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Abstract We consider oriented percolation on Z
d × Z+ whose bond-occupation

probability is pD( · ), where p is the percolation parameter and D is a probability
distribution on Z

d . Suppose that D(x) decays as |x |−d−α for some α > 0. We prove
that the two-point function obeys an infrared bound which implies that various cri-
tical exponents take on their respective mean-field values above the upper-critical
dimension dc = 2(α ∧ 2). We also show that, for every k, the Fourier transform of the
normalized two-point function at time n, with a proper spatial scaling, has a convergent
subsequence to e−c|k|α∧2

for some c > 0.

1 Introduction

Oriented percolation is a model that exhibits a phase transition when the percolation
parameter p in the bond-occupation probability pD( · ) changes its value, where D
is a given probability distribution on Z

d . It has been proved using the lace expansion
[16,20] that finite-variance oriented percolation, where the tail of D decays fast enough
to ensure finite variance σ 2 =∑x |x |2 D(x) in particular, exhibits the critical behavior
for (finite-range) branching random walk, if d > 4 and σ 2 � 1 or d � 4; it has also
been proved that, for every p ≤ pc for finite-range oriented percolation [20] and for
general (possibly infinite-range) finite-variance oriented percolation at p = pc [16],
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the Fourier transform of the normalized two-point function at time n, spatially scaled
by

√
n, converges to e−c|k|2 for some constant c ∈ (0,∞).

In this paper, we consider long-range oriented percolation with index α > 0, where
D(x)decays as |x |−d−α for large |x |. In [8], Chen and Shieh studied a long-range model
with α = 1 and proved that, if d > 2 (and a certain spread-out parameter L � 1), the
standard susceptibility exponent γ and a couple of other critical exponents take on their
respective mean-field values. The goal of this paper is to investigate the α-dependence
of the critical behavior and the limit distribution. We prove that the model exhibits the
mean-field behavior if d > 2(α∧2) (and a spread-out parameter L � 1). Furthermore,
we prove that, for every p ≤ pc, the Fourier transform of the normalized two-point

function at time n, spatially scaled by n
1

α∧2 if α �= 2 or by
√

n log n if α = 2, is bounded
from below by e−c|k|α∧2

and from above by e−c′|k|α∧2
in n ↑ ∞, where c, c′ ∈ (0,∞)

and c/c′ = 1 + O(L−d). We stress that, although we do not prove convergence in
this paper, our results hold for p ≤ pc for general finite-variance oriented percolation,
which is not completely covered in the aforementioned results in [16,20].

Our proof is based on the lace expansion for oriented percolation. We analyze the
lace expansion for all α > 0 simultaneously to discover a potential crossover in the
critical behavior by changing the value of α. However, since our D does not have
finite variance when α ≤ 2, the standard Taylor-expansion analyses for the Fourier
transform of the expansion coefficients for finite-variance oriented percolation do not
always work. To overcome this difficulty, we use the trigonometric techniques that
were first developed in [6] for percolation on finite graphs and later in [25] for finite-
range self-avoiding walk on Z

d . We adapt these techniques for the time-oriented setting
(to analyze the Fourier–Laplace transform of the expansion coefficients).

1.1 Model

We define the model more precisely. A bond is an ordered pair ((x, n), (y, n + 1))

of vertices in space-time Z
d × Z+, where Z+ ≡ {0} ∪̇ N is the set of nonnegative

integers. Each bond is, independently of the other bonds, occupied (resp., vacant) with
probability pD(y −x) (resp., 1− pD(y −x)), where D is a probability distribution on
Z

d . The percolation parameter p ∈ [0, ‖D‖−1∞ ] equals the average number of occupied
bonds per vertex. We say that (x, l) is connected to (y, n), and write (x, l) → (y, n),
if either (x, l) = (y, n) or there is a time-oriented path of occupied bonds from (x, l)
to (y, n). Let Pp be the probability distribution of the bond variables, and denote its
expectation by Ep.

Our D is defined as follows. Let h be a bounded probability distribution on R
d

that is invariant under rotations by π/2 and reflections in the coordinate hyperplanes.
Suppose that h is piecewise continuous, so that

∫
Rd dd x h(x) ≡ 1 can be approximated

by the Riemann sum 1
Ld

∑
x∈Zd h(x/L) for large L < ∞. We define

D(x) = h(x/L)
∑

y∈Zd h(y/L)
, (1.1)

where x/L = (x1/L , . . . , xd/L). Note that the denominator is O(Ld).
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Critical behavior and the limit distribution for long-range oriented percolation. I 153

Fix α > 0 throughout this paper. We assume that there is an � < ∞ such that

h(x) � |x |−d−α (|x | ≥ �), (1.2)

where f (x) � g(x) means that f (x)/g(x) is bounded away from zero and infinity.
We note that the r th moment

∑
x∈Zd |x |r D(x) does not exist if r ≥ α, but exists and

equals O(Lr ) if r ∈ (0, α). A simple example of h that satisfies the above assumptions
is

h(x) = 1

N (|x | ∨ 1)−d−α, (1.3)

where N is the normalization constant. In this case, D equals

D(x) = (| x
L | ∨ 1)−d−α

∑
y∈Zd (| y

L | ∨ 1)−d−α
. (1.4)

The main properties of D are summarized as follows:

Proposition 1.1 Let λ = L−d , and denote by D�n and D̂, respectively, the n-fold
convolution and the Fourier transform of D:

D�n(x) =
{

D(x) (n = 1),
∑

y∈Zd D�(n−1)(y) D(x − y) (n ≥ 2),
D̂(k) =

∑

x∈Zd

eik·x D(x).

(1.5)

Then, for L � 1, there are C < ∞ and � ∈ (0, 1) such that

‖D�n‖∞ ≤ Cλ n− d
α∧2 , 1 − D̂(k)

{
< 2 − � (k ∈ [−π, π ]d),

> � (‖k‖∞ > (�L)−1).
(1.6)

Moreover, when ‖k‖∞ ≤ (�L)−1,

1 − D̂(k) �
{

(L|k|)α∧2 (α �= 2),

(L|k|)2 log π
2�L|k| (α = 2).

(1.7)

We will prove Proposition 1.1 in Appendix A.

1.2 Main results

We investigate the following two-point function:

ϕp(y − x, n − l) = Pp((x, l) → (y, n)), (1.8)
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where we have used the fact that the right-hand side depends only on y − x and n − l,
due to the translation invariance of the model. Assuming summability of the two-point
function, we define, for k ∈ [−π, π ]d and z ∈ C,

Z p(k; n) =
∑

x∈Zd

ϕp(x, n) eik·x , ϕ̂p(k, z) =
∑

n∈Z+

Z p(k; n) zn . (1.9)

Let Cn be the set of vertices at time n that are connected from (o, 0), and let C =⋃
n≥0 Cn . The quantities in (1.9) for k = 0 and (k, z) = (0, 1) can be described as

Z p(0; n) = Ep[|Cn|], χp ≡ ϕ̂p(0, 1) = Ep[|C|], (1.10)

where |A| is the cardinality of a set A, and χp is called the susceptibility. Since
Z p(0; n) is sub-multiplicative, i.e., for l, n ≥ 0,

Z p(0; l + n) =
∑

x∈Zd

Pp

⎛

⎝
⋃

y∈Zd

{{(o, 0) → (y, l)} ∩ {(y, l) → (x, l + n)}}
⎞

⎠

≤ Z p(0; l) Z p(0; n), (1.11)

the radius m p of convergence of the series ϕ̂p(0, z) is well-defined and satisfies (cf.,
e.g., [9, Appendix II])

m−1
p = lim

n↑∞ Z p(0; n)1/n = inf
n≥1

Z p(0; n)1/n . (1.12)

This implies that ϕ̂p(0, m) for m ∈ R diverges as m ↑ m p for every p > 0, because

ϕ̂p(0, m) =
∑

n∈Z+

Z p(0; n) mn ≥
∑

n∈Z+

(
m

m p

)n

= m p

m p − m
. (1.13)

This also implies that m p > 1 if and only if χp < ∞. Since ϕ̂0(0, m) = 1 for any
m ≥ 0, we define m0 = ∞. It is known [1,2,5,10] that there is a unique critical point
pc ≥ 1 such that

χp

{
< ∞, if p < pc,

= ∞, if p ≥ pc,
�p ≡ Pp(|C| = ∞)

{
= 0, if p ≤ pc,

> 0, if p > pc,
(1.14)

and that lim p↑pc χp = ∞ (hence m pc ≤ 1) and lim p↓pc �p = 0.
Our first result is about an upper bound on |ϕ̂p(k, z)| for p < pc and |z| < m p.

Theorem 1.2 Let d > 2(α ∧ 2) and L � 1. Then, there is a C < ∞ such that

|ϕ̂p(k, z)| ≤ C

p(m p − |z|) + | arg(z)| + 1 − D̂(k)
, (1.15)

123



Critical behavior and the limit distribution for long-range oriented percolation. I 155

for any p ∈ (0, pc), k ∈ [−π, π ]d and z ∈ C with |z| < m p.

To prove this theorem and the other results throughout this paper, we use the lace
expansion for oriented percolation. We will briefly review it in Sect. 3.

It has been proved [19,20] that (1.15) holds for finite-variance oriented percolation
(for which, 1 − D̂(k) � |k|2) if d > 4 and σ 2 � 1 or d � 4, hence

∫

[−π,π ]d+1

ddk

(2π)d

dθ

2π

∣
∣
∣ϕ̂p(k, meiθ )

∣
∣
∣
3

(1.16)

is bounded uniformly in p < pc and m < m p. By the dimension-independent results
in [2,3], this implies that the critical exponents β, γ and δ defined as

�p �
p↓pc

(p − pc)
β, χp �

p↑pc
(pc − p)−γ , Ppc(|C| ≥ n) �

n↑∞ n−1/δ, (1.17)

exist and take on their mean-field values for d > 4: β = γ = 1 and δ = 2. Since
our 1 − D̂(k) satisfies (1.7), the integral (1.16) is bounded uniformly in p < pc and
m < m p when d > 2(α ∧ 2). Let τ and η be the critical exponents for m p − m pc and
Z pc(0; n), respectively:

m p − m pc �
p↑pc

(pc − p)τ , Z pc(0; n) �
n↑∞ nη. (1.18)

Corollary 1.3 Let d > 2(α∧2) and L � 1, so that Theorem 1.2 holds. Then, m pc = 1
and the critical exponents β, γ, δ and τ exist and take on their respective mean-field
values: β = γ = τ = 1 and δ = 2.

The identity τ = 1 follows immediately from γ = 1 and the inequality

m p

χp
≤ m p − 1 ≤ C

pχp
(0 < p < pc). (1.19)

The lower bound is due to (1.13) for m = 1, and the upper bound is due to Theorem 1.2
for (k, z) = (0, 1). By the continuity of χ−1

p in p, we obtain m pc = lim p↑pc m p = 1.
It may be worth pointing out that the trivial bound Z p(0; n) ≤ pn and the inequality
(1.19) with χp ≥ 1 imply m p � p−1 for all p ∈ (0, 1).

The mean-field result on the exponent η is in Theorem 1.5 below.
The critical exponents are generally believed to be universal in the sense that their

values depend only on d and α, but not on the microscopic details of the model,
such as the value of L < ∞. However, the value of pc is not universal and changes
depending on the value of L . In [15], an asymptotic estimate of pc as L → ∞ was
investigated for various finite-variance models, such as self-avoiding walk, percolation,
oriented percolation and the contact process, above the model-dependent upper-critical
dimension. Using Proposition 1.1 and Theorem 1.2, we obtain the same asymptotic
estimate of pc for our long-range oriented percolation for d > 2(α ∧ 2), as follows:
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Theorem 1.4 Let d > 2(α ∧ 2). Then, as L → ∞,

pc = 1 + 1

2

∞∑

n=2

D�2n(o) + O(λ2), (1.20)

where the sum of the 2n-fold convolutions over n ≥ 2 is O(λ) if d > α ∧ 2.

Our last results are about asymptotic estimates of the expected number Z p(0; n)

of vertices at time n connected from (o, 0) and the Fourier transform of the normalized
two-point function Z p( · ; n)/Z p(0; n). For finite-range oriented percolation with
d > 4 and σ 2 � 1 or d � 4, Nguyen and Yang [20] used Tauberian estimates
to prove that, for any p ∈ (0, pc] and k ∈ R

d , there are c1, c2 = 1 + O(λ) such
that Z p(0; n) ∼ c1m−n

p and Z p(k/
√

n; n)/Z p(0; n) ∼ e−c2|k|2 ; sharper error esti-
mates for general finite-variance oriented percolation at p = pc were obtained in [16]
by an inductive analysis of the lace expansion. In this paper, we follow the line of
[20] using Tauberian estimates to prove the following theorem for long-range oriented
percolation:

Theorem 1.5 Let d > 2(α ∧ 2) and L � 1, so that Theorem 1.2 holds. Fix ε ∈
(0, 1 ∧ d−2(α∧2)

α∧2 ). Then, the following (i)–(ii) hold for any p ∈ (0, pc] and k ∈ R
d :

(i) There is a C1 = 1 + O(λ) such that

Z p(0; n) = C1m−n
p

(
1 + O(n−ε)

)
(n ≥ 1). (1.21)

In particular, the critical exponent η takes on its mean-field value: η = 0.
(ii) Suppose that there is an L-dependent constant vα ∈ (0,∞) such that

1 − D̂(k) ∼|k|→0

{
vα|k|α∧2 (α �= 2),

v2|k|2 log 1
|k| (α = 2).

(1.22)

Let

kn = k ×
{

(vαn)− 1
α∧2 (α �= 2),

(v2n log
√

n)− 1
2 (α = 2).

(1.23)

Then, there are C2 and C ′
2, both equal to 1 + O(λ), such that

e−C2|k|α∧2 ≤ lim inf
n→∞

Z p(kn; n)

Z p(0; n)
≤ lim sup

n→∞
Z p(kn; n)

Z p(0; n)
≤ e−C ′

2|k|α∧2
. (1.24)

We note that our D satisfies the bound (1.7) on 1− D̂(k) for small k. The assumption
(1.22) identifies the coefficient of the leading term of 1 − D̂(k).

In the proof of the above theorem, we estimate fractional moments for the time
variable of the lace-expansion coefficients. In the ongoing work (LC Chen and A Sakai,
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In preparation), we have been able to show that the limit of Z p(kn; n)/Z p(0; n) exists
for α > 2 and d > 6 by crude fractional-moment estimates for the spatial variable
of the expansion coefficients. The difficulty in proving existence of the limit for all
α > 0 and d > 2(α ∧ 2) is due to the fact that the support of our D is unbounded,
so that we cannot simply bound |x |rϕp(x, n) for some r > 0, which may show up in
the fractional-moment analysis, by a multiple of nrϕp(x, n), as done in [20] for finite-
range oriented percolation. To squeeze the bounds in (1.24) in order to identify the
limit of Z p(kn; n)/Z p(0; n), we may have to improve the aforementioned fractional-
moment estimates for the spatial variable. We expect that the idea may also be extended
to investigate ξ

(r)
p (n) ≡ ∑x |x |rϕp(x, n)/Z p(0; n). Nguyen and Yang proved in [20]

that ξ
(2)
p (n) � n for any p ∈ (0, pc] for sufficiently spread-out finite-range oriented

percolation for d > 4. We are aiming to show that ξ
(r)
p (n) � n

r
α∧2 for any p ∈ (0, pc]

and r < α for our long-range oriented percolation for d > 2(α ∧ 2).

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we prove the above three
theorems assuming a couple of key propositions. These propositions are proved in
Sects. 4–6. Finally, in the Appendix, we prove Proposition 1.1.

2 Proof of the main results

In Sects. 2.2–2.4, we prove Theorems 1.2, 1.4 and 1.5, respectively, assuming several
key ingredients. The most important ingredient is the lace expansion.

2.1 Lace expansion

The idea of the lace expansion was initiated by Brydges and Spencer in [7] for investi-
gating weakly self-avoiding walk for d > 4. Later, the lace expansion was applied to
various stochastic-geometrical models, such as strictly self-avoiding walk for d > 4
(e.g., [13]), lattice trees/animals for d > 8 (e.g., [12]), percolation for d > 6 (e.g.,
[11]), oriented percolation for d > 4 (e.g., [19]) and the contact process for d > 4
(e.g., [22]). Application to the Ising model was recently reported in [23]. See [25] for
a complete list of references up to 2005.

The derivation of the lace expansion, the definition of the expansion coefficients and
their diagrammatic bounds in terms of two-point functions depend on which model is
concerned, but are independent of the specific choice of D. Therefore, we can apply
the standard lace expansion for oriented percolation to the current long-range setting.
We will briefly review the expansion in Sect. 3.

The result of the lace expansion is a recursion equation similar to that for the
random-walk two-point function

Pp(x, n) = δx,oδn,0 + pn D�n(x)1{n≥1} = δx,oδn,0 + (qp ∗ Pp)(x, n), (2.1)
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where 1{··· } is the indicator function and

qp(x, n) = pD(x)δn,1. (2.2)

For oriented percolation, we have (see Proposition 3.1 below)

ϕp(x, n) = πp(x, n) + (πp ∗ qp ∗ ϕp)(x, n) (0 ≤ p < ∞), (2.3)

where πp(x, n) is the alternating sum of the nonnegative lace-expansion coefficients
π

(N )
p (x, n):

π(N )

p (x, n) ≥ 0 (N = 0, 1, . . . ), πp(x, n) =
∞∑

N=0

(−1)N π(N )

p (x, n). (2.4)

If n = 0, then π
(N )
p (x, 0) = δx,oδN ,0, hence πp(x, 0) = δx,o, due to the definition

(3.10) of π
(N )
p (x, n) below. Comparing (2.1) and (2.3), we are naturally led to expect

that ϕp(x, n) behaves similarly to Pp(x, n), if πp(x, n) − δx,oδn,0 is small.

2.2 Infrared bound

We prove Theorem 1.2 by comparing ϕ̂p(k, z), where k ∈ [−π, π ]d and z ∈ C with
|z| < m p, with the Fourier transform of the random-walk Green’s function with a
certain rate µ = µp(z) ∈ C:

Ĝµ(k) ≡
∑

(x,n)∈Zd×Z+

Pµ(x, n) eik·x = 1

1 − µD̂(k)
(|µ| < 1). (2.5)

It is not hard to see that Ĝµ(k) obeys the following infrared bound:

|Ĝµ(k)| ≤ c

(1 − |µ|) + | arg(µ)| + 1 − D̂(k)
, (2.6)

where c < ∞ is independent of µ and k.
Let

µp(z) =
(

1 − ϕ̂p(0, |z|)−1
)

ei arg(z), (2.7)

where |µp(z)| < 1 for |z| < m p and µp(m) ↑ 1 as m ↑ m p. Inspired by the
bootstrapping hypotheses used in [6] for percolation on finite graphs and in [25] for
finite-range self-avoiding walk on Z

d , we define

f (p, m) = max
i=1,2,3

fi (p, m) (p < pc, m < m p), (2.8)
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where

f1(p, m) = p(m ∨ 1), f2(p, m) = sup
k∈[−π,π ]d

z∈C:|z|∈{m,1}

∣
∣
∣
∣
∣

ϕ̂p(k, z)

Ĝµp(z)(k)

∣
∣
∣
∣
∣
, (2.9)

f3(p, m) = sup
k,l∈[−π,π ]d

z∈C:|z|∈{m,1}

Ĝµp(m∨1)(k) |ϕ̂p(l, z) − 1
2 (ϕ̂p(l + k, z) + ϕ̂p(l − k, z))|

K
∑

( j, j ′)=(0,±1),(1,−1) |Ĝµp(z)(l + jk) Ĝµp(z)(l + j ′k)| .

(2.10)

for some large but finite constant K > 0 whose precise value is unimportant for
the moment and will be determined in Sect. 4.2. These functions will be used in
the bootstrapping argument, as stated in Proposition 2.1 below. We emphasize that,
although the work in [6,25] did not concern the long-range models, the definition of f3
is well-adapted to the long-range setting, especially for α ≤ 2; since we are not using
the Taylor expansion for the numerator of (2.10), we do not have to assume convergence
of the second moment for the spatial variable of the two-point function. We use similar
functions in the bootstrapping argument in the ongoing work (M Heydenreich et al.,
in preparation) to investigate the critical behavior for the long-range Ising model,
percolation and self-avoiding walk on Z

d .
We prove below Theorem 1.2 using the following proposition:

Proposition 2.1 (i) Let d > 2(α ∧ 2) and L � 1 and fix p < pc and m < m p.
Then, f (p, m) ≤ 3 implies that there is a (p, m)-independent constant C < ∞
such that

∑

(x,n)∈Zd×N

nrπ(N )

p (x, n)mn ≤ (Cλ)N∨1 (N ≥ 0, r = 0, 1),

(2.11)
∑

(x,n)∈Zd×Z+

(1−cos(k · x)) |πp(x, n)|mn ≤C λ Ĝµp(m∨1)(k)−1 (k ∈[−π, π ]d).

(2.12)

(ii) Let d > 2(α ∧ 2) and L � 1 and fix p < pc and m < m p. Then, (2.11), (2.12)
and f (p, m) ≤ 3 imply the stronger bound f (p, m) ≤ 2.

(iii) The function f (p, m) is continuous in m < m p for every p < pc, and f (p, 1)

is continuous in p < pc, with f (0, 1) = 1.

We will prove Proposition 2.1 in Sect. 4.

Proof of Theorem 1.2 assuming Proposition 2.1 Note that Proposition 2.1(i), (ii) imply
f (p, m) /∈ [2, 3) for every p < pc and m < m p. With the help of the continuity in
Proposition 2.1(iii), we conclude that indeed f (p, m) ≤ 2 holds for all p < pc and
m < m p. In particular, by (2.6) and the definition of f2, we have

|ϕ̂p(k, z)| ≤ 2c

(1 − |µp(z)|) + | arg(z)| + 1 − D̂(k)
(p < pc, |z| < m p). (2.13)
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To complete the proof of Theorem 1.2, it suffices to show that

1 − |µp(z)| ≡ ϕ̂p(0, |z|)−1 ≥ 1

2
p(m p − |z|) (0 < p < pc). (2.14)

Before proving (2.14), we note that ϕ̂p(0, m) diverges as m ↑ m p for every p > 0
(cf., (1.13)) and that, by using (2.3),

1 ≤
∑

(x,n)∈Zd×Z+

ϕp(x, n) mn = ϕ̂p(0, m)

= π̂p(0, m)

1 − pmπ̂p(0, m)
< ∞ (m < m p). (2.15)

By (2.11) for r = 0, |π̂p(0, m) − 1| is uniformly bounded by O(λ). Moreover, by
monotone convergence and (2.11) for r = 1,

m p|π̂p(0, m p) − π̂p(0, m)| ≤
∑

(x,n)

|πp(x, n)| m p(m
n
p − mn)

≤ (m p − m)
∑

(x,n)

n|πp(x, n)| mn
p

≤ (m p − m)
∑

(x,n)

∞∑

N=0

n π(N )

p (x, n) mn
p

= (m p − m) lim
m↑m p

∑

(x,n)

∞∑

N=0

n π(N )

p (x, n) mn

≤ O(λ)(m p − m), (2.16)

where the O(λ) term is independent of m, so that π̂p(0, m p) = limm↑m p π̂p(0, m).
Therefore, for ϕ̂p(0, m) to diverge as m ↑ m p, the denominator in (2.15) should be
nonnegative and vanish as m ↑ m p, and hence

pm pπ̂p(0, m p) = 1 (0 < p < pc). (2.17)

Now we continue with the proof of (2.14). Since π̂p(0, |z|) = 1 + O(λ) > 0 as
explained above, we obtain

ϕ̂p(0, |z|)−1 =
(

π̂p(0, |z|)
1 − p|z|π̂p(0, |z|)

)−1

= π̂p(0, |z|)−1 − p|z|. (2.18)
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By repeated use of (2.17), ϕ̂p(0, |z|)−1 is rewritten as

ϕ̂p(0, |z|)−1 = π̂p(0, |z|)−1 − p|z| + pm p − π̂p(0, m p)
−1

= p(m p − |z|) + π̂p(0, m p) − π̂p(0, |z|)
π̂p(0, |z|) π̂p(0, m p)

= p

(

(m p − |z|) + m p(π̂p(0, m p) − π̂p(0, |z|))
π̂p(0, |z|)

)

. (2.19)

By (2.16), we have arrived at

ϕ̂p(0, |z|)−1 ≥ (1 − O(λ)) p(m p − |z|). (2.20)

This completes the proof of Theorem 1.2 assuming Proposition 2.1. ��

2.3 Asymptotic estimate of pc

We begin with the identity (2.15) for m = 1:

1 ≤ χp ≡ ϕ̂p(0, 1) = π̂p(0, 1)

1 − pπ̂p(0, 1)
< ∞ (p < pc). (2.21)

By (2.11) for m = 1 and r = 0, |π̂p(0, 1) − 1| is bounded by O(λ) uniformly in
p < pc. Since χp ↑ ∞ and m p ↓ 1 as p ↑ pc, we have

1 = pcπ̂pc(0, 1) ≡ pc lim
p↑pc

π̂p(0, 1), (2.22)

and therefore pc = π̂pc(0, 1)−1 = 1 + O(λ).
To improve this estimate, we use the following proposition:

Proposition 2.2 Let d > 2(α ∧ 2) and L � 1. Then, there is a C < ∞ such that, for
p ∈ (1, pc),

|∂pπ̂p(0, 1)| ≤ Cλ. (2.23)

We will prove Proposition 2.2 in Sect. 5.

Proof of Theorem 1.4 assuming Proposition 2.2 First we rewrite (2.22) as

1 = pc
(
π̂pc(0, 1) − π̂1(0, 1)

)+ (pc − 1)
(
π̂1(0, 1) − 1

)

+ (π̂1(0, 1) − 1
)+ pc. (2.24)

We already know (pc − 1)(π̂1(0, 1) − 1) = O(λ2). By the mean-value theorem and
Proposition 2.2,

|π̂pc(0, 1) − π̂1(0, 1)| = (pc − 1)|∂pπ̂p(0, 1)| ≤ O(λ2). (2.25)
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Moreover, by (2.11) for (p, m) = (1, 1) and r = 0, we have π̂
(N )

1 (0, 1) ≤ O(λ)N for
N ≥ 2. Therefore,

pc = 1 + π̂
(1)

1 (0, 1) − (π̂ (0)

1 (0, 1) − 1
)+ O(λ2). (2.26)

To complete the proof of Theorem 1.4, it suffices to show that, for d > 2(α ∧ 2),

π̂
(1)

1 (0, 1) − (π̂ (0)

1 (0, 1) − 1
) = 1

2

∞∑

n=2

D�2n(o) + O(λ2), (2.27)

where the sum is O(λ) if d > α ∧ 2, because of Proposition 1.1. In fact, (2.27)
follows from the same argument as in [15, Sect. 3.1] and using Proposition 1.1. The
main point is that, since p = 1, we can estimate π̂

(i)
1 (0, 1) with random walks. For

example, π̂
(0)
p (0, 1) − 1 is the sum over (x, n) ∈ Z

d × N of the probability that there
are at least two bond-disjoint connections from (o, 0) to (x, n) (cf., the definition (3.2)
of π

(0)
p (x, n) below). Since p = 1, each of these bond-disjoint connections can be

approximated by a random-walk path from o to x in n steps. Therefore, the main
contribution to π̂

(0)

1 (0, 1) − 1 is

1

2

∞∑

n=2

∑

x∈Zd

(
D�n(x)

)2 = 1

2

∞∑

n=2

D�2n(o), (2.28)

where the combinatorial factor 1
2 is due to the symmetry between the two bond-disjoint

connections (cf., [15, (3.11)]), which is absent in the main contribution to π̂
(1)

1 (0, 1)

(cf., [15, (3.22)]), leading to the factor 1
2 in the difference (2.27). The corrections to

π̂
(0)

1 (0, 1) − 1 and π̂
(1)

1 (0, 1) can be estimated as O(λ2) by applying Proposition 1.1
to the error terms in [15, Sect. 3.1]. For example, [15, (3.29)] is replaced by

∑

t,s,s′∈Z+:
0≤s<s′≤t

O(λ)

(1 ∨ t)d/(α∧2)

O(λ)

(1 ∨ (s′ − s))d/(α∧2)

≤
∞∑

t=0

O(λ2)

(1 ∨ t)d/(α∧2)−1
≤ O(λ2), (2.29)

where we have used d > 2(α∧2). This completes the proof of Theorem 1.4 assuming
Proposition 2.2. ��

2.4 Limit distribution

Assuming the lace expansion (2.3) and the bounds in Proposition 2.1 on the expansion
coefficients, we have that, for p ∈ (0, pc), k ∈ [−π, π ]d and m < m p,

ϕ̂p(k, m)−1 = π̂p(k, m)−1 − pm D̂(k), (2.30)
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where π̂p(k, m) = 1 + O(λ). In the course of the proof of Theorems 1.2 and 1.4 in
Sects. 2.2 and 2.3, we obtained pm p ≡ π̂p(0, m p)

−1 = 1 + O(λ) for p ∈ (0, pc]
and m pc = 1, as stated in Corollary 1.3. For m < 1, π̂pc(k, m) ≡ lim p↑pc π̂p(k, m) is
well-defined, due to (2.30) and the continuity of ϕ̂p(k, m) in p < pc for every m < 1,
as well as the uniform bound on π̂p(k, m).

Using these facts and Tauberian estimates, we first derive an asymptotic formula
of Z p(k; n) for every p ∈ (0, pc]. Then, by using this formula, we will prove
Theorem 1.5.

Since π̂p(k, m) = 1 + O(λ) and π̂p(0, m p)
−1 = pm p, we can reorganize (2.30)

for m < m p as

ϕ̂p(k, m)−1 = π̂p(k, m)−1 − pm D̂(k) −
(
π̂p(k, m p)

−1 − pm p D̂(k)
)

︸ ︷︷ ︸
p(m p−m) Â p(k,m)

+ π̂p(k, m p)
−1 − pm p D̂(k) −

(
π̂p(0, m p)

−1 − pm p

)

︸ ︷︷ ︸
pm p B̂p(k)

= pm p

((
1 − m

m p

)
Â p(k, m) + B̂p(k)

)
, (2.31)

where

Â p(k, m) = D̂(k) − π̂p(k, m p)
−1 − π̂p(k, m)−1

p(m p − m)
, (2.32)

B̂p(k) = 1 − D̂(k) + π̂p(k, m p)
−1 − π̂p(0, m p)

−1

pm p
. (2.33)

Similarly to (2.16), we can show that the second term in Â p(k, m) is O(λ) and the last
term in B̂p(k) is O(λ)Ĝµp(m p∨1)(k) ≡ O(λ)(1 − D̂(k)) for p ≤ pc, k ∈ [−π, π ]d

and m < m p. Then, we decompose Â p(k, m) as Â p(k, m) = Â(1)
p (k) + Â(2)

p (k, m),
where

Â(1)

p (k) = D̂(k) − m p ∂m π̂p(k, m p)
−1

pm p
, (2.34)

Â(2)

p (k, m) = m p ∂m π̂p(k, m p)
−1

pm p
− π̂p(k, m p)

−1 − π̂p(k, m)−1

p(m p − m)
, (2.35)

where ∂m π̂p(k, m p)
−1 is an abbreviation for ∂m π̂p(k, m)−1|m=m p . Again, similarly to

(2.16), we can show that the common term in (2.34) and (2.35) is O(λ) for any p ≤ pc
and k ∈ [−π, π ]d . In particular, Â(1)

p (k) is continuous at k = 0, and Â(1)
p (k)+ B̂p(k) =
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1 + O(λ). Using these quantities, we can rewrite (2.31) as

pm pϕ̂p(k, m) = 1
(

1 − m
m p

)
Â p(k, m) + B̂p(k)

= 1
(

1 − m
m p

)
Â(1)

p (k) + B̂p(k)
+ �̂p(k, m), (2.36)

where

�̂p(k, m) =
−
(

1− m
m p

)
Â(2)

p (k, m)
((

1− m
m p

)
Â p(k, m) + B̂p(k)

) ((
1− m

m p

)
Â(1)

p (k) + B̂p(k)
) . (2.37)

The first term of the rightmost expression in (2.36) can be expanded in powers of m
m p

as

1

Â(1)
p (k) + B̂p(k) − m

m p
Â(1)

p (k)

= 1

Â(1)
p (k) + B̂p(k)

∞∑

n=0

(
m

m p

)n
(

Â(1)
p (k)

Â(1)
p (k) + B̂p(k)

)n

. (2.38)

In Sect. 6, we will prove the following bound on �̂p(k, m):

Proposition 2.3 Let d > 2(α ∧ 2) and L � 1, and fix an ε ∈
(

0, 1 ∧ d−2(α∧2)
α∧2

)
.

Then, there is an ε-dependent constant Cε < ∞ such that

|∂ζ �̂p(k, m pζ )| ≤ Cε |1 − ζ |−2+ε (2.39)

holds for p ∈ (0, pc], k ∈ [−π, π ]d and ζ ∈ C with |ζ | < 1.

By this result and [18, Lemma 6.3.3(ii)], the coefficient of ζ n ≡
(

m
m p

)n
in �̂p(k, m)

is bounded by O(n−ε′
) for any ε′ < ε. Together with (2.36) and (2.38) and using

pm p = 1 + O(λ), we finally obtain

Z p(k; n) = m−n
p

pm p( Â(1)
p (k) + B̂p(k))

(
Â(1)

p (k)

Â(1)
p (k) + B̂p(k)

)n

+O(m−n
p n−ε′

) (n ≥ 1). (2.40)

Proof of Theorem 1.5 using (2.40) When k = 0, since B̂p(0) ≡ 0, we immediately
obtain from (2.40) that

Z p(0; n) = C1m−n
p + O(m−n

p n−ε′
) (n ≥ 1), (2.41)
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where C1 ≡ (pm p Â(1)
p (0))−1 = 1+O(λ). This completes the proof of Theorem 1.5(i).

To prove Theorem 1.5(ii) using (2.40), it suffices to investigate

(
Â(1)

p (k)

Â(1)
p (k) + B̂p(k)

)n

=

⎛

⎜
⎜
⎝

(

1 + B̂p(k)

Â(1)
p (k)

) Â(1)
p (k)

B̂p (k)

⎞

⎟
⎟
⎠

− n(1−D̂(k))
Â(1)

p (k)

B̂p (k)

1−D̂(k)

(2.42)

for small k, for which Â(1)
p (k) is bounded away from 0 and B̂p(k) is close to 0. For kn

defined in (1.23),

(

1 + B̂p(kn)

Â(1)
p (kn)

) Â(1)
p (kn )

B̂p (kn )

→
n↑∞ e,

n(1 − D̂(kn))

Â(1)
p (kn)

→
n↑∞

|k|α∧2

Â(1)
p (0)

, (2.43)

where we have used the continuity: Â(1)
p (kn) → Â(1)

p (0) = 1 + O(λ). By (2.12) and
(2.33), B̂p(k)/(1 − D̂(k)) = 1 + O(λ) uniformly in k. This completes the proof of
Theorem 1.5(ii) using (2.40). ��

3 Review of the lace expansion

3.1 Derivation of the expansion

In this section, we briefly explain the lace expansion (2.3) for oriented percolation.
In the literature, there are currently three different ways to obtain (2.3) and different
representations for πp(x, n). One is based on an algebraic approach using the Markov
property [19], another one is to use inclusion–exclusion and nested expectations [17],
and the other is to use inclusion–exclusion and the Markov property [22]. Here, we
provide a quick overview of the third approach, which is thought to be conceptually
simplest. The readers who are familiar to the lace expansion for oriented percolation
may skip this section and immediately go to Sect. 4.

Recall that ϕp(x, n) is the probability that (o, 0) is connected to (x, n). In order for
this event to occur, there are two disjoint events depending on whether there is or is
not a pivotal bond for {(o, 0) → (x, n)}. If a bond b is pivotal for {(o, 0) → (x, n)},
then (x, n) is not contained in the set of sites connected from (o, 0) without using b.
For (v, l) ∈ Z

d × Z+, let

C̃b(v, l) = {(y, n) ∈ Z
d × Z+ : (v, l) → (y, n) without using b}. (3.1)

If there is no pivotal bond for {(o, 0) → (x, n)}, then (o, 0) = (x, n) or there are at
least two bond-disjoint nonzero occupied paths from (o, 0) to (x, n). We denote this
event by {(o, 0) ⇒ (x, n)} and define

π(0)

p (x, n) = Pp((o, 0) ⇒ (x, n)). (3.2)
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Then, by taking the first pivotal bond b (if it exists) for {(o, 0) → (x, n)}, we obtain

ϕp(x, n) = π(0)

p (x, n) +
∑

b

Pp

(
(o, 0) ⇒ b → (x, n) /∈ C̃b(o, 0)

)
, (3.3)

where, by denoting b = (b, b), we have used the abbreviation

{(o, 0) ⇒ b → (x, n)} = {(o, 0) ⇒ b} ∩ {b → (x, n)}
= {(o, 0) ⇒ b} ∩ {b is occupied} ∩ {b → (x, n)}. (3.4)

By inclusion–exclusion in terms of the condition (x, n) /∈ C̃b(o, 0), the second term
in (3.3) is

∑

b

Pp((o, 0) ⇒ b → (x, n)) −
∑

b

Pp

(
(o, 0) ⇒ b → (x, n) ∈ C̃b(o, 0)

)

= (π(0)

p ∗ qp ∗ ϕp)(x, n) − R(1)

p (x, n) (3.5)

where we have applied the Markov property for the first term, and

R(1)

p (x, n) =
∑

b

Pp

(
(o, 0) ⇒ b → (x, n) ∈ C̃b(o, 0)

)
. (3.6)

Therefore,

ϕp(x, n) = π(0)

p (x, n) + (π(0)

p ∗ qp ∗ ϕp)(x, n) − R(1)

p (x, n). (3.7)

This completes the first step of the full expansion (2.3).
To proceed the expansion further, it suffices to consider R(1)

p (x, n). Given a set C of
vertices, we define

E(b,(x, n); C)={b→(x, n)∈C}∩{�b′pivotal for {b→(x, n)} satisfyingb′ ∈C} ,

(3.8)

and, for N ≥ 1 and
−→
bN = (b1, . . . , bN ),

Ẽ (N )−→
bN

(x, n) = {(o, 0) ⇒ b1} ∩
N⋂

i=1

E
(

bi , bi+1; C̃bi (bi−1)
)

, (3.9)
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with the convention b0 = (o, 0) and bN+1 = (x, n). For N ≥ 0, we define

π(N )

p (x, n) =

⎧
⎪⎪⎨

⎪⎪⎩

Pp((o, 0) ⇒ (x, n)) (N = 0),
∑

−→
bN

Pp

(

Ẽ (N )−→
bN

(x, n)

)

(N ≥ 1), (3.10)

R(N+1)

p (x, n) =
∑

−→
bN+1

Pp

(

Ẽ (N )−→
bN

(bN+1) ∩
{

bN+1 → (x, n) ∈ C̃bN+1(bN )
})

,

(3.11)

which are consistent with (3.2) and (3.6). It has been proved [14,22] that

R(N )

p (x, n) = π(N )

p (x, n) + (π(N )

p ∗ qp ∗ ϕp)(x, n) − R(N+1)

p (x, n). (3.12)

We note that R(N )
p (x, n) involves the sum over b1, . . . , bN with b j−1 < b j for j =

2, . . . , N , hence R(N )
p (x, n) = 0 if N > n. Repeatedly using (3.12), we arrive at the

following conclusion:

Proposition 3.1 ([14,22])

ϕp(x, n) = πp(x, n) + (πp ∗ qp ∗ ϕp)(x, n), (3.13)

where

πp(x, n) =
∞∑

N=0

(−1)N π(N )

p (x, n). (3.14)

Extending the above idea, we obtain the following representation1 of ∂pπp(x, n)

for p ∈ (0, pc), which will be used in Sect. 5 to prove Proposition 2.2.

Proposition 3.2 ([14]) For p ∈ (0, pc),

∂pπp(x, n) = 1

p

∞∑

N=1

(−1)N �(N )

p (x, n), (3.15)

1 Proposition 3.2 is a result of applying Russo’s formula [21] to ϕp(x, n) and compare the result with the
derivative of (3.13). Since Russo’s formula can be used only for finite systems, we should first approximate
ϕp(x, n) by a finite-volume version ϕp,R(x, n) ≡ Pp((o, 0) → (x, n) in �R), where �R = (Z ∩
[−R, R])d × Z+, and then apply Russo’s formula. This strategy is explained in [14, Sect. 3.2], where a
sort of finite-confinement argument of random-walk paths is used. Since the tail of the underlying random
walk in the current setting does not decay fast, we restrict p to p < pc and use the fact that χp < ∞ and
χ̃p,R ≡ ∑(x,n)/∈�R

ϕp(x, n) → 0 as R → ∞. Then, the corresponding quantities to the first and second

lines of [14, (3.58)] are bounded respectively by χ̃p,R and χ3
p χ̃p,R , both of which tend to zero as R → ∞,

hence we obtain (3.15), (3.16).
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Fig. 1 Schematic representations of π
(N )
p (x, n) for N = 0, 1, 2 and �

(N )
p (x, n) for N = 1, 2. The b’s are

bonds that are summed over

where

�(N )

p (x, n)=
∑

−→
bN ,b

N∑

j=1

Pp

(

Ẽ (N )−→
bN

(x, n) ∩
{

b=b j or b is pivotal for {b j → b j+1}
})

,

(3.16)

with the convention bN+1 = (x, n).

3.2 Diagrammatic bounds on the expansion coefficients

In this section, we provide diagrammatic bounds on π
(N )
p (x, n) and �

(N )
p (x, n). These

bounds consist of two-point functions, and are results of applications of the BK
inequality [4] and

ϕp(x, n) ≤ (qp ∗ ϕp)(x, n) (n ≥ 1). (3.17)

For example, π
(0)
p (x, n) is bounded as

π(0)

p (x, n) ≤ ϕp(x, n)2 = δx,oδn,0 + ((1 − δx,oδn,0) ϕp(x, n)
)2

≤ δx,oδn,0 + (qp ∗ ϕp)(x, n)2. (3.18)

The other terms are bounded similarly.
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Fig. 2 Schematic representations of T̃p and Hp

Let ϕ
(m)
p (x, n) = ϕp(x, n)mn and define the weighted bubble W (m)

p (k), the triangles
T (m)

p and T̃p, the square S(m)
p and the H-shaped diagrams Hp as (see Fig. 2)

W (m)

p (k) = sup
(x,n)

∑

(y,t)

(1 − cos(k · y))

×

⎧
⎪⎨

⎪⎩

(qp ∗ ϕp)(y, t) · (mqp ∗ ϕ
(m)
p )(y − x, t − n), if m < 1,

(mqp ∗ ϕ
(m)
p )(y, t) · (qp ∗ ϕp)(y − x, t − n), if m ≥ 1,

(3.19)

T (m)

p = sup
(x,n)

∑

(y,t)

(qp ∗ ϕp ∗ ϕp)(y, t) · (mqp ∗ ϕ(m)

p )(y − x, t − n), (3.20)

S(m)

p = sup
(x,n)

∑

(y,t)

(qp ∗ ϕp ∗ ϕp ∗ ϕp)(y, t) · (mqp ∗ ϕ(m)

p )(y − x, t − n), (3.21)

T̃p = sup
(x,n)

∑

(y,t)

(qp ∗ ϕp ∗ qp ∗ ϕp)(y, t) · (qp ∗ ϕp)(y − x, t − n), (3.22)

Hp = sup
(x,n),(x ′,n′)

∑

(yi ,ti ), i=1,2,3

(qp ∗ ϕp)(y1, t1) · (ϕp ∗ qp ∗ ϕp)(y2 − y1, t2 − t1)

×(qp ∗ ϕp)(y2 − x, t2 − n) · (qp ∗ ϕp)(y3 − y1, t3 − t1)

×(qp ∗ ϕp)(x ′ + y3 − y2, n′ + t3 − t2). (3.23)

The expansion coefficients obey the following bounds:
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Proposition 3.3 (i) For N ≥ 0 and r = 0, 1, 2,

∑

(x,n)∈Zd×N

nrπ(N )

p (x, n)mn ≤ (N +1)r (1+2T (m)

p )(2T (m)

p )(N−1)∨0

×
{

T (m)
p (r = 0, 1),

S(m)
p (r = 2),

(3.24)

∑

(x,n)∈Zd×Z+

(1 − cos(k · x)) π(N )

p (x, n)mn ≤ 3(N + 1)2(1 + 2T (m)

p )

× (2T (m)

p )(N−1)∨0W (m)

p (k). (3.25)

(ii) For N ≥ 1,

∑

(x,n)∈Zd×Z+

�(N )

p (x, n) ≤ N (1 + 2T (1)

p )
(
(T (1)

p + T̃p)(2T (1)

p )N−1

+Hp(2T (1)

p )(N−2)∨0
)

. (3.26)

The proof of the above proposition is irrelevant in this paper, and is found in [24].

4 Proof of Proposition 2.1

In this section, we prove Proposition 2.1 that was the key for the proof of Theorem 1.2.
First, in Sect. 4.1, we prove Proposition 2.1(iii) that is nothing to do with the lace
expansion. Then, in Sect. 4.2, we prove Proposition 2.1(ii) using the trigonometric
technique in [25, Sect. 5.1]. Finally, in Sect. 4.3, we prove Proposition 2.1(i) using the
diagrammatic bounds on the expansion coefficients in Sect. 3.2.

4.1 Proof of Proposition 2.1(iii)

First we prove f (0, 1) = 1. When p = 0, by definition we have f1(0, 1) = 0,
ϕ̂0(k, z) ≡ 1, µ0(z) ≡ 0 (cf., (2.7)) and hence Ĝµ0(z)(k) ≡ 1. Therefore, f2(0, 1) = 1
and f3(0, 1) = 0.

Next we discuss the continuity of f (p, m). Since f1(p, m) ≡ p(m∨1) is obviously
continuous in p and m, we only need to investigate f2(p, m) and f3(p, m).

Fix p < pc. To prove the continuity of f (p, m) in m < m p, it suffices to show that
f (p, m) is continuous in m ∈ [0, m̃] for every m̃ < m p. To prove this for f2(p, m),
it suffices to show that the derivative

∂m
ϕ̂p(k, meiθ )

Ĝµp(meiθ )(k)
= ∂m ϕ̂p(k, meiθ )

Ĝµp(meiθ )(k)
− ϕ̂p(k, meiθ )

∂m Ĝµp(meiθ )(k)

Ĝµp(meiθ )(k)2
(4.1)
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is bounded uniformly in (k, θ) ∈ [−π, π ]d+1 and m ∈ [0, m̃] (cf., [25, Lemma 5.13]).
However, by nϕp(x, n) ≤ (qp ∗ ϕp ∗ ϕp)(x, n) (cf., [22, (5.17)]), we have

|∂m ϕ̂p(k, meiθ )| ≤
∑

(x,n)

nϕp(x, n)mn−1 ≤ pϕ̂p(0, m)2 ≤ pϕ̂p(0, m̃)2. (4.2)

Since |Ĝµp(meiθ )(k)| ≥ 1
2 , the first term on the right-hand side of (4.1) is indeed

uniformly bounded. Also, since ϕ̂p(0, m) (≥1) is nondecreasing in m, we obtain

∣
∣
∣
∣
∣

∂m Ĝµp(meiθ )(k)

Ĝµp(meiθ )(k)2

∣
∣
∣
∣
∣
= |D̂(k) ∂mµp(meiθ )| ≤ ∂m ϕ̂p(0, m)

ϕ̂p(0, m)2 , (4.3)

which is uniformly bounded by p, as described in (4.2). Consequently, (4.1) is uni-
formly bounded by pϕ̂p(0, m̃)(2ϕ̂p(0, m̃)+1). This completes the proof of the conti-
nuity of f2(p, m) in m ∈ [0, m̃].

Similarly to the above, we can easily show that the derivative

∂m
Ĝµp(m)(k)

(
ϕ̂p
(
l, meiθ

)− 1
2

(
ϕ̂p
(
l + k, meiθ

)+ ϕ̂p
(
l − k, meiθ

)))

Ĝµp(meiθ )(l + jk) Ĝµp(meiθ )(l + j ′k)
(4.4)

is bounded uniformly in (k, θ) ∈ [−π, π ]d+1, ( j, j ′) = (0,±1), (1,−1) and m ∈
[0, m̃]. This justifies the continuity of f3(p, m) in m ∈ [0, m̃].

To prove the continuity of f (p, 1) in p < pc, it suffices to show that f (p, 1) is
continuous in p ∈ [0, p̃] for every p̃ < pc. First we note that, by Russo’s formula
[21] (see also Footnote 1) and the fact that χp ≡ ϕ̂p(0, 1) (≥ 1) is nondecreasing in
p, we have, for |z| = 1,

|∂pϕ̂p(k, z)| ≤
∑

(x,n)

∂pϕp(x, n) ≤
∑

(x,n)

(ϕp ∗ q1 ∗ ϕp)(x, n) ≤ χ2
p, (4.5)

∣
∣
∣
∣
∣

∂pĜµp(z)(k)

Ĝµp(z)(k)2

∣
∣
∣
∣
∣
= |D̂(k) ∂pµp(z)| ≤ ∂pχp

χ2
p

≤ 1. (4.6)

Since |Ĝµp(z)(k)| ≥ 1
2 , we obtain

∣
∣
∣
∣
∣
∂p

ϕ̂p(k, z)

Ĝµp(z)(k)

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

∂pϕ̂p(k, z)

Ĝµp(z)(k)

∣
∣
∣
∣
∣
+ |ϕ̂p(k, z)|

∣
∣
∣
∣
∣

∂pĜµp(z)(k)

Ĝµp(z)(k)2

∣
∣
∣
∣
∣
≤ χ p̃(2χ p̃ + 1), (4.7)

uniformly in k ∈ [−π, π ]d , |z| = 1 and p ∈ [0, p̃]. This implies the continuity of
f2(p, 1) in p ∈ [0, p̃] for every p̃ < pc.

The continuity of f3(p, 1) can be proved in a similar way. This completes the proof
of Proposition 2.1(iii). ��
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4.2 Proof of Proposition 2.1(ii)

In this section, we prove that, for every p < pc and m < m p, the weaker bound
f (p, m) ≤ 3 and (2.11), (2.12) imply the stronger bound f (p, m) ≤ 2 if L � 1.

First, by (2.17) (recall that this is a consequence of the assumed bound (2.11) and
the fact that ϕ̂p(0, m) diverges as m ↑ m p) and (2.11), we immediately obtain

f1(p, m) ≡ p(m ∨ 1) ≤ pm p = π̂p(0, m p)
−1 = 1 + O(λ) ≤ 2. (4.8)

Next we consider f2(p, m). First we rewrite ϕ̂p(k, z)/Ĝµp(z)(k) as

ϕ̂p(k, z)

Ĝµp(z)(k)
= π̂p(k, z) + ϕ̂p(k, z)

(
1

Ĝµp(z)(k)
− π̂p(k, z)

ϕ̂p(k, z)

)

= π̂p(k, z) + ϕ̂p(k, z)
(

pzπ̂p(k, z) − µp(z)
)

D̂(k)

= π̂p(k, z) + ϕ̂p(k, z)

(

p|z|π̂p(k, z) − 1 + 1

ϕ̂p(0, |z|)
)

×ei arg(z) D̂(k), (4.9)

where

p|z|π̂p(k, z) − 1 + 1

ϕ̂p(0, |z|)
= p|z| (π̂p(k, z) − π̂p(0, |z|))− ( 1 − p|z|π̂p(0, |z|)

︸ ︷︷ ︸
π̂p(0,|z|)/ϕ̂p(0,|z|)

)+ 1

ϕ̂p(0, |z|)

= p|z| (πp(k, z) − πp(0, |z|))+ 1 − π̂p(0, |z|)
ϕ̂p(0, |z|) . (4.10)

We note that |π̂p(k, z) − 1| = O(λ), due to (2.11) for r = 0, and that
|ϕ̂p(k, z)/ϕ̂p(0, |z|)| ≤ 1 by definition. To complete the proof of f2(p, m) = 1 +
O(λ) ≤ 2, it thus suffices to show that

|ϕ̂p(k, z)| (|πp(k, z) − πp(0, z)| + |πp(0, z) − πp(0, |z|)|) = O(λ), (4.11)

uniformly in k ∈ [−π, π ]d and z ∈ C with |z| = m or 1. However, by (2.11), (2.12)
and denoting θ = arg(z), we have
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|πp(k, z)−πp(0, z)|≤ O(λ) Ĝµp(m∨1)(k)−1 ≤ O(λ)
(

1−µp(m ∨ 1)+1− D̂(k)
)
,

(4.12)

|πp(0, z)−πp(0, |z|)|=
∣
∣
∣
∣
∣
∣

∑

(x,n)

πp(x, n)|z|n(eiθn −1)

∣
∣
∣
∣
∣
∣
≤|θ |

∑

(x,n)

n|πp(x, n)||z|n = O(λ)|θ |.

(4.13)

On the other hand, by f2(p, m) ≤ 3, (2.6) and |µp(z)| ≤ µp(m ∨ 1) for |z| = m or
1 (cf., (2.7)),

|ϕ̂p(k, z)| ≤ 3c

1 − µp(m ∨ 1) + |θ | + 1 − D̂(k)
. (4.14)

This completes the proof of (4.11), and hence f2(p, m) ≤ 2.
For f3(p, m), we introduce the following notation for f̂ (l) ≡∑x∈Zd f (x)eil·x :

�k f̂ (l) = f̂ (l + k) + f̂ (l − k) − 2 f̂ (l). (4.15)

We note that − 1
2�k f̂ (l) is the Fourier transform of (1 − cos(k · x)) f (x):

− 1

2
�k f̂ (l) =

∑

x∈Zd

f (x)

(

eil·x − ei(l+k)·x + ei(l−k)·x

2

)

=
∑

x∈Zd

f (x) (1 − cos(k · x)) eil·x . (4.16)

Recall the definition of f3(p, m) whose numerator contains − 1
2�k ϕ̂p(l, z). Let

âp(l, z) = pz D̂(l) π̂p(l, z) ≡
∑

(x,n)

(qp ∗ πp)(x, n)zn cos(l · x), (4.17)

so that ϕ̂p(l, z) = π̂p(l, z)/(1 − âp(l, z)). Then, we have

�k ϕ̂p(l, z)= �k π̂p(l, z)

1 − âp(l, z)
+
∑

j=±1

(π̂p(l+ jk, z)−π̂p(l, z))(âp(l+ jk, z)−âp(l, z))

(1 − âp(l, z))(1 − âp(l + jk, z))

+π̂p(l, z)�k
1

1 − âp(l, z)
, (4.18)

where, by (2.11), (2.12) and f2(p, m) ≤ 2,

∣
∣
∣
∣
�k π̂p(l, z)

1 − âp(l, z)

∣
∣
∣
∣ =

∣
∣
∣
∣
�k π̂p(l, z)

π̂p(l, z)

∣
∣
∣
∣ |ϕ̂p(l, z)| ≤ O(λ) Ĝµp(m∨1)(k)−1|Ĝµp(z)(l)|.

(4.19)
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The second term of (4.18) can be bounded as follows. First, by |eil·x (ei jk·x − 1)| ≤
| sin(k · x)| + 1 − cos(k · x) for j = ±1,

|π̂p(l + jk, z) − π̂p(l, z)| ≤
∑

(x,n)

| sin(k · x)||πp(x, n)||z|n

+
∑

(x,n)

(1 − cos(k · x)) |πp(x, n)||z|n, (4.20)

where the second term is bounded by O(λ)Ĝµp(m∨1)(k)−1, due to (2.12). By the
Cauchy–Schwarz inequality and using (2.11), (2.12), the first term is bounded by

⎛

⎝
∑

(x,n):x �=o

|πp(x, n)||z|n
⎞

⎠

1/2⎛

⎝
∑

(x,n):x �=o

sin2(k · x)|πp(x, n)||z|n
⎞

⎠

1/2

≤ O(λ)1/2

⎛

⎝
∑

(x,n)

(1 − cos(k · x)) |πp(x, n)||z|n
⎞

⎠

1/2

≤ O(λ) Ĝµp(m∨1)(k)−1/2. (4.21)

Therefore, |π̂p(l + jk, z) − π̂p(l, z)| ≤ O(λ)Ĝµp(m∨1)(k)−1/2. Similarly, we can

show |âp(l + jk, z) − âp(l, z)| ≤ O(1)Ĝµp(m∨1)(k)−1/2, where we use

∑

(x,n)

(1 − cos(k · x)) (qp ∗ |πp|)(x, n)|z|n

≤ 5p|z|
(∑

y

(1 − cos(k · y)) D(y)

︸ ︷︷ ︸
1−D̂(k)

∑

(x,n)

|πp(x − y, n − 1)||z|n−1

︸ ︷︷ ︸
1+O(λ)

+
∑

y

D(y)
∑

(x,n)

(1 − cos (k · (x − y))) |πp(x − y, n − 1)||z|n−1

︸ ︷︷ ︸
O(λ) Ĝµp (m∨1)(k)−1

)

≤ 10 (2 + O(λ)) Ĝµp(m∨1)(k)−1. (4.22)

Here, the first inequality is due to 1 − cos(X + Y ) ≤ 5(1 − cos X) + 5(1 − cos Y )

(cf., [25, (4.50)]), and the second inequality is due to f1(p, m) ≤ 2 and 1 − D̂(k)
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≤ 2Ĝµp(m∨1)(k)−1 (since µp(m ∨ 1) ∈ [0, 1]). Therefore, for j = ±1,

∣
∣
∣
∣
(π̂p(l + jk, z) − π̂p(l, z))(âp(l + jk, z) − âp(l, z))

(1 − âp(l, z))(1 − âp(l + jk, z))

∣
∣
∣
∣

≤ O(λ) Ĝµp(m∨1)(k)−1|Ĝµp(z)(l) Ĝµp(z)(l + jk)|. (4.23)

To complete bounding �k ϕ̂p(l, z), it remains to investigate �k(1 − âp(l, z))−1 in
the last term of (4.18). Let

âcos
p (l, z; k) = ∑

(x,n)

(qp ∗ πp)(x, n)zn cos(l · x) cos(k · x), (4.24)

âsin
p (l, z; k) = ∑

(x,n)

(qp ∗ πp)(x, n)zn sin(l · x) sin(k · x). (4.25)

Then, by [6, Lemma 5.3],

�k
1

1 − âp(l, z)
= ϕ̂p(l, z)

π̂p(l, z)

⎛

⎝
∑

j=±1

ϕ̂p(l + jk, z)

π̂p(l + jk, z)

(
âcos

p (l, z; k) − âp(l, z)
)

+2
∏

j=±1

ϕ̂p(l + jk, z)

π̂p(l + jk, z)
âsin

p (l, z; k)2

⎞

⎠ , (4.26)

where, by (4.22),

|âcos
p (l, z; k) − âp(l, z)| ≤

∑

(x,n)

(1 − cos(k · x)) (qp ∗ |πp|)(x, n)|z|n

≤ 10 (2 + O(λ)) Ĝµp(m∨1)(k)−1. (4.27)

Moreover, by the Cauchy–Schwarz inequality,

âsin
p (l, z; k)2 ≤

⎛

⎝
∑

(x,n)

(qp ∗ |πp|)(x, n)|z|n sin2(l · x)

⎞

⎠

×
∑

(x,n)

(qp ∗ |πp|)(x, n)|z|n sin2(k · x)

≤ 22

⎛

⎝
∑

(x,n)

(1 − cos(l · x)) (qp ∗ |πp|)(x, n)|z|n
⎞

⎠

×
∑

(x,n)

(1 − cos(k · x)) (qp ∗ |πp|)(x, n)|z|n

≤ 202(2 + O(λ))2Ĝµp(m∨1)(l)
−1Ĝµp(m∨1)(k)−1. (4.28)
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As a result, since f2(p, m) ≤ 2 and |Ĝµp(z)(l)| ≤ Ĝµp(m∨1)(l) for |z| = m or 1, we
obtain

∣
∣
∣
∣�k

1

1 − âp(l, z)

∣
∣
∣
∣ ≤ Ĝµp(m∨1)(k)−1

⎛

⎝40 (2+O(λ))
∑

j=±1

|Ĝµp(z)(l) Ĝµp(z)(l + jk)|

+ 802 (2 + O(λ))2 |Ĝµp(z)(l + k) Ĝµp(z)(l − k)|
⎞

⎠

≤ 2K (1 + O(λ)) Ĝµp(m∨1)(k)−1

×
∑

( j, j ′)=(0,±1),(1,−1)

|Ĝµp(z)(l+ jk) Ĝµp(z)(l+ j ′k)|, (4.29)

where K = 2 · 802.
Finally, by summarizing (4.18), (4.19), (4.23) and (4.29), we arrive at

Ĝµp(m∨1)(k) | 1
2�k ϕ̂p(l, z)|

K
∑

( j, j ′)=(0,±1),(1,−1) |Ĝµp(z)(l + jk) Ĝµp(z)(l + j ′k)| ≤ 1 + O(λ) ≤ 2. (4.30)

This completes the proof of Proposition 2.1(ii). ��

4.3 Proof of Proposition 2.1(i)

Proposition 2.1(i) is an immediate consequence of Proposition 3.3(i) and the following
lemma:

Lemma 4.1 Let d > 2(α ∧ 2) and L � 1, and fix p < pc and m < m p. Then,
f (p, m) ≤ 3 implies that there are (p, m)-independent constants CT , CW < ∞ such
that

T (m)

p ≤ CT λ, W (m)

p (k) ≤ CW λĜµp(m∨1)(k)−1. (4.31)

Proof Note that the Fourier transform of ϕ
(m)
p (x, n) ≡ ϕp(x, n)mn for m < m p is

ϕ̂(m)

p (k, eiθ ) =
∑

(x,n)

ϕ(m)

p (x, n)eik·x eiθn

=
∑

(x,n)

ϕp(x, n)eik·x (meiθ )n = ϕ̂p(k, meiθ ). (4.32)
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By f1(p, m) ∨ f2(p, m) ≤ 3 and (2.6), T (m)
p is bounded as

T (m)

p ≤ p2m
∫

[−π,π ]d

ddk

(2π)d
D̂(k)2

π∫

−π

dθ

2π
|ϕ̂p(k, eiθ )|2|ϕ̂(m)

p (k, e−iθ )|

≤ 32
∫

[−π,π ]d

ddk

(2π)d
D̂(k)2

π∫

−π

dθ

2π

⎛

⎝ 3c
1

ϕ̂p(0,1)
+ |θ | + 1 − D̂(k)

⎞

⎠

2

× 3c
1

ϕ̂p(0,m)
+ |θ | + 1 − D̂(k)

≤ O(1)

∫

[−π,π ]d

ddk

(2π)d

D̂(k)2

(1 − D̂(k))2
= O(1)

∞∑

n=2

(n − 1) D�n(o) ≤ O(λ),

(4.33)

where the last inequality is due to (1.6) and d > 2(α ∧ 2).
To prove the bound on W (m)

p (k), we first note that, by (qp ∗ ϕp)(y, t) ≤ (qp ∗ qp ∗
ϕp)(y, t) for t ≥ 2,

∑

(y,t)

(1 − cos(k · y)) (qp ∗ ϕp)(y, t) · (qp ∗ ϕp)(y − x, t − n)

= p
∑

y∈Zd

(1 − cos(k · y)) D(y) · (qp ∗ ϕp)(y − x, 1 − n)

+
∑

(y,t):t≥2

(1 − cos(k · y)) (qp ∗ qp ∗ ϕp)(y, t) · (qp ∗ ϕp)(y − x, t − n).

(4.34)

In the first sum on the right-hand side of (4.34), 1 − n must be larger than or equal to
1. If 1 − n = 1, then, since (qp ∗ϕp)(y − x, 1) ≡ pD(y − x) ≤ p‖D‖∞ ≤ Cpλ (see
(1.6)), f1(p, m) ≤ 3 and 1 − D̂(k) ≤ 2Ĝµp(m∨1)(k)−1 (see below (4.22)), we obtain

p
∑

y

(1 − cos(k · y)) D(y) · (qp ∗ ϕp)(y − x, 1)m ≤ 32Cλ
(

1 − D̂(k)
)

≤ 18CλĜµp(m∨1)(k)−1. (4.35)

If 1 − n ≥ 2, then we use (qp ∗ ϕp)(y, 1 − n) ≤ (qp ∗ qp ∗ ϕp)(y, 1 − n), f1(p, m) ∨
f2(p, m) ≤ 3, (2.6) and 1 − D̂(k) ≤ 2Ĝµp(m∨1)(k)−1 to obtain that, for m < 1,
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p
∑

y

(1 − cos(k · y)) D(y) · (mqp ∗ mqp ∗ ϕ(m)

p )(y − x, 1 − n)

≤ 3
(

1 − D̂(k)
) ∫

[−π,π ]d

ddl

(2π)d
D̂(l)2

π∫

−π

dθ

2π

33c
1

ϕ̂p(0,m)
+ |θ | + 1 − D̂(l)

≤ O(1) Ĝµp(m∨1)(k)−1
∫

[−π,π ]d

ddl

(2π)d

D̂(l)2

1 − D̂(l)
≤ O(λ) Ĝµp(m∨1)(k)−1, (4.36)

where the last inequality is due to (1.6) and d > α ∧ 2. The other case of m ≥ 1 can
be estimated in the same way.

To complete the proof of the bound on W (m)
p (k), it remains to show that the second

sum on the right-hand side of (4.34) is bounded by a multiple of λĜµp(m∨1)(k)−1.

Using 1 − cos
∑3

j=1 X j ≤ 7
∑3

j=1(1 − cos X j ) (cf., [25, (4.50)]), we have

(1 − cos(k · y)) (qp ∗ qp ∗ ϕp)(y, t)

≤ 7p2
∑

u,v∈Zd

(
(1 − cos(k · u)) D(u)D(v − u)ϕp(y − v, t − 2)

+ D(u) (1 − cos (k · (v − u))) D(v − u)ϕp(y − v, t − 2)

+ D(u)D(v − u) (1 − cos (k · (y − v))) ϕp(y − v, t − 2)
)
. (4.37)

Recalling (4.16) and using f1(p, m) ≤ 3, we obtain that, for m < 1,

∑

(y,t)

(1 − cos(k · y)) (qp ∗ qp ∗ ϕp)(y, t) · (mqp ∗ ϕ(m)

p )(y − x, t − n)

≤ 7 · 33

⎛

⎜
⎝2
(

1 − D̂(k)
) ∫

[−π,π ]d

ddl

(2π)d
D̂(l)2

π∫

−π

dθ

2π
|ϕ̂p(l, eiθ ) ϕ̂(m)

p (l, e−iθ )|

+
∫

[−π,π ]d

ddl

(2π)d
|D̂(l)|3

π∫

−π

dθ

2π

∣
∣
∣ 1

2�k ϕ̂p(l, eiθ )

∣
∣
∣ |ϕ̂(m)

p (l, e−iθ )|
⎞

⎟
⎠ .

(4.38)

Similarly to the above, by using 1 − D̂(k) ≤ 2Ĝµp(m∨1)(k)−1, f2(p, m) ≤ 3 and
(2.6), the first term on the right-hand side of (4.38) is bounded by a multiple of
λĜµp(m∨1)(k)−1 when d > α ∧ 2. For the second term on the right-hand side of
(4.38), we use f2(p, m) ∨ f3(p, m) ≤ 3 to obtain
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∫

[−π,π ]d

ddl

(2π)d
|D̂(l)|3

π∫

−π

dθ

2π

∣
∣
∣ 1

2�k ϕ̂p(l, eiθ )

∣
∣
∣ |ϕ̂(m)

p (l, e−iθ )|

≤ 32 K Ĝµp(m∨1)(k)−1
∑

( j, j ′)=(0,±1),(1,−1)

∫

[−π,π ]d

ddl

(2π)d
D̂(l)2

×
π∫

−π

dθ

2π
|Ĝµp(eiθ )(l + jk)||Ĝµp(eiθ )(l + j ′k)||Ĝµp(me−iθ )(l)|. (4.39)

By using (2.6) as in (4.33), the summand is bounded by a multiple of λ for any k (the
worst case is when k = 0) as long as d > 2(α ∧ 2). This completes the proof of the
bound on W (m)

p (k) and of Lemma 4.1. ��

5 Proof of Proposition 2.2

In this section, we prove Proposition 2.2 that was used in Sect. 2.3 to prove Theo-
rem 1.4. First we note that, by (3.15),

|∂pπ̂p(0, 1)| ≤ 1

p

∞∑

N=1

∑

(x,n)

�(N )

p (x, n), (5.1)

where �
(N )
p (x, n) obeys the diagrammatic bound (3.26), with T (1)

p ≤ CT λ as in (4.31).
Therefore, to complete the proof of Proposition 2.2, it suffices to prove the following
lemma:

Lemma 5.1 Let d > 2(α ∧ 2) and L � 1. Then, there are CT̃ , CH < ∞ such that,
for p ∈ (1, pc),

T̃p ≤ CT̃ λ, Hp ≤ CHλ2. (5.2)

Proof The bound on T̃p can be proved in the same way as in (4.33). Taking the Fourier
transform and using Theorem 1.2 and pc = 1 + O(λ) ≤ 2, we can bound Hp as

Hp ≤ p5
∫

[−π,π ]2d

ddk1

(2π)d

ddk2

(2π)d
D̂(k1)

2 D̂(k2)
2
∣
∣
∣D̂(k1 − k2)

∣
∣
∣

π∫

−π

dθ1

2π

∣
∣
∣ϕ̂p(k1, eiθ1)

∣
∣
∣
2

×
π∫

−π

dθ2

2π

∣
∣
∣ϕ̂p(k2, eiθ2)

∣
∣
∣
2 ∣∣
∣ϕ̂p(k1 − k2, ei(θ1−θ2))

∣
∣
∣
2

≤ 25
∫

[−π,π ]2d

ddk1

(2π)d

ddk2

(2π)d
D̂(k1)

2 D̂(k2)
2

π∫

−π

dθ1

2π

(
C

|θ1| + 1 − D̂(k1)

)2
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×
π∫

−π

dθ2

2π

(
C

|θ2| + 1 − D̂(k2)

)2 ( C

|θ1 − θ2| + 1 − D̂(k1 − k2)

)2

≤
∫

[−π,π ]2d

ddk1

(2π)d

ddk2

(2π)d

D̂(k1)
2 D̂(k2)

2

(1 − D̂(k2))2

×
π∫

−π

dθ1

2π

O(1)

(|θ1| + 1 − D̂(k1))2(|θ1| + 1 − D̂(k1 − k2))

≤ O(1)

∫

[−π,π ]d

ddk2

(2π)d

D̂(k2)
2

(1 − D̂(k2))2

∫

[−π,π ]d

ddk1

(2π)d

D̂(k1)
2

(1 − D̂(k1) ∨ D̂(k1 − k2))2
.

(5.3)

To prove the bound on Hp in (5.2), it suffices to show that the last integral with respect
to k1 is O(λ) for every k2. Since this is trivial if D̂(k1) ≥ D̂(k1 −k2) (then the integrals
in (5.3) are decoupled, each of them is O(λ)), it is sufficient to prove that

∫

[−π,π ]d

ddk1

(2π)d

D̂(k1)
2

(1 − D̂(k1 − k2))2
= O(λ). (5.4)

However, by (1.6), the integral over ‖k1 − k2‖∞ > (�L)−1 is bounded as

∫

‖k1−k2‖∞>(�L)−1

ddk1

(2π)d

D̂(k1)
2

(1 − D̂(k1 − k2))2
≤ 1

�2

∫

[−π,π ]d

ddk1

(2π)d
D̂(k1)

2

≤ ‖D‖∞
�2 = O(λ). (5.5)

Moreover, by (1.7), the integral over ‖k1 − k2‖∞ ≤ (�L)−1 is bounded as, for α �= 2,

∫

‖k1−k2‖∞≤(�L)−1

ddk1

(2π)d

D̂(k1)
2

(1 − D̂(k1 − k2))2
≤ O(L−2(α∧2))

(�L)−1
∫

0

dr rd−1−2(α∧2)

= O(λ). (5.6)

The case for α = 2 can be estimated similarly, since the log divergence as |k| → 0 in
(1.7) is unimportant in (5.6) as long as d > 4. This completes the proof of Lemma 5.1.

��
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6 Proof of Proposition 2.3

In this section, we prove Proposition 2.3 that was used in Sect. 2.4 to show (2.40), the
key ingredient for the proof of Theorem 1.5.

First we derive an expression for ∂ζ �̂p(k, m pζ ). Since Â p(k, z) = Â(1)
p (k) +

Â(2)
p (k, z), where Â(1)

p (k) is independent of z, we have

∂ζ �̂p(k, m pζ ) ≡ ∂ζ

−(1 − ζ ) Â(2)
p (k, m pζ )

(
(1 − ζ ) Â p(k, m pζ ) + B̂p(k)

) (
(1 − ζ ) Â(1)

p (k) + B̂p(k)
)

= Â(2)
p (k, m pζ ) − (1 − ζ )∂ζ Â(2)

p (k, m pζ )
(
(1 − ζ ) Â p(k, m pζ ) + B̂p(k)

) (
(1 − ζ ) Â(1)

p (k) + B̂p(k)
)

+ −(1 − ζ ) Â(2)
p (k, m pζ )

(1 − ζ ) Â(1)
p (k) + B̂p(k)

× Â(1)
p (k) + Â(2)

p (k, m pζ ) − (1 − ζ )∂ζ Â(2)
p (k, m pζ )

(
(1 − ζ ) Â p(k, m pζ ) + B̂p(k)

)2

+ −(1 − ζ ) Â(2)
p (k, m pζ )

(1 − ζ ) Â p(k, m pζ ) + B̂p(k)

Â(1)
p (k)

(
(1 − ζ ) Â(1)

p (k) + B̂p(k)
)2 .

(6.1)

Recall that

Â(2)

p (k, m pζ ) = ∂ζ π̂p(k, m p)
−1

pm p
− π̂p(k, m p)

−1 − π̂p(k, m pζ )−1

pm p(1 − ζ )
, (6.2)

where ∂ζ π̂p(k, m p)
−1 is an abbreviation of ∂ζ π̂p(k, m pζ )−1|ζ=1 ≡ m p∂zπ̂p

(k, z)−1|z=m p , so that

(1 − ζ ) ∂ζ Â(2)

p (k, m pζ ) = (1 − ζ ) ∂ζ

(

− π̂p(k, m p)
−1 − π̂p(k, m pζ )−1

pm p(1 − ζ )

)

= ∂ζ π̂p(k, m pζ )−1

pm p
− π̂p(k, m p)

−1 − π̂p(k, m pζ )−1

pm p(1 − ζ )

= ∂ζ π̂p(k, m pζ )−1−∂ζ π̂p(k, m p)
−1

pm p
+ Â(2)

p (k, m pζ ). (6.3)

Therefore, Â(2)
p (k, m pζ ) − (1 − ζ )∂ζ Â(2)

p (k, m pζ ) in (6.1) can be replaced by
â(2)

p (k, m pζ ), which is

â(2)

p (k, m pζ ) = ∂ζ π̂p(k, m p)
−1 − ∂ζ π̂p(k, m pζ )−1

pm p
. (6.4)
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Now, Proposition 2.3 is an immediate consequence of the following lemma:

Lemma 6.1 Let d > 2(α ∧ 2), ε ∈ (0, 1 ∧ d−2(α∧2)
α∧2 ) and L � 1. Then, the following

hold uniformly in p ∈ (0, pc], k ∈ [−π, π ]d and ζ ∈ C with |ζ | < 1:

(i) There is a positive constant c such that

|(1 − ζ ) Â p(k, m pζ ) + B̂p(k)|
|(1 − ζ ) Â(1)

p (k) + B̂p(k)|
}

≥ c|1 − ζ |. (6.5)

(ii) There is a finite constant cε such that

|A(2)
p (k, m pζ )|

|â(2)
p (k, m pζ )|

}

≤ cε |1 − ζ |ε . (6.6)

In the following proof, the constant in the O( · ) term is independent of p, k and ζ .

Proof of Lemma 6.1(i) Since both bounds can be proved in the same way, we only
prove the bound on |(1 − ζ ) Â(1)

p (k) + B̂p(k)|.
We consider the following four cases: (a) �ζ ≤ 0; (b) �ζ ≥ 0 with �(1 − ζ ) ≥

�(1 − ζ ); (c) �ζ ≥ 0 with �(1 − ζ ) ≤ �(1 − ζ ) and D̂(k) ≥ 1 − �; (d) �ζ ≥ 0
and D̂(k) ≤ 1 − �. Note that these four cases exhaust all ζ ∈ C with |ζ | ≤ 1. For the
moment, we abbreviate Â(1)

p (k) to A and B̂p(k) to B.

(a) Since A, B ∈ R and |w| ≥ |�w| for any w ∈ C,

|(1 − ζ )A + B| = |A + B − Aζ | ≥ |A + B + A�(−ζ )|. (6.7)

Since D̂(k) > −1 + � holds for all k ∈ [−π, π ]d (cf., (1.6)), we have A =
D̂(k) + O(λ) ≥ −1 + � − O(λ). Since A + B = 1 + O(λ) and �(−ζ ) ≥ 0,
we obtain

|A + B + A�(−ζ )| = A + B + A�(−ζ ) ≥ � − O(λ), (6.8)

uniformly in the concerned ζ .
(d) Using �ζ ≥ 0 and D̂(k) ≤ 1 − �, we can prove (6.8) similarly.
(b) Since A + B = 1+ O(λ), B ≥ 0, �ζ ≥ 0, and �(1−ζ ) ≥ 1√

2
|1−ζ |, we obtain

|(1 − ζ )A + B| = |(1 − ζ )(A + B) + Bζ |
≥ |(A + B)�(1 − ζ ) + B�ζ |
≥ (A + B)�(1 − ζ ) ≥ 1 − O(λ)√

2
|1 − ζ |. (6.9)
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(c) Since A = D̂(k)+ O(λ) ≥ 1 −�− O(λ) and |�(1 − ζ )| ≥ 1√
2
|1 − ζ |, by using

the imaginary part (i.e., |w| ≥ |�w| for w ∈ C) we obtain

|(1 − ζ )A + B| ≥ |A�(1 − ζ )| = A|�(1 − ζ )| ≥ 1 − � − O(λ)√
2

|1 − ζ |.
(6.10)

This completes the proof of Lemma 6.1(i). ��

Proof of Lemma 6.1(ii) First, by adding and subtracting, we can rewrite Â(2)
p (k, m pζ )

in (6.2) as

Â(2)

p (k, m pζ ) = − ∂ζ π̂p(k, m p)

pm pπ̂p(k, m p)2 + π̂p(k, m p) − π̂p(k, m pζ )

pm p(1 − ζ )π̂p(k, m p)π̂p(k, m pζ )

= −∂ζ π̂p(k, m p) − π̂p(k,m p)−π̂p(k,m pζ )

1−ζ

pm pπ̂p(k, m p)2

+
(
π̂p(k, m p) − π̂p(k, m pζ )

)2

pm p(1 − ζ )π̂p(k, m p)2π̂p(k, m pζ )
, (6.11)

and â(2)
p (k, m pζ ) in (6.4) as

â(2)

p (k, m pζ ) = − ∂ζ π̂p(k, m p)

pm pπ̂p(k, m p)2 + ∂ζ π̂p(k, m pζ )

pm pπ̂p(k, m pζ )2

= −∂ζ π̂p(k, m p) − ∂ζ π̂p(k, m pζ )

pm pπ̂p(k, m p)2

+
(
π̂p(k, m p)

2 − π̂p(k, m pζ )2
)

∂ζ π̂p(k, m pζ )

pm pπ̂p(k, m p)2π̂p(k, m pζ )2 . (6.12)

Since pm pπ̂p(k, m p)
2 = 1 + O(λ), π̂p(k, m pζ )2 = 1 + O(λ), |∂ζ π̂p(k, m pζ )| =

O(λ) and |π̂p(k, m p) − π̂p(k, m pζ )| = O(λ)|1 − ζ |, the second terms in (6.11) and
(6.12) are O(|1 − ζ |). To prove (6.6), it thus suffices to show that the numerator of the
first term in (6.11) and that in (6.12) are both bounded by Oε(1)|1 − ζ |ε , where the
constant in the Oε(1) term may depend on ε. Since both can be proved similarly, we
only prove that |∂ζ π̂p(k, m p) − ∂ζ π̂p(k, m pζ )| ≤ Oε(1)|1 − ζ |ε .

Note that

|∂ζ π̂p(k, m p) − ∂ζ π̂p(k, m pζ )| =
∣
∣
∣
∣
∣
∣

∑

(x,n):n≥2

n(1 − ζ n−1)πp(x, n)eik·x mn
p

∣
∣
∣
∣
∣
∣

≤
∑

(x,n):n≥2

n|1 − ζ n−1| |πp(x, n)|mn
p. (6.13)
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For n ≥ 2, we have

|1 − ζ n−1| =
∣
∣
∣
∣
∣
(1 − ζ n−1)1−ε

(
1 − ζ n−1

1 − ζ

)ε

(1 − ζ )ε

∣
∣
∣
∣
∣

≤ 21−ε

∣
∣
∣
∣
∣

n−2∑

l=0

ζ l

∣
∣
∣
∣
∣

ε

|1 − ζ |ε ≤ 2|1 − ζ |εnε . (6.14)

Moreover, for ε ∈ (0, 1), we have (cf., [18, Sect. 6.3])

n1+ε = n2

(1 − ε) �(1 − ε)

∞∫

0

e−nρ1/(1−ε)

dρ. (6.15)

Applying these to (6.13) and using the diagrammatic bound (3.24) for r = 2 and
T

(m̃ρ )

p ≤ CT λ with m̃ρ = m pe−ρ1/(1−ε)
, we have

|∂ζ π̂p(k, m p) − ∂ζ π̂p(k, m pζ )| ≤ 2|1 − ζ |ε
(1 − ε) �(1 − ε)

∞∫

0

dρ
∑

(x,n)

n2|πp(x, n)| m̃n
ρ

≤ 2(1 + 2CT λ)|1 − ζ |ε
(1 − ε) �(1 − ε)

×
∞∑

N=0

(N + 1)2(2CT λ)(N−1)∨0

∞∫

0

dρ S
(m̃ρ )

p ,

(6.16)

where, by (1.15) and p ≤ pm p = 1 + O(λ),

∞∫

0

dρ S
(m̃ρ )

p ≤ p2m p

∫
ddk

(2π)d
D̂(k)2

∫
dθ

2π

(
C

p(m p − 1) + |θ | + 1 − D̂(k)

)3

×
∞∫

0

dρ
Ce−ρ1/(1−ε)

pm p(1 − e−ρ1/(1−ε)
) + |θ | + 1 − D̂(k)

≤
∫

ddk

(2π)d

O(1)

(1 − D̂(k))2

∞∫

0

dρ
e−ρ1/(1−ε)

1 − e−ρ1/(1−ε) + 1 − D̂(k)
. (6.17)
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However, since

∞∫

0

dρ
e−ρ1/(1−ε)

1−e−ρ1/(1−ε) +1− D̂(k)
=

∞∫

0

ds
(1 − ε)s−εe−s

1 − e−s + 1 − D̂(k)
(∵ ρ = s1−ε)

≤ 1 − ε

1 − e−1

⎛

⎝

∞∫

1

ds e−s +
1∫

0

ds
s−ε

s + 1 − D̂(k)

⎞

⎠

≤ 1 − ε

1 − e−1

⎛

⎜
⎝1 +

1−D̂(k)∫

0

ds
s−ε

1− D̂(k)
+

1∫

1−D̂(k)

ds s−1−ε

⎞

⎟
⎠

≤ 1 − ε

1 − e−1

(

1+ (1 − D̂(k))−ε

1 − ε
+ (1 − D̂(k))−ε

ε

)

,

(6.18)

we obtain that

∞∫

0

dρ S
(m̃ρ )

p ≤
∫

ddk

(2π)d

Oε(1)

(1 − D̂(k))2+ε
< ∞, (6.19)

as long as d > (2 + ε)(α ∧ 2), due to (1.7). By (6.16), this completes the proof of
|∂ζ π̂p(k, m p) − ∂ζ π̂p(k, m pζ )| ≤ Oε(1)|1 − ζ |ε and of Lemma 6.1(ii). ��
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A Proof of Proposition 1.1

In this section, we prove the bounds on D summarized in Proposition 1.1. Since the
bounds on 1 − D̂(k) in (1.6) are equivalent to [16, (1.20)–(1.21)] whose proofs are
independent of the range of D (see [16, Appendix A]), it thus remains to prove the
bound on ‖D�n‖∞ in (1.6) and the bounds on 1 − D̂(k) for ‖k‖∞ ≤ (�L)−1 in (1.7).

First we prove the bound on ‖D�n‖∞ assuming (1.7). By definition, it is trivial
when n = 1. For n ≥ 2, we let

R = {k ∈ [−π, π ]d : |k| ≤ (�L)−1, D̂(k) ≥ 0}, (A.1)
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so that |D̂(k)| = 1−(1− D̂(k)) ≤ e−(1−D̂(k)) for k ∈ R, and that 0 ≤ |D̂(k)| < 1−�

for k /∈ R, due to the bound on 1 − D̂(k) in (1.6). Therefore, for any x ∈ Z
d ,

D�n(x) ≤
∫

[−π,π ]d

ddk

(2π)d
|D̂(k)|n

≤
∫

R

ddk

(2π)d
e−n(1−D̂(k)) + (1 − �)n−2

∫

Rc

ddk

(2π)d
D̂(k)2, (A.2)

where the integral over k ∈ Rc ≡ [−π, π ]d \ R is bounded by ‖D‖∞(1 − �)n−2 ≤
O(λ) n−d/(α∧2). For the integral over k ∈ R, we use the bounds on 1 − D̂(k) in (1.7).
If α �= 2, then

∫

R

ddk

(2π)d
e−n(1−D̂(k)) ≤ c′λ

∞∫

0

dr

r
rde−cnrα∧2 = c′�( d

α∧2 )λ

(α ∧ 2)(cn)d/(α∧2)
, (A.3)

for some c, c′ ∈ (0,∞), where r = �L|k|. If α = 2, then

∫

R

ddk

(2π)d
e−n(1−D̂(k)) ≤ c′λ

1∫

0

dr

r
rde−cnr2 log π

2r

≤ c′λ
∞∫

0

dr

r
rde−c′′nr2 = c′�( d

2 )λ

2(c′′n)d/2 , (A.4)

where c′′ = c log π
2 > 0. This completes the proof of the bound on ‖D�n‖∞ in (1.6).

Next we prove the bounds on 1 − D̂(k) for |k| ≤ (�L)−1 with L � 1. Since
‖k‖∞ ≤ |k|, this is sufficient for the proof of (1.7). First we note that, by the Riemann
sum approximation,

1

Ld

∑

x∈Zd

h(x/L) =
∫

Rd

dd x h(x) + o(1) = 1 + o(1), (A.5)

where o(1) → 0 as L → ∞. Therefore,

1 − D̂(k) = (1 + o(1)) (I1 + I2 + I3), (A.6)

123



Critical behavior and the limit distribution for long-range oriented percolation. I 187

where

I1 = L−d
∑

x∈Zd :|x |<�L

h(x/L) (1 − cos(k · x)) , (A.7)

I2 = L−d
∑

x∈Z
d :

�L≤|x |< π
2|k|

h(x/L) (1 − cos(k · x)) , (A.8)

I3 = L−d
∑

x∈Zd :|x |≥ π
2|k|

h(x/L) (1 − cos(k · x)) . (A.9)

However, by (1.2) and using 1−cos(k ·x) � |k|2|x |2 if |x | ≤ π
2|k| and 1−cos(k ·x) ≤ 2

otherwise, we obtain

I1 ≤ O(L−d |k|2)
∑

x∈Zd :|x |<�L

|x |2 = O((L|k|)2), (A.10)

I2 � O(Lα|k|2)
∑

x∈Z
d :

�L≤|x |< π
2|k|

|x |−d−α+2 =
{

O((L|k|)α∧2) (α �= 2),

O
(
(L|k|)2 log π

2�L|k|
)

(α = 2),

(A.11)

I3 ≤ O(Lα)
∑

x∈Zd :|x |≥ π
2|k|

|x |−d−α = O((L|k|)α). (A.12)

This completes the proof of (1.7). ��
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