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Abstract We consider the random fragmentation process introduced by
Kolmogorov, where a particle having some mass is broken into pieces and the mass is
distributed among the pieces at random in such a way that the proportions of the mass
shared among different daughters are specified by some given probability distribution
(the dislocation law); this is repeated recursively for all pieces. More precisely, we
consider a version where the fragmentation stops when the mass of a fragment is below
some given threshold, and we study the associated random tree. Dean and Majumdar
found a phase transition for this process: the number of fragmentations is asymptoti-
cally normal for some dislocation laws but not for others, depending on the position
of roots of a certain characteristic equation. This parallels the behavior of discrete
analogues with various random trees that have been studied in computer science. We
give rigorous proofs of this phase transition, and add further details. The proof uses
the contraction method. We extend some previous results for recursive sequences of
random variables to families of random variables with a continuous parameter; we
believe that this extension has independent interest.
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400 S. Janson, R. Neininger

1 The problem and result

Consider the following fragmentation process, introduced by Kolmogorov [28], see
also Bertoin [3, Chapter 1] and the references in [3, Section 1.6]. Fix b ≥ 2 and the
law for a random vector V = (V1, . . . , Vb); this is commonly called the dislocation
law. We assume throughout the paper that 0 ≤ Vj ≤ 1, j = 1, . . . , b, and

b∑

j=1

Vj = 1, (1.1)

i.e., that (V1, . . . , Vb) belongs to the standard simplex. For simplicity we also assume
that each Vj < 1 a.s. We allow Vj = 0, but note that, a.s., 0 < Vj < 1 for at least
one j . (The case (1.1) is called conservative. The non-conservative case, not treated
here, is known to be quite different.)

Starting with an object of mass x ≥ 1, we break it into b pieces with masses
V1x, . . . , Vbx . Continue recursively with each piece of mass ≥1, using new (indepen-
dent) copies of the random vector (V1, . . . , Vb) each time. The process terminates a.s.
after a finite number of steps, leaving a finite set of fragments of masses <1.

As said above, this model has been studied by many authors, with or without our
stopping rule and often without assuming (1.1). The model can be embedded in contin-
uous time (this is immaterial for our purpose), see Bertoin [3, Chapter 1]; in particular,
[3, Section 1.4.4] uses the same stopping rule as we do (in a more general situation
than ours). Different stopping rules are treated by Gnedin and Yakubovich [19] and
Krapivsky et al. [29,30].

We let N (x) be the random number of fragmentation events, i.e., the number of
pieces of mass ≥1 that appear during the process; further, let Ne(x) be the final number
of fragments, i.e., the number of pieces of mass <1 that appear. Dean and Majumdar
[12] found (without giving a rigorous proof) that the asymptotic behavior of N (x) as
x → ∞ depends on the position of the roots of a certain characteristic equation; the
main purpose of this paper is to give a precise version of this in Theorem 1.3 below.
Some special cases have earlier been studied by other authors, see Sect. 7.

It is natural to consider the fragmentation process as a tree, with the root represent-
ing the original object, its children representing the pieces of the first fragmentation,
and so on. It is then convenient to let the fragmentation go on for ever, although we
ignore what happens to pieces smaller than 1. Let us mark each node with the mass
of the corresponding object.

We thus consider the infinite rooted b-ary tree Tb, whose nodes are labeled with the
strings J = j1 · · · jk with ji ∈ {1, . . . , b} and k ≥ 0. Let B∗ denote the set of all such
strings, and let (V (J )

1 , . . . , V (J )
b ), J ∈ B∗, be independent copies of V. Then node

J = j1 · · · jk gets the mass x
∏k

i=1 V ( j1··· ji−1)

ji
. Thus N (x) is the number of nodes

with mass ≥1, i.e.,

N (x) =
∑

J∈B∗
1{

x
∏k

i=1 V
( j1··· ji−1)
ji

≥1
}. (1.2)
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The size of random fragmentation trees 401

By the recursive construction of the fragmentation process, we have N (x) = 0 for
0 ≤ x < 1 and

N (x)
d= 1 +

b∑

j=1

N ( j)(Vj x), x ≥ 1, (1.3)

where N ( j)(·) are copies of the process N (·), independent of each other and of
(V1, . . . , Vb).

We define the fragmentation tree T (x) to be the subtree of T (∞) = Tb consisting
of all nodes with mass ≥1. Thus N (x) = |T (x)|, the number of nodes in T (x). More
precisely, using standard terminology for trees, we call these nodes internal nodes of
T (x), and we say that a node in T (∞) is an external node of T (x) if it has label <1
but its parent is an internal node of T (x).

Thus N (x) is the number of internal nodes, and Ne(x) is the number of external
nodes. Since each internal node has b internal or external children, we have, for x ≥ 1,
N (x) + Ne(x) = 1 + bN (x), or Ne(x) = (b − 1)N (x) + 1. Hence the results for
N (x) immediately yield similar results for Ne(x) and the total number of external and
internal nodes N (x)+ Ne(x) too.

In this paper we thus study the size of the fragmentation tree T (x). Of course, it is
interesting to study other properties too, such as height, path length, profile, …

Remark 1.1 It is obviously equivalent to instead start with mass 1, so node J =
j1 · · · jk gets the mass

∏k
i=1 V ( j1··· ji−1)

ji
, and then keep all nodes with mass ≥ ε = 1/x ,

now considering asymptotics as ε → 0. This formulation (used for example by Bertoin
[3, Section 1.4.4]) is sometimes more convenient, for example, it allows us to define
T (x) for all x ≥ 0 simultaneously, using the same V (J )

j ; this defines (T (x))x≥0 as
an increasing stochastic process of trees. Nevertheless, for our purposes we prefer
the formulation above, mainly because of the connection with the discrete models
discussed in Remark 9.3.

Remark 1.2 We assume for convenience that each object is split into the same number
b of parts. Our method applies also to some case of a random number of parts. Indeed,
if the number of parts is bounded, we can use the results below with b large enough,
setting the non-existing Vj := 0. It seems possible to extend the proofs below with
minor modifications to the cases when the number of parts b = ∞ or b is random and
unbounded (under suitable assumptions), but we have not pursued this and we leave
this extension to the reader.

Note that N (x) makes sense also for b = ∞, while Ne(x) = ∞ in this case.

Our main result is Theorem 1.3 below on the asymptotic distribution of N (x),
together with the corresponding estimates for mean and variance given in Theorem 3.1.

We define (with 0z := 0), at least for Re z ≥ 0,

φ(z) :=
b∑

j=1

E V z
j , (1.4)
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402 S. Janson, R. Neininger

and note that φ(z) is bounded and analytic in the open right half-plane {z : Re z > 0}.
More precisely, there exists a ∈ [−∞, 0) such that (1.4) converges for real z > a
but not for z < a; then φ(z) is analytic in {z : Re z > a}. In some cases, φ may be
extended to a meromorphic function in a larger domain. (For several examples of this,
see Sect. 7.)

Since we assume (1.1), clearly φ(1) = 1. Since further 0 ≤ Vj < 1 a.s., the
function φ(z) is decreasing for real z > 0; hence φ(z) > 1 when 0 < z < 1 and
φ(z) < 1 for 1 < z < ∞. Further, |φ(z)| ≤ ∑

j E |V z
j | = φ(Re z), so |φ(z)| < 1

when Re z > 1.
A crucial role is played by the solutions to the characteristic equation

φ(λ) = 1. (1.5)

By the comments above, λ = 1 is one root, and Re λ ≤ 1 for every root λ; furthermore,
there is no real root in (0, 1). Let, for any δ ∈ [−∞,∞) such that φ is analytic, or
at least meromorphic, in {z : Re z > δ}, M(δ) be the number of roots λ of (1.5) with
Re λ > δ.

We further define

α := −φ′(1) =
b∑

j=1

E(−Vj ln Vj ), (1.6)

the expected entropy of (V1, . . . , Vb).
We need a (weak) regularity condition on the distribution of (V1, . . . , Vb). We find

the following convenient, although it can be weakened to Condition B(δ) in Sect. 2 for
suitable δ. For examples where this regularity and Theorem 1.3 fail, see Example 8.1.

Condition A Each Vj has a distribution that is absolutely continuous on (0, 1),
although a point mass at 0 is allowed.

Note that there is no condition on the joint distribution. In one case, however,
we need also a condition including the joint distribution. (Note that both conditions
are satisfied if V has a density on the standard simplex, i.e., if (V1, . . . , Vb−1) has a
density.)

Condition A′ The support of the distribution of V on the standard simplex has an
interior point.

If Condition A holds, then, by Lemmas 2.2 and 2.1 below, the number M(δ) of
roots of φ(λ) = 1 in {λ : Re λ > δ} is finite for every δ > 0. We may thus order
the roots with Re λ > 0 as λ1, λ2, . . . , λM(0) with decreasing real parts: λ1 = 1 >
Re λ2 ≥ Re λ3 ≥ · · · ; we will assume this in the sequel. If λ1 = 1 is the only root
with Re λ > 0, we set λ2 = −∞ for convenience.

We let MC denote the space of probability measures on C, and let

MC
2 (γ ) :=

{
η ∈ MC :

∫
|z|2 dη(z) < ∞, and

∫
z dη(z) = γ

}
, γ ∈ C.
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The size of random fragmentation trees 403

We let T denote the map (assuming λ2 	= −∞)

T : MC → MC, η 
→ L
(

b∑

r=1

V λ2
r Z (r)

)
, (1.7)

where (V1, . . . , Vb), Z (1), . . . , Z (b) are independent andL(Z (r)) = η for r = 1, . . . , b.
Note that T maps MC

2 (γ ) into itself for each γ , since λ2 satisfies φ(λ2) = 1.
We state our main result. The constant α > 0 is defined in (1.6) above and β is

given explicitly in Theorem 3.1. The 	2 distance between distributions is defined in
Sect. 4.

Theorem 1.3 Suppose that Condition A holds. Then we have:

(i) If Re λ2 < 1/2 then E N (x) = α−1x + o(
√

x), Var N (x) ∼ βx with β > 0
and

N (x)− α−1x√
x

d→ N (0, β).

(ii) If Re λ2 = 1/2 and each root λi with Re λi = 1/2 is a simple root of
φ(λ) = 1, and further Condition A′ too holds, then E N (x) = α−1x + O(

√
x),

Var(N (x)) ∼ βx ln x with β > 0 and

N (x)− α−1x√
x ln x

d→ N (0, β).

(iii) If Re λ2 > 1/2, and λ2 and λ3 = λ2 are the only roots of (1.5) with this real
part, and these roots are simple, then E N (x) = α−1x + Re(γ xλ2) + O(xκ),
for some γ and κ with γ ∈ C \ {0} and 1/2 < κ < Re λ2, and

	2

(
N (x)− α−1x

xRe λ2
,Re

(
�ei Im λ2 ln x

))
= O

(
xκ−Re λ2

)
,

for some complex random variable �. Furthermore, L(�) is the unique fixed
point of T in MC

2 (γ ).

Remark 1.4 In case (iii), the normalized N (x) thus does not converge in distribution;
instead we have an asymptotic periodicity in log x of the distribution. This type of
asymptotic periodicity is common for properties of some types of random trees, see
for example Chern and Hwang [10], Chauvin and Pouyanne [8], Fill and Kapur [16],
Janson [22, Example 7.8, Remark 3.20] and Janson [24, Examples 4.4, 4.5].

The trichotomy in the theorem is very similar to the situation for multi-type branch-
ing processes and generalized Pólya urns, see [22], in particular Theorems 3.22–3.24
there; in that case, the λi are the eigenvalues of a certain matrix.
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404 S. Janson, R. Neininger

Remark 1.5 We can regard our process as a general (age-dependent) branching process
[21, Chapter 6], provided we make a logarithmic change of time as in Sect. 3. (This ap-
proach has been used in related problems by for example Gnedin and
Yakubovich [19].) Indeed, there are two versions. For internal nodes, the individu-
als in the branching process live for ever, and give birth at times − ln V1, . . . ,− ln Vb.
For external nodes, we have a splitting process where each individual when it dies
gives birth to new particles with life lengths − ln V1, . . . ,− ln Vb. For both versions,
we obtain a supercritical branching process with Malthusian parameter 1, but the iden-
tity (1.1) causes the asymptotics for moments and distributions to be quite different
from typical supercritical branching processes; the reason is that the intrinsic martin-
gale [3, Section 1.2.2] degenerates to a constant, unlike in the non-conservative case
(such as, e.g., in [2,4,19]).

Remark 1.6 Distributions that are fixed points of (1.7) can sometimes be found explic-
itly. For example, if λ2 in (1.7) is real, then the stable distributions of index 1/λ2 are
examples of fixed points of T . Note, however, that in our case, λ2 is never real. More-
over, the fixed points we are interested in have finite variance, and are thus quite
different from stable distributions. Other examples with explicit solutions are given
in, e.g., Gnedin and Yakubovich [19] (in this case, generalized Mittag–Leffler distri-
butions).

For the related Quicksort fixed point equation, Fill and Janson [15] found a com-
plete characterization of the set of fixed points; in that case, all fixed points are formed
by combining certain stable distributions with the unique fixed point with mean 0 and
finite variance.

Remark 1.7 Condition A′ is needed only in part (ii), and is needed only to exclude
the possibility that for each root λi of (1.5) with Re λi = 1/2,

b∑

j=1

V λi
j = 1 a.s. (1.8)

This is easily seen to be impossible if Condition A′ holds, and even otherwise it seems
highly unlikely for any particular example, but it seems possible to construct examples
satisfying Condition A where V is concentrated on a curve, say, such that (1.8) holds.

We will prove the statements on mean and variance, with further refinements, in
Sect. 3. To prove convergence in distribution, we will use a continuous time version
of the contraction method. We develop a general theorem, that we find to be of inde-
pendent interest, in Sect. 5. This theorem is applied to our problem in Sect. 6. Some
examples are given in Sects. 7 and 8.

Remark 1.8 As an alternative to using the random vector V to describe the fragmen-
tation process, one can use the point process

∑
j δVj on [0, 1]. Let η be the intensity

of this process; thus η is a measure on [0, 1]. In this formulation, φ is the Mellin
transform of the measure η; further µ and ν in Sect. 3 equal the measures η and its
size biased version sη(ds) after the change of variable s = e−x .
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The size of random fragmentation trees 405

2 Further preliminaries

We define (again with 0z := 0)

ψ(z, w) := Cov

⎛

⎝
b∑

j=1

V z
j ,

b∑

j=1

Vw
j

⎞

⎠ = E

⎛

⎝
b∑

j=1

V z
j

b∑

k=1

Vw
k

⎞

⎠− φ(z)φ(w). (2.1)

In particular, ψ(z, z̄) = E
∣∣∑b

j=1 V z
j − φ(z)

∣∣2 ≥ 0, with equality only if
∑b

j=1 V z
j =

φ(z) a.s.
For Re z,Rew ≥ 0, we have |V z

j |, |Vw
j | ≤ 1 and thus |ψ(z, w)| ≤ 2b2.

We say that V is lattice if there exists a number R > 1 such that every Vj ∈
{R−n}n≥0 ∪ {0} a.s.; otherwise V is non-lattice. Basic Fourier analysis applied to the
probability measure ν defined in (3.16) shows that V is non-lattice if and only if λ = 1
is the only root of (1.5) with Re λ = 1. (Otherwise, there is an infinite number of roots
with Re λ = 1.) We will assume this, and more, below.

We introduce a family of regularity conditions that are weaker than Condition A.

Condition B(δ) (Here δ is a real number with δ ≥ 0.)

lim sup
t→∞

|φ(δ + it)| < 1.

Lemma 2.1 If Condition B(δ) holds for some δ ≥ 0, then Condition B(δ′) holds for
every δ′ > δ as well; moreover

lim sup
Re z≥δ

Im z→∞
|φ(z)| < 1.

Proof Choose first ε > 0 such that lim supt→∞ |φ(δ + it)| < 1 − 2ε, and then A
such that |φ(δ + it)| ≤ 1 − 2ε if t ≥ A, and thus also if t ≤ −A. Recall further that
|φ(δ + it)| ≤ b for all t . Since φ(z) is analytic, and thus harmonic, in the half-plane
Hδ := {z : Re z > δ} and bounded and continuous in Hδ , φ is given by the Poisson
integral of its boundary values [18, Lemma 3.4]:

φ(x + iy) =
∞∫

−∞
Px−δ(y − t)φ(δ + it) dt, x > δ, (2.2)

where Px (y) = x/(π(x2 + y2)), the Poisson kernel for the right half-plane. Let
ω(x + iy) := ∫ A

−A Px−δ(y − t) dt , the harmonic measure of [δ − iA, δ + iA]; then
(2.2) implies

|φ(x + iy)| ≤
∞∫

−∞
Px−δ(y − t)|φ(δ + it)| dt ≤ bω(x + iy)+ 1 − 2ε. (2.3)
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406 S. Janson, R. Neininger

It is well-known, and easy to see, that the set B := {z ∈ Hδ : ω(z) > ε/b} is bounded;
in fact, it is the intersection of Hδ and a circular disc [18, p. 13]. Thus, A1 :=
sup{Im z : z ∈ B} < ∞, and if Re x ≥ δ and |y| > A1, then ω(z) ≤ ε/b and
(2.3) yields |φ(x + iy)| ≤ 1 − ε. �
Lemma 2.2 If Condition A holds, then Condition B(δ) holds for every δ ≥ 0.

This is given in [2, Lemma 2] and included here for completeness.

Proof We have E V it
j = E

(
eit ln Vj 1{Vj>0}

)
, the Fourier transform of the distribution

of ln Vj (ignoring any point mass at 0), so by Condition A and the Riemann–Lebesgue
lemma, E V it

j → 0 as t → ∞ for every j , and thus φ(it) → 0 as t → ∞. Hence,
Condition B(0) holds, and the result follows by Lemma 2.1. �
Lemma 2.3 If Condition B(δ) holds for some δ > 0, then there is only a finite number
of roots to φ(λ) = 1 with Re λ ≥ δ.

Proof By Lemma 2.1, all such roots satisfy | Im λ| ≤ C for some C < ∞. Further-
more, all roots satisfy Re λ ≤ 1, so if further Re λ ≥ δ, λ belongs to a compact
rectangle K in the open right half-plane. Since, φ(z)− 1 is analytic and non-constant
in this half-plane, it has only a finite number of roots in K . �

In particular, by the comments above, Condition B(δ) with δ ≤ 1 implies that V is
non-lattice.

3 Mean and variance

We let � denote the set of solutions to the characteristic equation (1.5), i.e.,

� := {λ : φ(λ) = 1}; (3.1)

we further define its subsets

�(s) := {z ∈ � : Re(z) = s}. (3.2)

In general, φ(λ) is defined only for Re λ ≥ 0, and we consider only such λ in (3.1).
However, in cases where φ extends to a meromorphic function in a larger domain (for
example, whenφ is rational), we may include such λ too in�; this makes no difference
in Theorem 3.1. (In Theorem 3.4, we include all roots in the complex plane.) We will
use �(s) only for s ≥ 0, where there is no ambiguity.

Let m(x) := E N (x) and σ 2(x) := Var N (x). We will show the following asympt-
otics.

Theorem 3.1 Assume that Condition B(δ) holds with 0 ≤ δ < 1, and letλ1, . . . , λM(δ)

be the elements of {λ ∈ � : Re λ > δ}, ordered so that λ1 = 1 > Re λ2 ≥ Re λ3 ≥
· · · . (If M(δ) = 1, let λ2 = −∞.) Then, as x → ∞:

(i) m(x) ∼ α−1x.

123



The size of random fragmentation trees 407

(ii) If further φ′(λi ) 	= 0 for i = 1, . . . ,M(δ), i.e., each λi is a simple root of
φ(λ) = 1, then, more precisely, for every δ′ > δ,

m(x) = α−1x +
M(δ)∑

i=2

1

−λiφ′(λi )
xλi + O

(
xδ

′)
. (3.3)

(iii) If δ < 1/2 and Re λ2 < 1/2 (including the case M(δ) = 1), then σ 2(x) ∼ βx,
with

β = α−1 1

2π

∞∫

−∞

ψ(1/2 + iu, 1/2 − iu)

|1/2 + iu|2|1 − φ(1/2 + iu)|2 du ∈ (0,∞). (3.4)

(iv) If δ < 1/2 = Re λ2, and each λi with Re λi = 1/2 is a simple root of φ(λ) = 1,
then σ 2(x) = βx ln x + o(x ln x), with

β =
∑

λ∈�(1/2)

1

α|λφ′(λ)|2ψ(λ, λ) ≥ 0. (3.5)

If, moreover, Condition A′ holds (or, more generally, for some λi ∈ �(1/2),
(1.8) does not hold), then β > 0.

(v) If Re λ2 > 1/2, and each λi with Re λi = Re λ2 is a simple root of φ(λ) = 1,
then

σ 2(x) =
∑

λi ,λk∈�(Re λ2)

1

λiλkφ′(λi )φ′(λk) (1 − φ(λi + λk))
ψ(λi , λk)x

λi +λk

+ o
(

x2 Re λ2
)
.

Remark 3.2 It follows from the proof that for (i) we do not need Condition B(δ); it is
enough that V is non-lattice.

Remark 3.3 The case when some φ′(λi ) = 0 is similar; now terms xλi ln x (and
possibly xλi lnd x , d ≥ 2) will appear in (3.3). We leave the details to the reader.

If φ is a rational function, then (3.3) can be improved to an exact formula. Further-
more, in case (iii) of Theorem 3.1 we then can give an alternative formula for β.

Theorem 3.4 Assume that φ is a rational function, and let λ1, . . . , λM be the roots
of φ(λ) = 1 in the complex plane, with λ1 = 1. Suppose further that all these roots
are simple.

(i) Then

m(x) =
M∑

i=1

1

−λiφ′(λi )
xλi − 1

φ(0)− 1
, x ≥ 1. (3.6)
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408 S. Janson, R. Neininger

(ii) Assume further that Re λi < 1/2 for i = 2, . . . ,M, and that Vj > 0 a.s. for
every j . Define, for notational convenience, λ0 := 0, a0 := −1/(b − 1) and
ai := −1/(λiφ

′(λi )) for i = 1, . . . ,M. Then σ 2(x) ∼ βx, with

β = α−1
∑

i,k 	=1

ai ak

1 − λi − λk

⎛

⎝
b∑

j,l=1

E V λi
j V λk

l (Vj ∧ Vl )
1−λi −λk − 2φ(1 − λk)+ 1

⎞

⎠

− 2α−2
M∑

i=2

ai

λi

⎛

⎝
b∑

j,l=1

E

(
V λi

j V 1−λi
l − Vl

)
1{Vl≤Vj } − φ(1 − λi )+ 1

⎞

⎠

− 2α−2a0

⎛

⎝
b∑

j,l=1

E Vl (ln Vj − ln Vl )1{Vl<Vj } − α

⎞

⎠

+α−3

⎛

⎝
b∑

j,l=1

E(Vj ∧ Vl )− 1

⎞

⎠− α−1.

The proof of these theorems will occupy the remainder of this section. We first
show that all moments of N (x) are finite.

Lemma 3.5 For every m ≥ 1 and x ≥ 0, E N (x)m < ∞. Furthermore,
sup0≤y≤x E N (y)m < ∞.

Proof For a string J = j1 · · · jk ∈ B∗ we denote by |J | = k the depth of the corre-
sponding node in Tb. Note that we have |{J ∈ B∗ : 0 ≤ |J | ≤ k}| ≤ bk+1. Hence,
if N (x) > bk+1 for some k ≥ 0 then by (1.2) there exists a J = j1 · · · jk ∈ B∗ with
x
∏k

i=1 V ( j1··· ji−1)

ji
≥ 1. Markov’s inequality implies that for all q ≥ 1

P(N (x) > bk+1) ≤ P

⎛

⎝
⋃

J∈B∗:|J |=k

{
k∏

i=1

V ( j1··· ji−1)

ji
≥ 1/x

}⎞

⎠

≤
∑

J∈B∗:|J |=k

P

(
k∏

i=1

V ( j1··· ji−1)

ji
≥ 1/x

)

≤
∑

J∈B∗:|J |=k

xq
E

k∏

i=1

(
V ( j1··· ji−1)

ji

)q

= xqφ(q)k .

Hence, for all y ≥ b we obtain with k = �logb y� − 1 and φ(q) ≤ 1 that

P(N (x) > y) ≤ xqφ(q)k ≤ xqφ(q)logb y−2 = xq

φ(q)2
ylogb φ(q). (3.7)

We have φ(q) → 0 as q → ∞ since Vj < 1 a.s. and by dominated convergence.
Hence, for all m ≥ 1 there exists a q > 0 with logb φ(q) < −m. The tail bound (3.7)
thus implies E N (x)m < ∞ for all m ≥ 1 and all x ≥ 0.

The final statement follows because 0 ≤ N (y) ≤ N (x) when 0 ≤ y ≤ x . �
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We find it convenient to switch from multiplicative to additive notion. We therefore
define

X j := − ln Vj ∈ (0,∞], j = 1, . . . , b,

N∗(t) := N (et ), −∞ ≤ t < ∞.

The definition (1.2) and the recursive equation (1.3) thus translate to

N∗(t) =
∑

J∈B∗
1{∑k

i=1 X
( j1··· ji−1)
ji

≤t
}, (3.8)

N∗(t)
d= 1 +

b∑

j=1

N ( j)∗ (t − X j ), t ≥ 0, (3.9)

where N ( j)∗ (·) are independent copies of the process N∗(·), and N∗(t) = 0 for −∞ ≤
t < 0. Further define

m∗(t) := E N∗(t) = m(et ),

σ 2∗ (t) := Var N∗(t) = σ 2(et ).

Thus m∗(t) = σ 2∗ (t) = 0 for t < 0. Taking expectations in (3.9) we find

m∗(t) = 1 + E

b∑

j=1

m∗(t − X j ), t ≥ 0. (3.10)

Let µ j be the distribution of X j on (0,∞); this is a measure of mass 1 − P(Vj = 0);
let further µ :=∑b

j=1 µ j . Then (3.10) can be written as

m∗(t) = 1 +
b∑

j=1

µ j ∗ m∗(t) = 1 + µ ∗ m∗(t), t ≥ 0, (3.11)

where µ ∗ f (t) = ∫∞
0 f (t − x) dµ(x). This is the standard renewal equation, except

that µ is not a probability measure.
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Similarly, conditioning on X1, . . . , Xb, for t ≥ 0,

E

(
(N∗(t)− m∗(t))2 | X1, . . . , Xb

)

= E

⎛

⎜⎝

⎡

⎣
b∑

j=1

N ( j)∗ (t − X j )+ 1 − m∗(t)

⎤

⎦
2 ∣∣∣ X1, . . . , Xb

⎞

⎟⎠

= Var

⎛

⎝
b∑

j=1

N ( j)∗ (t − X j )+ 1 − m∗(t)
∣∣∣ X1, . . . , Xb

⎞

⎠

+
⎛

⎝
b∑

j=1

m∗(t − X j )+ 1 − m∗(t)

⎞

⎠
2

=
b∑

j=1

σ 2∗ (t − X j )+
⎛

⎝
b∑

j=1

m∗(t − X j )− m∗(t)+ 1

⎞

⎠
2

.

Taking the expectation we obtain

σ 2∗ (t) = E

b∑

j=1

σ 2∗ (t − X j )+ h(t) = µ ∗ σ 2∗ (t)+ h(t), t ≥ 0, (3.12)

where, recalling (3.10),

h(t) := E

⎛

⎝
b∑

j=1

m∗(t − X j )− m∗(t)+ 1

⎞

⎠
2

= E

⎛

⎝
b∑

j=1

m∗(t − X j )− m∗(t)

⎞

⎠
2

+ 2

⎛

⎝E

b∑

j=1

m∗(t − X j )− m∗(t)

⎞

⎠+ 1

= E

⎛

⎝
b∑

j=1

m∗(t − X j )− m∗(t)

⎞

⎠
2

− 1. (3.13)

Both (3.11) and (3.12) are instances of the general renewal equation (3.14) below, and
from renewal theory we get the following result. We say that a function on [0,∞) is
locally bounded if it is bounded on every finite interval.

Lemma 3.6 Assume that V is non-lattice. Let f be a locally bounded measurable
function on [0,∞). Then the renewal equation

F = f + µ ∗ F (3.14)
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has a unique locally bounded solution F on [0,∞). We have the following asymptotical
results, as t → ∞,

(i) If f is a.e. continuous and
∫∞

0 f ∗(t) dt<∞, where f ∗(t):= supu≥t e−u | f (u)|,
then F(t) = (γ + o(1))et , with γ = α−1

∫∞
0 f (t)e−t dt .

(ii) If f (t) = et , then F(t) ∼ α−1tet .
(iii) If f (t) = eλt with Re λ = 1 and Im λ 	= 0, then F(t) = o

(
tet
)
.

(iv) If f (t) = eλt with Re λ > 1, then F(t) ∼ (1 − φ(λ))−1 eλt .

Proof For a function f on (0,∞) and z ∈ C, we define, when the integral exists, the
Laplace transform f̃ (z) := ∫∞

0 e−zt f (t) dt . Similarly, the Laplace transform of µ is

µ̃(z) :=
∞∫

0

e−t z dµ(t) =
b∑

j=1

E e−z X j =
b∑

j=1

E V z
j = φ(z), (3.15)

at least for Re z ≥ 0. (Using the original variable ln t , the Laplace transforms become
Mellin transforms, cf. Remark 1.8.)

Since µ is not a probability measure, we define another (“conjugate” or “tilted”)
measure ν on [0,∞) by

dν(u) = e−u dµ(u). (3.16)

Then ν is a probability measure because, by (1.1),

ν[0,∞) =
∞∫

0

e−u dµ(u) =
b∑

j=1

∞∫

0

e−u dµ j (u) =
b∑

j=1

E e−X j =
b∑

j=1

E Vj = 1.

Further, the mean of the distribution ν is

E ν=
∞∫

0

u dν(u)=
∞∫

0

ue−u dµ(u)=
b∑

j=1

E

(
X j e

−X j
)

=
b∑

j=1

E
(
(− ln Vj )Vj

) = α

(3.17)

and the Laplace transform is, for Re z ≥ 0, recalling (3.15),

ν̃(z) :=
∞∫

0

e−zu dν(u) =
∞∫

0

e−u−zu dµ(u) = µ̃(z + 1) = φ(z + 1). (3.18)
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Let g(t) := e−t f (t) and G(t) := e−t F(t). Then (3.14) translates to

G(t) = e−t F(t) = e−t f (t)+
∞∫

0

e−t F(t − u) dµ(u)

= g(t)+
∞∫

0

G(t − u)e−u dµ(u) = g(t)+ ν ∗ G(t).

In other words, G satisfies the renewal equation for the probability measure ν, so we
can use standard results from renewal theory.

First, it is well known that the equation G = g+ν∗G has a unique locally bounded
solution which is given by G =∑∞

n=0 ν
∗n ∗ g, and thus F =∑∞

n=0 µ
∗n ∗ f ; see, e.g.,

[1, Theorem IV.2.4] (which also applies directly to F). If we let Y1,Y2, . . . be i.i.d.
random variables with the distribution ν, and let Sn :=∑n

1 Yi , this can be written as

G(t) =
∞∑

n=0

E
(
g(t − Sn)1{Sn≤t}

) = E

∑

Sn≤t

g(t − Sn). (3.19)

Under the assumptions of (i), f ∗ is non-increasing and integrable; further, sup f ∗ ≤
sup[0,1] | f |+ f ∗(1) < ∞, so f ∗ is bounded too. Hence [1, Proposition IV.4.1(v),(iv)]
shows that f ∗ and g are directly Riemann integrable. The key renewal theorem [1,
Theorem IV.4.3] and (3.17) now yield G(t) → α−1

∫∞
0 g(u) du = γ , which proves

(i).
In case (ii) we have g(t) = 1, and thus G(t) ∼ α−1t by the elementary renewal

theorem [1, IV.(1.5) and Theorem 2.4].
For (iii), g(t) = e(λ−1)t = eibt for some real b 	= 0. The solution to (3.14) may

be written [1, Theorem IV.2.4] G(t) = ∫ t
0 g(t − u) dU (u), where U is the locally

bounded solution to U = 1 + ν ∗ U (i.e., U = G for case (ii)). Since, in analogy with
(3.17),

∫
u2 dν(u) = ∑ j E

(
(ln Vj )

2Vj
)
< ∞, the distribution ν has finite variance,

and the renewal theorem has the sharper version [14, Theorem XI.3.1]

U (t) = α−1t + c + R(t),

where c is a certain constant (
∫

u2 dν(u)/2α2) and R(t) → 0 as t → ∞. Hence, using
integration by parts for one term,

G(t) =
t∫

0

eib(t−u)α−1 du + ceibt +
t∫

0

eib(t−u) d R(u)

= O(1)+ R(t)− R(0)eibt + ib

t∫

0

eib(t−u)R(u) du = o(t).
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For (iv), we have by (3.19) with g(t) = e(λ−1)t , using dominated convergence and
(3.18),

e−λt F(t) = e(1−λ)t G(t) =
∞∑

n=0

E

(
e(1−λ)t+(λ−1)(t−Sn)1{t≤Sn}

)

→
∞∑

n=0

E

(
e−(λ−1)Sn

)
=

∞∑

n=0

E

(
e−(λ−1)Y1

)n =
∞∑

n=0

ν̃(λ− 1)n

=
∞∑

n=0

φ(λ)n = (1 − φ(λ))−1 .

�

Proof of Theorem 3.1 We first apply Lemma 3.6 (i) to (3.11), with f (t) = 1 for t ≥ 0,
and obtain γ = α−1 and m∗(t) ∼ α−1et , which proves Theorem 3.1 (i).

To obtain more refined asymptotics, we use Laplace transforms. Let H(t) := 1{t≥0}
(the Heaviside function), and note that H̃(z) = ∫∞

0 e−t z dt = 1/z, Re z > 0. Since
the Laplace transform converts convolutions to products, the renewal equation (3.11)
yields m̃∗(z) = H̃(z)+ µ̃(z)m̃∗(z), and thus

m̃∗(z) = H̃(z)

1 − µ̃(z)
= 1

z(1 − φ(z))
, (3.20)

for z such that the transforms exist. By the estimate m∗(t) ∼ α−1et above, m∗(t) =
O(et ) and thus m̃∗(z) exists for Re z > 1. Consequently, (3.20) holds for Re z > 1,
and can be used to extend m̃∗(z) to a meromorphic function for Re z > 0.

We want to invert the Laplace transform in (3.20). This is simple if φ is rational,
yielding (3.6). (Note that φ(0) = E |{ j : Vj > 0}| > 1.) In general, there are dif-
ficulties to doing this directly, because m̃∗(z) is not integrable along a vertical line
Re z = s; it decreases too slowly as | Im z| → ∞. We therefore regularize. Let ε > 0,
and let Hε := H ∗ ε−11[0,ε]; thus

Hε(t) =

⎧
⎪⎨

⎪⎩

0, t < 0,

1 − t/ε, 0 ≤ t < ε,

1, t ≥ ε.

Let m∗ε = ∑∞
n=0 µ

∗n ∗ Hε be the locally bounded solution to m∗ε = Hε + µ ∗ m∗ε.
Note that Hε(t) ≤ H(t) ≤ Hε(t + ε), and thus

m∗ε(t) ≤ m∗(t) ≤ m∗ε(t + ε). (3.21)
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We have

H̃ε(z) = H̃(z)ε−1

ε∫

0

e−zt dt = 1 − e−εz

εz2 , Re z > 0,

and we find, arguing as for (3.20) above,

m̃∗ε(z) = H̃ε(z)

1 − µ̃(z)
= 1 − e−εz

εz2(1 − φ(z))
,

first for Re z > 1, and then for Re z > 0, extending m̃∗ε to a meromorphic function
in this domain. This function decreases (using Condition B(δ) and Lemma 2.1) as
| Im z|−2 on vertical lines Re z = s ≥ δ, and is thus integrable there. Hence, the
Laplace inversion formula (a Fourier inversion) shows that for any s > 1 and t ≥ 0,

m∗ε(t) = 1

2π i

s+i∞∫

s−i∞
etz m̃∗ε(z) dz. (3.22)

We may, increasing δ a little if necessary, assume that φ(z) = 1 has no roots with
Re z = δ; in cases (iii), (iv) and (v) we may similarly assume that each λ ∈ � with
Re λ > δ has φ′(λ) 	= 0. It is then easy to show, using Condition B(δ) and Lemma 2.1,
that we may shift the line of integration in (3.22) to Re z = δ and obtain, for 0 < ε ≤ 1,

m∗ε(t) = 1

2π i

δ+i∞∫

δ−i∞
et z̃m∗ε(z) dz +

M(δ)∑

i=1

Resz=λi

(
et z̃m∗ε(z)

)

= O

⎛

⎝etδ

δ+i∞∫

δ−i∞
min

(
1

|z| ,
ε

|z|2
)

|dz|
⎞

⎠+
M(δ)∑

i=1

etλi

−λiφ′(λi )

1 − e−ελi

ελi

=
M(δ)∑

i=1

etλi

−λiφ′(λi )
(1 + O(ε))+ O

(
etδ
(

1 + ln
1

ε

))
.

Now choosing ε := e−t we obtain

m∗ε(t) =
M(δ)∑

i=1

etλi

−λiφ′(λi )
+ O(1)+ O

(
etδ(1 + t)

)
, t ≥ 0.
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Replacing t by t + ε, we obtain the same estimate for m∗ε(t + ε), and thus (3.21)
yields

m∗(t) =
M(δ)∑

i=1

etλi

−λiφ′(λi )
+ O

(
etδ′
)
, t ≥ 0, (3.23)

which yields Theorem 3.1 (ii). (Recall that −λ1φ
′(λ1) = −φ′(1) = α.)

For the estimates of the variance, we use Lemma 3.6 and (3.12). It is easily seen
(by dominated convergence) that h in (3.13) is a.e. continuous. Choose δ′ > δ with
δ < δ′ < Re λM(δ); in case (iii) with M(δ) = 1, let further δ′ < 1/2.

Note that then (3.23) trivially holds for t < 0 too. Hence,

b∑

j=1

m∗(t − X j )− m∗(t) =
M(δ)∑

i=1

∑b
j=1 e(t−X j )λi − etλi

−λiφ′(λi )
+ O

(
etδ′
)

=
M(δ)∑

i=2

etλi

−λiφ′(λi )

⎛

⎝
b∑

j=1

V λi
j − 1

⎞

⎠+ O
(

etδ′
)
,

where we use the fact that λ1 = 1 and thus
∑b

j=1 V λ1
j − 1 = ∑b

j=1 Vj − 1 = 0.
Consequently, by (3.13) and (2.1), letting σ2 := Re λ2 > δ′ if M(δ) ≥ 2, and σ2 := δ′
if M(δ) = 1,

h(t) =
M(δ)∑

i=2

M(δ)∑

k=2

e(λi +λk )t

λiλkφ′(λi )φ′(λk)
ψ(λi , λk)+ O

(
et (δ′+σ2)

)
. (3.24)

For Theorem 3.1 (iii), (3.24) yields h(t) = O
(
e2σ2t

)
with σ2 < 1/2, and Lemma 3.6

(i) applies to (3.12), yielding σ 2∗ (t) ∼ γ et . We postpone the calculation of β = γ ,
verifying (3.4), to Lemma 3.7.

For Theorem 3.1 (iv) and (v), we treat the terms in (3.24) separately, using lin-
earity; for the error term we also use monotonicity and comparison with the case
f (t) = et (δ′+σ2). In order to solve (3.12), we thus consider (3.14), with f (t) replaced
by the individual terms in (3.24), and apply Lemma 3.6, letting t := ln x . For (iv), i.e.,
Re λ2 = 1/2, a term in (3.24) with Re λk = Re λi = 1/2 and λk = λi , and thus λi +
λk = 1, yields by Lemma 3.6 (ii) a contribution (αλiλkφ

′(λi )φ
′(λk))

−1ψ(λi , λk)tet =
α−1|λiφ

′(λi )|−2ψ(λi , λi )tet . The contributions of all other terms in (3.24) are o(tet ),
by Lemma 3.6 (iii) (the other cases with Re λk = Re λi = 1/2) and Lemma 3.6 (iii)
(the remaining cases).

Similarly, for (v), the leading terms come from the cases Re λk = Re λi = Re λ2
and Lemma 3.6 (iv).

Furthermore, by (3.5), β = 0 in (iv) only if for every λi ∈ �(1/2), we have
ψ(λi , λ̄i ) = E |∑ j V λi

j − φ(λi )|2 = 0, and thus, since φ(λi ) = 1, (1.8) holds. �
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Lemma 3.7 Under the assumptions of Theorem 3.1(iii), with h(t) as in (3.13),

∞∫

0

h(t)e−t dt = 1

2π

∞∫

−∞

ψ(1/2 + iu, 1/2 − iu)

|1/2 + iu|2|1 − φ(1/2 + iu)|2 du > 0. (3.25)

Proof Write f (t) := (m∗(t)− α−1et
)

e−t/2, −∞ < t < ∞. Thus, by (3.23), f (t) =
O
(
e−(1/2−σ2)t

)
for t ≥ 0 and f (t) = −α−1et/2 = O

(
e−|t |/2) for t < 0. In partic-

ular, f ∈ L2(−∞,∞). Furthermore, the (two-sided) Laplace transform f̃ (z) :=∫∞
−∞ f (t)e−t z dt is analytic for −(1/2 − σ2) < Re z < 1/2.

Define further f1(t) := f (t)et/2 = m∗(t)− α−1et and f2(t) := f1(t)1{t≥0}. Then
f2(t) = O

(
eσ2t
)
, and thus the Laplace transform f̃2(z) is analytic for Re z > σ2. For

Re z > 1 we have, by (3.20),

f̃2(z) =
∞∫

0

e−t z
(

m∗(t)− α−1et
)

dt = m̃∗(z)− α−1(z − 1)−1

= 1

z(1 − φ(z)
− 1

α(z − 1)
;

by analytic continuation, this formula holds for Re z > σ2. Consequently, for σ2 <

Re z < 1,

f̃1(z) = f̃2(z)+
0∫

−∞
e−t z(−α−1et ) dt = f̃2(z)− α−1(1 − z)−1 = 1

z(1 − φ(z)
.

Since f̃ (z) = f̃1(z + 1/2), we find the Fourier transform

f̂ (u) :=
∞∫

0

e−iut f (t) dt = f̃ (iu) = f̃1(
1
2 + iu) = 1

( 1
2 + iu

) (
1 − φ

( 1
2 + iu

)) .

(3.26)

Next, since
∑

j e−X j =∑ j V j = 1,

b∑

j=1

m∗(t − X j )− m∗(t) =
b∑

j=1

f1(t − X j )− f1(t)+ α−1
b∑

j=1

et−X j − α−1et

=
b∑

j=1

f1(t − X j )− f1(t),
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so by (3.13), and defining �(w, y) := ∫∞
−∞ f (t − w) f (t − y) dt ,

∞∫

0

h(t)e−t dt + 1 =
∞∫

0

(h(t)+ 1) e−t dt =E

∞∫

−∞

⎛

⎝
b∑

j=1

f1(t − X j )− f1(t)

⎞

⎠
2

e−t dt

= E

∞∫

−∞

∣∣∣
b∑

j=1

e−X j /2 f (t − X j )− f (t)
∣∣∣
2

dt

= E

b∑

j,k=1

e−X j /2−Xk/2�(X j , Xk)

−2 E

b∑

j=1

e−X j /2�(X j , 0)+�(0, 0).

By Parseval’s relation and f = f ,

�(w, y) = 1

2π

∞∫

−∞
e−iuw f̂ (u)e−iuy f̂ (u) du = 1

2π

∞∫

−∞
| f̂ (u)|2eiu(y−w) du.

Hence,

∞∫

0

h(t)e−t dt + 1 = E
1

2π

∞∫

−∞
| f̂ (u)|2

⎛

⎝
b∑

j,k=1

e−X j /2−Xk/2+iu(Xk−X j )

−
b∑

j=1

e−X j /2+iu X j −
b∑

k=1

e−Xk/2−iu Xk + 1

⎞

⎠ du

= E
1

2π

∞∫

−∞
| f̂ (u)|2 E

∣∣∣
b∑

j=1

V 1/2−iu
j − 1

∣∣∣
2

du

= E
1

2π

∞∫

−∞
| f̂ (u)|2

(
ψ(1/2 + iu, 1/2 − iu)

+|φ(1/2 + iu)− 1|2
)

du.

Using (3.26),

E
1

2π

∞∫

−∞
| f̂ (u)|2|φ(1/2 + iu)− 1|2 du =

∞∫

−∞

du

|1/2 + iu|2 =
∞∫

−∞

du
1
4 + u2

= 2π,

and (3.25) follows by (3.26).
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Since ψ(z, z̄) ≥ 0, and by dominated convergence is continuous for Re z ≥ 0,
it follows from (3.4) that β = 0 only if for every z with Re z = 1/2, ψ(z, z̄) =
E |∑ j V z

j − φ(z)|2 = 0, and thus

b∑

j=1

V 1/2+iu
j = φ(1/2 + iu) (3.27)

a.s., for every real u. Considering first rational u, we see that a.s. (3.27) holds for all
real u.

However, for any realization (V1, . . . , Vb) and ε > 0, the Kronecker–Weyl the-
orem shows that (1, . . . , 1) is a cluster point of (exp(iu log V1), . . . , exp(iu log Vb))

as u → ∞ (even with u ∈ N); thus it is possible to find arbitrarily large u with
Re V iu

j ≥ (1− ε) and thus Re V 1/2+iu
j ≥ (1− ε)V 1/2

j for j = 1, . . . , b. Hence, (3.27)

implies that lim supu→∞ |φ( 1
2 + iu)| ≥ φ(1/2) ≥ 1. This contradicts Condition B(δ)

and Lemma 2.1. Hence β > 0. �

Proof of Theorem 3.4 (i): As remarked above, (3.6) follows by inverting the Laplace
transform in (3.20), using a partial fraction expansion. (ii): Note first that φ(z) → 0 as
z → +∞ (by dominated convergence); hence, φ being rational and thus continuous
at ∞, φ(∞) = 0 and φ(z) → 0 as |z| → ∞. Consequently, Condition B(δ) holds for
every δ. We thus see that the conditions of Theorem 3.1 (iii) are satisfied, and from
the proof above we see that, with h given by (3.13),

β = α−1

∞∫

0

h(t)e−t dt = α−1

∞∫

1

h(ln x)x−2 dx .

We have, by (3.6), m(x) =∑M
i=0 ai xλi 1{x≥1} and thus

m∗(ln x − X j ) = m(xe−X j ) = m(xVj ) =
M∑

i=0

ai (xVj )
λi 1{x≥V −1

j }.

Hence, letting V0 := 1, ε0 = −1 and ε j = 1 for j ≥ 1, and recalling (1.1),

H(x) :=
b∑

j=1

m∗(ln x − X j )− m∗(ln x) =
M∑

i=0

ai xλi

⎛

⎝
b∑

j=1

V λi
j 1{x≥V −1

j } − 1{x≥1}

⎞

⎠

=
∑

i 	=1

ai xλi

b∑

j=0

V λi
j ε j 1{x≥V −1

j } − a1x
b∑

j=1

Vj 1{1≤x<V −1
j }.
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By (3.13), this leads to

∞∫

1

h(ln x)x−2 dx + 1 =
∞∫

1

E H(x)2x−2 dx = E

∞∫

1

H(x)2x−2 dx

= E

∑

i,k 	=1

ai ak

b∑

j,l=0

ε jεl V
λi
j V λk

l

∞∫

V −1
j ∨V −1

l

xλi +λk−2 dx

−2 E

∑

i 	=1

a1ai

b∑

j=0

b∑

l=1

ε j V λi
j Vl

V −1
l∫

V −1
j

xλi −1 dx 1{V −1
j ≤V −1

l }

+ E a2
1

b∑

j,l=1

Vj Vl

V −1
j ∧V −1

l∫

1

dx

and the result follows by straightforward calculations, noting that a1 = α−1. �

4 Zolotarev metric and minimal Ls metric

In this section we collect properties of the minimal Ls metric and the Zolotarev metric
that are used subsequently.

We denote by Md the space of probability measures on R
d . The minimal Ls metric

	s , s > 0, is defined on the subspace Md
s ⊂ Md of probability measures with finite

absolute moment of order s by

	s(µ, ν) := inf
{
‖X − Y‖s∧1

s : X
d= µ, Y

d= ν
}
, µ, ν ∈ Md

s ,

where ‖X‖s := (E |X |s)1/s denotes the Ls norm of X . The infimum is taken over all
random vectors of X , Y on a joint probability space with the given marginal distribu-
tions µ and ν. (In other words, over all couplings (X,Y ) of µ and ν.) We will also use
the notation 	s(X,Y ) := 	s(L(X),L(Y )).

For s ≥ 1 and γ ∈ R
d , we denote by Md

s (γ ) ⊂ Md
s the subspace of probability

measures with expectation γ . The pairs (Md
s , 	s), s > 0, and (Md

s (γ ), 	s), s ≥ 1,
are complete metric spaces and convergence in 	s is equivalent to weak convergence
plus convergence of the absolute moments of order s.

Random vectors (X,Y ) with X
d= µ, Y

d= ν, and 	s(µ, ν) = ‖X − Y‖s∧1
s are

called optimal couplings of (µ, ν). Such optimal couplings exist for all µ, ν ∈ Md
s .

These properties can be found in Dall’Aglio [11], Major [32], Bickel and Freedman
[5], and Rachev [34]. Similar properties hold for probability measures on C

d (because
C

d ∼= R
2d ), where we use corresponding notations.
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420 S. Janson, R. Neininger

The Zolotarev metric ζs , s > 0 is defined by

ζs(X,Y ) := ζ(L(X), L(Y )) := sup
f ∈Fs

| E( f (X)− f (Y ))|, (4.1)

where s = m + α with 0 < α ≤ 1, m = �s� − 1 ≥ 0 is an integer, and

Fs := { f ∈ Cm(Rd ,R) : ‖ f (m)(x)− f (m)(y)‖ ≤ ‖x − y‖α},

where Cm(Rd ,R) denotes the space of m times continuously differentiable functions
f on R

d and f (m) their mth derivative.
The expression ζs(X,Y ) is finite if X and Y have finite absolute moments of order

s and all mixed moments of orders 1, . . . ,m of X and Y coincide.
The metric ζs is an ideal metric of order s, i.e., we have for Z independent of (X,Y )

and any d × d square matrix A

ζs(X + Z , Y + Z) ≤ ζs(X,Y ), ζs(AX, AY ) ≤ ‖A‖s
op ζs(X,Y ),

where ‖A‖op := sup‖u‖=1 ‖Au‖ denotes the operator norm of the matrix. Conver-
gence in ζs implies weak convergence. For general reference and properties of ζs we
refer to Zolotarev [38,39] and Rachev [34].

5 General contraction theorems in continuous time

In this section we extend a general contraction theorem for recursive sequences (Yn)n≥0
of d-dimensional vectors as developed in Neininger and Rüschendorf [33] to families
(Yt )t≥0 of d-dimensional vectors with continuous parameter t ∈ [0,∞). (For future
applications, and since the proof is the same except for some minor notational dif-
ferences, we state the result for random vectors. The reader may concentrate on the
one-dimensional case, which is the only case needed in the rest of the paper.) We
assume that we have

Yt
d=

K∑

r=1

Ar (t)Y
(r)

T (t)r
+ bt , t ≥ τ0, (5.1)

where K is a positive integer, τ0 ≥ 0, and T (t) = (T (t)1 , . . . , T (t)K ) is a vector

of random indices T (t)r ∈ [0, t], the Ar (t) are random d × d matrices for r =
1, . . . , K and bt is a random d-dimensional vector; further, (Y (1)t )t≥0, . . . , (Y

(K )
t )t≥0

and (A1(t), . . . , AK (t), bt , T (t))t≥0 are mutually independent families of random vari-
ables, and for each t ≥ 0, Yt and Y (r)t are identically distributed for all r = 1, . . . , K .

We assume that all Yt as well as Ar (t), bt and T (t) are defined on some probability
space (�,F , µ), and that they are measurable functions of (t, ω). (This is a techni-
cality to ensure that the sum in (5.1) is well-defined. Note, however, that the joint
distribution of Yt for different t is irrelevant.)
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We introduce the normalized random vectors

Xt := C−1/2
t (Yt − Mt ), t ≥ 0, (5.2)

where Mt ∈ R
d and Ct is a symmetric, positive definite square matrix. We assume

that Mt and Ct are measurable functions of t ; further restrictions on Mt and Ct will
be given in Convention C. The recurrence (5.1) implies a recurrence for Xt ,

Xt
d=

K∑

r=1

A(t)r X (r)
T (t)r

+ b(t), t ≥ τ0, (5.3)

with independence relations as in (5.1) and

A(t)r = C−1/2
t Ar (t)C

1/2

T (t)r
, b(t) = C−1/2

t

(
bt − Mt +

K∑

r=1

(
Ar (t)MT (t)r

))
. (5.4)

As for the case with integer indexed vectors we establish a transfer theorem of the
following form: Appropriate convergence of the coefficients A(t)r → A∗

r , b(t) → b∗
implies weak convergence of the quantities Xt to a limit X . The distribution L(X)
of X is a fixed point of the limiting equation obtained from (5.3) by letting formally
t → ∞:

X
d=

K∑

r=1

A∗
r X (r) + b∗, (5.5)

where (A∗
1, . . . , A∗

K , b∗), X (1), . . . , X (K ) are independent and X (r)
d= X for r =

1, . . . , K . To formalize this we introduce the map T on the space Md of probability
measures on R

d by

T : Md → Md , η 
→ L
(

K∑

r=1

A∗
r Z (r) + b∗

)
, (5.6)

where (A∗
1, . . . , A∗

K , b∗), Z (1), . . . , Z (K ) are independent and L(Z (r)) = η for r =
1, . . . , K . Then X is a solution of (5.5) if and only if L(X) is a fixed point of T .

We make use of Zolotarev’s metric ζs with 0 < s ≤ 3. To ensure finiteness of the
metric subsequently we make the following assumptions about the scaling imposed
in (5.2):

Convention C For 1 < s ≤ 3 we assume that Mt = E Yt . For 2 < s ≤ 3 we assume
that Cov(Yt ) is positive definite for all t ≥ τ1 with a τ1 ≥ τ0 and that Ct = Idd for
0 ≤ t < τ1 and Ct = Cov(Yt ) for t ≥ τ1.

This convention implies that Xt is centered for 1 < s ≤ 3 and has Idd as its
covariance matrix for 2 < s ≤ 3 and t ≥ τ1. (For 0 < s ≤ 1, Convention C is void.)
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Theorem 5.1 Let 0 < s ≤ 3 and let (Yt )t≥0 be a process of random vectors
satisfying (5.1) such that ‖Yt‖s < ∞ for every t . Denote by Xt the rescaled quanti-
ties in (5.2), assuming Convention C. Assume that ‖A(t)r ‖s < ∞, ‖b(t)‖s < ∞ and
sup0≤u≤t ‖Xu‖s < ∞ for every t ≥ 0, and

(
A(t)1 , . . . , A(t)K , b(t)

)
	s−→ (

A∗
1, . . . , A∗

K , b∗) , (5.7)

E

K∑

r=1

‖A∗
r ‖s

op < 1, (5.8)

E

[
1{

T (t)r ≤τ
}
∥∥∥A(t)r

∥∥∥
s

op

]
→ 0 (5.9)

for every τ > 0 and r = 1, . . . , K . Then Xt converges in distribution to a limit X,
and

ζs(Xt , X) → 0, t → ∞, (5.10)

where L(X) is the unique fixed point of T given in (5.6) subject to ‖X‖s < ∞ and

{
E X = 0 for 1 < s ≤ 2,

E X = 0, Cov(X) = Idd for 2 < s ≤ 3.
(5.11)

Proof This proof is a continuous extension of the proof of Theorem 4.1 in Neininger
and Rüschendorf [33] for the discrete time case. The existence and uniqueness of the
fixed point of T subject to (5.11) is obtained as follows: For 1 < s ≤ 3 Eq. (5.3)
implies E b(t) = 0 for all t > 0, thus by (5.7) we obtain E b∗ = 0. For 2 < s ≤ 3
Eq. (5.3) implies that for all t ≥ τ1

Idd = Cov(Xt )

= E

[
b(t)

(
b(t)
)tr
]

+ E

⎡

⎣
K∑

r=1

(
1{T (t)r <τ1} A(t)r C̃

T (t)r

(
A(t)r

)tr + 1{T (t)r ≥τ1} A(t)r

(
A(t)r

)tr
)⎤

⎦ ,

where btr denotes the transpose of a vector or matrix and C̃t := Cov(Xt ); recall that
C̃t = Id when t ≥ τ1.

By (5.7), (5.9) and Hölder’s inequality this implies

E
[
b∗(b∗)tr

]+ E

[
K∑

r=1

A∗
r (A

∗
r )

tr

]
= Idd .

Now, Corollary 3.4 in [33] implies existence and uniqueness of the fixed-point.
Since

E

K∑

r=1

‖A(t)r ‖s
op → E

K∑

r=1

‖A∗
r ‖s

op = ξ < 1 (5.12)
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there exist ξ+ ∈ (ξ, 1) and τ2 > τ1 such that for all t ≥ τ2 we have

E

K∑

r=1

‖A(t)r ‖s
op ≤ ξ+ < 1. (5.13)

Now, we introduce the quantity

Qt :=
K∑

r=1

A(t)r

(
1{

T (t)r <τ2

}X (r)
T (t)r

+ 1{
T (t)r ≥τ2

}X (r)
)

+ b(t), t ≥ τ1, (5.14)

where (A(t)1 , . . . , A(t)K , b(t), T (t)), X (1), . . . , X (K ), (X (1)t ), . . . , (X (K )t ) are indepen-

dent with X (r) ∼ X and X (r)t ∼ Xt for r = 1, . . . , K and t ≥ 0. Comparing
with (5.3) we obtain that Qt is centered for 1 < s ≤ 3 and has the covariance matrix
Idd for 2 < s ≤ 3 and t ≥ τ1. Hence, ζs distances between Xt , Qt and X are finite
for all t ≥ τ1. The triangle inequality implies

�(t) := ζs(Xt , X) ≤ ζs(Xt , Qt )+ ζs(Qt , X). (5.15)

As in the proof for the discrete case we obtain ζs(Qt , X) → 0 as t → 0, where we
use that sup0≤t≤τ2

‖Xt‖s < ∞.
The first summand of (5.15) requires a continuous analog of the estimate in the

discrete case. Using the properties of the ζs metric, we obtain, for t ≥ τ1,

ζs(Xt , Qt ) ≤ E

K∑

r=1

1{
T (t)r ≥τ2

}
∥∥∥A(t)r

∥∥∥
s

op
�
(

T (t)r

)
, (5.16)

and, with (5.15), and rt := ζs(Qt , X) it follows

�(t) ≤ E

K∑

r=1

1{
T (t)r ≥τ2

}
∥∥∥A(t)r

∥∥∥
s

op
�
(

T (t)r

)
+ rt . (5.17)

Now, we obtain �(t) → 0 in two steps, first showing that (�(t))t≥0 is bounded and
then, using the bound, that �(t) → 0.

For the first step we introduce

�∗(t) := sup
τ2≤u≤t

�(u). (5.18)

We have �∗(t) < ∞ for all t ≥ τ2, since, for τ2 ≤ u ≤ t , we have ζs(Xu, X) ≤
Cs(‖X‖s

s + ‖Xu‖s
s) ≤ Cs(‖X‖s

s + supτ2≤u≤t ‖Xu‖s
s) < ∞ with a constant Cs > 0,
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using [38, Lemma 2]. By definition, �∗ is monotonically increasing. With R :=
supt≥τ2

rt < ∞ we obtain for τ2 ≤ u ≤ t , from (5.17), (5.18) and (5.13),

�(u) ≤ E

K∑

r=1

1{
T (u)r ≥τ2

}
∥∥∥A(u)r

∥∥∥
s

op
�∗(u)+ R

≤ ξ+�∗(t)+ R.

Hence, we obtain �∗(t) ≤ ξ+�∗(t)+ R, thus �∗(t) ≤ R/(1 − ξ+). This implies

�∗(∞) := sup
t≥τ2

�(t) ≤ R

1 − ξ+
< ∞. (5.19)

For the second step we denote L := lim supt→∞�(t). For every ε > 0 there exists a
τ3 > τ2 such that we have �(t) ≤ L + ε for all t ≥ τ3. Thus, from (5.17) we obtain

�(t) ≤ E

K∑

r=1

1{
τ2≤T (t)r <τ3

}
∥∥∥A(t)r

∥∥∥
s

op
�∗(∞)+E

K∑

r=1

1{
T (t)r ≥τ3

}
∥∥∥A(t)r

∥∥∥
s

op
(L + ε)+ rt

and letting t → ∞ we obtain by (5.9) and (5.12)

L ≤ ξ(L + ε).

If L > 0, this is a contradiction for 0 < ε < L(1 − ξ)/ξ . Hence, we have L = 0. This
proves (5.10). Finally, recall that convergence in ζs implies weak convergence. �

As a corollary we formulate a univariate central limit theorem that corresponds to
Neininger and Rüschendorf [33, Corollary 5.2] for the discrete time case. For this we
assume that there are expansions, as t → ∞,

E Yt = f (t)+ o(g1/2(t)), Var(Yt ) = g(t)+ o(g(t)) (5.20)

with functions f : [0,∞) → R, g : [0,∞) → [0,∞), with

sup
u≤t

| f (u)| < ∞ for every t > 0, lim
t→∞ g(t) = ∞, sup

u≤t
g(u) = O(g(t)). (5.21)

Thus, for some constant C ≥ 1, g(u) ≤ Cg(t) when 0 ≤ u ≤ t .
Then the following central limit law holds:

Corollary 5.2 Let 2 < s ≤ 3 and let Yt , t ≥ 0, be given s-integrable, univariate
random variables satisfying (5.1) with Ar (t) = 1 for all r = 1, . . . , K and t ≥ 0.
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Assume that supu≤t E |Yu |s < ∞ for every t , and that the mean and variance of Yt

satisfy (5.20) with (5.21). If, as t → ∞,

⎛

⎜⎜⎝

√√√√g
(

T (t)1

)

g(t)
, . . . ,

√√√√g
(

T (t)K

)

g(t)

⎞

⎟⎟⎠
	s−→ (A∗

1, . . . , A∗
K ), (5.22)

1

g1/2(t)

(
bt − f (t)+

K∑

r=1

f
(

T (t)r

))
	s−→ 0, (5.23)

and furthermore

K∑

r=1

(A∗
r )

2 = 1 a.s., P

(
K⋃

r=1

{A∗
r = 1}

)
< 1, (5.24)

then

Yt − f (t)

g1/2(t)
d→ N (0, 1). (5.25)

Proof We begin by replacing g(t) by max(g(t), 1); by (5.21), this does not affect g(t)
for large t , and it is easy to see that (5.20), (5.21), (5.22), (5.23) still hold. We may
thus assume that g(t) ≥ 1 for every t .

Denote Mt := E Yt and σ 2
t := Var(Yt ). By (5.20), σ 2

t /g(t) → 1. (All unspecified
limits are as t → ∞.) Choose τ1 ≥ τ0 such that 1

4 g(t) ≤ σ 2
t ≤ 4g(t) for t ≥ τ1. Let, as

in Convention C, Ct := 1 for t < τ1 and Ct := σ 2
t for t ≥ τ1, and write σ̃t := C1/2

t and
ε(t) := σ̃t/g(t)1/2 − 1 = (Ct/g(t))1/2 − 1. For t ≥ τ1, ε(t) = (Var Yt/g(t))1/2 − 1,
so by (5.20),

ε(t) → 0 as t → ∞. (5.26)

Further, Ct/g(t) = 1/g(t) ≤ 1 for t < τ1, while Ct/g(t) = σ 2
t /g(t) ≤ 4 for t ≥ τ1.

Hence |ε(t)| ≤ 1 for all t . With (5.4) and Ar (t) = 1 we have, for t ≥ τ1,

A(t)r =
σ̃

T (t)r

σt
=
(

1 + ε
(

T (t)r

))
g
(

T (t)r

)1/2

σt
, (5.27)

b(t) = σ−1
t

(
bt − Mt +

K∑

r=1

M
T (t)r

)
. (5.28)
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Since g(T (t)r ) ≤ Cg(t) by (5.21), we have, for t ≥ τ1,

∥∥∥∥∥∥∥
A(t)r −

g
(

T (t)r

)1/2

σt

∥∥∥∥∥∥∥
s

=

∥∥∥∥∥∥∥
ε
(

T (t)r

) g
(

T (t)r

)1/2

σt

∥∥∥∥∥∥∥
s

≤ sup
u≤t

∣∣∣∣ε(u)
g(u)1/2

σt

∣∣∣∣ . (5.29)

For any δ > 0, there exists, by (5.26), τ(δ) ≥ τ1 such that |ε(t)| ≤ δ when t ≥ τ(δ).
Thus, if τ(δ) ≤ u ≤ t , then

∣∣∣∣ε(u)
g(u)1/2

σt

∣∣∣∣ ≤ δ
Cg(t)1/2

σt
≤ 2Cδ.

On the other hand, if u ≤ τ(δ), then

∣∣∣∣ε(u)
g(u)1/2

σt

∣∣∣∣ ≤
Cg(τ (δ))1/2

σt
→ 0

as t → ∞. Hence, supu≤t |ε(u)g(u)1/2/σt | ≤ 2Cδ for sufficiently large t . Since δ > 0
is arbitrary, it follows that the right hand side of (5.29) tends to 0 as t → ∞, and thus
(5.29) yields

∥∥∥∥∥∥∥
A(t)r −

g
(

T (t)r

)1/2

σt

∥∥∥∥∥∥∥
s

→ 0. (5.30)

Since g(t)1/2/σt → 1, (5.22) yields g(T (t)r )1/2/σt
	s−→ A∗

r , which combined with

(5.30) yields A(t)r
	s−→ A∗

r , jointly for r = 1, . . . , k.
Next, for any ε > 0, there exists by (5.20) τε ≥ τ1 such that |Mt − f (t)| ≤ εg(t)1/2

if t ≥ τε. Consequently, if T (t)r ≥ τε, then

|M
T (t)r

− f
(

T (t)r

)
| ≤ εg

(
T (t)r

)1/2 ≤ Cεg(t)1/2.

Since supu≤τε |Mu | and supu≤τε | f (u)| are finite, the same estimate holds for T (t)r < τε

too, provided t is large. Consequently, |M
T (t)r

− f (T (t)r )|/g(t)1/2 ≤ Cε if t is large

enough. It follows that ‖M
T (t)r

− f (T (t)r )‖s/g(t)1/2 → 0 as t → ∞, so by (5.28),

(5.23) and (5.20), b(t)
	s−→ 0.

We apply Theorem 5.1 with 2 < s ≤ 3; we have shown that (5.7) holds with b∗ = 0.
The two assumptions in (5.24) and s > 2 ensure that we have E

∑K
r=1 |A∗

r |s < 1.
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Finally, by (5.30), for every τ and r ,

∥∥∥∥1{
T (t)r ≤τ

}A(t)r

∥∥∥∥
s

≤

∥∥∥∥∥∥∥
1{

T (t)r ≤τ
}

g
(

T (t)r

)1/2

σt

∥∥∥∥∥∥∥
s

+

∥∥∥∥∥∥∥
A(t)r −

g
(

T (t)r

)1/2

σt

∥∥∥∥∥∥∥
s

≤ Cg(τ )1/2

σt
+ o(1) → 0.

Now, Theorem 5.1 implies (Yt − Mt )/σt
d→ X , where L(X) is characterized by

‖X‖s < ∞, E X = 0, Var(X) = 1, and

X
d=

K∑

r=1

A∗
r X (r), (5.31)

with assumptions as in (5.5). Since
∑K

r=1(A
∗
r )

2 = 1 this is solved by L(X) = N (0, 1).
Consequently,

Yt − Mt

σt

d→ N (0, 1),

which, in view of (5.20), implies the assertion. �
The following theorem covers cases where the previous central limit theorem of

Corollary 5.2 fails due to the appearance of periodic behavior. For this we assume that
there is an expansion of the mean, as t → ∞,

E Yt = f (t)+ Re
(
γ tλ
)+ o(tσ ), (5.32)

with a function f : [0,∞) → R, γ ∈ C \ {0}, and λ ∈ C with σ := Re(λ) > 0. We
denote

A(t)r :=
(

T (t)r

t

)λ
, r = 1, . . . , K , (5.33)

b(t) := 1

tσ

(
bt − f (t)+

K∑

r=1

f
(

T (t)r

))
. (5.34)

Note that A(t)r in general is complex, while b(t) is real.

Theorem 5.3 Let Yt , t ≥ 0, be given square-integrable, univariate random variables
satisfying (5.1) with Ar (t) = 1 for all r = 1, . . . , K and t ≥ 0. Assume that
supu≤t E |Yu |2 < ∞ for every t > 0 and that the mean of Yt satisfies (5.32) with
λ = σ + iτ and σ > 0, and some locally bounded function f (t). If, as t → ∞,

(A(t)1 , . . . , A(t)K )
	2−→ (A∗

1, . . . , A∗
K ) and ‖b(t)‖2 → 0, (5.35)
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and furthermore

E

K∑

r=1

|A∗
r |2 < 1, (5.36)

then, as t → ∞,

	2

(
Yt − f (t)

tσ
,Re

(
Xeiτ ln t

))
→ 0, (5.37)

where L(X) is the unique fixed point in MC
2 (γ ) of

T : MC → MC, η 
→ L
(

K∑

r=1

A∗
r Z (r)

)
, (5.38)

where (A∗
1, . . . , A∗

K ), Z (1), . . . , Z (K ) are independent and L(Z (r)) = η for r =
1, . . . , K .

Proof We extend an approach based on the contraction method from Fill and Kapur
[16]. We may assume that τ0 ≥ 1.

First, for technical convenience we show that we further may assume Yt = 0 and
f (t) = 0 for 0 ≤ t ≤ 1. Let (Y (r)∗t )t , r = 1, . . . , K , be another set of copies
of (Yt )t , independent of each other and of everything else. We may replace Y (r)t in
(5.1) by Y (r)t 1{t≥1} + Y (r)∗t 1{t<1}, which has the same distribution and independence

properties. Hence Y (r)t 1{t≥1} satisfies (5.1) (for t ≥ τ0 ≥ 1) with bt replaced by

b̃t := bt +∑r Y (r)∗
T (t)r

1{T (t)r <1}. This replaces b(t) by b̃(t) with

∣∣∣b̃(t) − b(t)
∣∣∣ ≤ t−σ

∑

r

∣∣∣Y (r)∗
T (t)r

∣∣∣ 1{T (t)r <1}

so ‖b̃(t) − b(t)‖2 = O(t−σ ) and (5.35) still holds. We may thus consider Y (r)t 1{t≥1}
instead, and thus we may assume that Y (r)t = 0 when t < 1. Similarly, we may assume
that f (t) = 0 for t < 1, changing b(t) by O(t−σ ).

With Xt := (Yt − f (t))/tσ for t > 0 and X0 := 0 we obtain

Xt
d=

K∑

r=1

(
T (t)r

t

)σ
X (r)

T (t)r
+ b(t), t ≥ τ0, (5.39)

with b(t) as given in (5.34).
Next we prove that the restriction of T defined in (5.38) to MC

2 (γ ) maps into
MC

2 (γ ) and is Lipschitz in 	2 with Lipschitz constant bounded by(
E
∑K

r=1 |A∗
r |2
)1/2

< 1.
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Note that (5.36) implies ‖A∗
r ‖2 < ∞ for all r = 1, . . . , K . This implies that T (η)

has a finite second moment for all η ∈ MC
2 . Next we claim that

∑K
r=1 E A∗

r = 1. This
implies that T (η) has mean γ for all η ∈ MC

2 (γ ). To prove
∑K

r=1 E A∗
r = 1, note that

(5.32) implies E Xt = Re(γ t iτ )+ o(1) as t → ∞. On the other hand, the right hand
side of (5.39) has mean, using E b(t) → 0,

K∑

r=1

E

[(
T (t)r

t

)σ
Re

(
γ
(

T (t)r

)iτ
)]

+ o(1) = Re

⎛

⎜⎝γ
K∑

r=1

E

(
T (t)r

)λ

tσ

⎞

⎟⎠+ o(1)

= Re

⎛

⎝γ t iτ
K∑

r=1

E

(
T (t)r

t

)λ⎞

⎠+ o(1)

= Re

(
γ t iτ

K∑

r=1

E A∗
r

)
+ o(1),

where we also used that E(T (t)r /t)λ → E A∗
r , see (5.35). Hence, together we obtain,

as t → ∞,

Re(γ t iτ )+ o(1) = Re

(
γ t iτ

K∑

r=1

E A∗
r

)
+ o(1). (5.40)

Thus, γ 	= 0 yields
∑K

r=1 E A∗
r = 1. For the bound on the Lipschitz constant in 	2 of T

restricted to MC
2 see Rösler and Rüschendorf [36, Lemma 1] and Fill and Kapur [16]:

Forµ, ν ∈ MC
2 choose (Z (1),W (1)), . . . , (Z (K ),W (K )) as identically distributed vec-

tors of optimal couplings of µ and ν and such that (Z (1),W (1)), . . . , (Z (K ),W (K )),
(A∗

1, . . . , A∗
K ) are independent. Then we have

	2
2(T (µ), T (ν))

= 	2
2

(
K∑

r=1

A∗
r Z (r),

K∑

r=1

A∗
r W (r)

)

≤ E

∣∣∣∣∣

K∑

r=1

A∗
r

(
Z (r) − W (r)

)∣∣∣∣∣

2

= E

⎛

⎝
K∑

r=1

|A∗
r |2|Z (r) − W (r)|2 +

∑

r 	=s

A∗
r

(
Z (r) − W (r)

)
A∗

s

(
Z (s) − W (s)

)
⎞

⎠
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= E

K∑

r=1

|A∗
r |2	2

2(µ, ν)+ 0

=
K∑

r=1

E |A∗
r |2	2

2(µ, ν).

Altogether we obtain that T has a unique fixed point L(X) in MC
2 (γ ).

The fixed point property of L(X) implies

1

tσ
Re
(
tλX

) d= 1

tσ
Re

(
K∑

r=1

tλA∗
r X (r)

)
. (5.41)

where (A∗
1, . . . , A∗

K ), X (1), . . . , X (b) are independent and L(X (r)) = L(X) for r =
1, . . . , K . We may assume, e.g., by taking optimal couplings, that ‖A(t)r − A∗

r ‖2 → 0
as t → ∞. We choose X (r)t as optimal couplings to Re(t iτ X (r)) (with the right dis-
tribution, i.e., the distribution of Xt ) for t ≥ 0 and r = 1, . . . , K . Clearly, we may
assume that, as required, X (r)t , r = 1, . . . , K , are independent of each other and of
(T (t), bt )t .

We denote, for t > 0,

�(t) := 	2

(
Yt − f (t)

tσ
,Re

(
Xeiτ ln t

))
= 	2

(
Xt ,

1

tσ
Re
(
tλX

))
.

Using (5.39) and (5.41) we obtain, for t ≥ τ0,

�(t) = 	2

(
K∑

r=1

(
T (t)r

t

)σ
X (r)

T (t)r
+ b(t),

1

tσ
Re

(
K∑

r=1

tλA∗
r X (r)

))

≤
∥∥∥∥∥

K∑

r=1

((
T (t)r

t

)σ
X (r)

T (t)r
− 1

tσ
Re
(

tλA∗
r X (r)

))∥∥∥∥∥
2

+
∥∥∥b(t)

∥∥∥
2

≤
∥∥∥∥∥

K∑

r=1

((
T (t)r

t

)σ
X (r)

T (t)r
− 1

tσ
Re

((
T (t)r

)λ
X (r)

))∥∥∥∥∥
2

+
∥∥∥b(t)

∥∥∥
2

+
∥∥∥∥∥

K∑

r=1

(
1

tσ
Re

((
T (t)r

)λ
X (r)

)
− 1

tσ
Re
(

tλA∗
r X (r)

))∥∥∥∥∥
2

. (5.42)

By (5.35) and (5.33) the second and third of the three latter summands tend to zero as
t → ∞. We abbreviate

W (t)
r :=

(
T (t)r

t

)σ
X (r)

T (t)r
− 1

tσ
Re

((
T (t)r

)λ
X (r)

)
. (5.43)
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Hence, (5.42) implies

�(t) ≤
⎛

⎝E

(
K∑

r=1

W (t)
r

)2⎞

⎠
1/2

+ o(1)

=

⎛

⎜⎜⎝E

K∑

r=1

(
W (t)

r

)2 + E

K∑

r,s=1
r 	=s

W (t)
r W (t)

s

⎞

⎟⎟⎠

1/2

+ o(1). (5.44)

By the definition of �(t) and the fact that
(

X (r)t ,Re(t iτ X (r))
)

are optimal couplings

for all t > 0 and r = 1, . . . , K we obtain

E(W (t)
r )2 = E

⎡

⎣
(

T (t)r

t

)2σ

�2
(

T (t)r

)
⎤

⎦ . (5.45)

From (5.32) we obtain

E Xt = 1

tσ
Re(γ tλ)+ R(t), t > 0,

with R(t) → 0 as t → ∞. Since E X (r) = γ and by the independence conditions we
obtain E W (t)

r = E[(T (t)r /t)σ R(T (t)r )] and, for r 	= s,

E

[
W (t)

r W (t)
s

]
= E

[(
T (t)r

t

T (t)s

t

)σ
R
(

T (t)r

)
R
(

T (t)s

)]
.

Splitting the latter integral into the events {T (t)r ≤ t1 or T (t)s ≤ t1} and {T (t)r > t1
and T (t)s > t1} for some t1 > 0 we obtain, for every t1 > 0,

∣∣∣E
[
W (t)

r W (t)
s

]∣∣∣ ≤
(

t1
t

)σ
‖R‖2∞ + sup

u≥t1
R2(u),

where ‖R‖∞ := supt |R(t)| < ∞. From this we obtain first, letting t → ∞,

lim supt→∞
∣∣∣E[W (t)

r W (t)
s ]
∣∣∣ ≤ supu≥t1 R2(u), and then, letting t1 → ∞,

E

[
W (t)

r W (t)
s

]
→ 0 as t → ∞. (5.46)

Now, (5.44), (5.45), and (5.46) imply, for t > τ0,

�(t) ≤
⎛

⎝E

⎡

⎣
K∑

r=1

(
T (t)r

t

)2σ

�2
(

T (t)r

)
⎤

⎦+ R1(t)

⎞

⎠
1/2

+ R2(t), (5.47)

with R1(t), R2(t) → 0 as t → ∞.
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We first show that ‖�‖∞ < ∞. Define �∗(t) := sup0<u≤t �(u). By the assump-
tions sup0≤u≤t E |Yu |2 < ∞ and sup0≤u≤t | f (u)| < ∞, together with Yu = 0 and
f (u) = 0 for u ≤ 1, we have �∗(t) < ∞ for all t > 0. Let t1 ≥ τ0 be such that
|R1(t)| < 1 and |R2(t)| < 1 for t ≥ t1. Then with (5.47) we obtain, for t ≥ t1,

�(t) ≤
⎛

⎝E

⎡

⎣
K∑

r=1

(
T (t)r

t

)2σ

(�∗)2(t)

⎤

⎦+ 1

⎞

⎠
1/2

+ 1.

By (5.33), (5.35) and (5.36) there exists a t2 ≥ t1 such that for all t ≥ t2 we have
E
∑K

r=1(T
(t)

r /t)2σ ≤ ξ < 1. Thus, for all t ≥ t2 we obtain, with
√

a + b ≤ √
a +√

b
for a, b ≥ 0,

�(t) ≤ √ξ�∗(t)+ 2,

and thus

�∗(t) ≤ √ξ�∗(t)+ 2 +�∗(t2),

which implies ‖�‖∞ ≤ (2 +�∗(t2)) /(1 − √
ξ) < ∞.

In a second step we show that �(t) → 0 as t → ∞. For this we assume that
L := lim supt→∞�(t) > 0. Let ε > 0. There exists a t3 ≥ t2 such that for all t ≥ t3
we have �(t) ≤ L + ε. Then (5.47) implies

�(t)

≤
⎛

⎝E

⎡

⎣
K∑

r=1

(
T (t)r

t

)2σ (
1{T (t)r <t3} + 1{T (t)r ≥t3}

)
�2
(

T (t)r

)
⎤

⎦+ R1(t)

⎞

⎠
1/2

+ R2(t)

≤
(

K∑

r=1

(
t3
t

)2σ

‖�‖2∞ + ξ(L + ε)2 + R1(t)

)1/2

+ R2(t).

Hence, t → ∞ implies

L ≤ √ξ(L + ε),

which if L > 0 is a contradiction if we choose ε small enough. Consequently, we have
L = 0 yielding the assertion. �
Remark 5.1 Note, that 	2 convergence implies convergence of second moments.
Hence in the situation of Theorem 5.3 we also obtain the first order asymptotic term
of the expansion of Var Yt :

Var Yt ∼ t2σ Var
(

Re
(

Xeiτ ln t
))

= 1
2 t2σ

(
E |X − γ |2 + Re

(
e2iτ ln t

E(X − γ )2
))
.

123



The size of random fragmentation trees 433

6 Proof of Theorem 1.3

In this section we prove Theorem 1.3. The statements on mean and variance of N (x)
are proved in Sect. 3. It remains to identify the asymptotic distribution of N (x) Note
that recurrence (1.3) for N (x) is covered by the general recurrence for Yt in (5.1) by
making the choices d = 1, K = b, τ0 = 1, Ar (t) = 1, T (t)r = Vr t and bt = 1 for all
r = 1, . . . , K and t ≥ τ0.

We consider the three cases (i)–(iii) appearing in Theorem 1.3 separately:

Case (i): Theorem 3.1 yields E N (x) = α−1x + o(
√

x) and Var(N (x)) ∼ βx with
β > 0. We apply Corollary 5.2 with the choices f (t) = α−1t and g(t) = βt . The
conditions (5.20) and (5.21) are satisfied. We have supu≤t E |Yu |s < ∞ for s = 3 by
Lemma 3.5. Condition (5.22) is satisfied with A∗

r = √
Vr for r = 1, . . . , K , condition

(5.23) is trivially satisfied, and we have (5.24). Hence, Corollary 5.2 applies and yields

N (x)− α−1x√
βx

d→ N (0, 1),

which is the assertion.

Case (ii): Theorem 3.1 yields E N (x) = α−1x + O(
√

x) and Var(N (x)) ∼ βx ln x
with β > 0. We apply Corollary 5.2 with the choices f (t) = α−1t and g(t) = βt ln t .
Now we have g(T (t)r )/g(t) = Vr + Vr ln(Vr )/ ln t , hence we obtain, since x 
→ x ln x
is bounded on [0, 1],

⎛

⎜⎜⎝

√√√√g
(

T (t)1

)

g(t)
, . . . ,

√√√√g
(

T (t)K

)

g(t)

⎞

⎟⎟⎠
	3−→ (A∗

1, . . . , A∗
K ),

with A∗
r = √

Vr for r = 1, . . . , K . All conditions of Corollary 5.2 are satisfied as in
case (i) and we obtain

N (x)− α−1x√
βx ln x

d→ N (0, 1).

Case (iii): Theorem 3.1 yields E N (x) = α−1x+Re(γ xλ2)+o(xσ ), whereσ = Re λ2,
which verifies (5.32) (with λ = λ2). We apply Theorem 5.3 with f (x) = α−1x . We
have A(t)r = (T (t)r /t)λ2 = V λ2

r for all t ≥ 1 and r = 1, . . . , K , so A∗
r = V λ2

r . Further,
bt = 1 and f (t) = ∑K

r=1 f (T (t)r ), so b(t) = t−σ and ‖b(t)‖2 = t−σ → 0 as t → ∞.
Finally, E

∑K
r=1 |A∗

r |2 = E
∑K

r=1 V 2σ
r < 1 since σ > 1/2. Thus all conditions of

Theorem 5.3 are satisfied and we obtain

	2

(
N (x)− α−1x

xRe λ2
,Re

(
�ei Im λ2 ln x

))
→ 0
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as x → ∞. This completes the proof except for the explicit rate of convergence in
Theorem 1.3 (iii).

Now, we give a refined version of the proof of Theorem 5.3 for the special recurrence
(1.3) which yields also the stated rate of convergence.

The restriction of T defined in (1.7) to MC
2 (ν) is Lipschitz in 	2 with Lipschitz con-

stant bounded by
(
E
∑b

r=1 V 2 Re(λ2)
r

)1/2
; cf. the first part of the proof of Theorem 5.3.

From σ = Re λ2 > 1/2 we obtain that T has a unique fixed point L(�) in MC
2 (ν).

For Xt := N (t)− α−1t we obtain with (1.3)

Xt
d=

b∑

r=1

X (r)Vr t + 1, (6.1)

where X (r)t are independent distributional copies of Xt also independent of
(V1, . . . , Vb). With the fixed point property of � we have

tσ Re
(
�eiτ ln x

)
= Re(tλ2�)

d= Re

(
b∑

r=1

(Vr t)λ2�(r)

)
,

where (V1, . . . , Vb), �(1), . . . , �(b) are independent and L(�(r)) = L(�) for r =
1, . . . , b. We choose X (r)t as optimal couplings to Re(tλ2�(r)) for t ≥ 0 and r =
1, . . . , b and denote �(t) := 	2(Xt ,Re(tλ2�)). Note that in the definition of Xt we
did not rescale by tσ , hence we have to show �(t) = O(tκ).

With W (t)
r := X (r)Vr t − Re((Vr t)λ2�(r)) we obtain, for t ≥ 1,

�(t) = 	2

(
b∑

r=1

X (r)Vr t + 1,
b∑

r=1

Re
(
(Vr t)λ2�(r)

))

≤
⎧
⎨

⎩E

(
b∑

r=1

W (t)
r

)2
⎫
⎬

⎭

1/2

+ 1

=

⎧
⎪⎪⎨

⎪⎪⎩

b∑

r=1

E

(
W (t)

r

)2 +
b∑

r,s=1
r 	=s

E[W (t)
r W (t)

s ]

⎫
⎪⎪⎬

⎪⎪⎭

1/2

+ 1.

Conditioning on (V1, . . . , Vb) yields E(W (t)
r )2 = E�2(Vr t). From E N (t) = α−1t +

Re(γ tλ2)+ O(tκ) and E� = γ we obtain E W (t)
r = O(tκ). Since W (t)

r and W (t)
s are

independent for r 	= s conditionally on (V1, . . . , Vb), it follows that

�(t) ≤
{

b∑

r=1

E�2(Vr t)+ O
(

t2κ
)}1/2

+ 1, t ≥ 1. (6.2)
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Now, we show that �(t)/tκ = O(1). Note that this implies the assertion. We denote

�∗(t) := sup
1≤u≤t

�(u)

uκ
.

Then, (6.2) implies, that for appropriate R > 0

�∗(t) ≤
{

b∑

r=1

E V 2κ
r (�∗)2(t)+ R

}1/2

+ 1, t ≥ 1,

and, with
√

a + b ≤ √
a + √

b for a, b ≥ 0 and ξ = E
∑b

r=1 V 2κ
r < 1 this implies

�∗(t) ≤
√

R + 1

1 − √
ξ
< ∞.

The assertion follows.

7 Examples

Example 7.1 (Random splitting of intervals) Sibuya and Itoh [37] studied the tree
defined by random splitting of intervals, with uniformly distributed splitting points;
this is the case b = 2 and V = (U, 1 − U ), with U ∼ U(0, 1). (See also Brennan and
Durrett [6,7]; Kakutani [27] for other properties of such splittings.)

We have

φ(z) = E U z + E(1 − U )z = 2

1∫

0

uz du = 2

1 + z
, Re z > −1,

which is a rational function. The characteristic equation (1.5) is 2/(1+λ) = 1, and has
the single root λ = 1. Thus Theorem 1.3 (i) applies and shows asymptotic normality,
as shown by Sibuya and Itoh [37]. Further, α = −φ′(1) = 1/2, so Theorem 3.1 (ii)
yields E N (x) = m(x) = 2x + O(xδ) for every δ > 0. More precisely, Theorem 3.4
yields

E N (x) = m(x) = 2x − 1, x ≥ 1,

which also can be shown directly from (1.2) or from (3.11) [37].
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For the asymptotic variance, we obtain from Theorem 3.4 (ii), since M = 1 and
a0 = −1, using symmetry,

β = α−1 (E (U + 2U ∧ (1 − U )+ 1 − U )− 2 + 1)

+2α−2 (2 E
(
U (ln(1 − U )− ln U )1{U<1−U }

))− 2α−1

+α−3 (2 E (U ∧ (1 − U )))− α−1

= 20 E (U ∧ (1 − U ))+ 16

1/2∫

0

u (ln(1 − u)− ln(u)) du − 6

= 8 ln 2 − 5 ≈ 0.545177.

This can also be obtained from Theorem 3.1 (iii); we have

ψ(z, w) = E
(
(U z + (1 − U )z)(Uw + (1 − U )w)

)− φ(z)φ(w)

= 2

1 + z + w
+ 2B(z + 1, w + 1)− 4

(1 + z)(1 + w)

= 2

1 + z + w
+ 2

�(z + 1)�(w + 1)

�(z + w + 2)
− 4

(1 + z)(1 + w)

and thus

ψ(1/2 + iu, 1/2 − iu) = 1 + �(3/2 + iu)�(3/2 − iu)− 4

|3/2 + iu|2
= 1 + |1/2 + iu|2 π

cosh πu
− 4

|3/2 + iu|2 ,

and, since 1 − φ(z) = (z − 1)/(z + 1),

β = 1

π

∞∫

−∞

(
1 + π

cosh πu
|1/2 + iu|2 − 4

|3/2 + iu|2
) |3/2 + iu|2

|1/2 + iu|4 du,

which can be integrated (with some effort) to yield 8 ln 2 − 5.
Consequently, by Theorem 1.3, we recover the limit theorem by [37]:

N (x)− 2x√
x

d→ N (0, 8 ln 2 − 5).

Example 7.2 (m-ary splitting of intervals) We can generalize Example 7.1 by splitting
each interval into m parts, where m ≥ 2 is fixed, using m − 1 independent, uniformly
distributed cut points in each interval. This has been studied by Dean and Majumdar
[12].
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We have b = m, and V1, . . . , Vm have the same distribution with density
(m − 1)(1 − x)b−2, 0 < x < 1. Hence,

φ(z) = m E V z
1 = m(m − 1)

1∫

0

xz(1 − x)z dx = m(m − 1)B(z + 1,m − 1)

= �(z + 1)m!
�(m + z)

= m!
(z + 1) · · · (z + m − 1)

.

The characteristic equation φ(z) = 1 becomes �(z + m)/�(z + 1) = m!, or

(z + 1) · · · (z + m − 1) = m!. (7.1)

The same equation appears in the analysis of m-ary search trees. It is shown by
Mahmoud and Pittel [31] and Fill and Kapur [17] that if m ≤ 26, then Re λ2 < 1/2,
and thus (i) applies, but if m ≥ 27, then Re λ2 > 1/2, see also, e.g., Chauvin and
Pouyanne [8] and Chern and Hwang [10]. Theorem 3.4 yields an exact formula for
E N (x) (although it is hardly useful except when m is small). It further leads to a
formula for the asymptotic variance, provided m ≤ 26.

We have, with ψ(z) := �′(z)/�(z) and Hz := ψ(z + 1) − ψ(1) (for integer z,
these are the harmonic numbers)

α = −φ′(1) = ψ(m + 1)− ψ(2) = Hm − 1.

Example 7.3 (Random splitting of multidimensional intervals) Another generaliza-
tion is to consider d-dimensional intervals, where an interval is split into 2d subinter-
vals by d hyperplanes orthogonal to the coordinate axis and passing through a random,
uniformly distributed point. This too has been studied by Dean and Majumdar [12].

We have b = 2d . V1, . . . , Vb have the same distribution, Vj
d= U1 · · · Ud , where

Uk ∼ U (0, 1) are i.i.d. Hence,

φ(z) = 2d
E V z

1 = 2d (
E U z

1

)d =
(

2

1 + z

)d

.

Again, φ is rational. The characteristic equation may be written ((1 + λ)/2)d = 1,
with the roots

� = {2e2π ik/d − 1 : 0 ≤ k ≤ d − 1}.

Thus σ2 := Re λ2 = 2 cos 2π
d − 1, and the condition Re λ2 < 1/2 is equivalent to

cos(2π/d) < 3/4, which holds for d ≤ 8, while Re λ2 > 1/2 for d ≥ 9. This justifies
the claims in Dean and Majumdar [12].

The same characteristic equation, and the same phase transition, appears for quad
trees, see Chern et al. [9].

We further observe that α = −φ′(1) = d/2.
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The random trees in these three examples have also been studied by [20], [25]
and [26], where the properties of a randomly selected branch are investigated. This
problem is quite different, and there is no phase transition. See also [23].

Example 7.4 (Random splitting of simplices) Consider d-dimensional simplices,
where a simplex is split into d + 1 new simplices by choosing a uniform random
point X in the interior and connecting it to the vertices of the original simplex; each
new simplex has as vertices X and d of the original d + 1 vertices.

It is easily seen that this is equivalent to d + 1-ary splitting as in Example 7.2, see
[13, Lemma 3], so we have the same results as there, with m = d + 1. In particular,
N (x) is asymptotically normal if d ≤ 25.

Example 7.5 (Non-uniform splitting of intervals) Returning to binary splitting of inter-
vals, we can generalize Example 7.1 by taking another distribution for the cut points;
we thus have b = 2 and V = (V, 1 − V ), where V has any distribution on (0, 1). An
interesting case is when V has a beta distribution V ∼ B(a, a′) with a, a′ > 0; then

E V z = B(a, a′)−1

1∫

0

xz+a−1(1 − x)a
′−1 dx = B(a + z, a′)

B(a, a′)

= �(z + a)

�(z + a + a′)
�(a + a′)
�(a)

;

E(1− V )z is obtained by interchanging a and a′. In particular, if a and a′ are integers,
then φ is rational.

We consider two special cases.

(i) The symmetric case with a′ = a, V ∼ B(a, a). Then

φ(z) = 2
�(z + a)

�(z + 2a)

�(2a)

�(a)
= �(z + a)

�(z + 2a)

�(1 + 2a)

�(1 + a)
.

We have α = −φ′(1) = H2a − Ha, with Hx as in Example 7.2. Numerical
solution of the characteristic equation seems to show that Re λ2 < 1/2 if and
only if a < a0, where a0 ≈ 59.547.

(ii) The case a′ = 1, V ∼ B(a, 1). Then

φ(z) = �(z + a)

�(z + a + 1)

�(a + 1)

�(a)
+ �(z + 1)

�(z + a + 1)
�(a + 1)

= a

z + a
+ �(z + 1)

�(z + a + 1)
�(a + 1).

One finds α = Ha/(a + 1). The characteristic equation φ(λ) = 1 is equivalent
to �(a + 1)�(λ+ 1)/�(λ+ a + 1) = λ/(λ+ a) or

�(a + λ)

�(λ)
= �(a + 1).
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When a = m is an integer, this is the same as (7.1), so Re λ2 < 1/2 for integer a
if and only if a ≤ 26. In general, numerical solution of the characteristic equa-
tion seems to show that Re λ2 < 1/2 if and only if a < a0, where a0 ≈ 26.9.

8 Non-examples

In this section, we give a few examples where our theorems are not valid.

Example 8.1 (Lattice). In the lattice case, there exists R > 1 such that every Vj ∈
{R−k : k ≥ 1} ∪ {0} a.s. In this case, φ is periodic with period 2π i/ ln R; in partic-
ular, the characteristic equation (1.5) has infinitely many roots 1 + 2π in/ ln R on
{λ : Re λ = 1}, and thus Condition B(δ) fails. Indeed, it is obvious from (1.2) that
N (x) = N (Rm) when Rm ≤ x < Rm+1, so E N (x)/x oscillates and does not con-
verge as x → ∞. The natural approach is to consider only x ∈ {Rm : m ≥ 0}. It is
then straightforward to prove an analogue of Theorem 3.1, using the lattice versions
of the renewal theory theorems that were used in Sect. 3. An analogue of Theorem 1.3
then follows by the usual (discrete) contraction method, as in [33]. We leave the details
to the reader.

Example 8.2 (Deterministic). If V = (V1, . . . , Vb) is deterministic, then so is N (x),
and it is meaningless to ask for an asymptotic distribution. However, it makes sense
to study the asymptotics of N (x) = m(x). (Clearly, σ 2(x) = 0.)

If V is non-lattice, then N (x)/x → α by Theorem 3.1 and Remark 3.2. If V is
lattice, we consider, as in Example 8.1, only x = Rm , m ≥ 1.

We may assume that Vj > 0 for each j . By the Kronecker–Weyl theorem, for every
ε > 0, there exist arbitrarily large t such that |V it

j − 1| < ε for j = 1, . . . , b; thus
lim supt→∞ |φ(1 + it)| = 1. Hence Condition B(1) does not hold, and therefore, by
Lemma 2.1, Condition B(δ) does not hold for any δ ≤ 1.

More precisely, if |V it
j −1| < ε for j = 1, . . . , b, let z0 = 1+it . Then |φ(z0)−1| <

ε and

|φ′(z0)+ α| =
∣∣∣∣∣∣

b∑

j=1

ln Vj (V
1+i t
j − Vj )

∣∣∣∣∣∣
≤ εα.

Since further |φ′′(z)| ≤ ∑
j | ln Vj |2 for Re z ≥ 0, it follows easily that if ε is small

enough, then φ(z) − 1 has a zero in the disc B := {z : |z − z0| < 2ε/α}. (Use the
Newton–Raphson method, or Rouché’s theorem and a comparison with the linear
function φ(z0)+ (z − z0)φ

′(z0).) It follows that there exists a sequence λn ∈ � with
Re λn → 1 and Im λn → +∞.

We give some concrete examples:
V = (1/2, 1/2) is lattice with R = 2 and N (2n) = 2n .
V = (τ−1, τ−2) where τ = (1 + √

5)/2 (the golden ratio) is lattice with R = τ

and N (τ n) = Fn+3 − 1, n ≥ 0, as is easily proven by induction. (Fn denotes the
Fibonacci numbers.) Thus, N (τ n) ∼ 5−1/2τ n+3.
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V = (1/3, 2/3) is non-lattice and thus N (x) ∼ α−1x , where α = 1
3 ln 3 +

2
3 ln(3/2) = ln 3 − 2

3 ln 2.

9 Some related models

The basic model may be varied in various ways. We mention here some variations
that we find interesting. We do not consider these versions in the present paper; we
leave the possibility of extensions of our results as an open problem, hoping that these
remarks will be an inspiration for future research.

Remark 9.1 By our assumptions, the label of a node equals the sum of the labels of
its children. Another version would be to allow a (possibly random) loss at each node.
One important case is Rényi’s parking problem [35], where a node with label x is inter-
preted as an interval of length x on a street, where cars of length 1 park at random.
Each car splits an interval of length x ≥ 1 into two free intervals with the lengths
U (x − 1) and (1 − U )(x − 1), where U ∼ U(0, 1). An obvious generalization is to
split (x − 1) using an arbitrary random vector (V1, . . . , Vb). (The one-sided version,
where we study only one branch of the tree, is studied in [20], [23].)

Remark 9.2 Krapivsky et al. [29] have studied a fragmentation process where frag-
mentation stops stochastically, with a probability p(x) of further fragmentation that in
general depends on the mass x of the fragment. Our process is the case p(x) = 1{x≥1}.
Another interesting case is p(x) = 1 − e−x , see Remark 9.3 below. A different sto-
chastic stopping rule is treated by Gnedin and Yakubovich [19].

Remark 9.3 Our model is a continuous version of the split trees studied by Devroye
[13], where the labels are integers (interpreted as numbers of balls to be distributed
in the corresponding subtree) and each label n is, except at the leaves, randomly split
according to a certain procedure into b integers summing to n − s0; here s0 is a small
positive integer (for example 1) that represents the number of balls stored at the node.
Typical examples are binary search trees, m-ary search trees and quadtrees. We can
regard the continuous model as an approximation of the discrete, or conversely, and it
is easy to guess that many properties will have similar asymptotics for the two models.
This has been observed in several examples by various authors, see [12] and [9]. For
example, the results for Example 7.2 parallel those found for m-ary search trees by
[8], [10], [17], [31] and others. Similarly, the results in Example 7.3 parallel those
found for quadtrees by [9].

We study only the continuous version in this paper. It would be very interesting to
be able to rigorously transfer results from the continuous to the discrete version (or
conversely); we will, however, not attempt this here.

Note that for binary search trees, we have n random (uniformly distributed) points
in an interval, split the interval by the first of these points, and continue recursively
splitting each subinterval that contains at least one of the points. If we scale the initial
interval to have length n, then the probability that a subinterval of length x contains
at least one point is ≈ 1 − e−x . Thus it seems likely that the binary search tree is well
approximated by a fragmentation tree, with V as in Example 7.1, with a fragmentation
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probability 1 − e−x as in Remark 9.2. The same goes for random quadtrees and
simplex trees corresponding to Examples 7.3 and 7.4.
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