > 0 ∀ A ∈ FZ2\{(0,0)} : P0[ · |A] > c, (11)

then F(· , ω) is Riemann-integrable on T, and the convergence is uniform in t.
More precisely, the set of points where the function Fi (·, ω) may be discontinu-

ous is given by
{
tλ,ν

∣
∣ ν = −1, . . . ,−i

}
, where tλ,ν is the unique zero of τλ,ν on T

(cf. Lemma 3.1(ii)). For rational λ, the set of potential points of discontinuities of
Fi (·, ω) and F(·, ω) is

{
tλ,ν

∣
∣ ν = −1, . . . ,−(q ∧ i)

}
, where p/q is the unique rep-

resentation of λ with integers p ∈ Z and q ∈ N having no common divisor.

Proof of the Lemma Fix any t ∈ T. Since the σ -algebras
(
FLλ,t ([−1,−i])

)
i∈N

form an
increasing family,

(
P
[
ω(0,0)

∣
∣ωLλ,t ([−1,−i])

])
i∈N

is a martingale, so that we obtain by
the convergence theorem for martingales that

P
[
ω(0,0)

∣
∣ωLλ,t ([−1,−i])

] i→∞−−−−→ P
[
ω(0,0)

∣
∣ωLλ,t ([−1,−∞))

]

P-almost surely and in L1(P). By (10) this remains true when we take logarithms on
both sides, which proves the first assertion of the lemma.

Now fix ω ∈ � and t, t̃ ∈ T, and find a (sufficient) condition under which
Fi (t, ω) = Fi (̃t, ω). The only influence that the variable t actually has on Fi is
its effect on the set Lλ,t ([−1,−i]) of sites we condition on. By (8), Lλ,t ([−1,−i]) =
Lλ,̃t ([−1,−i]) if and only if

[lλ,t (ν)] = [lλ,̃t (ν)] for all ν ∈ {−1, . . . ,−i}. (12)

By Lemma 3.1(i), [lλ,t (ν)] = −λν − τ ν
λ (t), so the equality in (12) is equivalent to

t − t̃ = τ ν
λ (t) − τ ν

λ (̃t). This is fulfilled if and only if t and t̃ are both either smaller
than tλ,ν or both larger than tλ,ν . Applying this argument to all ν ∈ {−1, . . . ,−i}, we
see that the function Fi ( · , ω) is piecewise constant, and the set of possible jumps is
given by Di = {

tλ,ν

∣
∣ ν = −1, . . . ,−i

}
.

If λ is rational, these sets actually become independent of i, for i large enough.
With the unique representation λ = p/q used above, and the periodicity of the
sequence (tλ,ν)ν∈N, we obtain Di = {

tλ,ν

∣
∣ ν = −1, . . . ,−(q ∧ i)

}
. In particular,

the convergence is uniform and the limit F is piecewise constant in the first variable.
Now assume that λ is irrational. To show that F is Riemann-integrable it suffices

to show that the set of continuity points has full measure. We will prove that F(·, ω)

is continuous on T\D∞, where D∞ := {
tλ,ν | ν = −1,−2, . . .

}
. Fix t0 ∈ T\D∞

and let be ε > 0. We apply Lemma 2.3 with Bk = Lλ,t ([−k,−1]), and B∗
k =

Lλ,t ([−k,−1]) ∪ (Z2\Vk), where Vk = [−k, k]2. This gives us a k0 ∈ N such that
for all k ≥ k0 and t ∈ T with Lλ,t0([−k,−1]) = Lλ,t ([−k,−1]) (∗∗) we obtain

∣
∣
∣ P
[
ω(0,0)

∣
∣ωLλ,t0 ([−k,−1])

]
− P

[
ω(0,0)

∣
∣ωLλ,t ([−k,−1])

] ∣∣
∣ < ε.
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By definition of t0, δ := min
{| t0 − tλ,ν |

∣
∣ ν = −1, . . . ,−k

}
is larger than 0, and

by Lemma 3.1(i), (∗∗) is true for all t ∈ T for which |t − t0| < δ. So, P
[
ω(0,0)

∣
∣

ωLλ,t ([−k,−1])
]

is continuous in t = t0. Note that, for all i ∈ N, Di ⊂ Di+1, and that the
maximal height of new jumps added in step i , that is, the steps in Di+1\Di , decreases
with i. This implies the uniformity of the convergence. Finally, by taking logarithms
and using (11), the above statements are also true for the sequence (Fi (· , ω))i∈N. ��

Theorem 3.5 Let λ be rational and p/q its unique representation with p ∈ Z and
q ∈ N having no common divisor. Assume that P fulfills condition (10). Then for all
a ∈ R,

1

n + 1
I(PLλ,a([0,n]))

n→∞−−−−→ 1

q

q−1∑

ν=0

E
[

H
(
P0
[ · ∣∣Pp/q, νp/q

]
(ω)
) ∣∣
∣Jq,p

]
(13)

P-almost surely and in L1(P), where Jq,p is the σ -algebra of all sets which are
invariant with respect to θ(q,p). In particular, if P is ergodic with respect to θ(q,p) then
the limit equals

1

q

q−1∑

ν=0

E
[
H
(
P0
[ · |Pp/q, νp/q

]
(ω)
)]

.

Proof By Lemma 3.3, the left-hand side of (13) equals 1/(n +1)
∑n

i=0 Fi ◦ Si
λ(a, ω).

Because of Lemma 3.4 and Maker’s version of the ergodic theorem (cf. Theorem 7.4
in Chap. 1 of [14]), it suffices to show that

1

n + 1

n∑

i=0

F ◦ Si
λ(a, ω) (14)

converges to the limit in (13). For each n ∈ N there are unique m ∈ N and η ∈ {0, 1, . . . ,

q − 1} such that n = mq + η. The last term can be rewritten as

m

n + 1

q−1∑

ν=0

1

m

m−1∑

j=0

F ◦ S jq+ν
λ + 1

n + 1

η∑

ν=0

F ◦ Smq+ν
λ .

The second addend converges to 0 as n (and therefore also m) goes to infinity. The
first factor converges to 1/q, so it remains to study the asymptotic behavior of

A(ν)
m F(a, ω) := 1

m

m−1∑

j=0

F ◦ S jq+η
λ (a, ω).
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Use κn (n ∈ N) defined as in the proof of Lemma 3.2. Since τ
q
λ = Id we obtain

κ jq+ν = jκq + κν, and S jq+ν
λ = (

τ ν
λ , θκν ◦ (θκq )

j
)
. This yields

A(ν)
m F(a, ω) = 1

m

m−1∑

j=0

F
(
τ ν(a), θκν(a) ◦ (θκq (a)) jω

)
.

For a fixed, applying Birkhoff’s ergodic theorem to the function f (ν)
a (ω) := F (τ ν(a),

θκν(a)ω
)

yields

lim
m→∞ A(ν)

m F(a, ·) = E[ f (ν)
t |J(q,p)]

= E
[

H
(
P0
[ · ∣∣Pp/q, νp/q

]
(ω)
) ∣∣
∣J(q,p)

]
P-a.s. and in L1(P).

In the ergodic case J(q,p) is trivial. Using the invariance of P under θ, the last expres-
sion reduces to E [F (τ ν(a), · )] . ��

For the case of an irrational slopeλ we can show the corresponding result provided P
fulfills some additional conditions, in particular the strong 0-1 law (cf. Definition 2.2).

Theorem 3.6 Let λ be irrational. Assume that P fulfills condition (11) and the strong
0-1 law. Then for all a ∈ R,

1

n + 1
I(PLλ,a([0,n]))

n→∞−−−−→
1∫

0

E
[
H
(
P0[ · |Pλ,t ](ω)

)]
dt in L1(P). (15)

Proof As in the proof of Theorem 3.5 the left-hand side of (13) can be rewritten as
an ergodic average involving the skew product Sλ. Using Lemma 3.4 and Maker’s
version of the ergodic theorem (cf. Theorem 7.4 in Chap. 1 of [14]), it suffices to show
that for all i ∈ N,

1/(n + 1)

n∑

i=0

Fk ◦ Si
λ(a, ω)

n→∞−−−−→
1∫

0

E
[

H
(

P0[ · |P(i)
λ,t ](ω)

)]
dt in L1(P)

(16)

For i ∈ N fixed, Fi is piecewise constant in t, so there is an R ∈ N, intervals U1, . . . , UR

and measurable functions f1, . . . , fR on (�,F) such that Fi (t, ω) = ∑R
r=1 1Ur fr (ω).

By approximation, this can further be reduced to the case of indicator functions at
the place of the fr ’s. It remains to show the convergence for functions of the form
1U (t) 1A(ω) for an interval U ⊂ T and a set A ∈ F .

Let Fi (t, ω) = 1U (t) 1A(ω). We will show the convergence in L2(P). Using

∫

�

1A(θκi (t)(ω)1A(θκ j (t)ω) P(dω) = P
(
θ−1
κi (t)−κ j (t)

A ∩ A
)

,
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we see that

∥
∥
∥
∥

1

n + 1

n∑

i=0

F
(
τ i (t), θκi (t) ·

)
−

1∫

0

E[F] dt

∥
∥
∥
∥

2

L2(P)

= 1

(n + 1)2

n∑

i=0

1U (τ i (t))1U (τ j (t))P
(
θ−1
κi (t)−κ j (t)

A ∩ A
)

+ µ(U )2 P(A)2 (17)

− 2

(n + 1)2

n∑

i=0

⎡

⎣1U (τ i (t))
∫

�

1A(θκi (t)ω) P(dω)

⎤

⎦µ(U )P(A) (18)

The next step is to show that the first addend in line (17) may be replaced by

(
1

(n + 1)

n∑

i=0

1U (τ i (t))

)2

P(A)2 (19)

without affecting the asymptotic behavior of (17). We may bound

∣
∣
∣
∣

1

(n + 1)2

n∑

i, j=0

1U (τ i (t))1U (τ j (t))
(

P
(
θ−1
κi (t)−κ j (t)

A ∩ A
)

− P(A)2
) ∣∣
∣
∣

≤ 1

(n + 1)2

n∑

i, j=0

∣
∣
∣P
(
θ−1
κi (t)−κ j (t)

A ∩ A
)

− P(A)2
∣
∣
∣.

Fix ε > 0. Let ‖ · ‖ denote the maximum norm on Z
2. As a special case of the strong

0-1 law, P fulfills a 0-1 law on the tail field. By (2) there is an m ∈ N such that

∣
∣
∣P
(
θ−1

k A ∩ A
)

− P(A)2
∣
∣
∣ <

ε

2
for all k ∈ Z

2 with ‖k‖ > m.

Note that ‖κi (t) − κ j (t)‖ ≥ |i − j | for all t ∈ T. Since limn→∞ n−2
∣
∣
{
1 ≤ i, j ≤ n

∣
∣

|i − j | ≤ m} ∣∣ = 0 for all m ∈ N, we can find an n0 ∈ N such that

1

(n + 1)2 sup
t∈T

∣
∣
{
1 ≤ i, j ≤ n

∣
∣ ‖κi (t) − κ j (t)‖ ≤ m

} ∣
∣ <

ε

2
for all n ≥ n0.

This demonstrates that hat the difference created by the by replacing the first addend
in (17) by (19) converges to 0 uniformly with respect to t.

Since U is an interval, the function 1U is integrable in the sense of Riemann.
Applying a variant of Weyl’s theorem for Riemann integrable functions (cf. for
instance, Theorem 2.6 in Chap. 1 of [14]) implies that, for n to infinity, 1/(n+1)∑n

i=0 1U (τ i (t)) converges to µ(U ) uniformly in t. So, asymptotically, the sum of the
two addends in line (17) equals 2 µ(U )2 P(A)2.

123



Shannon–McMillan theorems for discrete random fields for surface-order large deviations 457

The expression in (18) can be simplified to −2/(n+1)
∑n

i=0 1U (τ i (t))µ(U )P(A)2.

Applying a variant of Weyl’s theorem for Riemann integrable functions again, this
expression converges to −2 µ(U )2 P(A)2, which concludes the proof. ��

4 A Shannon–McMillan theorem along general shapes

Let P be a stationary random field that satisfies the strong 0-1 law and the condition
(11). The goal of this section is a Shannon–McMillan theorem for a stochastic field
along the lattice approximations of the blowups of a curve c, and an explicit formula
for the limit hc(P), the specific entropy of P along c. This will be done in three
steps: for linear segments, for polygons and for curves. In Sect. 4.4, we will further
introduce lattice approximations that are contours in the sense of statistical mechanics
and sketch corresponding results for them.

Let c = (
c(1), c(2)

)
be a piecewise differentiable planar curve parametrized by t ∈

[0, T ]. Assume that the trace of c does not contain the origin and that it hits the y-axis
in t = 0. Let c′ denote the right derivative of c. The blowups of the curve c are given
by

Bηc : [0, ηT ) −→ R
2, Bηc(t) = η c(t/η) (η > 0). (20)

It will follow from the construction in Sect. 4.2 that is enough to consider curves that
are described by the graph of a function φ on a segment of one of the axes. Suppose
that φ is a function on the interval [x, x̃] of the x-axis. (The case of the y-axis can
be treated analogously.) More precisely, x = c(1)(0) and x̃ = c(1)(T ). The interval
[x, x̃] contains a finite number u of integers z, . . . , z + u, where u = [x − x̃] or
u = [x − x̃] − 1. In the same way, the blowups Bnc can be represented as graphs of
functions φn of intervals [xn, x̃n]. We obtain by (20), xn = Bnc(1)(0) = nx = nc(1)(0)

and x̃n = Bnc(1)(nT ) = nx̃ = nc(1)(T ). Again, the interval [xn, x̃n] contains a finite
number un of integers zn, zn + 1, . . . , zn + un, where

un = [n(̃x − x)] or un = [n(̃x − x)] − 1. (21)

In particular, the sequence (un)n∈N goes to infinity.

4.1 Line segments

The main result of this section is the convergence of the sequence of renormalized
information functions

1

|Ln(a)| I
(
PLn(a)

)
(ω) (22)

along the lattice approximation converges to the entropy hλ(P) of P along a line
with slope λ. If c is a line segment, the functions φn are of the form φn(x) = λx +
an (x ∈ [nc(1)(0), nc(1)(T )]) where λ = (c(2)(T ) − c(2)(0))/(c(1)(T ) − c(1)(0)) and
an = n(c(2)(0) − λc(1)(0)). Assume 0 ≤ λ ≤ 1. As explained at the beginning of
Sect. 3, the other cases can be reduced to this case. At first sight it seems we could
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just apply the results for the specific entropy along a line from the last section. But the
blowups of the line segments move in space, which has the following consequences:

(i) There is a sequence (an)n∈N instead of a constant a.

(ii) The sequence is real-valued, as opposed to the constant having values in T.

(iii) The positions of the lattice points in each step are more difficult to describe.
In the case of the line we simply looked at approximating points with x-values
between 0 and n. Now, x-values of the lattice points lie in the interval between
zn and zn + un .

The last problem forces us to apply, at each step n, an additional shift to ω which brings
the line segment close to the origin. These shifts do not affect the L1(P)-convergence
since the limit is shift invariant. The number of points in the nth step is given by
(un)n∈N, instead of simply n + 1 as in the last section, but this is irrelevant as long as
the sequence goes to infinity. The second problem requires another shift in each step
n. The first point is the most delicate. It is here that we need the convergence of the
ergodic averages in all t, rather than just almost all t.

Theorem 4.1 In L1(P) and uniformly in a ∈ R,

1

|Ln(a)| I(PLn(a))
n→∞−−−−→ hλ(P).

Proof We start with some technical preparations. Set a := a1. Using the notation for
[x, x̃] described above (21), define for n ∈ N, Ln(a) := Lλ,an (zn, . . . , zn + un). The
total number of sites in Ln(t) is un + 1. To transform (22) into some sort of ergodic
average we first condition on successively smaller parts of Ln(a). A new step begins
at i if and only if τ

zn+i−1
λ ({a}) ≥ 1 − λ. For all z, i ∈ Z, and a ∈ R,

Lλ,a(z + i) − Lλ,a(z) = Lλ,τ z
λ({a})(i). (23)

To prove this, first apply the second equation in Lemma 3.1(v) with a = {a} and
z = [a], and then apply the first equation with z̃ = i,

Lλ,a(z + i) = (z + i, [lλ,{a}(z + i)]) + (0, [a])
= (z + i, [lλ,{a}(z)] + [lλ,τ z

λ({a})(i)]) + (0, [a])
= (

z, [lλ,a(z)])+
(

i, [lλ,τ z
λ({a})(i)]

)
= Lλ,a(z) + Lλ,τ z

λ({a})(i).

We calculate the information in (22) by conditioning site by site along Ln(a). We
use ω(i) instead of ωi for easier reading. Shifting ω to the origin, applying (23) and
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using the functions defined in (9) yields

I(PLn(a))(ω) = −
un∑

i=0

log P
[
ω
(
Lλ,an (zn + i)

) ∣∣
∣ω
(

Lλ,an (zn + i − 1, . . . , zn)
]

= −
un∑

i=0

log P
[
ω(0, 0)

∣
∣
∣ω
(
Lλ,an (zn + i − 1, . . . , zn) − Lλ,an (zn + i)

)]

◦ θLλ,an (zn+i) (24)

= −
un∑

i=0

log P
[
ω(0, 0)

∣
∣
∣ω
(

L
λ,τ

zn+i
λ ({an})(−1, . . . ,−i)

)]

◦ θL
λ,τ

zn
λ

({an })(i) ◦ θLλ,an (zn)

= −
un∑

i=0

Fi

(

τ i
λ(τ

zn
λ ({an})), θL

λ,τ
zn
λ

({an })(i) ◦ θLλ,an (zn) ω

)

.

Applying Lemma 3.2, putting all together back in (24) and renormalizing yields

1

un + 1
I(PLn(a))(ω) = 1

un + 1

un∑

i=0

Fi ◦ Si
λ

(
τ

zn
λ ({an}), θLλ,an (zn) ω

)
. (25)

To prove the convergence, we have to distinguish the case when λ is rational from the
case when it is irrational, because this determines whether τλ is periodic or uniquely
ergodic. We proceed as in the proof of Theorem 3.5 and Theorem 3.6, respectively.

��

4.2 Polygons

The next step is to define the entropy along a polygon, that is a piecewise linear curve
π : [0, T ] → R

2. Assume further that π fulfills the other assumptions on c stated at
the beginning of this section. Let R be the number of edges of π. We can find slopes
λ(r) ∈ (−1, 1], constants t (r) ∈ R, and intervals I (r) of the x- or the y-axis such that

π ([0, T ]) =
R⋃

r=1

lλ(r),t (r) (I (r)), (26)

with lλ,t as defined in (7) as a function of the x- or of the y-axis. Proceeding the
same way for the blowups Bnπ (n ∈ N) as defined in (20), we choose t (r)

n ∈ R and
I (r)
n ⊂ R, such that

Bnπ ([0, T ]) =
R⋃

r=1

l
λ(r),t (r)

n
(I (r)

n ),
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The lattice approximations of the edges combine to a lattice approximation of Bnπ :

Lπ
n :=

R⋃

r=1

L
λ(r),t (r)

n
(27)

Theorem 4.2 The lattice approximations converge. More precisely,

1

length Lπ
n

I(PLπ
n
)

n→∞−−−−→ 1

length π

R∑

r=1

length π(r) hλ(r) (P) in L1(P). (28)

In some contexts it is more convenient to express the limit as an integral with respect
to t rather than as a sum. Let π ′(t) denote the right derivative of π. Then the limit can
be written as

1

length π

T∫

0

hπ ′(t)(P) dt. (29)

Proof of the theorem Use ω(i) for ωi and define the sets E (r)
n := L

λ(r),t (r)
n

(I (r)
n ) (r ∈

{1, . . . , R}). By conditioning,

I
(
PLπ

n

)
(ω) =

R∑

r=1

log P
[
ω(E (r)

n )

∣
∣
∣ω(E (r−1)

n , . . . , E (1)
n )
]
. (30)

Fix r ∈ {1, . . . , R}. Omit the index r when there is no risk of confusion (for example
λ := λ(r), tn := t (r)

n , En := E (r)
n ) and use the short form Ĕn := E (r−1)

n ∪ · · · ∪ E (1)
n

for the lattice approximations of the edges of the polygon which come prior to E (r)
n .

We will condition successively on the elements of E (r)
n . Denoting the integers in I (r)

n
by zn, zn + 1, . . . , zn + un as in (21),we obtain for the r th addend in (30)

log P
[
ω(En)

∣
∣
∣ω
(

Ĕn

)]

=
un∑

i=0

log P
[
ω
(
Lλ,tn (zn + i)

) ∣∣
∣ω
(

Lλ,tn (zn + i − 1, . . . , zn), Ĕn

)]
.

Shifting by vni (t) := Lλ,tn (zn + i) yields

un∑

i=0

log P
[
ω(0, 0)

∣
∣
∣ω
(

Lλ,tn (zn + i − 1, . . . , zn) − vni (t), Ĕn − vni (t)
)]

◦ θvni (t).
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By (23), this equals

un∑

i=0

log P
[
ω(0, 0)

∣
∣
∣ω
(

L
λ,τ

zn+i
λ ({tn})(−1, . . . ,−i), Ĕn − vni (t)

)]

◦ θL
λ,τ

zn
λ

({tn })(i) ◦ θLλ,tn (zn). (31)

This expression is similar to (24) except for the additional conditionings on the sites
Ĕn − vni (t). We will show that these conditions disappear asymptotically. The ar-
gument will be given in detail for the first summand; it is similar for the remaining
ones. Let α be the minimum angle between any neighboring edges of the polygon
π and let dn be the minimum distance between an edge of the nth blowup Bnπ

of the polygon and any of its nonneighboring edges. Also, let Hn be the hexagon
defined as follows: Hn is symmetric around E (r)

n , two sides are parallel to E (r)
n at

a distance dn/2. The other sides reach from the endpoint of the first two to the
endpoints of E (r)

n , and they intersect at an angle α. Observe that Ĕn ⊂ Z
2\Hn,

and therefore Ĕn − vni (t) ⊂ Z
2\ (Hn − vni (t)) . Define the σ -algebras Bi (t) :=

F(Lλ,τ i
λ({t})(−1, . . . ,−i)), B∞(t) := F(Lλ,τ i

λ({t})(−1,−2, . . . )) and B∗
i (t) :=

F(Lλ,τ i
λ({t})(−1, . . . ,−i)∪Z

2\(Hn −vni (t))). The sequence (Bi (t))i∈N is increasing

to B∞(t), and the sequence (B∗
i (t))i∈N is decreasing to B∗∞(t) := ⋂

i∈N
B∗

i (t). By
the strong 0-1 law, B∗∞(t) = B∞(t) mod P. By Lemma 2.3,

lim
i→∞

∥
∥
∥ log P

[
ω(0, 0)

∣
∣
∣ω
(

Lλ,τ i
λ(t)(−1, . . . ,−i), Ĕn − vni (t)

)]

− log P
[
ω(0, 0)

∣
∣
∣F
(

Lλ,τ i
λ({t})(−1, . . . ,−i)

)]
(ω)

∥
∥
∥L1(P)

= 0.

Proceeding with (31) as with (24) and using that, for all r ∈ {1, . . . , R}, length E (r)
n /

length Lπ
n asymptotically equals length π(r)/length π concludes the proof. ��

4.3 Curves

To use the results from the previous section, we need to relate the derivatives of the
curve with the slopes of lines. Let v ∈ S1 = {w ∈ R

2 | |w| = 1}, and α the angle
from the positive x-axis to the vector v. If |α| ≤ π/4 or |α| ≥ 3π/4 then describe the
line in the direction of v by a function of the x-axis; otherwise describe it as a function
of the y-axis. We assign any v ∈ S1 a specific entropy

hv(P) := hλ(v)(P), where λ(v) := min(|tg α|, |ct α|). (32)

Theorem 4.3 Let c : [0, T ] −→ R
2 be a piecewise continuously differentiable curve.

Assume the trace does not contain the origin. Let πn : [0, nT ] −→ R
2 (n ∈ N) be a
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sequence of polygons such that

1

length πn
sup

t∈[0,nT ]
∣
∣(B−1

n πn)′(t) − c′(t)
∣
∣

n→∞−−−−→ 0. (33)

Then, in L1(P),

1

length πn
I(PLπ

n
)

n→∞−−−−→ 1

length c

T∫

0

hc′(t)(P) dt.

Proof We have to show that

lim
n→∞

∥
∥
∥
∥

1

length πn
I(PLπ

n
) − 1

length c

T∫

0

hc′(t)(P) dt

∥
∥
∥
∥L1(P)

= 0. (34)

Without loss of generality we can assume that c has no self-intersections and that c
is parametrized by arc length. As can be seen by the construction of the entropy for
polygons,

∥
∥
∥

1

length πn
I(PLπ

n
) − hπn (P)

∥
∥
∥L1(P)

converges to 0. By the representation formula in Remark 29 and since π ′
n(t) =

((Bnπn)−1)′(t/n), for all t ∈ [0, nT ], we obtain

hπn (P) = 1

length πn

nT∫

0

hπ ′
n(r)(P) dr = n

length πn

T∫

0

h((Bnπn)−1)′(t)(P) dt,

and by (33) and Lemma 3.4, the integral converges to
∫ T

0 hc′(t) dt. Use ‖ · ‖ for the
euclidian norm in the plane. Using

1

n
length πn =

T∫

0

‖π ′
n(nt)‖ dt =

T∫

0

‖(B−1
n )′(t)‖ dt,

we obtain by (33)

lim
n→∞

1

n
length πn =

T∫

0

‖c′(t)‖ dt = length c.
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This implies that
∥
∥
∥hπn (P) − 1

length c

T∫

0

hc′(t)(P) dt
∥
∥
∥L1(P)

converges to 0 as well, and (34) follows by the triangle inequality. ��
Note that the limits do not depend on the sequence of polygons we used to

approximate the curve and that any approximation of the curve by lattice points can
be described by a lattice approximation of a suitable polygon. This justifies the

Definition 4.4 Let P and be as in Theorem 4.3. Then

hc(P) := 1

length c

T∫

0

hc′(t)(P) dt

is called specific entropy of P along c.

Note that the condition that the trace of c does not contain the origin is no real
restriction for the definition as the expression on the left-hand side only depends on
the derivative of c. This is intuitive, because we assumed that P is stationary. Note
the following property for the entropies of the blowups of a curve defined in (20). The
proof is a simple scaling argument.

Corollary 4.5 Let c : [0, T ] −→ R
2 be a piecewise continuously differentiable, and

let Bηc : [0, ηT ] −→ R
2 with Bηc(t) = η c( t

η
) (η > 0) be the family of its blowups.

Then hBηc(P) = hc(P) for all η > 0.

4.4 Contour approximation

In statistical mechanics, a contour is a set of sites corresponding unambiguously to
a chain of bonds. Note that the lattice approximation is not a contour in this sense.
The last site before a new step is catercornered from the first site of the step, so not
connected by a bond, and closing the gap is not uniquely defined. We define the contour
approximation by adding, at each new step, the site which is one unit below it. A new
step begins in i + 1 if and only if τ i

λ({a}) ≥ 1 − λ, and the site we add in this case is
Lλ,a(I ) − (0, 1). For z ∈ Z and u ∈ N,

L̂λ,a(z, . . . , z + u)

:= Lλ,a(z, . . . , z + u)∪
{

Lλ,a(i) − (0, 1)
∣
∣ 0 ≤ i ≤ u − 1 ∧ τ z+i

λ ({a}) ≥ 1 − λ
}

be the contour approximation of the line segment lλ,a(I ). Lemmas 3.1 and 3.4 translate
immediately to L̂. With little modifications we can prove contour versions of the limit
theorems derived earlier in this section. We will sketch the results here and refer to [1]
for details and proofs.
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For n ∈ N, define L̂n(a) := L̂λ,an (zn, . . . , zn + un), and for a ∈ R and z, z̃ ∈ Z

with z̃ ≥ z define

L̂�
λ,a( z̃, . . . , z) :=
{

L̂λ,a( z̃ − 1, . . . , z) ∪ (Lλ,a( z̃) − (0, 1)
)

if τ z̃−1
λ ({a}) ≥ 1 − λ,

L̂λ,a( z̃ − 1, . . . , z) otherwise.
(35)

The specific contour entropy along a line ĥλ(P) with slope λ is defined as

1

1 + λ

⎛

⎝

1∫

0

E
[

H
(

P0[· |F
(

L̂�
λ,t (−N)

)
](ω)

)]
dt

+
1∫

1−λ

E
[
H
(
P0[· |F

(
L̂λ,t (−N) ∪ {(0, 1)})](ω)

)]
dt

⎞

⎠ .

We can show a contour version of Theorem 4.1:

1

|L̂n(a)| I(PL̂n(a))
n→∞−−−−→ ĥλ(P) in L1(P) and uniformly in a ∈ R.

The formulations of contour versions of Theorems 4.2 and 4.3 are now obvious.

5 Gibbs measures and specific entropies

A collection (UV )V ⊂Zd finite of functions on � is called stationary summable interac-
tion potential if the following three conditions are fulfilled: (i) UV is measurable with
respect to FV for all V ⊂ Z

d . (ii) For all i ∈ N and all finite V ⊂ Z
d , UV +i = UV ◦θi .

(iii)
∑

V ⊂Zd finite: 0∈V ‖ UV ‖∞< ∞. Let ξ, η ∈ � be two configurations. The condi-
tional energy of ξ on V given the environment η on Z

d\V is defined as

EV (ξ |η) =
∑

A⊂Zd finite: A∩V �=∅
UA ((ξ, η)V ) ,

where (ξ, η)V is the element of � given by (ξ, η)V (i) := ξ(i), for i ∈ V, and
(ξ, η)V (i) := η(i) for i ∈ Z

d\V . P is called Gibbs measure with respect to U if
for any finite subset V of Z

d the conditional distribution of ωV under P with respect
to FZd\V is given by

P[ωV = ξV | FZd\V ](η) = 1

ZV (η)
e−EV (ξ |η), where ZV (η) :=

∫

�

e−EV (ξ |η) P(dξ)

is called partition function. We say that there is a phase transition if there is more than
one Gibbs measure with respect to the same interaction potential.
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Assume that ϒ is furnished with a total order ≤, and denote by − the minimal and
by + the maximal element in ϒ. Suppose that U is attractive with respect to the order
on ϒ, in the sense of (9.7) in [23]. Let P− and P+ denote the minimal and the maximal
Gibbs measure with respect to U, and let Pα = αP− + (1 − α)P+ (0 < α < 1) be
their mixtures. Both P− and P+ are ergodic and, as follows from [7], they fulfill the
strong 0-1 law and the global Markov property. Föllmer and Ort [9] define the specific
relative entropy based on hyperspaces by

s(P−, P+) = 1

d

d∑

l=1

∫

�

H
(

P−
0

[
·∣∣F (l)

]
(ω), P+

0

[
·∣∣F (l)

]
(ω)
)

P−(dω), (36)

where F (l) is the σ -algebra generated by those coordinates in {(i (1), . . . , i (d)) ∈
Z

d | i (l) = 0} which precede 0 in the lexicographical order on Z
d .

In the two-dimensional case, the conditions in (36) are simply along the coordinate
axes. Based on the work in Sect. 4, we can now extend this definition to a surface-order
entropy along any direction v ∈ S1. Furthermore, we can introduce an entropy along
curves.

Definition 5.1 Let v ∈ S1. Let c : [0, T ] �−→ R
2 be a piecewise differentiable curve

parametrized by arc length with right derivative c′.

hv(P−, P+) :=
1∫

0

∫

�

H
(
P−

0

[·∣∣Pλ(v),t
]
(ω), P+

0

[·∣∣Pλ(v),t
]
(ω)
)

P−(dω)dt

is called specific relative entropy of P− with respect to P+ in direction v.

hc(P−, P+) := 1

length c

T∫

0

hc′(t)(P−, P+) dt

is called specific relative entropy of P− with respect to P+ along c.

The order on ϒ induces an order on the set M1(ϒ) of probability measures on
ϒ : We say that µ is larger then ν if the density dµ

dν
is an increasing function with

respect to the order on ϒ, and in this case we write µ≥ ν. In particular, ν is absolutely
continuous with respect to µ. The following inverse triangle inequality for relative
entropies was shown in the proof of Theorem 4.2 in [9]. For the reader’s convenience
we state it in the following form.

Lemma 5.2 Letλ ≥ µ≥ ν,and assume thatµ is bounded below by a positive constant.
Then H(ν, λ) ≥ H(ν, µ) + H(µ, λ).
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6 Lower bound

Let P− and P+ be the minimal and maximal Gibbs measure defined in Sect. 5.
The following lower bound for the large deviations of the empirical field Rn(ω) :=∑

i∈Vn
δθi ω of P+ was proved by Föllmer and Ort [9]. Recall that Vn is the set of

all lattice sites in [−n, n]d , and that the boundary of a subset V of Z
d is defined as

∂V = {
i ∈ Z

d\V
∣
∣ dist(i, V ) = 1

}
.

Theorem 6.1 For any open A ∈ M1(�),

lim inf
n→∞

1

|∂Vn| log P+ [Rn ∈ A] ≥ − inf
α:Pα∈A

√
α s(P−, P+).

The aim of this section is to improve the lower bound by replacing the boxes by more
general shapes in the two-dimensional case. The corresponding Shannon–McMillan
theorems developed in Sect. 4 will be the key to the proof. For a closed curve c let
int c be the subset of R

2 surrounded by c. Define the sets

Cα :=
{

c
∣
∣ c : [0, T ] −→ R

2 closed piecewise C1-curve parametrized by arc (37)

length, without self-intersections, and with area int c = α
}

.

Theorem 6.2 For any open A ∈ M1(�),

lim inf
n→∞

1

| ∂Vn | log P+ [Rn ∈ A] ≥ − inf
α:Pα∈A

inf
c∈Cα

1

4

T∫

0

dt
√

1 + λ(c′(t))2
hc(P−, P+).

Remark 6.3 Replacing the class Cα by squares with area α this bound coincides with
the bound in Theorem 6.1: Let π be a square parametrized by arc length and with
area int π = α. Then the length of every edge is

√
α. For the two horizontal edges of

the square the slope λ (cf. (32)) is 0 with respect to the x-axis, and for the vertical
edges it is 0 with respect to the y-axis. Therefore, the integral equals 4

√
α. The entropy

hπ (P−, P+) equals s(P−, P+), since the σ -algebras P0,t coincide with F (2) for the
horizontal edges and with F (1) for the vertical edges.

Remark 6.4 In the case where the Markov property holds only with respect to the
contour boundary we can state a bound similar to the one in Theorem 6.2 by replacing
the lattice approximation by the contour approximation. The proof is essentially the
same as for Theorem 6.2 (cf. [1] for details).

The rest of this section is devoted to the proof of Theorem 6.2. We will need some
properties of the geometry of lattice approximations of polygons and their interplay
with the random field. To begin with, we restate explicitly the global Markov prop-
erty for random fields in the case when the conditioning is concentrated on a set of
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sites surrounded by a closed polygon π without self-intersections. We use the nota-
tion �(c) := int c ∩ Z

2 to indicate the set of lattice points surrounded by a closed
curve c. By the definition (27), ∂

(
Z

2\�(π)
) = Lπ , and the global Markov property

(cf. Definition (2.1)) with V = Z
2\�(π), we have that for any F(Z2\�(π))-

measurable nonnegative function �,

E
[
φ
∣
∣F�(π)

] = E
[
φ
∣
∣FLπ

]
. (38)

We will further need two lemmata that compute the asymptotic fractions of the lengths
of the blowups of a line segment, or a polygon, and the sizes of their lattice approxi-
mations.

Lemma 6.5 Let I be a real interval, l(x) = λx + a be a linear function with slope
λ, and Bk (k ∈ N) be the sequence of its blowups restricted to I. If Lk is the lattice
approximation of Bk then

lim
k→∞

| Lk |
length Bk

= 1√
1 + λ2

.

Proof We consider only the case when 0 ≤ λ ≤ 1, that is, when the lattice approxi-
mation is given by L(z) = (z, [l(z)]) (z ∈ I ∩ Z). Other cases only differ in terms of
notation. For any k ∈ N, |Lk | is either [length bk] or [length bk] + 1, where bk is the
projection of Bk to the x-axis. We can ignore the second case, since the additional point
does not matter for the limit. Observe that (length Bk)

2 = (length bk)
2+(λ length bk)

2.

Consequently, length bk = length Bk / (
√

1 + λ2), which proves the convergence.
��

Lemma 6.6 Let π be a polygon with edges πr (r = 1, . . . , R) and λr (r = 1, . . . , R)

their slopes as defined in (32). Let Bkπ (k ∈ N) be the blowups of π and Lkπ (k ∈ N)

their lattice approximations. Then

lim
k→∞

| Lkπ |
length Bkπ

=
R∑

r=1

1
√

1 + λ2
r

length πr

length π
.

Proof Using length Bkπr = k length πr , we obtain

| Lkπ |
length Bkπ

=
R∑

r=1

| Lkπ |
length Bkπr

length Bkπr

length Bkπ
=

R∑

r=1

| Lkπ |
length Bkπr

length πr

length π
.

By the previous lemma applied to the individual sides, the first factors converge to
1
/√

1 + λ2
r , which prove the statement of the lemma. ��

Proof of Theorem 6.2 Let be 0 < α ≤ 1, such that Pα ∈ A. Since A is open, we
can choose open neigborhoods A− and A+ of P− respectively P+ in M1(�) such
that αA− + (1 − α)A+ ⊆ A. Without loss of generality we may assume that A− and
A+ are in FVp for some p ∈ N. Define the set �α := {

π
∣
∣π closed polygon without
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self-intersections, area int π = α} . Let π ∈ �4α with 0 ∈ int π, and let (Bnπ)n∈N be
the sequence of blowups of π. For α = 1 take Cn := Vn . Otherwise, define

Cn := �(Bk(n)π) and Dn := Vn\�(Bl(n)π),

where k(n) and l(n) are chosen such that k(n) ≤ l(n), l(n) − k(n)
n→∞−−−−→ ∞,

lim
n→∞

| Cn |
| Vn | = α and lim

n→∞
| Dn |
|Vn | = 1 − α. (39)

To see that such sequences exist we show that k(n) = [√
α|Vn|/area int π

]
and

l(n) = [
k(n) + √

n
]

fulfill the conditions. Obviously, both the sequences and their
difference tend to infinity as n goes to infinity. Using area int (Bkπ) = k2area int π,

| �(Bkπ) |
area int Bkπ

k→∞−−−−→ 1 and
k(n)2

| Vn |
n→∞−−−−→ α

area int π
. (40)

We obtain for the first expression in (39)

lim
n→∞

| Cn |
| Vn | = lim

n→∞
area int (Bk(n)π)

| Vn | = lim
n→∞

k(n)2 area int π

| Vn | = α.

Similarly, we see for the second expression in (39)

lim
n→∞

| Dn |
| Vn | = 1 − lim

n→∞
| �(Bl(n)) |

| Vn | = 1 − lim
n→∞

l(n)2 area int π

| Vn | .

By definition of l(n), l(n)2 = k(n)2+[2k(n)
√

n]+n. The last two addends are of order
n and will go to 0 when divided by | Vn |. It remains to study k(n)2 area int π/| Vn |,
but we already know from the second statement in (40) that this converges to α.

Define

R−
n = 1

| Cn,p |
∑

i∈Cn,p

δθi ω and R+
n = 1

| Dn,p |
∑

i∈Dn,p

δθi ω,

where Cn,p := �(Bk(n)−pπ) and Dn,p := Vn−p\�(Bl(n)+pπ). Then {R−
n ∈ A−} ∈

FCn , {R+
n ∈ A+} ∈ FDn , for large enough n, {Rn ∈ A} ⊇ {R−

n ∈ A−} ∩ {R+
n ∈

A+} := �n . Define the measures

Qn = P−
Cn

⊗ P+
Z2\Cn

(n ∈ N).

Qn coincides with P− on FCn and with P+ on FDn , and makes these σ -fields
independent. Thus we obtain Qn[�n] = P−[R−

n ∈ A−] P+[R+
n ∈ A+], and by the

ergodic behaviour of P− and P+, the sequence Qn[�n] (n ∈ N) converges to 1.
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Let φn denote the density of Qn with respect to P+ on FCn∪Dn . Then for γ > 0, ε > 0,

and for large enough n,

P+[Rn ∈ A] ≥ P+[�n]
≥
∫

1�n∩{|∂Vn |−1 log φn≤γ+ε}φ−1
n d Qn

≥ exp(−(γ + ε) |∂Vn|) Qn

[
�n ∩

{
|∂Vn|−1 log φn ≤ γ + ε

}]
.

By the convergence of the Qn[�n], the lower bound lim infn→∞ |∂Vn|−1 log P+[Rn ∈
A] ≥ −γ follows if γ is chosen such that, for any ε > 0,

lim
n→∞ Qn

[
|∂Vn|−1 log φn ≤ γ + ε

]
= 1. (41)

We will show that (41) holds with

γ =
R∑

r=1

1
√

1 + λ2
r

length πr

8
hπ (P−, P+).

Since Qn = P+ on Dn, and the fact that both P− and P+ are Gibbs measures with
respect to the same potential we obtain

φn(ω) = P−[ωCn ]P+[ωDn ]
P+[ωCn∪Dn ]

= P−[ωCn ]
P−[ωCn | ωDn ]

.

Let Ln be the lattice approximation of Bnπ. By (38),

P−[ωCn | ωDn ] = P−[ωDn | ωCn ]
P−[ωDn ]
P−[ωCn ]

= P−[ωDn | ωLk(n)
] P−[ωDn ]

P−[ωCn ]
= P−[ωLk(n)

| ωDn ]
P−[ωLk(n)

]
P−[ωCn ]

,

and thus

φn(ω) = P−[ωLk(n)
]

P−[ωLk(n)
| ωDn ]

= P−[ωLk(n)
]

P+[ωLk(n)
| ωDn ]

. (42)

Going around the R sides of Lk(n), and conditioning site by site as in the proof of
Theorem 4.2, we obtain

1

| Vn | log φn(ω) = 1

| Vn |
R∑

r=1

�(r),
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where the �(r) corresponds to the r th side of the polygon. Similar to the calculation
between (30) to (31) we obtain

�(r) =
un∑

i=0

Zn,i,t ◦ θL
λ,τ

zn
λ

({tn })(i) ◦ θLλ,tn (zn),

where λ is the slope of the r th side of the polygon, tn and rn are as in Sect. 4.2, and
Zn,i,t = Xn,i,t − Yn,i,t , with

Xn,i,t = log P−
0

[

ω(0, 0)

∣
∣
∣ω

[

L̂�

λ,τ
zn+i
λ ({tn})(−1, . . . ,−i) ∪ An,i,t

]]

,

and Yn,i,t = log P+
0

[

ω(0, 0)

∣
∣
∣ω

[

L̂�

λ,τ
zn+i
λ ({tn})(−1, . . . ,−i) ∪ Bn,i,t

]]

.

To simplify notation we have omitted the index r. For the sets in the conditional
expectations we have An,i,t ⊆ Bn,i,t ⊆ Z

2\ (Hn − Lλ,tn (zn + i)
)
. An,i,t is obtained

by shifting a subset of Ln ⊆ Cn . Hn is constructed as in the paragraph above, but
using the minimum of the diameter dn and the distance l(n) − k(n) in place of dn .

To prove convergence, we study the X and Y -parts separately. Because of the way
the sets An,i,t are constructed, the behavior of Xn,i,t under Qn is the same as under
P−. But the proof of Theorem 4.2 shows that

un∑

i=0

Xn,i,t ◦ θL
λ,τ

zn
λ

({tn })(i) ◦ θLλ,tn (zn)

converges to −hπ (P−) in L1(P−). The convergence remains true when we replace
Xn,i,t by

X−
n,i,t := log P−

0

[

ω(0, 0)

∣
∣
∣ω
[

L
λ,τ

zn+i
λ ({tn})(−1, . . . ,−i)

]−]
,

where, for a subset L of Z
2, the element ω (L)− equals ω on L and assumes the

minimal state in ϒ outside of Hn − Lλ,tn (zn + i). To control the behavior of Yn,i,t

under Qn define Z−
n,i,t = X−

n,i,t − Yn,i,t . Use the law of large numbers for martingales

with bounded increments in its L2-form to replace

1

| Lk(n) |
un∑

i=0

Z−
n,i,t ◦ θL

λ,τ
zn
λ

({tn })(i) ◦ θLλ,tn (zn)

by

1

| Lk(n) |
un∑

i=0

E

[

Z−
n,i,t ◦ θL

λ,τ
zn
λ

({tn })(i) ◦ θLλ,tn (zn)

∣
∣An,i,t

]

,
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where An,i,t is the σ -field generated by the sites in Dn and those sites of Lk(n) which
precede i in the canonical ordering of Lk(n). These conditional expectations can be
written as the relative entropy H(ν, µ), with the random measures

µ(ω) := P−
0

[

· ∣∣ω
(

L
λ,t zn+i

λ ({tn})(−1, . . . ,−i)
)−]

and ν(ω) := P+
0

[
· ∣∣ω

(
L

λ,τ
zn+i
λ ({tn})(−1, . . . ,−i) ∪ Bn,i,t

)]
.

Now we want to replace µ by a measure η for which

(
| L

λ,τ
zn+i
λ ({tn})(−1, . . . ,−i) |

)−1
un∑

i=0

H(ν, η) ◦ θL
λ,τ

zn
λ

({tn })(i) ◦ θLλ,tn (zn) (43)

converges to hλ(P−, P+), in L1(P−), as n goes to infinity. Define ω(L)+ in analogy
to ω(L)−. Since for all ω,

P−
0

[
·
∣
∣
∣ω
(
Lλ,t (−1, . . . ,−i)

)+] i→∞−−−−→ P−
0

[
·
∣
∣
∣Pλ,t

]
,

we obtain (43) by taking

η(ω) := P−
0

[

·
∣
∣
∣ω
(

L
λ,τ

zn+i
λ ({tn})(−1, . . . ,−i)

)+]
.

By Lemma 5.2, H(ν(ω), µ(ω)) ≤ H(ν(ω), η(ω)). Summing over r = 1, . . . , R, and
passing from convergence in L1(P−) to stochastic convergence with respect to Qn

yields

lim
n→∞ Qn

[
| Lk(n) |−1φn > hπ (P−, P+) + ε

]
= 0

for any ε > 0. To derive (41) it remains to show that

lim
n→∞

| Lk(n) |
| ∂Vn | =

R∑

r=1

1
√

1 + λ2
r

length πr

8
. (44)

The fraction on the left-hand side can be written as a product:

| Lk(n) |
| ∂Vn | = | Lk(n) |

length Bk(n)π
· k(n) length π

| ∂Vn | .

We first study the asymptotics of the second factor: As we are only interested in
the limit behaviour, we can drop the brackets for the integer part in the definition of
k(n) and just use

√
α| Vn |/ area int π. The denominator equals 4 | Vn |. Reducing the

fraction yields 1/8. The limit of the first factor in (6) was computed in Lemma 6.6.
So, the second factor in (6) converges to length π/8. Combining all yields (44).
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472 J. Brettschneider

Now, we replace the polygon π by the polygon π̃ = B1/2π. Since length π̃r =
length πr/2, and since, by Corollary 4.5, hπ̃ (P−, P+) = hπ (P−, P+),

γ =
R∑

r=1

1
√

1 + λ2
r

length π̃r

4
hπ̃ (P−, P+).

Finally, by Lemma 3.4, the infimum of that function over all polygons π̃ ∈ �α equals
the infimum over all curves c ∈ Cα. ��
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