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Abstract Backward stochastic Volterra integral equations (BSVIEs, for short) are
studied. Notion of adapted M-solution is introduced. Well-posedness of BSVIEs is
established and some regularity results are proved for the adapted M-solutions via
Malliavin calculus. A Pontryagin type maximum principle is presented for optimal
controls of stochastic Volterra integral equations.
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1 Introduction

Throughout this paper, we let (�,F ,F,P) be a complete filtered probability space
on which a d-dimensional Brownian motion W (·) is defined with F ≡ {Ft }t≥0 being
its natural filtration augmented by all the P-null sets in F . Consider the following
stochastic integral equation:

Y (t) = ψ(t)+
T∫

t

g(t, s,Y (s), Z(t, s), Z(s, t))ds −
T∫

t

Z(t, s)dW (s), t ∈ [0, T ],

(1.1)
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22 J. Yong

where g : �c × R
m × R

m×d × R
m×d × � → R

m and ψ : [0, T ] × � → R
m are

given maps with �c = {(t, s) ∈ [0, T ]2
∣∣ t < s}. Such an equation is referred to as

a backward stochastic Volterra integral equation (BSVIE, for short). The unknown
processes, called an adapted solution of (1.1), that we are looking for is the pair
(Y (·), Z(· , ·)) valued in R

m × R
m×d , with Y (·) being F-adapted, and Z(t, ·) being

F-adapted for almost all t ∈ [0, T ]. Map g is referred to as the generator of BSVIE
(1.1), and process ψ(·) is referred to as the free term.

An important special case of the above equation is the following:

Y (t) = ξ +
T∫

t

f (s,Y (s), Z(s))ds −
T∫

t

Z(s)dW (s), t ∈ [0, T ], (1.2)

where f : [0, T ]×R
m ×R

m×d ×� → R
m and ξ is an FT -measurable L p-integrable

random variable (p > 1). This is the integral form of a so-called backward stochastic
differential equation (BSDE, for short); see [5,12,15,18,22] for systematic discus-
sions. A simple glance tells us that BSVIE (1.1) is a natural generalization of BSDE
(1.2).

The main features of BSVIE (1.1) are the following: (i) the generator g depends
on both t and s, which implies that the equation cannot be reduced to a BSDE in
general; (ii) the generator g depends not only on Z(t, s), but also on Z(s, t) (see some
comments about this at the end of this section); (iii) The process ψ(·) is allowed to
be just B[0, T ] ⊗ FT -measurable (not necessarily F-adapted), where B[0, T ] is the
Borel σ -field of [0, T ].

There are several interesting problems motivating the study of BSVIEs, besides it
being a natural generalization of BSDEs. Let us briefly mention them.

(i) Classical stochastic optimal control problems mainly focus on (forward) stochas-
tic differential equations (FSDEs, for short) [34]. In reality, the state equation
might contain memories. One way of describing such situations is to use (for-
ward stochastic) Volterra integral equations (FSVIEs, for short); see [10] with
some financial motivations (see also [27] and [23] for general results concerning
FSVIEs). Hence, optimal control for FSVIEs becomes a very natural problem.
In fact, the deterministic versions were actually discussed by many authors. The
readers are referred to [31] (see [20] for a correction), [2,3,6,7,13,19,26,35],
and so on. Now, for optimal control of FSVIEs, if one wants to look at the first
order necessary conditions for optimal controls (the so-called Pontryagin max-
imum principle), one has to write the adjoint equation for the variational state
equation (which is a linear FSVIE). In FSDE case, the adjoint equation is noth-
ing but a BSDE [4,24,34]. Now, for FSVIE case, the adjoint equation will be a
(linear) BSVIE. We will discuss this in more details in Sect. 5, which extends
some relevant results of [33].

(ii) Stochastic recursive utility (also called stochastic differential utility) was intro-
duced in [9] (see also [28,29] for some relevant works), which can be identified as
the backward component of the adapted solution to a BSDE [12]. Such an iden-
tification is mainly due to the time-consistency of the differential utility. On the
other hand, time-inconsistent preferences exist in real world [11,16,30]. When
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Backward stochastic Volterra integral equations 23

the preferences are time-inconsistent, to describe the corresponding recursive
utility, one could use BSVIEs. Some further investigation along this line is still
under our investigations and relevant results will be reported in a forthcoming
paper.

(iii) Coherent risk measurement was introduced in [1]. See also [8,25,32]. These are
mainly static or time-consistent. When one wants to study the dynamic version
of coherent risk, and allowing possible time-inconsistent preferences, BSVIEs
will and should play important roles. Detailed discussions along this line will
appear elsewhere.

The above motivations show that study of BSVIEs not only has mathematical
interest itself, but also has some interesting and important applications in stochastic
optimal control, mathematical finance and risk management.

BSVIE of form (1.1) was firstly studied in [33] with an L2-framework (A special
case in which g is independent of Z(s, t) and ψ(t) ≡ X with X being a fixed FT -
measurable random variable was discussed in [17]). Before going further, let us make
a couple of observations on BSVIE (1.1), which will lead to the purposes of this paper.
We first make an observation for BSDE (1.2). Suppose (1.2) is solvable on [T − δ, T ]
for some δ ∈ (0, T ). Then the values (Y (t), Z(t)) of (Y (·), Z(·)) are determined for
all t ∈ [T − δ, T ]. Thus, for t ∈ [0, T − δ], we may write (1.2) as follows:

Y (t) = Y (T − δ)+
T −δ∫

t

g(s,Y (s), Z(s))ds −
T −δ∫

t

Z(s)dW (s), (1.3)

where

Y (T − δ) = ξ +
T∫

T −δ
g(s,Y (s), Z(s))ds −

T∫

T −δ
Z(s)dW (s), (1.4)

which is FT −δ-measurable (and completely determined by (Y (s), Z(s)), s ∈ [T −
δ, T ]). Hence, (1.3) is a BSDE on [0, T −δ]. Because of this feature, one can establish
the well-posedness of BSDE (1.2) first on [T − δ, T ], by martingale representation
together with contraction mapping theorem, making use of the uniform Lipschitz
continuity of the map (y, z) �→ g(t, y, z). Then use the “similar argument” to prove
the solvability of (1.3) on [T − 2δ, T − δ], and so on, eventually obtain the solvability
of (1.2) over [0, T ].

Now, let us look at BSVIE (1.1). Suppose (1.1) admits an adapted solution
(Y (·), Z(· , ·)) on [T − δ, T ] for some δ ∈ (0, T ). From the equation, we see that at
this moment, the following are determined:

(Y (t), Z(t, s)), (t, s) ∈ [T − δ, T ]2. (1.5)

Mimicking BSDEs, for t ∈ [0, T − δ], we write equation (1.1) as follows:

Y (t) = ψT −δ(t)+
T −δ∫

t

g(t, s,Y (s), Z(t, s), Z(s, t))ds−
T −δ∫

t

Z(t, s)dW (s), (1.6)
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where [compare with (1.4)]

ψT −δ(t) = ψ(t)+
T∫

T −δ
g(t, s,Y (s), Z(t, s), Z(s, t))ds

−
T∫

T −δ
Z(t, s)dW (s), t ∈ [0, T − δ]. (1.7)

In order (1.6) to be a BSVIE over [0, T −δ], we needψT −δ(t) to be FT −δ-measurable
for almost all t ∈ [0, T − δ]. Note that we only have the values Y (t) and Z(t, s) given
in (1.5), whereas, in (1.7), one needs the values Z(t, s) not only for (t, s) ∈ [0, T −
δ]×[T −δ, T ] (which are needed for defining the last term on the right hand side), but
also for (t, s) ∈ [T − δ, T ]× [0, T − δ] [which are needed due to the dependence of g
on Z(s, t)]. However, these values Z(t, s) of Z(· , ·) are not available at the moment.
Thus, when (1.1) is solvable on [T − δ, T ], one could not simply use the “similar
arguments” (as BSDE case) to obtain the solvability of (1.1) over [T − 2δ, T − δ],
etc. Hence, the arguments used in both [17] and [33] to establish the well-posedness
of BSVIEs contained some gaps. The above observation also provides an interesting
difference between BSDEs and BSVIEs. Note that we may regard (1.7) as a stochastic
Fredholm integral equation with (ψT −δ(·), Z(· , ·)) being the unknown process. We
will present the solvability of such an equation in the process of establishing the well-
posedness of BSVIEs in this paper. A more general theory for stochastic Fredholm
integral equations will be presented in a forthcoming paper.

Next, we look at the following example which will bring us another interesting
issue on the adapted solutions to BSVIEs.

Example 1.1 Let d = 1. Consider the following BSVIE:

Y (t) =
T∫

t

Z(s, t)ds −
T∫

t

Z(t, s)dW (s), t ∈ [0, T ]. (1.8)

We can check that
{
Y (t) = (T − t)ζ(t), t ∈ [0, T ],
Z(t, s) = I[0,t](s)ζ(s), (t, s) ∈ [0, T ] × [0, T ], (1.9)

is an adapted solution of BSVIE (1.8) for any ζ(·) ∈ L2
F
(0, T ; R), the set of all

F-adapted processes ζ : [0, T ] × � → R such that E
∫ T

0 |ζ(t)|2dt < ∞. Hence, the
adapted solutions defined in an obvious or a “natural” way (as in [33], or [17]) are not
unique.

From the above observations, we see that the theory of BSVIEs needs to be
re-established. In this paper, we will introduce the notion of adapted M-solution,
which refine the definition of adapted solution to BSVIEs introduced in [33]. Then, in

123



Backward stochastic Volterra integral equations 25

Sect. 3, we will establish the well-posedness of BSVIEs, which involves the solvability
of a special type of stochastic Fredholm integral equation (1.7). This will fill the gaps
left in [17] and [33]. We will also prove some regularity results for the adapted solu-
tions to BSVIEs, by means of Malliavin calculus in Sect. 4. Further, as an important
application, an optimal control problem for FSVIEs, which will extend some relevant
results presented in [33].

We would like to emphasize that the dependence of the generator g(t, s, y, z, ζ )
on ζ (i.e., the presence of Z(s, t) on the right hand side of (1.1)) is very important in
applications (see [33] and Sect. 5 below). On the other hand, such a dependence makes
the BSVIEs nontrivial and that brings main technical difficulties to the solvability of
the equation as well as the regularity of adapted M-solutions.

2 Preliminaries

In this section, we present some preliminaries.

2.1 Spaces

This subsection collects some definitions and notations for the spaces that we will
use in the later sections. Readers can skip this subsection and come back when it is
necessary.

Let R
m be m-dimensional Euclidean space with the usual L2-norm, denoted by | · |.

Let R
m×d be the Hilbert space of all (m × d) matrices with the inner product defined

by the following:
〈 A, B 〉 = tr [ABT ], ∀A, B ∈ R

m×d . (2.1)

Let | · | be the norm induced by the above inner product. Then one has

|A|2 =
d∑

j=1

|a j |2 ≡
m∑

i=1

d∑
j=1

a2
i j , ∀A ≡ (a1, . . . , ad) ≡ (ai j ) ∈ R

m×d . (2.2)

Next, let B(G) be the Borel σ -field of metric space G. For any p, q ∈ [1,∞), H =
R

m,Rm×d , and S ∈ [0, T ], we define

L p
FS
(�) = {

ξ : � → H
∣∣ ξ is FS-measurable, E |ξ |p < ∞}

,

L p
FS
(�;Lq(0, T ))=

⎧⎪⎨
⎪⎩ϕ : (0, T )×�→ H

∣∣ϕ(·) is B([0, T ])⊗FS-measurable,

× E

⎛
⎝

T∫

0

|ϕ(t)|qdt

⎞
⎠

p
q

< ∞

⎫⎪⎬
⎪⎭ ,
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26 J. Yong

Lq(0,T ;L p
FS
(�))=

⎧⎨
⎩ϕ :(0, T )×�→ H

∣∣ϕ(·) is B([0, T ])⊗ FS-measurable,

×
T∫

0

(
E |ϕ(t)|p) q

p dt < ∞
⎫⎬
⎭ .

The spaces L∞
FS
(�;Lq(0, T )), L p

FS
(�;L∞(0, T )), L∞

FS
(�;L∞(0, T )), L∞(0, T ;

L p
FS
(�)), Lq(0, T ;L∞

FS
(�)), and L∞(0, T ; L∞

FS
(�)) can be defined in an obvious

way. We identify

L p
FS
(�; L p(0, T )) = L p(0, T ; L p

FS
(�)) ≡ L p

FS
(0, T ), p ∈ [1,∞].

Next, we define

C([0, T ]; L p
FS
(�))

=
{
ϕ(·) ∈ L∞(0, T ; L p

FS
(�))

∣∣ ϕ(t) is FS-measurable, ∀t ∈ [0, T ],

ϕ(·) is continuous from [0, T ] to L p
FS
(�), sup

t∈[0,T ]
E |ϕ(t)|p < ∞

}
,

C#([0, T ]; L p
FS
(�))

=
{
ϕ(·) ∈ C([0, T ]; L p

FS
(�))

∣∣ ϕ(·) has continuous paths a.s.
}
,

L p
FS
(�; C([0, T ]))

=
{
ϕ(·) ∈ C#([0, T ]; L p

FS
(�))

∣∣ E

[
sup

t∈[0,T ]
|ϕ(t)|p

]
< ∞

}
.

For notational simplicity, in the case S = T , we will omit the subscript FT (unless
it should be emphasized). Note that in the above definitions, F-adaptiveness is not
involved. We need to further define the following subspaces: For p, q ∈ [1,∞],

L p
F
(�; Lq(0, T )) = {

ϕ(·) ∈ L p(�; Lq(0, T ))
∣∣ ϕ(·) is F-adapted

}
,

Lq
F
(0, T ; L p(�)) = {

ϕ(·) ∈ Lq(0, T ; L p(�))
∣∣ ϕ(·) is F-adapted

}
,

CF([0, T ]; L p(�)) = {
ϕ(·) ∈ C([0, T ]; L p(�))

∣∣ ϕ(·) is F-adapted
}
,

C#
F
([0, T ]; L p(�)) = {

ϕ(·) ∈ C#([0, T ]; L p(�))
∣∣ ϕ(·) is F-adapted

}
,

L p
F
(�; C([0, T ])) = {

ϕ(·) ∈ L p(�; C([0, T ])) ∣∣ ϕ(·) is F-adapted
}
.

Also, we identify

L p
F
(�; L p(0, T )) = L p

F
(0, T ; L p(�)) ≡ L p

F
(0, T ), p ∈ [1,∞].
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Backward stochastic Volterra integral equations 27

In the above definitions, we have suppressed the range space H in the notations, for
simplicity. When the range space H needs to be emphasized, we will use the notations
L p

FS
(�; H), L p

FS
((0, T ) × �; H), and so on. We now point out several facts about

the spaces defined above. First of all, from the definition, the following chains of
inclusions hold:

L p
FS
(�; C([0, T ]))⊆C#([0, T ]; L p

FS
(�))⊆C([0, T ]; L p

FS
(�))⊆L∞(0, T ; L p

FS
(�))

⊆ Lq(0, T ; L p
FS
(�)) ⊆ L p

FS
(�; Lq(0, T )) ⊆ Lq

FS
(0, T ), 1 ≤ q ≤ p ≤ ∞,

and

L∞
FS
(�; C([0, T ])) = C#([0, T ]; L∞

FS
(�)) = C([0, T ]; L∞

FS
(�))

⊆ L∞(0, T ; L∞
FS
(�)) ≡ L∞

FS
(0, T ) ≡ L∞

FS
(�; L∞(0, T )) ⊆ L∞

FS
(�; Lq(0, T ))

⊆ L p
FS
(�; Lq(0, T )) ⊆ Lq(0, T ; L p

FS
(�)) ⊆ L p

FS
(0, T ), 1 ≤ p ≤ q ≤ ∞.

Similar inclusions hold for the corresponding spaces of F-adapted processes.
Second, for p ∈ [1,∞), any ϕ(·) ∈ C([0, T ]; L p

FS
(�)) only has the continuity of

t �→ ϕ(t) as a map from [0, T ] to L p
FS
(�), and it does not necessarily have continuous

paths. One should note that space C#([0, T ]; L p
FS
(�)) is not complete under the norm

‖ϕ(·)‖C([0,T ];L p
FS
(�))

�=
{

sup
t∈[0,T ]

E |ϕ(t)|p

} 1
p

, (2.3)

and C([0, T ]; L p
FS
(�)) is the completion of C#([0, T ]; L p

FS
(�)) under norm (2.3).

The above are the spaces for the free term ψ(·) (for which the F-adaptiveness
is not required) and Y (·) (for which F-adaptiveness is required). For the process
Z(· , ·), we need to introduce the following spaces. First, for any p, q ≥ 1, let
Lq(0, T ; L p

F
(�; L2(0, T ))) be the set of all processes Z : [0, T ]2 × � → R

m×d

such that for almost all t ∈ [0, T ], Z(t, ·) ∈ L p
F
(�; L2(0, T )) satisfying

T∫

0

⎧⎪⎨
⎪⎩E

⎛
⎝

T∫

0

|Z(t, s)|2ds

⎞
⎠

p
2
⎫⎪⎬
⎪⎭

q
p

dt < ∞. (2.4)

The spaces L∞(0, T ; L p
F
(�; L2(0, T ))), C([0, T ]; L p

F
(�; L2(0, T ))), and Lq(0, T ;

L∞
F
(�; L2(0, T ))) can be defined similarly. Another space that we are going to use

is denoted by L p
F
(�; Ĉ([0, T ]; L2(0, T ))) which consists of all Z(· , ·) with Z(t, ·) ∈

L2
F
(0, T ), for almost all t ∈ [0, T ], such that

E

⎡
⎣ sup

t∈[0,T ]

∣∣∣∣∣∣
t∫

0

Z(t, s)dW (s)

∣∣∣∣∣∣
p⎤
⎦+ E

⎡
⎣ sup

t∈[0,T ]

∣∣∣∣∣∣
T∫

t

Z(t, s)dW (s)

∣∣∣∣∣∣

p⎤
⎦ < ∞. (2.5)
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28 J. Yong

Note that by Martingale Moment Inequalities [14, p. 163], one has

E

⎡
⎣ sup

t∈[0,T ]

∣∣∣∣∣∣
t∫

0

Z(t, s)dW (s)

∣∣∣∣∣∣
p⎤
⎦+ E

⎡
⎣ sup

t∈[0,T ]

∣∣∣∣∣∣
T∫

t

Z(t, s)dW (s)

∣∣∣∣∣∣

p⎤
⎦

≥ E

⎡
⎣ sup

t∈[0,T ]

⎛
⎝
∣∣∣∣∣∣

t∫

0

Z(t, s)dW (s)

∣∣∣∣∣∣
p

+
∣∣∣∣∣∣

T∫

t

Z(t, s)dW (s)

∣∣∣∣∣∣

p⎞
⎠
⎤
⎦

≥ 21−p E

⎡
⎣ sup

t∈[0,T ]

∣∣∣∣∣∣
T∫

0

Z(t, s)dW (s)

∣∣∣∣∣∣

p⎤
⎦

≥ 21−p sup
t∈[0,T ]

E

∣∣∣∣∣∣
T∫

0

Z(t, s)dW (s)

∣∣∣∣∣∣

p

≥ C sup
t∈[0,T ]

E

⎛
⎝

T∫

0

|Z(t, s)|2ds

⎞
⎠

p
2

,

(2.6)

hereafter, C > 0 always represents a generic constant which can be different at
different places. The above shows that

L p
F
(�; Ĉ([0, T ]; L2(0, T ))) ⊆ L∞(0, T ; L p

F
(�; L2(0, T ))). (2.7)

On the other hand, it is clear that

L p
F
(�; C([0, T ]; L2(0, T ))) ⊆ L∞(0, T ; L p

F
(�; L2(0, T ))), (2.8)

where the left hand side of the above is defined to be the set of all Z(· , ·) ∈ L∞(0, T ;
L p

F
(�; L2(0, T ))) such that t �→ Z(t, ·) is continuous from [0, T ] to L2(0, T ), and

E

⎛
⎝ sup

t∈[0,T ]

T∫

0

|Z(t, s)|2ds

⎞
⎠

p
2

< ∞. (2.9)

It is not clear to us if spaces L p
F
(�; Ĉ([0, T ]; L2(0, T ))) and L p

F
(�; C([0, T ];

L2(0, T ))) have any interesting relations.
Finally, we point out that in all the definitions of the relevant spaces above, [0, T ]

can be replaced by any [R, S] with 0 ≤ R < S ≤ T .
Now, we briefly recall some relevant notations and results about Malliavin calculus,

which will be used below. Let 	 be the set of all (scalar) FT -measurable random
variables ξ of form

ξ = f

⎛
⎝

T∫

0

h(s)dW (s)

⎞
⎠ , (2.10)
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Backward stochastic Volterra integral equations 29

where f ∈ C1
b(R

n) (the set of all bounded continuously differentiable functions
with bounded first order partial derivatives), h(·) ≡ (h1(·), . . . , hd(·)) with hi (·) ∈
L∞

F
(0, T ; R

n), 1 ≤ i ≤ d, and n ≥ 1 is an arbitrary natural number. For any ξ ∈ 	,
define

Di
rξ =

〈
fx

⎛
⎝

T∫

0

h(s)dW (s)

⎞
⎠ , hi (r)

〉
, 0 ≤ r ≤ T, 1 ≤ i ≤ d. (2.11)

We call Di
rξ the Malliavin derivative of ξ with respect to Wi (·). Note that, in

general, for each r ∈ [0, T ] and 1 ≤ i ≤ d, Di
rξ is still (just) FT -measurable. Next,

for any ξ ∈ 	 (of form (2.10)) and 1 ≤ q < ∞, we have

‖ξ‖D1,q

�=

⎧⎪⎨
⎪⎩E

⎡
⎢⎣|ξ |q +

⎛
⎝

T∫

0

d∑
i=1

|Di
rξ |2dr

⎞
⎠

q
2
⎤
⎥⎦
⎫⎪⎬
⎪⎭

1
q

≤ C

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 +
⎡
⎢⎣E

⎛
⎝

T∫

0

|h(r)|2dr

⎞
⎠

q
2
⎤
⎥⎦

1
q

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
< ∞, (2.12)

and

‖ξ‖D1,∞
�= esssup

ω∈�

⎧⎪⎪⎨
⎪⎪⎩

|ξ | +
⎛
⎝

T∫

0

d∑
i=1

|Di
rξ |2dr

⎞
⎠

1
2

⎫⎪⎪⎬
⎪⎪⎭

≤ C

⎧⎪⎪⎨
⎪⎪⎩

1 + esssup
ω∈�

⎛
⎝

T∫

0

|h(r, ω)|2dr

⎞
⎠

1
2

⎫⎪⎪⎬
⎪⎪⎭
< ∞. (2.13)

Clearly, ‖ · ‖D1,q (q ∈ [1,∞]) is a norm. Let D1,q be the completion of 	 under the
norm ‖ · ‖D1,q . It is known [21] that operator D = (D1, D2, . . . , Dd) admits a closed
extension on D1,q , and

ξ is Ft -measurable ⇒ Di
rξ = 0, ∀r ∈ (t, T ], 1 ≤ i ≤ d. (2.14)
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Further, for any ξ ∈ 	, we define (comparing with (2.12) and (2.13), respectively)

‖ξ‖
D̃1,q

�=
⎧⎨
⎩E

⎡
⎣|ξ |q +

T∫

0

d∑
i=1

|Di
rξ |qdr

⎤
⎦
⎫⎬
⎭

1
q

≤ C

⎧⎪⎪⎨
⎪⎪⎩

1 +
⎡
⎣E

T∫

0

|h(r)|qdr

⎤
⎦

1
q

⎫⎪⎪⎬
⎪⎪⎭
< ∞, q ∈ [1,∞), (2.15)

and

‖ξ‖
D̃1,∞

�= esssup
ω∈�

{
|ξ | +

d∑
i=1

|Di
rξ |
}

≤ C

{
1 + esssup

r∈[0,T ], ω∈�
|h(r, ω)|

}
< ∞.

(2.16)
Let D̃1,q be the completion of 	 under norm ‖ · ‖

D̃1,q
(q ∈ [1,∞]). By Hölder’s

inequality, one has the following inclusions:

{
D1,q ⊆ D̃1,q , q ∈ [1, 2],
D̃1,q ⊆ D1,q , q ∈ [2,∞]. (2.17)

We let D
n
1,q and D

m×n
1,q be the set of all R

n and R
m×n-valued random variables with

each component belonging to D1,q , respectively. The meaning of D̃
n
1,q and D̃

m×n
1,q are

similar. For any k-dimensional random vector η and any random field f defined on

[0, T ] × R
k ×�, we will distinguish Di

r [ f (t, η(ω), ω)] from Di
r f (t, x, ω)

∣∣
x=η(ω)

�=
[Di

r f ](t, η(ω), ω). Next, for each 1 ≤ q < ∞ and 0 ≤ R < T , we let L
1,q(R, T ; R

n)

(resp. L̃
1,q(R, T ; R

n)) be the set of all progressively measurable processes u : [R, T ]
× � → R

n such that for almost all t ∈ [R, T ], u(t) ∈ D
n
1,q (resp. D̃

n
1,q ), for almost

all r ∈ [R, T ] and each 1 ≤ i ≤ d, (t, ω) �→ Di
r u(t, ω) admits a progressively

measurable version, and

‖u(·)‖q
L1,q (R,T ;Rn)

�= E

⎧⎪⎨
⎪⎩

⎛
⎝

T∫

R

|u(t)|2dt

⎞
⎠

q
2

+
T∫

R

⎡
⎣

T∫

r

(
d∑

i=1

|Di
r u(t)|2

)
dt

⎤
⎦

q
2

dr

⎫⎪⎬
⎪⎭<∞.

(2.18)
Similar to [21], for any u(·) ∈ L

1,q(0, T ; R
d), with q ≥ 2, we have

Di
r

⎡
⎣

t∫

0

〈 u(s), dW (s) 〉
⎤
⎦=

⎡
⎣ui (r)+

t∫

r

〈 Di
r u(s), dW (s) 〉

⎤
⎦ I[r≤t],

(t, r) ∈ [0, T ]2, 1 ≤ i ≤ d. (2.19)
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In general, the right hand side of the above is (merely) Ft -measurable. From (2.19),
it follows that

Di
r

⎡
⎣

T∫

t

〈 u(s), dW (s)〉
⎤
⎦=ui (r)I[r>t]+

T∫

t

〈 Di
r u(s), dW (s) 〉,

(t, r) ∈ [0, T ]2, 1 ≤ i ≤ d. (2.20)

Further, for any R, S ∈ [0, T ], a direct computation shows that

∥∥∥∥∥∥Di·

⎡
⎣

T∫

S

〈 u(s), dW (s) 〉
⎤
⎦
∥∥∥∥∥∥

q

Lq (�;L2(R,T ))

�= E

⎛
⎜⎝

T∫

R

∣∣∣∣∣∣D
i
r

⎡
⎣

T∫

S

〈 u(s), dW (s) 〉
⎤
⎦
∣∣∣∣∣∣

2

dr

⎞
⎟⎠

q
2

≤ 2q−1
[
1 ∨ (T − R)

q−2
2

]
‖u(·)‖q

L1,q (R,T ;Rd )
. (2.21)

In particular,

∥∥∥∥∥∥Di·

⎡
⎣

t∫

0

〈 u(s), dW (s) 〉
⎤
⎦
∥∥∥∥∥∥

q

Lq (�;L2(0,t))

�= E

⎛
⎜⎝

t∫

0

∣∣∣∣∣∣D
i
r

[ t∫

0

〈 u(s), dW (s) 〉
]∣∣∣∣∣∣

2

dr

⎞
⎟⎠

q
2

≤ 2q−1(1 ∨ t
q−2

2 )‖u(·)‖q
L1,q (0,t;Rd )

.

(2.22)

2.2 BSDEs

In this subsection, we discuss the following BSDE:

Y (t) = ξ +
T∫

t

f (s,Y (s), Z(s))ds −
T∫

t

Z(s)dW (s), t ∈ [0, T ]. (2.23)

Let us introduce the following assumption concerning the generator f of BSDE (2.23).

(H0) The map f : [0, T ]×R
m ×R

m×d ×� → R
m is B([0, T ]×R

m ×R
m×d)⊗FT -

measurable. For each (y, z) ∈ R
m × R

m×d , t �→ f (t, y, z) is F-progressive
measurable, and f (· , 0, 0) ∈ L p

F
(�; L1(0, T )),
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i.e.,

E

⎛
⎝

T∫

0

| f (t, 0, 0)|dt

⎞
⎠

p

< ∞, (2.24)

for some p ∈ (1,∞). There exist functions L y(·) ∈ L1(0, T ) and Lz(·) ∈ L2(0, T )
such that

| f (t, y, z)− f (t, ȳ, z̄)| ≤ L y(t)|y− ȳ|+Lz(t)|z− z̄|,
t ∈ [0, T ], y, ȳ ∈ R

m, z, z̄ ∈ R
m×d . (2.25)

In what follows, for any p ∈ (1,∞) and 0 ≤ R < S ≤ T , we denote

H
p[R, S] = L p

F
(�; C([R, S]))× L p

F
(�; L2(R, S)), (2.26)

which is a Banach space under the norm:

‖(y(·), z(·))‖Hp[R,S] =

⎧⎪⎨
⎪⎩E

⎡
⎢⎣ sup

t∈[R,S]
|y(t)|p +

⎛
⎝

S∫

R

|z(t)|2dt

⎞
⎠

p
2
⎤
⎥⎦
⎫⎪⎬
⎪⎭

1
p

. (2.27)

The following result will be useful later.

Proposition 2.1 Let (H0) hold. Then for any ξ ∈ L p
FT
(�), with p > 1, BSDE (2.23)

admits a unique adapted solution (Y (·), Z(· , ·)) ∈ H
p[0, T ], and the following esti-

mate holds:

‖(Y (·), Z(·))‖p
Hp[S,T ] ≤ C E

⎧⎨
⎩|ξ |p +

⎛
⎝

T∫

S

| f (t, 0, 0)|dt

⎞
⎠

p⎫⎬
⎭ , S ∈ [0, T ).

(2.28)
Further, if f̄ also satisfies (H0), ξ̄ ∈ L p

FT
(�), and (Ȳ (·), Z̄(·)) ∈ H

p[0, T ] is the

adapted solution to BSDE (2.23) with ξ and f replaced by ξ̄ and f̄ , then

‖(Y (·), Z(·))− (Ȳ (·), Z̄(·))‖p
Hp[S,T ]

≤ C E

⎧⎨
⎩|ξ−ξ̄ |p +

⎛
⎝

T∫

S

| f (t,Y (t), Z(t))− f̄ (t,Y (t), Z(t))|dt

⎞
⎠

p⎫⎬
⎭ , S ∈ [0, T ).

(2.29)

Note that in (2.25), L y(·) and Lz(·) are not constants. Thus, the classical results
found in [12,18,22], and [5] do not directly apply, and some modifications are neces-
sary. For reader’s convenience, we sketch a proof here.
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Proof Take any (y(·), z(·)) ∈ H
p[0, T ]. Consider the following BSDE:

Y (t) = ξ +
T∫

t

f (s, y(s), z(s))ds −
T∫

t

Z(s)dW (s), t ∈ [0, T ]. (2.30)

Since

E

∣∣∣∣∣∣
T∫

0

f (s, y(s), z(s))ds

∣∣∣∣∣∣

p

≤ E

⎧⎨
⎩

T∫

0

(| f (s, 0, 0)| + L y(s)|y(s)| + Lz(s)|z(s)|
)

ds

⎫⎬
⎭

p

≤C E

⎧⎪⎨
⎪⎩

⎛
⎝

T∫

0

| f (s,0,0)|ds

⎞
⎠

p

+
⎛
⎝

T∫

0

L y(s)ds

⎞
⎠

p(
sup

s∈[0,T ]
|y(s)|p

)

+
⎛
⎝

T∫

0

Lz(s)
2ds

⎞
⎠

p
2
⎛
⎝

T∫

0

|z(s)|2ds

⎞
⎠

p
2
⎫⎪⎬
⎪⎭<∞. (2.31)

By [12], BSDE (2.30) admits a unique adapted solution (Y (·), Z(·)) ∈ H
p[0, T ].

Thus, for any S ∈ [0, T ), we can define a map � : H
p[S, T ] → H

p[S, T ] by

�(y(·), z(·)) = (Y (·), Z(·)), ∀(y(·), z(·)) ∈ H
p[S, T ]. (2.32)

Next, we will show that � is a contraction. To this end, take another (ȳ(·), z̄(·)) ∈
H

p[S, T ], and let (Ȳ (·), Z̄(·)) ∈ H
p[S, T ] be the corresponding adapted solution of

BSDE (2.30). Then we have the following:

‖(Y (·), Z(·))− (Ȳ (·), Z̄(·))‖p
Hp[S,T ]

≤ C E

⎧⎨
⎩

T∫

S

| f (s, y(s), z(s))− f (s, ȳ(s), z̄(s))|ds

⎫⎬
⎭

p

≤ C E

⎧⎨
⎩

T∫

S

(
L y(s)|y(s)− ȳ(s)| + Lz(s)|z(s)− z̄(s)|) ds

⎫⎬
⎭

p

≤ C

⎧⎪⎨
⎪⎩

⎛
⎝

T∫

S

L y(s)ds

⎞
⎠

p

+
⎛
⎝

T∫

S

Lz(s)
2ds

⎞
⎠

p
2
⎫⎪⎬
⎪⎭ ‖(y(·), z(·))− (ȳ(·), z̄(·))‖p

Hp[S,T ].

(2.33)

123



34 J. Yong

By letting T − S > 0 small enough, we see that � is a contraction on H
p[S, T ].

Hence, � admits a unique fixed point (Y (·), Z(·)) ∈ H
p[S, T ], which is the unique

adapted solution to BSDE (2.30) on [S, T ]. By induction, we obtain a unique adapted
solution (Y (·), Z(·)) ∈ H

p[0, T ]. The rest of the conclusions are clear. ��

3 Well-posedness of BSVIEs

In this section, we will refine the definition of adapted solutions to BSVIE (1.1)
introduced in [33], and will establish the well-posedness of BSVIEs. This will fill the
gaps that we left in [33] (as well as a similar gap found in [17]). In what follows, for
any 0 ≤ R < S ≤ T , we denote

⎧⎨
⎩
�[R, S] =

{
(t, s) ∈ [R, S]2

∣∣ R ≤ s ≤ t ≤ S
}
,

�c[R, S] =
{
(t, s) ∈ [R, S]2

∣∣ R ≤ t < s ≤ S
}

≡ [R, S]2 \�[S, T ]. (3.1)

We simply denote �[0, T ] = �, �c[0, T ] = �c. Next, for any 0 ≤ R < S ≤ T , we
denote

Hp[R, S] = L p
F
(R, S)× L p(R, S; L2

F
(R, S)), p ∈ [1,∞], (3.2)

with the naturally induced norm. Let us first recall the following definition introduced
in [33].

Definition 3.1 A pair of processes (Y (·), Z(· , ·)) ∈ H2[0, T ] is called an adapted
solution of BSVIE (1.1) if (1.1) is satisfied in the usual Itô sense for almost all t ∈
[0, T ].

From Example 1.1, we know that the adapted solution of BSVIE (1.1) defined by
the above is not unique. Let us now make a further observation on BSVIE (1.1) to find
the precise reason for that. Suppose (Y (·), Z(· , ·)) ∈ H2[0, T ] is an adapted solution
of (1.1) (in the sense of Definition 3.1). Let ζ(· , ·) ∈ L2(0, T ; L2

F
(0, T )) such that the

following fails:
Z(t, s) = ζ(t, s), a.e. (s, t) ∈ �, a.s. (3.3)

Consider BSVIE:

Ŷ (t) = ψ(t)+
T∫

t

g(t, s, Ŷ (t), Ẑ(t, s), ζ(s, t))ds −
T∫

t

Ẑ(t, s)dW (s), t ∈ [0, T ].

(3.4)
This can be regarded as a BSVIE with the generator independent of Z(s, t). Under
proper conditions (see below), we have an adapted solution (Ŷ (·), Ẑ(· , ·)) ∈ H2[0, T ]
to the above. Now, if we redefine Ẑ (t, s) to be ζ(t, s) for (t, s) ∈ �, then (Ŷ (·), Ẑ(· , ·))
is another adapted solution of (1.1), which is different from (Y (·), Z(· , ·)) since (3.3)
does not hold. The point here is that in (3.4), only the values Ẑ(t, s) of Ẑ(· , ·) for
(t, s) ∈ �c and only the values ζ(t, s) of ζ(· , ·) for (t, s) ∈ � are used. Hence, roughly
speaking, the values of Z(· , ·) have some freedom on � (as long as Y (·) is allowed
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to be correspondingly changed). This additional freedom leads to the failure of the
uniqueness. Therefore, in order to have the uniqueness, some additional constraints
should be imposed on Z(t, s) for (t, s) ∈ �.

Based on the above observation, we are now at the position of introducing the
following definition which is a refinement of Definition 3.1.

Definition 3.2 Let S ∈ [0, T ). A pair (Y (·), Z(· , ·)) ∈ H1[S, T ] is called an adapted
M-solution of BSVIE (1.1) on [S, T ] if (1.1) holds in the usual Itô’s sense for almost
all t ∈ [S, T ] and, in addition, the following holds:

Y (t) = E[Y (t) ∣∣FS] +
t∫

S

Z(t, s)dW (s), a.e. t ∈ [S, T ]. (3.5)

In the above, “M” in “M-solution” stands for “a martingale representation” (for Y (t) to
determine Z(· , ·) on�[S, T ]). We will see that additional constraint (3.5) guarantees
the uniqueness of corresponding adapted solutions.

It is natural to require that if (Y (·), Z(· , ·)) is an adapted M-solution of (1.1) on
[S, T ], it should be an adapted M-solution of (1.1) on any [S̄, T ] with S̄ ∈ (S, T ).
This is actually the case. In fact, if (3.5) holds, then for any S̄ ∈ (S, T ) and almost all
t ∈ [S̄, T ], one has

E[Y (t) ∣∣ FS̄] = E[Y (t) ∣∣ FS] +
S̄∫

S

Z(t, s)dW (s). (3.6)

Consequently, for almost all t ∈ [S̄, T ],

Y (t) = E[Y (t) ∣∣ FS] +
t∫

S

Z(t, s)dW (s) = E[Y (t) ∣∣ FS̄] +
t∫

S̄

Z(t, s)dW (s).

(3.7)
Before going further, let us look at BSDE (2.23) (which is a special case of

BSVIE (1.1)). We know that under (H0), BSDE (2.23) admits a unique adapted so-
lution (Y (·), Z(·)) ∈ H

p[0, T ]. For each t ∈ [0, T ], we can find a unique ζ(t, ·) ∈
L p

F
(�; L2(0, T )) such that

Y (t) = EY (t)+
t∫

0

ζ(t, s)dW (s). (3.8)

Then by defining

Z(t, s) =
{
ζ(t, s), (t, s) ∈ �,
Z(s), (t, s) ∈ �c,

(3.9)

we see that (Y (·), Z(· , ·)) ∈ Hp[0, T ] is an adapted M-solution of BSVIE (2.23) on
[0, T ], in the sense of Definition 3.2, and it is actually the only adapted M-solution to
such a BSVIE (see Theorem 3.7 below).
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Next, for any R, S ∈ [0, T ), we consider the following stochastic integral equation:

λ(t, r) = ψ(t)+
T∫

r

h(t, s, µ(t, s))ds −
T∫

r

µ(t, s)dW (s), r ∈ [R, T ], t ∈ [S, T ],

(3.10)
where h : [S, T ] × [R, T ] × R

m×d × � → R
m is given. The unknown process

is (λ(· , ·), µ(· , ·)), for which (λ(t, ·), µ(t, ·)) is F-adapted for all t ∈ [R, T ]. We
may regard the above as a family of BSDEs on [R, T ], parameterized by t ∈ [S, T ],
or a family of stochastic Fredholm integral equations (SFIEs, for short) on [S, T ],
parameterized by r ∈ [R, T ]. We introduce the following assumption concerning the
generator h of Eq. (3.10).

(H0)′ Let R, S ∈ [0, T ), and h : [S, T ] × [R, T ] × R
m×d ×� → R

m be B([S, T ] ×
[R, T ] × R

m×d)⊗ FT -measurable such that s �→ h(t, s, z) is F-progressively
measurable for all (t, z) ∈ [S, T ] × R

m×d and

T∫

S

E

⎛
⎝

T∫

R

|h(t, s, 0)|ds

⎞
⎠

p

dt < ∞, (3.11)

for some p > 1. Moreover, the following holds:

|h(t, s, z)−h(t, s, z̄)| ≤ L(t, s)|z− z̄|, (t, s) ∈ [S, T ]×[R, T ], z, z̄ ∈ R
m×d , a.s. ,

(3.12)
where L : [S, T ] × [R, T ] → [0,∞) is a deterministic function such that for some
ε > 0,

sup
t∈[S,T ]

T∫

R

L(t, s)2+εds < ∞. (3.13)

We point out that condition (3.13) can be relaxed to that the integrability of
Lz(t, ·)2 is uniform in t ∈ [S, T ]. The following result is a direct consequence of
Proposition 2.1.

Lemma 3.3 Let (H0)′ hold. Then for any ψ(·) ∈ L p
FT
(S, T ), Eq. (3.10), regarded as

a BSDE on [R, T ], admits a unique adapted solution (λ(t, ·), µ(t, ·)) ∈ H
p[R, T ] for

almost all t ∈ [S, T ], and the following estimate holds:

‖(λ(t, ·), µ(t, ·))‖p
Hp[R,T ]

≡ E

⎧⎪⎨
⎪⎩ sup

r∈[R,T ]
|λ(t, r)|p +

⎛
⎝

T∫

R

|µ(t, s)|2ds

⎞
⎠

p
2
⎫⎪⎬
⎪⎭

≤ C E

⎧⎨
⎩|ψ(t)|p +

⎛
⎝

T∫

R

|h(t, s, 0)|ds

⎞
⎠

p⎫⎬
⎭ , a.e. t ∈ [S, T ]. (3.14)
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If h̄ : [S, T ] × [R, T ] × R
m×d × � → R

m also satisfies (H0)′, ψ̄(·) ∈ L p
FT
(S, T ),

and (λ̄(t, ·), µ̄(t, ·)) ∈ H
p[R, T ] is the unique adapted solution to (3.10) on [R, T ]

with (h, ψ) replaced by (h̄, ψ̄), then

E

⎧⎪⎨
⎪⎩ sup

r∈[R,T ]
|λ(t, r)− λ̄(t, r)|p +

⎛
⎝

T∫

R

|µ(t, s)− µ̄(t, s)|2ds

⎞
⎠

p
2
⎫⎪⎬
⎪⎭

≤ C E

⎧⎨
⎩|ψ(t)− ψ̄(t)|p +

⎛
⎝

T∫

R

|h(t, s, µ(t, s))− h̄(t, s, µ(t, s))|ds

⎞
⎠

p⎫⎬
⎭ ,

a.e. t ∈ [S, T ]. (3.15)

In particular,

E

⎧⎪⎨
⎪⎩ sup

r∈[R,T ]
|λ(t, r)− λ(t̄, r)|p +

⎛
⎝

T∫

R

|µ(t, s)− µ(t̄, s)|2ds

⎞
⎠

p
2
⎫⎪⎬
⎪⎭

≤ C E

⎧⎨
⎩|ψ(t)− ψ(t̄)|p +

⎛
⎝

T∫

R

|h(t, s, µ(t, s))− h(t̄, s, µ(t, s))|ds

⎞
⎠

p⎫⎬
⎭ ,

a.e. t, t̄ ∈ [S, T ]. (3.16)

Consequently, if ψ(·) ∈ C([0, T ]; L p
FT
(�)) and t �→ h(t, s, µ) is continuous in the

following sense

|h(t, s, µ)− h(t̄, s, µ)| ≤ C(1 + |µ|)ρ(|t − t̄ |), t, t̄ ∈ [S, T ],
s ∈ [R, T ], µ ∈ R

m×d , a.s. , (3.17)

for some modulus of continuity ρ(·), then

(λ(· , ·), µ(· , ·)) ∈ C([S, T ]; H
p[R, T ]). (3.18)

Remark 3.4 Note that (3.18) implies that λ(· , ·) ∈ C([S, T ] × [R, T ]; L p
FT
(�)),

which means that, by definition, the map (t, r) �→ λ(t, r) is continuous from [S, T ]×
[R, T ] to L p

FT
(�). As a matter of fact, for any t, t̄ ∈ [S, T ] and r, r̄ ∈ [R, T ], from

(3.16), we have
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E |λ(t, r)− λ(t̄, r̄)|p ≤ 2p−1 E
{|λ(t, r)− λ(t, r̄)|p + |λ(t, r̄)− λ(t̄, r̄)|p}

≤ C E

⎧⎨
⎩
⎛
⎝

r∨r̄∫

r∧r̄

|h(t, s, µ(t, s))|ds

⎞
⎠

p

+
⎛
⎝

r∨r̄∫

r∧r̄

|µ(t, s)|2ds

⎞
⎠

p
2

+ |ψ(t)− ψ(t̄)|p

+
⎛
⎝

T∫

R

|h(t, s, µ(t, s))− h(t̄, s, µ(t, s))|ds

⎞
⎠

p⎫⎬
⎭ → 0,

as (t̄, r̄) → (t, r). (3.19)

In particular, for the case R = S, the map t �→ λ(t, t) is continuous from [S, T ] to
L p

FT
(�). This will be very useful below.

Now, let us look at two special cases of the above result. First, let r = S ∈ [R, T )
be fixed. Define

ψ S(t) = λ(t, S), Z(t, s) = µ(t, s), t ∈ [R, S], s ∈ [S, T ]. (3.20)

Then (3.10) reads:

ψ S(t) = ψ(t)+
T∫

S

h(t, s, Z(t, s))ds −
T∫

S

Z(t, s)dW (s), t ∈ [R, S]. (3.21)

This is an SFIE. Any pair (ψ S(·), Z(· , ·)) ∈ L p
FS
(R, S) × L p(R, S; L2

F
(S, T )) sat-

isfying (3.21) in the usual Itô sense is called an adapted solution of (3.21). We note
that ψ S(t) is (only) required to be FS-measurable for almost all t ∈ [R, S], instead
of F-adaptiveness. In general, this is the best possibility since the Itô’s integral on the
right hand side is merely taken over [S, T ]. According to Lemma 3.3, we have the
following result whose proof is obvious.

Corollary 3.5 Let (H0)′ hold. Then for any ψ(·) ∈ L p
FT
(R, S), SFIE (3.21) admits

a unique adapted solution (ψ S(·), Z(· , ·)) ∈ L p
FS
(R, S)× L p(R, S; L2

F
(S, T )), and

the following estimate holds:

E

⎧⎪⎨
⎪⎩|ψ S(t)|p +

⎛
⎝

T∫

S

|Z(t, s)|2ds

⎞
⎠

p
2
⎫⎪⎬
⎪⎭

≤ C E

⎧⎨
⎩|ψ(t)|p +

⎛
⎝

T∫

S

|h(t, s, 0)|ds

⎞
⎠

p⎫⎬
⎭ , t ∈ [R, S]. (3.22)
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If h̄ : [R, S]×[S, T ]×R
m×d ×� → R

m also satisfies (H0)′, ψ̄(·) ∈ L p
FT
(R, S), and

(ψ̄ S(·), Z̄(· , ·)) ∈ L p
FS
(R, S) × L p(R, S; L2

F
(S, T )) is the unique adapted solution

of SFIE (3.21) with (h, ψ) replaced by (h̄, ψ̄), then

E

⎧⎪⎨
⎪⎩|ψ S(t)− ψ̄ S(t)|p +

⎛
⎝

T∫

S

|Z(t, s)− Z̄(t, s)|2ds

⎞
⎠

p
2
⎫⎪⎬
⎪⎭

≤ C E

⎧⎨
⎩|ψ(t)− ψ̄(t)|p +

⎛
⎝

T∫

S

|h(t, s, Z(t, s))− h̄(t, s, Z(t, s))|ds

⎞
⎠

p⎫⎬
⎭ ,

t ∈ [R, S]. (3.23)

Further, for any t, t̄ ∈ [R, S],

E

⎧⎪⎨
⎪⎩|ψ S(t)− ψ S(t̄)|p +

⎛
⎝

T∫

S

|Z(t, s)− Z(t̄, s)|2ds

⎞
⎠

p
2
⎫⎪⎬
⎪⎭

≤ C E

⎧⎨
⎩|ψ(t)− ψ(t̄)|p +

⎛
⎝

T∫

S

|h(t, s, Z(t, s))− h(t̄, s, Z(t, s))|ds

⎞
⎠

p⎫⎬
⎭ .
(3.24)

Consequently, if ψ(·) ∈ C([S, T ]; L p(�)) and t �→ h(t, s, z) is continuous in the
sense of (3.17), then

(ψ S(·), Z(· , ·)) ∈ C([S, T ]; L p
FS
(�))× C([S, T ]; L p

F
(�; L2(S, T ))). (3.25)

The second special case of (3.10) is the following: Let R = S, and define

{
Y (t) = λ(t, t), t ∈ [S, T ],
Z(t, s) = µ(t, s), (t, s) ∈ �c[S, T ]. (3.26)

Then (3.10) reads:

Y (t) = ψ(t)+
T∫

t

h(t, s, Z(t, s))ds −
T∫

t

Z(t, s)dW (s), t ∈ [S, T ]. (3.27)

This is a special case of BSVIE (1.1) in which the generator h is independent of
(y, ζ ). Similar to (3.8), we define Z(t, s) for (t, s) ∈ �[S, T ] by the following relation
(making use of the Martingale Representation Theorem):

Y (t) = E[Y (t)|FS] +
t∫

S

Z(t, s)dW (s), t ∈ [S, T ]. (3.28)
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Note that Z(t, s) and µ(t, s) might be different for (t, s) ∈ �[S, T ]. We have the
following result.

Corollary 3.6 Let (H0)′ hold. Then for any ψ(·) ∈ L p
FT
(S, T ), BSVIE (3.27) admits

a unique adapted M-solution (Y (·), Z(· , ·)) ∈ Hp[S, T ], and the following estimate
holds:

E

⎧⎪⎨
⎪⎩|Y (t)|p +

⎛
⎝

T∫

S

|Z(t, s)|2ds

⎞
⎠

p
2
⎫⎪⎬
⎪⎭

≤ C E

⎧⎨
⎩|ψ(t)|p +

⎛
⎝

T∫

t

|h(t, s, 0)|ds

⎞
⎠

p⎫⎬
⎭ , t ∈ [S, T ]. (3.29)

If h̄ also satisfies (H0)′, ψ̄(·) ∈ L p
FT
(S, T ), and (Ȳ (·), Z̄(· , ·)) ∈ Hp[S, T ] is the

unique adapted M-solution of BSVIE (3.27) with (h, ψ) replaced by (h̄, ψ̄), then

E

⎧⎪⎨
⎪⎩|Y (t)− Ȳ (t)|p +

⎛
⎝

T∫

S

|Z(t, s)− Z̄(t, s)|2ds

⎞
⎠

p
2
⎫⎪⎬
⎪⎭

≤ C E

⎧⎨
⎩|ψ(t)− ψ̄(t)|p +

⎛
⎝

T∫

t

|h(t, s, Z(t, s))− h̄(t, s, Z(t, s))|ds

⎞
⎠

p⎫⎬
⎭ ,

t ∈ [S, T ]. (3.30)

Further, for any t, t̄ ∈ [S, T ],

E

⎧⎪⎨
⎪⎩|Y (t)− Y (t̄)|p +

⎛
⎝

T∫

t∨t̄

|Z(t, s)− Z(t̄, s)|2ds

⎞
⎠

p
2

+
⎛
⎜⎝

t∧t̄∫

S

|Z(t, s)− Z(t̄, s)|2ds

⎞
⎟⎠

p
2

⎫⎪⎪⎬
⎪⎪⎭

≤ C E

⎧⎪⎪⎨
⎪⎪⎩

|ψ(t)− ψ(t̄)|p +
⎛
⎜⎝

t∨t̄∫

t∧t̄

|h(t, s, Z(t, s))|ds

⎞
⎟⎠

p

+
⎛
⎜⎝

t∨t̄∫

t∧t̄

|Z(t, s)|2ds

⎞
⎟⎠

p
2

+
⎛
⎝

T∫

t∨t̄

|h(t, s, Z(t, s))− h(t̄, s, Z(t, s))|ds

⎞
⎠

p⎫⎬
⎭ . (3.31)

123



Backward stochastic Volterra integral equations 41

Consequently, if ψ(·) ∈ C([S, T ]; L p
FT
(�)) and t �→ h(t, s, z) is continuous in the

sense of (3.17), then

⎧⎪⎨
⎪⎩

Y (·) ∈ CF([S, T ]; L p(�)),

Z(· , ·) ∈ C([R, T ]; L p
F
(�; L2(S, R))

⋂
C([S, R]; L p

F
(�; L2(R, T )),

∀R ∈ (S, T ).

(3.32)

Proof The existence and uniqueness follows from Lemma 3.3 and relation (3.28).
Note that by (3.22) (with t = R = S), we have estimate

E

⎡
⎢⎣|Y (t)|p +

⎛
⎝

T∫

t

|Z(t, s)|2ds

⎞
⎠

p
2
⎤
⎥⎦

≤ C E

⎧⎨
⎩|ψ(t)|p +

⎛
⎝

T∫

t

|h(t, s, 0)|ds

⎞
⎠

p⎫⎬
⎭ , t ∈ [S, T ]. (3.33)

On the other hand, by (3.28), using Martingale Moment Inequality [14], we obtain

E

⎛
⎝

t∫

S

|Z(t, s)|2ds

⎞
⎠

p
2

≤ C E

∣∣∣∣∣∣
t∫

S

Z(t, s)dW (s)

∣∣∣∣∣∣
p

= C E

∣∣∣∣Y (t)− E[Y (t)|FS]|p ≤ C E |Y (t)|p. (3.34)

Combining the above two, we obtain (3.29). Similarly, we obtain (3.30).

To obtain (3.31), we take t, t̄ ∈ [S, T ]. Without loss of generality, let S ≤ t < t̄ ≤
T . Then by (3.16), with R = t ∨ t̄ = t̄ ,

E

⎧⎪⎨
⎪⎩ sup

r∈[t̄,T ]
|λ(t, r)− λ(t̄, r)|p +

⎛
⎝

T∫

t̄

|µ(t, s)− µ(t̄, s)|2ds

⎞
⎠

p
2
⎤
⎥⎦

≤ C E

⎧⎨
⎩|ψ(t)− ψ(t̄)|p +

⎛
⎝

T∫

t̄

|h(t, s, µ(t, s))− h(t̄, s, µ(t, s))|ds

⎞
⎠

p⎫⎬
⎭ ,
(3.35)
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which implies

E

⎧⎪⎨
⎪⎩|Y (t)− Y (t̄)|p +

⎛
⎝

T∫

t̄

|Z(t, s)− Z(t̄, s)|2ds

⎞
⎠

p
2
⎫⎪⎬
⎪⎭

≤ C E

{
|λ(t, t)− λ(t, t̄)|p + sup

r∈[t̄,T ]
|λ(t, r)− λ(t̄, r)|p

+
⎛
⎝

T∫

t̄

|µ(t, s)− µ(t̄, s)|2ds

⎞
⎠

p
2
⎤
⎥⎦

≤ C E

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎝

t̄∫

t

|h(t, s, Z(t, s))|ds

⎞
⎟⎠

p

+
⎛
⎜⎝

t̄∫

t

|Z(t, s)|2ds

⎞
⎟⎠

p
2

+|ψ(t)− ψ(t̄)|p +
⎛
⎝

T∫

t̄

|h(t, s, Z(t, s))− h(t̄, s, Z(t, s))|ds

⎞
⎠

p
⎫⎪⎪⎬
⎪⎪⎭
,

(3.36)

Now, from (3.28) with R = S, we obtain

E

⎛
⎝

t∫

S

|Z(t, s)−Z(t̄, s)|2ds

⎞
⎠

p
2

+E

⎛
⎜⎝

t̄∫

t

|Z(t̄, s)|2ds

⎞
⎟⎠

p
2

≤ C E

∣∣∣∣∣∣∣

t∫

S

Z(t, s)dW (s)−
t̄∫

S

Z(t̄, s)dW (s)

∣∣∣∣∣∣∣

p

= C E
∣∣Y (t)− Y (t̄)− E[Y (t)− Y (t̄)

∣∣ FS]
∣∣p ≤ C E |Y (t)− Y (t̄)|p. (3.37)

Then (3.31) follows.
Finally, from (3.31), it is easy to see that in the caseψ(·) ∈ C([S, T ]; L p

FT
(�)) and

t �→ h(t, s, z) is continuous in the sense of (3.17), the first inclusion in (3.32) follows
easily, by fixing t ∈ [S, T ] and letting t̄ → t (note that t̄ is allowed to approach to
t from both sides!). For the continuity of Z(· , ·), take any R ∈ (S, T ), from (3.31),
one has
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E

⎛
⎝

T∫

R

|Z(t, s)− Z(t̄, s)|2ds

⎞
⎠

p
2

≤ E

⎛
⎝

T∫

t∨t̄

|Z(t, s)− Z(t̄, s)|2ds

⎞
⎠

p
2

≤ C E

⎧⎪⎪⎨
⎪⎪⎩

|ψ(t)− ψ(t̄)|p +
⎛
⎜⎝

t∨t̄∫

t∧t̄

|h(t, s, Z(t, s))|ds

⎞
⎟⎠

p

+
⎛
⎜⎝

t∨t̄∫

t∧t̄

|Z(t, s)|2ds

⎞
⎟⎠

p
2

+
⎛
⎝

T∫

t∨t̄

|h(t, s, Z(t, s))− h(t̄, s, Z(t, s))|ds

⎞
⎠

p
⎫⎪⎪⎬
⎪⎪⎭
, t, t̄ ∈ [S, R], (3.38)

and

E

⎛
⎝

R∫

S

|Z(t, s)− Z(t̄, s)|2ds

⎞
⎠

p
2

≤ E

⎛
⎜⎝

t∧t̄∫

S

|Z(t, s)− Z(t̄, s)|2ds

⎞
⎟⎠

p
2

≤ C E

⎧⎪⎪⎨
⎪⎪⎩

|ψ(t)− ψ(t̄)|p +
⎛
⎜⎝

t∨t̄∫

t∧t̄

|h(t, s, Z(t, s))|ds

⎞
⎟⎠

p

+
⎛
⎜⎝

t∨t̄∫

t∧t̄

|Z(t, s)|2ds

⎞
⎟⎠

p
2

+
⎛
⎝

T∫

t∨t̄

|h(t, s, Z(t, s))− h(t̄, s, Z(t, s))|ds

⎞
⎠

p
⎫⎪⎪⎬
⎪⎪⎭
, t, t̄ ∈ [R, T ]. (3.39)

Thus, the second inclusion in (3.32) follows. ��
Note that the second inclusion in (3.32) does not mean that Z(· , ·) ∈ C([S, T ]; L p

F

(�; L2(S, T )), which we do not expect. In fact, (3.31) does not give an estimate for

E
(∫ t∨t̄

t∧t̄ |Z(t, s)− Z(t̄, s)|2ds
) p

2
. Recall that the different definitions of Z(t, s) for

(t, s) crossing the “diagonal line” t = s might cause some kind of discontinuity for
the process t �→ Z(t, ·) as a map from [S, T ] to L p

F
(�; L2(S, T )), in some sense.

The above two corollaries will have some interesting applications below. We now
introduce the following standing assumption which will be used below. In what fol-
lows, we denote

g0(t, s) = g(t, s, 0, 0, 0). (3.40)

(H1) Let g : �c ×R
m ×R

m×d ×R
m×d ×� → R

m be B(�c ×R
m ×R

m×d ×R
m×d)⊗

FT -measurable such that s �→ g(t, s, y, z, ζ ) is F-progressively measurable for
all (t, y, z, ζ ) ∈ [0, T ] × R

m × R
m×d × R

m×d and

E

T∫

0

⎛
⎝

T∫

t

|g0(t, s)|ds

⎞
⎠

2

dt < ∞. (3.41)
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Moreover, it holds

|g(t, s, y, z, ζ )− g(t, s, ȳ, z̄, ζ̄ )| ≤ L(t, s)
(
|y − ȳ| + |z − z̄| + |ζ − ζ̄ |

)
,

∀(t, s) ∈ �c, y, ȳ ∈ R
m, z, z̄, ζ, ζ̄ ∈ R

m×d , a.s. , (3.42)

where L : �c → R is a deterministic function such that the following holds:

sup
t∈[0,T ]

T∫

t

L(t, s)2+εds < ∞, (3.43)

for some ε > 0.
Note that if L(· , ·) is uniformly bounded, condition (3.43) automatically holds.

Similar to (H0)′, condition (3.43) can be relaxed to the integrability of L(t, ·)2 being
uniform in t ∈ [0, T ].

Our main result of this section is the following well-posedness result for BSVIE
(1.1).

Theorem 3.7 Let (H1) hold. Then for any ψ(·) ∈ L2
FT
(0, T ), BSVIE (1.1) admits

a unique adapted M-solution (Y (·), Z(· , ·)) ∈ H2[0, T ] on [0, T ]. Moreover, the
following estimate holds:

||(Y (·), Z(· , ·))||2H2[S,T ] ≡ E

⎧⎨
⎩

T∫

S

|Y (t)|2dt +
T∫

S

T∫

S

|Z(t, s)|2dsdt

⎫⎬
⎭

≤ C E

⎧⎪⎨
⎪⎩

T∫

S

|ψ(t)|2dt +
T∫

S

⎛
⎝

T∫

t

|g0(t, s)|ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ , ∀S ∈ [0, T ]. (3.44)

Let ḡ : [0, T ] × [0, T ] × R
m × R

m×d × R
m×d × � → R

m also satisfy (H1). Let
ψ̄(·) ∈ L2

FT
(0, T ) and (Ȳ (·), Z̄(· , ·)) ∈ H2[0, T ] be the adapted M-solution of (1.1)

with g and ψ(·) replaced by ḡ and ψ̄(·), respectively, then

E

⎧⎨
⎩

T∫

S

|Y (t)− Ȳ (t)|2dt +
T∫

S

T∫

S

|Z(t, s)− Z̄(t, s)|2dsdt

⎫⎬
⎭

≤ C E

⎧⎪⎨
⎪⎩

T∫

S

|ψ(t)− ψ̄(t)|2dt

+
T∫

S

⎛
⎝

T∫

t

|g(t, s,Y (s), Z(t, s), Z(s, t))− ḡ(t, s,Y (s), Z(t, s), Z(s, t))|ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭,

∀S ∈ [0, T ]. (3.45)
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Proof We split the proof into several steps.

Step 1 Existence and uniqueness of the adapted M-solution to BSVIE (1.1) on [S, T ]
for some S ∈ [0, T ).

For any S ∈ [0, T ), let M2[S, T ] be the space of all (y(·), z(· , ·)) ∈ H2[S, T ]
such that

y(t) = E[y(t)
∣∣FS] +

t∫

S

z(t, s)dW (s), a.e. t ∈ [S, T ], a.s. (3.46)

Clearly, M2[S, T ] is a nontrivial closed subspace of H2[S, T ]. Furthermore, for any
(y(·), z(· , ·)) ∈ M2[S, T ], from (3.46), we have

E

t∫

S

|z(t, s)|2ds = E |y(t)|2 − E |E[y(t)
∣∣FS]|2 ≤ E |y(t)|2, t ∈ [S, T ], a.s.

(3.47)
Thus, for any (y(·), z(· , ·)) ∈ M2[S, T ],

E

⎧⎨
⎩

T∫

S

|y(t)|2dt +
T∫

S

T∫

t

|z(t, s)|2dsdt

⎫⎬
⎭

≤ E

⎧⎨
⎩

T∫

S

|y(t)|2dt + E

T∫

S

T∫

S

|z(t, s)|2dsdt

⎫⎬
⎭

≤ E

⎧⎨
⎩

T∫

S

|y(t)|2dt +
T∫

S

t∫

S

|z(t, s)|2dsdt +
T∫

S

T∫

t

|z(t, s)|2dsdt

⎫⎬
⎭

≤ 2E

⎧⎨
⎩

T∫

S

|y(t)|2dt +
T∫

S

T∫

t

|z(t, s)|2dsdt

⎫⎬
⎭ . (3.48)

Hence, we may take

‖(y(·), z(· , ·))‖M2[S,T ]
�=
⎧⎨
⎩E

⎡
⎣

T∫

S

|y(t)|2dt +
T∫

S

T∫

t

|z(t, s)|2dsdt

⎤
⎦
⎫⎬
⎭

1
2

(3.49)

as an equivalent norm for M2[S, T ].
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Next, for any ψ(·) ∈ L2
FT
(S, T ), and (y(·), z(· , ·)) ∈ M2[S, T ], we consider the

following BSVIE:

Y (t) = ψ(t)+
T∫

t

g(t, s, y(s), Z(t, s), z(s, t))ds −
T∫

t

Z(t, s)dW (s), t ∈ [S, T ].

(3.50)
By Corollary 3.6 (with p = 2), the above BSVIE admits a unique adapted M-solution
(Y (·), Z(· , ·)) ∈ H2[S, T ] and

E

⎧⎨
⎩|Y (t)|2 +

T∫

t

|Z(t, s)|2ds

⎫⎬
⎭

≤ C E

⎧⎪⎨
⎪⎩|ψ(t)|2 +

⎛
⎝

T∫

t

|g(t, s, y(s), 0, z(s, t))|ds

⎞
⎠

2
⎫⎪⎬
⎪⎭

≤ C E

⎧⎪⎨
⎪⎩|ψ(t)|2 +

⎛
⎝

T∫

t

|g0(t, s)|ds

⎞
⎠

2

+
⎛
⎝

T∫

t

L(t, s)2ds

⎞
⎠
⎛
⎝

T∫

t

|y(s)|2ds

⎞
⎠

+
⎛
⎝

T∫

t

L(t, s)2ds

⎞
⎠
⎛
⎝

T∫

t

|z(s, t)|2ds

⎞
⎠
⎫⎬
⎭

≤ C E

⎧⎪⎨
⎪⎩|ψ(t)|2 +

⎛
⎝

T∫

t

|g0(t, s)|ds

⎞
⎠

2

+
T∫

t

|y(s)|2ds +
T∫

t

|z(s, t)|2ds

⎫⎪⎬
⎪⎭ . (3.51)

Consequently, [note (3.48)]

‖(Y (·), Z(· , ·))‖2
M2[S,T ] ≡ E

⎧⎨
⎩

T∫

S

|Y (t)|2dt +
T∫

S

T∫

t

|Z(t, s)|2dsdt

⎫⎬
⎭

≤ C E

⎧⎪⎨
⎪⎩

T∫

S

|ψ(t)|2dt +
T∫

S

⎛
⎝

T∫

t

|g0(t, s)|ds

⎞
⎠

2

dt + ‖(y(·), z(· , ·))‖2
M2[S,T ]

⎫⎪⎬
⎪⎭ .

(3.52)

Hence, such a (Y (·), Z(· , ·)) ∈ M2[S, T ]. Now, let us define a map� : M2[S, T ] →
M2[S, T ] by

�(y(·), z(· , ·)) = (Y (·), Z(· , ·)), ∀(y(·), z(· , ·)) ∈ M2[S, T ]. (3.53)
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We claim that this map is a contraction when T − S > 0 is small. To prove this, let
(ȳ(·), z̄(· , ·)) ∈ M2[S, T ], and (Ȳ (·), Z̄(· , ·)) = �(ȳ(·), z̄(· , ·)). Then, by Corol-
lary 3.6 again, for t ∈ [S, T ],

E

⎧⎨
⎩|Y (t)− Ȳ (t)|2 +

T∫

t

|Z(t, s)− Z̄(t, s)|2ds

⎫⎬
⎭

≤ C E

⎛
⎝

T∫

t

|g(t, s, y(s), 0, z(s, t))− g(t, s, ȳ(s), 0, z̄(s, t))|ds

⎞
⎠

2

≤ C E

⎧⎨
⎩

T∫

t

L(t, s)
(
|y(s)− ȳ(s)| + |z(s, t)− z̄(s, t)|

)
ds

⎫⎬
⎭

2

≤ C(T − t)
ε

2+ε

⎛
⎝

T∫

t

L(t, s)2+εds

⎞
⎠

2
2+ε

·E
⎧⎨
⎩

T∫

t

|y(t)− ȳ(t)|2dt +
T∫

t

|z(t, s)− z̄(t, s)|2dsdt

⎫⎬
⎭

≤ C(T − S)
ε

2+ε E

⎧⎨
⎩

T∫

t

|y(t)− ȳ(t)|2dt +
T∫

t

|z(t, s)− z̄(t, s)|2dsdt

⎫⎬
⎭ . (3.54)

Consequently, similar to (3.52),

‖�(y(·), z(· , ·))−�(ȳ(·), z̄(· , ·))‖M2[S,T ]
≡ ‖(Y (·), Z(· , ·))− (Ȳ (·), Z̄(· , ·))‖2

M2[S,T ]

≡ E

T∫

S

|Y (t)− Ȳ (t)|2dt + E

T∫

S

T∫

t

|Z(t, s)− Z̄(t, s)|2dsdt

≤ C(T − S)
ε

2+ε E

⎡
⎣

T∫

S

|y(t)− ȳ(t)|2dt +
T∫

S

T∫

t

|z(t, s)− z̄(t, s)|2dsdt

⎤
⎦

≤ C(T − S)
ε

2+ε ‖(y(·), z(· , ·))− (ȳ(·), z̄(· , ·))‖2
M2[S,T ]. (3.55)

Thus, when T − S > 0 is small, the map� : M2[S, T ] → M2[S, T ] is a contraction.
Hence, it admits a unique fixed point (Y (·), Z(· , ·)) ∈ M2[S, T ] which is the unique
adapted M-solution of (1.1) over [S, T ]. Also, estimate (3.44) holds for this S. We
emphasize that the constant on the right hand side of the last inequality in (3.55) is an
absolute one.
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This step determines the values (Y (t), Z(t, s)) for (t, s) ∈ [S, T ] × [S, T ].

Step 2 Application of the Martingale Representation Theorem to determine the values
Z(t, s) of Z(· , ·) for (t, s) ∈ [S, T ] × [R, S], with any given R ∈ [0, S).

Since E[Y (t) ∣∣FS] ∈ L2(S, T ; L2
FS
(�)), there is a unique Z(· , ·) ∈ L2(S, T ; L2

F
(R, S)) such that

E[Y (t) | FS] = E[Y (t) | FR] +
S∫

R

Z(t, s)dW (s), t ∈ [S, T ], (3.56)

which implies

E

S∫

R

|Z(t, s)|2ds = E |Y (t)|2 − |EY (t)|2, t ∈ [S, T ]. (3.57)

Consequently,

E

T∫

S

S∫

R

|Z(t, s)|2dsdt ≤ E

T∫

S

|Y (t)|2dt

≤ C E

⎧⎪⎨
⎪⎩

T∫

S

|ψ(t)|2dt+
T∫

S

⎛
⎝

T∫

t

|g0(t, s)|ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ . (3.58)

Combining Steps 1–2, we have (uniquely) determined (Y (t), Z(t, s)) for (t, s) ∈
[S, T ] × [R, T ], and the following estimate holds [combining (3.44) and (3.58)]:

E

⎧⎨
⎩

T∫

S

|Y (t)|2dt+
T∫

S

T∫

R

|Z(t, s)|2dsdt

⎫⎬
⎭

≤ C E

⎧⎪⎨
⎪⎩

T∫

S

|ψ(t)|2dt +
T∫

S

⎛
⎝

T∫

t

|g0(t, s)|ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ . (3.59)

Step 3 A related SFIE is solvable on [S, T ].
For (t, s) ∈ [R, S] × [S, T ], from Steps 1–2, we know that the values Y (s) and

Z(s, t) are all already determined. Hence, the following can be defined:

gS(t, s, z) = g(t, s,Y (s), z, Z(s, t)), (t, s, z) ∈ [R, S] × [S, T ] × R
m×d .

(3.60)

123



Backward stochastic Volterra integral equations 49

Now, consider the following SFIE:

ψ S(t) = ψ(t)+
T∫

S

gS(t, s, Z(t, s))ds −
T∫

S

Z(t, s)dW (s), t ∈ [R, S], (3.61)

By Corollary 3.5 (with p = 2), the above SFIE admits a unique adapted solution
(ψ S(·), Z(· , ·)) ∈ L2

FS
(R, S)× L2(R, S; L2

F
(S, T )), and the following holds:

E

⎧⎨
⎩|ψ S(t)|2 +

T∫

S

|Z(t, s)|2ds

⎫⎬
⎭

≤ C E

⎡
⎢⎣|ψ(t)|2 +

⎛
⎝

T∫

S

|g(t, s,Y (s), 0, Z(s, t))|ds

⎞
⎠

2⎤
⎥⎦

≤ C E

⎧⎪⎨
⎪⎩|ψ(t)|2+

⎛
⎝

T∫

S

|g0(t, s)|ds

⎞
⎠

2

+
T∫

S

|Y (s)|2ds +
T∫

S

|Z(s, t)|2ds

⎫⎬
⎭ , t ∈ [R, S]. (3.62)

Consequently, making use of (3.59), we have

E

⎧⎨
⎩

S∫

R

|ψ S(t)|2dt +
S∫

R

T∫

S

|Z(t, s)|2dsdt

⎫⎬
⎭

≤ C E

S∫

R

⎧⎪⎨
⎪⎩|ψ(t)|2+

⎛
⎝

T∫

S

|g0(t, s)|ds

⎞
⎠

2

+
T∫

S

|Y (s)|2ds +
T∫

S

|Z(s, t)|2ds

⎫⎪⎬
⎪⎭ dt

≤ C E

⎧⎪⎨
⎪⎩

T∫

R

|ψ(t)|2dt +
T∫

R

⎛
⎝

T∫

t

|g0(t, s)|ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ . (3.63)

This step uniquely determines the values Z(t, s) for (t, s) ∈ [R, S] × [S, T ], and by
the definition of gS(t, s, z), we see that (ψ S(·), Z(· , ·)) satisfies

ψ S(t) = ψ(t)+
T∫

S

g(t, s,Y (s), Z(t, s), Z(s, t))ds

−
T∫

S

Z(t, s)dW (s), t ∈ [R, S]. (3.64)
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Step 4 Complete the proof by induction. Combining Steps 1–3, we have uniquely
determined

{
Y (t), t ∈ [S, T ],
Z(t, s), (t, s) ∈ ([S, T ] × [R, T ])

⋃
([R, S] × [S, T ]), (3.65)

and the following estimate holds [see (3.59) and (3.63)]:

E

⎧⎨
⎩

T∫

S

|Y (t)|2dt +
T∫

S

T∫

R

|Z(t, s)|2dsdt +
S∫

R

T∫

S

|Z(t, s)|2dsdt

⎫⎬
⎭

≤ C E

⎧⎪⎨
⎪⎩

T∫

R

|ψ(t)|2dt +
T∫

R

⎛
⎝

T∫

t

|g0(t, s)|ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ . (3.66)

Now, we consider

Y (t) = ψ S(t)+
S∫

t

g(t, s,Y (s), Z(t, s), Z(s, t))ds

−
S∫

t

Z(t, s)dW (s), t ∈ [R, S]. (3.67)

Since ψ S(·) ∈ L2
FS
(R, S), (3.67) is a BSVIE over [R, S]. Hence, similar to Step 1,

we are able to show that that (3.67) is solvable on [R, S] when S − R > 0 is small.
Moreover, the following estimate holds:

E

⎧⎨
⎩

S∫

R

|Y (t)|2dt+
S∫

R

S∫

R

|Z(t, s)|2dsdt

⎫⎬
⎭

≤ C E

⎧⎪⎨
⎪⎩

S∫

R

|ψ S(t)|2dt+
S∫

R

⎛
⎝

S∫

t

|g0(t, s)|ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭

≤ C E

⎧⎪⎨
⎪⎩

T∫

R

|ψ(t)|2dt +
T∫

R

⎛
⎝

T∫

t

|g0(t, s)|ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ . (3.68)

This solvability determines (Y (t), Z(t, s)) for (t, s) ∈ [R, S] × [R, S]. Note that for
t ∈ [R, S],
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Y (t) = ψ S(t)+
S∫

t

g(t, s,Y (s), Z(t, s), Z(s, t))ds −
S∫

t

Z(t, s)dW (s)

= ψ(t)+
T∫

S

g(t, s,Y (s), Z(t, s), Z(s, t))ds −
T∫

S

Z(t, s)dW (s)

+
S∫

t

g(t, s,Y (s), Z(t, s), Z(s, t))ds −
S∫

t

Z(t, s)dW (s)

= ψ(t)+
T∫

t

g(t, s,Y (s), Z(t, s), Z(s, t))ds −
T∫

t

Z(t, s)dW (s). (3.69)

Hence, we obtain the (unique) solvability of BSVIE (1.1) on [R, T ], with the following
estimate holds [combining (3.66) and (3.68)]:

E

⎧⎨
⎩

T∫

R

|Y (t)|2dt+
T∫

R

T∫

R

|Z(t, s)|2dsdt

⎫⎬
⎭ ≤ C E

⎧⎪⎨
⎪⎩

T∫

R

|ψ(t)|2dt+
T∫

R

⎛
⎝

T∫

t

|g(t, s)|ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ .

(3.70)

Then we can use induction to finish the proof of the existence and uniqueness of
adapted M-solution to BSVIE (1.1).

Finally, we prove the stability estimate. To this end, let (Y (·), Z(· , ·)) and
(Ȳ (·), Z̄(· , ·)) be adapted M-solutions of (1.1) corresponding to (g, ψ) and (ḡ, ψ̄),
respectively. Let

Ŷ (t) = Y (t)− Ȳ (t), Ẑ(t, s) = Z(t, s)− Z̄(t, s), ψ̂(t) = ψ(t)− ψ̄(t),

ĝ(t, s) = |g(t, s, Y (s), Z(t, s), Z(s, t))− ḡ(t, s, Y (s), Z(t, s), Z(s, t))|,

ḡy(t, s) = [ḡ(t, s, Y (s), Z(t, s), Z(s, t))− ḡ(t, s, Ȳ (s), Z(t, s), Z(s, t))]Ŷ (s)T
|Ŷ (s)|2 I[Ŷ (s) �=0],

Similarly, we define ḡzi (t, s) and ḡζi (t, s). Then one has

Ŷ (t) = ψ̂(t)+
T∫

t

{
ḡy(t, s)Ŷ (s)+

d∑
i=1

[
ḡzi (t, s)Ẑi (t, s)

+ḡζi (t, s)Ẑi (s, t)
]

+ ĝ(t, s)

}
ds

−
T∫

t

Ẑ(t, s)dW (s). (3.71)
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Similar to the above Steps 1–4, we have

E

T∫

S

|Ŷ (t)|2dt + E

T∫

S

T∫

S

|Ẑ(t, s)|2dsdt

≤ C E

⎧⎪⎨
⎪⎩

T∫

S

|ψ̂(t)|2dt +
T∫

S

⎛
⎝

T∫

t

ĝ(t, s)ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ .

Then our stability estimate follows. In particular, we have the uniqueness. ��
The following result will be useful in the sequel.

Corollary 3.8 Let (H1) hold and (Y (·), Z(· , ·)) ∈ M2[0, T ] be the unique adapted
M-solution of (1.1). For any t ∈ [0, T ], let (λt (·), µt (·)) ∈ H

2[t, T ] be the adapted
solution of the following BSDE:

λt (r) = ψ(t)+
T∫

r

g(t, s,Y (s), µt (s), Z(s, t))ds −
T∫

r

µt (s)dW (s), r ∈ [t, T ].

(3.72)
Let {

Ȳ (t) = λt (t), t ∈ [0, T ],
Z̄(t, s) = µt (s), (t, s) ∈ �c,

(3.73)

and let the values Z̄(t, s) of Z̄(· , ·) for (t, s) ∈ � be defined through

Ȳ (t) = EȲ (t)+
t∫

0

Z̄(t, s)dW (s), t ∈ [0, T ]. (3.74)

Then {
Ȳ (t) = Y (t), t ∈ [0, T ],
Z̄(t, s) = Z(t, s), (t, s) ∈ �c.

(3.75)

Proof Take r = t in (3.72), we obtain

Ȳ (t) = ψ(t)+
T∫

t

g(t, s,Y (s), Z̄(t, s), Z(s, t))ds −
T∫

t

Z̄(t, s)dW (s), t ∈ [0, T ].

(3.76)
Thus, (Ȳ (·), Z̄(· , ·)) ∈ M2[0, T ] is an adapted M-solution of the above BSVIE. Since
(Y (·), Z(· , ·)) ∈ M2[0, T ] is another adapted solution of the above, we obtain (3.75)
by uniqueness of adapted M-solutions. ��

To conclude this section, we present an interesting result concerning the adapted
M-solution of our BSVIE (1.1).
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Proposition 3.9 Let (H1) hold. Letψ(·) ∈ L2
FT
(0, T ) and (Y (·), Z(· , ·)) ∈ H2[0, T ]

be the unique adapted M-solution of BSVIE (1.1) on [0, T ]. Then for all S ∈ [0, T ),

ψ S(t)
�=ψ(t)+

T∫

S

g(t, s,Y (s), Z(t, s), Z(s, t))ds −
T∫

S

Z(t, s)dW (s) (3.77)

is FS-measurable for almost all t ∈ [0, S].
Proof Note that for almost all t ∈ [0, T ], the involved functions ψ(t), g(t, · ,Y (·),
Z(t, ·), Z(· , t)), etc. in (3.77) are well-defined. Take such a t . Suppose for some
S ∈ [0, T ],ψ S(t) is not FS-measurable. According to the proof of Theorem 3.7 given
above, there exists an R ∈ [0, S) such that

ψ R(t)
�=ψ(t)+

T∫

R

g(t, s,Y (s), Z(t, s), Z(s, t))ds −
T∫

R

Z(t, s)dW (s) (3.78)

is FR-measurable. On the other hand, we have

ψ R(t) = ψ S(t)+
S∫

R

g(t, s,Y (s), Z(t, s), Z(s, t))ds −
S∫

R

Z(t, s)dW (s), (3.79)

and the last two terms on the right hand side of the above are FS-measurable. Hence,
if ψ S(t) is not FS-measurable, neither the whole right hand side. This contradicts the
FS-measurability of the left hand side since R < S. ��

4 Regularity of adapted M-solutions

In this section, we are going to discuss some regularity for the adapted M-solutions to
BSVIE (1.1) by means of Malliavin calculus. Among other things, we will establish an
estimate stronger than (3.44), under, of course, some stronger conditions. Moreover,
we will establish the continuity of t �→ Y (t), allowing the dependence of g on ζ .

Let us first make an observation. By Corollary 3.6 (with p = 2), together with
Gronwall’s inequality, we see that if (H1) holds, and (Y (·), Z(· , ·)) ∈ M2[0, T ] is
the unique adapted M-solution of BSVIE (1.1), then

E

⎧⎨
⎩|Y (t)|2 +

T∫

0

|Z(t, s)|2ds

⎫⎬
⎭

≤ C E

⎧⎪⎨
⎪⎩|ψ(t)|2 +

T∫

t

|ψ(s)|2ds +
⎛
⎝

T∫

t

|g(t, s, 0, 0, Z(s, t))|ds

⎞
⎠

2
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+
T∫

t

⎛
⎝

T∫

s

|g(s, τ, 0, 0, Z(τ, s))|dτ
⎞
⎠

2

dt

⎫⎪⎬
⎪⎭

≤ C E

⎧⎪⎨
⎪⎩|ψ(t)|2+

T∫

t

|ψ(s)|2ds+
⎛
⎝

T∫

t

|g0(t, s)|ds

⎞
⎠

2

+
T∫

t

⎛
⎝

T∫

s

|g0(s, τ )|dτ
⎞
⎠

2

dt

+
⎛
⎝

T∫

t

L(t, s)|Z(s, t)|ds

⎞
⎠

2

+
T∫

t

⎛
⎝

T∫

s

L(s, τ )|Z(τ, s)|dτ
⎞
⎠

2

ds

⎫⎪⎬
⎪⎭

≤ C E

⎧⎪⎨
⎪⎩|ψ(t)|2+

T∫

t

|ψ(s)|2ds+
⎛
⎝

T∫

t

|g0(t, s)|ds

⎞
⎠

2

+
T∫

t

⎛
⎝

T∫

s

|g0(s, τ )|dτ
⎞
⎠

2

dt

+
T∫

t

|Z(s, t)|2ds

⎫⎬
⎭ . (4.1)

Thus, in order to estimate the left hand side of the above, it is crucial to estimate the last
term on the right hand side of the above. The difficulty here is that we hope to get some
kind of pointwise behavior (instead of just integrability behavior) of t �→ Z(s, t). To
achieve this, we need to use Malliavin calculus. Roughly speaking, if Y (·) and Z(· , ·)
are Malliavin differentiable, then from

Y (t) = EY (t)+
t∫

0

Z(t, s)dW (s), t ∈ [0, T ], (4.2)

we have

Di
r Y (t) = Zi (t, r)+

t∫

r

Di
r Z(t, s)dW (s), (t, r) ∈ �, 1 ≤ i ≤ d. (4.3)

Thus, the last term on the right hand side of (4.1) can be estimated through the fol-
lowing:

E

T∫

t

|Zi (s, t)|2ds = 7E

T∫

t

|Di
t Y (s)|2ds − E

T∫

t

s∫

t

|Di
t Z(s, τ )|2dτds

≤ E

T∫

t

|Di
t Y (s)|2ds. (4.4)
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In this section, among other things, we will mainly make some efforts to estimate the
right hand side of (4.4), which will lead to an estimate for the left hand side of (4.1)
and some other related estimates.

To begin with, we introduce some more spaces. For any 0 ≤ R < S ≤ T , let
�[R, S] be the space consists of all processes ψ(·) ∈ L∞(R, S; L2

FT
(�)) such that

‖ψ‖�[R,S]
�= sup

t∈[R,S]
E

⎡
⎣|ψ(t)|2 +

S∫

t

d∑
i=1

|Di
tψ(s)|2ds

⎤
⎦

1
2

< ∞. (4.5)

We let Y[R, S] be the space of all processes y(·) ∈ �[R, S] which are F-adapted.
Likewise, let Z[R, S] be the space consists of all processes z : [R, S]2 ×� → R

m×d

such that s �→ z(t, s) is F-adapted for almost all t ∈ [R, S], and the following holds:

‖z‖Z[R,S]
�=
⎧⎨
⎩ sup

t∈[R,S]
E

⎡
⎣

S∫

R

|z(t, s)|2ds+
S∫

t

|z(s, t)|2ds

+
S∫

t

S∫

t

d∑
i=1

|Di
t z(τ, s)|2dsdτ

⎤
⎦
⎫⎬
⎭

1
2

< ∞. (4.6)

Clearly, ‖ · ‖�[R,S] and ‖ · ‖Z[R,S] are norms under which �[R, S] and Z[R, S] are
Banach spaces, respectively; and Y[R, S] is a closed subspace of �[R, S]. For nota-
tional better-looking, when y(·) ∈ Y[R, S], we use‖y(·)‖Y[R,S] instead of‖y(·)‖�[R,S]
for its norm.

Next, we let �c[R, S] be the space consists of all ψ(·) ∈ �[R, S] such that

lim
t,t̄∈[R,S]
|t−t̄ |→0

E

⎧⎨
⎩|ψ(t)− ψ(t̄)|2 +

S∫

t∨t̄

d∑
i=1

|Di
tψ(s)− Di

t̄ψ(s)|2ds

⎫⎬
⎭ = 0, (4.7)

and let Yc[R, S] be the space of all process y(·) ∈ �c[R, S] that are F-adapted.
Likewise, let Zc[R, S] be the space of all z(· , ·) ∈ Z[R, S] such that

lim
t,t̄∈[R,S]
|t−t̄ |→0

E

⎧⎪⎨
⎪⎩

t∧t̄∫

R

|z(t, s)− z(t̄, s)|2ds +
S∫

t∨t̄

|z(t, s)− z(t̄, s)|2ds

+
S∫

t∨t̄

|z(s, t)− z(s, t̄)|2ds+
S∫

t∨t̄

S∫

t∨t̄

d∑
i=1

|Di
t z(s, τ )− Di

t̄ z(s, τ )|2dτds

⎫⎬
⎭ = 0.

(4.8)
It is easy to see that�c[R, S], Yc[R, S] and Zc[R, S] are closed subspaces of�[R, S],
Y[R, S] and Z[R, S], respectively; and Yc[R, S] is a closed subspace of �c[R, S].
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Also, we note that
Yc[R, S] ⊆ CF([R, S]; L2(�)). (4.9)

Thus, any process in Yc[R, S] is continuous from [R, S] to L2(�).
Now, we introduce the following assumption [comparing with (H1)].

(H2) Let g : �c × R
m × R

m×d × R
m×d × � → R

m be B(�c × R
m × R

m×d ×
R

m×d) ⊗ FT -measurable, with s �→ g(t, s, y, z, ζ ) being F-adapted for all
(t, y, z, ζ ) ∈ [0, T ]×R

m×R
m×d×R

m×d satisfying (3.41) such that (y, z, ζ ) �→
g(t, s, y, z, ζ ) is continuously differentiable, and (y, z, ζ ) �→[Di

r g](t, s, y, z, ζ )
is also continuous. Moreover, there are deterministic functions L , L y, Lz :
�c → [0,∞), and a process L0 : �c × � → [0,∞) satisfying (3.43) for
some ε > 0, and

E

T∫

0

⎛
⎝

T∫

t

L0(t, s)ds

⎞
⎠

2

dt +
T∫

0

T∫

t

L y(t, s)2dsdt + sup
t∈[0,T ]

T∫

t

Lz(t, s)2ds < ∞,

(4.10)
such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d∑
i=1

∣∣∣[Di
r g](t, s, y, z, ζ )

∣∣∣ ≤ L0(t, s)+ L y(t, s)|y| + Lz(t, s)(|z| + |ζ |),
|gy(t, s, y, z, ζ )| ≤ L(t, s),∣∣∣∣∣∣

d∑
j=1

gz j (t, s, y, z, ζ )η j

∣∣∣∣∣∣ ≤ L(t, s)|η|,
∣∣∣∣∣∣

d∑
j=1

gζ j (t, s, y, z, ζ )η j

∣∣∣∣∣∣ ≤ L(t, s)|η|,

∀(t, s) ∈ �c, (y, z, ζ ) ∈ R
m × R

m×d × R
m×d , η ≡ (η1, · · · , ηd ) ∈ R

m×d , r ∈ [0, T ], a.s.
(4.11)

Note that the last three conditions in (4.11) imply the Lipschitz condition for the
map (y, z, ζ ) �→ g(t, s, y, z, ζ ) with the Lipschitz constants depending on (t, s).
Hence, (H2) is stronger than (H1). Also, it should be pointed out that we only assume
the continuity and linear growth of the map (y, z, ζ ) �→ [Di

r g](t, s, y, z, ζ ), instead
of the Lipschitz continuity. We introduce the following a little stronger assumption.

(H2)′ Let (H2) hold and moreover,

sup
t∈[0,T ]

E

⎛
⎝

T∫

t

g0(t, s)ds

⎞
⎠

2

< ∞. (4.12)

The first main result of this section is the following result.

Theorem 4.1 Let (H2) hold, ψ(·) ∈ �[0, T ], and (Y (·), Z(· , ·)) ∈ M2[0, T ] be the
adapted M-solution of (1.1). Then for any r ∈ [0, T ), and S ∈ [0, T ),
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E
d∑

i=1

⎧⎨
⎩

T∫

S

|Di
r Y (t)|2dt +

T∫

S

T∫

S

|Di
r Z(t, s)|2dsdt

⎫⎬
⎭

≤ C E

⎧⎪⎨
⎪⎩

T∫

S

|ψ(t)|2dt+
d∑

i=1

T∫

S

| Di
rψ(t)|2dt+

T∫

S

⎛
⎝

T∫

t

g0(t, s)ds

⎞
⎠

2

dt

+
T∫

S

⎛
⎝

T∫

t

L0(t, s)ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ , (4.13)

and (Di
r Y (·), Di

r Z(· , ·)) is the adapted M-solution of the following BSVIE:

Di
r Y (t)= Di

rψ(t)+
T∫

t

{
[Di

r g](t, s,Y (s),Z(t, s),Z(s, t))

+gy(t, s,Y (s),Z(t, s),Z(s, t))Di
r Y (s)

+
d∑

i=1

[
gz j (t, s,Y (s),Z(t, s),Z(s, t))Di

r Z j (t, s)

+gζ j (t, s,Y (s),Z(t, s),Z(s, t))Di
r Z j (s, t)

]}
ds

−
T∫

t

Di
r Z(t, s)dW (s), t ∈ [r, T ]. (4.14)

Moreover,

Di
r Y (t) = Zi (t, r)+

t∫

r

Di
r Z(t, s)dW (s), (t, r) ∈ �, (4.15)

which implies

Zi (t, r) = E
[

Di
r Y (t)

∣∣ Fr

]
, (t, r) ∈ �, a.s. , 1 ≤ i ≤ d. (4.16)

In addition,

Zi (t, r)= Di
rψ(t)+

T∫

r

⎧⎨
⎩[Di

r g](t, s,Y (s),Z(t, s),Z(s, t))

+gy(t, s,Y (s),Z(t, s),Z(s, t))Di
r Y (s)

+
d∑

j=1

[gz j (t, s,Y (s), Z(t, s), Z(s, t))Di
r Z j (t, s)

⎫⎬
⎭ ds
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−
T∫

r

Di
r Z(t, s)dW (s),

(t, r) ∈ �c, 1 ≤ i ≤ d. (4.17)

Further, if (H2)′ holds, then

‖Y (·)‖2
Y[0,T ] + ‖Z(· , ·)‖2

Z[0,T ]

≤ C

⎧⎪⎨
⎪⎩‖ψ(·)‖2

�[0,T ] + sup
t∈[0,T ]

E

⎛
⎝

T∫

t

g0(t, s)ds

⎞
⎠

2

+ E

T∫

0

⎛
⎝

T∫

t

L0(t, s)ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ .

(4.18)

Proof Since (H2) is stronger than (H1), by Theorem 3.7, for any ψ(·) ∈ �[0, T ],
BSVIE (1.1) admits a unique adapted solution (Y (·), Z(·)) ∈ M2[0, T ] and estimate
(3.44) holds. Next, we introduce the following BSVIE [which is a formal Malliavin
differentiation of (1.1)]:

Ŷ r,i (t)= Di
rψ(t)+

T∫

t

{
[Di

r g](t, s,Y (s),Z(t, s),Z(s, t))

+gy(t, s,Y (s),Z(t, s),Z(s, t))Ŷ r,i (s)

+
d∑

j=1

[
gz j (t, s,Y (s), Z(t, s), Z(s, t))Ẑ r,i

j (t, s)

+gζ j (t, s,Y (s), Z(t, s), Z(s, t))Ẑ r,i (s, t)
]}

ds

−
T∫

t

Ẑ r,i (t, s)dW (s), t ∈ [0, T ]. (4.19)

By Theorem 3.7, the above admits a unique adapted solution (Ŷ r,i (·), Ẑ r,i (· , ·)) ∈
H2[0, T ], and for each S ∈ [0, T ], the following estimate holds: [note (3.44)]

‖(Ŷ r,i (·), Ẑ r,i (· , ·))‖2
H2[S,T ]

≡ E
d∑

i=1

⎧⎨
⎩

T∫

S

|Ŷ r,i (t)|2ds +
T∫

S

T∫

S

|Ẑ r,i (t, s)|2dsdt

⎫⎬
⎭

≤ C E
d∑

i=1

⎧⎪⎨
⎪⎩

T∫

S

| Di
rψ(t)|2dt +

T∫

S

⎛
⎝

T∫

t

| [Di
r g](t, s,Y (s), Z(t, s), Z(s, t))|ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭
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≤ C E

⎧⎪⎨
⎪⎩

d∑
i=1

T∫

S

| Di
rψ(t)|2dt +

T∫

S

⎛
⎝

T∫

t

L0(t, s)ds

⎞
⎠

2

dt

+
⎛
⎝

T∫

S

T∫

t

L y(t, s)2dsdt

⎞
⎠

T∫

S

|Y (s)|2ds

+
⎛
⎝ sup

t∈[S,T ]

T∫

t

Lz(t, s)2ds

⎞
⎠

T∫

S

T∫

S

|Z(t, s)|2dsdt

⎫⎬
⎭

≤ C E

⎧⎪⎨
⎪⎩

T∫

S

|ψ(t)|2dt+
d∑

i=1

T∫

S

| Di
rψ(t)|2dt+

T∫

S

⎛
⎝

T∫

t

g0(t, s)ds

⎞
⎠

2

+
T∫

S

⎛
⎝

T∫

t

L0(t, s)ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ . (4.20)

Further, we see from the proof of Theorem 3.7 that when T − S > 0 small, the map�
defined by (3.53) is a contraction on H2[S, T ]. Therefore, a Picard iteration sequence
converges to the unique adapted M-solution. Namely, if we define:

{
(Y 0(·), Z0(·)) = 0,
(Y k+1(·), Zk+1(·)) = �(Y k(·), Zk(·)), k ≥ 0,

(4.21)

then
lim

k→∞ ||(Y k(·), Zk(·))− (Y (·), Z(·))||H2[S,T ] = 0. (4.22)

Next, from

Y k+1(t) = ψ(t)+
T∫

t

g(t, s,Y k(s), Zk+1(t, s), Zk(s, t))ds −
T∫

t

Zk+1(t, s)dW (s),

(4.23)
similar to [12], we can recursively show that

(Di
r Y k(·), Di

r Zk(· , ·)) ∈ H2[S, T ], k ≥ 0, (4.24)
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and

Di
r Y k+1(t) = Di

rψ(t)+
T∫

t

{
[Di

r g](t, s,Y k(s), Zk(t, s), Zk(s, t))

+gy(t, s,Y k(s),Zk(t, s),Zk(s, t))Di
r Y k(s)

+
d∑

j=1

[
gz j (t, s,Y k(s),Zk(t, s),Zk(s, t))Di

r Zk
j (t, s)

+gζ j (t, s,Y k(s), Zk(t, s), Zk(s, t))Di
r Zk

j (s, t)
]}

ds

−
T∫

t

Di
r Zk+1(t, s)dW (s), t ∈ [S, T ]. (4.25)

Then (we suppress (t, s) in [Di
r g](t, s, · , · , ·), etc.)

θk+1
�= ‖(Di

r Y k+1(·), Di
r Zk+1(· , ·))− (Ŷ r,i (·), Ẑ r,i (·))‖2

H2[S,T ]

≤ C E

⎧⎨
⎩

T∫

S

⎛
⎝

T∫

t

| [Di
r g](Y k(s), Zk(t, s), Zk(s, t))

− [Di
r g](Y (s), Z(t, s), Z(s, t))|ds

⎞
⎠

2

dt

+
T∫

S

⎛
⎝

T∫

t

|gy(Y
k(s), Zk(t, s), Zk(s, t))

− gy(Y (s), Z(t, s), Z(s, t))| |Ŷ r,i (s)|ds

⎞
⎠

2

dt

+
d∑

j=1

T∫

S

⎛
⎝

T∫

t

|gz j (Y
k(s), Zk(t, s), Zk(s, t))

− gz j (Y (s), Z(t, s), Z(s, t))| |Ẑ r,i
j (t, s)|ds

⎞
⎠

2
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+
d∑

j=1

T∫

S

⎛
⎝

T∫

t

|gζ j (Y
k(s), Zk(t, s), Zk(s, t))

− gz j (Y (s), Z(t, s), Z(s, t))| |Ẑ r,i
j (s, t)|ds

⎞
⎠

2

dt

+
⎡
⎣

T∫

S

T∫

t

L(t, s)2dsdt + sup
t∈[S,T ]

T∫

t

L(t, s)2ds

⎤
⎦

· ‖(Di
r Y k(·), Di

r Zk(· , ·))− (Ŷ r,i (·), Ẑ r,i (· , ·))‖2
H2[S,T ]

⎫⎬
⎭ ≤ ηk + αθk,

(4.26)

where

ηk
�= C E

⎧⎨
⎩

T∫

S

⎛
⎝

T∫

t

| [Di
r g](Y k(s), Zk(t, s), Zk(s, t))

− [Di
r g](Y (s), Z(t, s), Z(s, t))|ds

⎞
⎠

2

dt

+
T∫

S

⎛
⎝

T∫

t

|gy(Y
k(s), Zk(t, s), Zk(s, t))

−gy(Y (s), Z(t, s), Z(s, t))| |Ŷ r,i (s)|ds

⎞
⎠

2

dt

+
d∑

j=1

T∫

S

⎛
⎝

T∫

t

|gz j (Y
k(s), Zk(t, s), Zk(s, t))

− gz j (Y (s), Z(t, s), Z(s, t))| |Ẑ r,i
j (t, s)|ds

⎞
⎠

2

dt

+
d∑

j=1

T∫

S

⎛
⎝

T∫

t

|gζ j (Y
k(s), Zk(t, s), Zk(s, t))

− gz j (Y (s), Z(t, s), Z(s, t))| |Ẑ r,i
j (s, t)|ds

⎞
⎠

2

dt, (4.27)
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and if necessary, we shrink T − S further so that

C E

⎡
⎣

T∫

S

T∫

t

L(t, s)2ds + sup
t∈[S,T ]

T∫

t

L(t, s)2ds

⎤
⎦ ≤ α < 1. (4.28)

By the convergence (4.22) and the dominated convergence theorem, we see that

lim
k→∞ ηk = 0. (4.29)

Then (4.26) implies
lim

k→∞ θk = 0. (4.30)

Since operator Di
r is closed, we must have

Ŷ r,i (t) = Di
r Y (t), Ẑ r,i (t, s) = Di

r Z(t, s), t, s ∈ [S, T ], a.s. (4.31)

This proves (4.13)–(4.17) for T − S > 0 small.
Next, by (4.3), we have

E

T∫

S

S∫

r

|Di
r Z(t, s)|2dsdt ≤ E

T∫

S

t∫

r

|Di
r Z(t, s)|2dsdt ≤ E

T∫

S

|Di
r Y (t)|2dt

≤ C E

⎧⎪⎨
⎪⎩

T∫

S

|ψ(t)|2dt+
d∑

i=1

T∫

S

| Di
rψ(t)|2dt+

T∫

S

⎛
⎝

T∫

t

g0(t, s)ds

⎞
⎠

2

+
T∫

S

⎛
⎝

T∫

t

L0(t, s)ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ . (4.32)

Combining what we have proved, one has

E

⎧⎨
⎩

T∫

S

|Di
r Y (t)|2dt +

T∫

S

T∫

r

|Di
r Z(t, s)|2dsdt

⎫⎬
⎭

≤ C E

⎧⎪⎨
⎪⎩

T∫

S

|ψ(t)|2dt+
d∑

i=1

T∫

S

| Di
rψ(t)|2dt+

T∫

S

⎛
⎝

T∫

t

g0(t, s)ds

⎞
⎠

2

+
T∫

S

⎛
⎝

T∫

t

L0(t, s)ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ . (4.33)
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Next, for any fixed t ∈ [0, S], applying Proposition 2.2 to the following BSDE:

λt (τ ) = ψ(t)+
T∫

τ

g(t, s,Y (s), µt (s), Z(s, t))ds −
T∫

τ

µt (s)dW (s), τ ∈ [S, T ],

(4.34)
we obtain (with r ∈ [0, S])

E

⎧⎨
⎩ sup
τ∈[S,T ]

d∑
i=1

|Di
rλ

t (τ )|2 +
d∑

i=1

⎛
⎝

T∫

S

|Di
rµ

t (s)|2ds

⎞
⎠
⎫⎬
⎭

≤ C E

⎧⎨
⎩|ψ(t)|2 +

d∑
i=1

|Di
rψ(t)|2 +

( T∫

S

|g(t, s,Y (s), 0, Z(s, t))|ds

)2

+
d∑

i=1

[ T∫

S

(
| [Di

r g](t, s,Y (s), 0, Z(s, t))|

+L(t, s)[ |Di
r Y (s)| + |Di

r Z(s, t)| ]
)

ds

]2
}

≤ C E

⎧⎨
⎩|ψ(t)|2 +

d∑
i=1

|Di
rψ(t)|2 +

( T∫

S

g0(t, s)ds

)2

+
( T∫

S

L(t, s)2ds

) T∫

S

(
|Y (s)|2 + |Z(s, t)|2

)
ds +

( T∫

S

L0(t, s)ds

)2

+
( T∫

S

L y(t, s)2ds

) T∫

S

|Y (s)|2ds +
( T∫

S

Lζ (t, s)2ds

) T∫

S

|Z(s, t)|2ds

+
( T∫

S

L(t, s)2ds

) T∫

S

(
|Di

r Y (s)|2 + |Di
r Z(s, t)|2

)
ds

⎫⎬
⎭ . (4.35)

Hence, noting (3.18) and (4.33), for R ∈ [0, S],

E

⎧⎨
⎩

S∫

R

d∑
i=1

|Di
rψ

S(t)|2dt +
d∑

i=1

⎛
⎝

S∫

R

T∫

S

|Di
r Z(t, s)|2dsdt

⎞
⎠
⎫⎬
⎭

≤ C E

⎧⎨
⎩

S∫

R

|ψ(t)|2dt +
d∑

i=1

S∫

R

|Di
rψ(t)|2dt
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+
S∫

R

⎛
⎝

T∫

S

g0(t, s)ds

⎞
⎠

2

dt +
T∫

S

|Y (s)|2ds

+
S∫

R

T∫

S

|Z(s, t)|2dsdt+
S∫

R

⎛
⎝

T∫

S

L0(t, s)ds

⎞
⎠

2

dt+
T∫

S

|Di
r Y (s)|2ds

+
S∫

R

T∫

S

|Di
r Z(s, t)|2dsdt

⎫⎬
⎭

≤ C E

⎧⎪⎨
⎪⎩

T∫

R

|ψ(t)|2dt+
d∑

i=1

T∫

R

| Di
rψ(t)|2dt+

T∫

R

⎛
⎝

T∫

t

g0(t, s)ds

⎞
⎠

2

dt

+
T∫

R

⎛
⎝

T∫

t

L0(t, s)ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ . (4.36)

Now, we can consider the following BSVIE:

Y (t) = ψ S(t)+
S∫

t

g(t, s,Y (s), Z(t, s), Z(s, t))ds −
S∫

t

Z(t, s)dW (s), t ∈ [0, S].

(4.37)
By induction, we can obtain (4.13)–(4.17). Conclusions (4.15)–(4.16) are obvious.

Next, in the case that (H2)′ holds, from (4.4) and (4.13), we have

E

T∫

t

|Z(s, t)|2ds ≤
d∑

i=1

E

T∫

t

|Di
t Y (s)|2ds

≤ C E

⎧⎪⎨
⎪⎩

T∫

t

|ψ(s)|2ds+
d∑

i=1

T∫

t

| Di
tψ(s)|2ds+

T∫

t

⎛
⎝

T∫

s

g0(s, τ )dτ

⎞
⎠

2

ds

+
T∫

0

⎛
⎝

T∫

s

L0(s, τ )dτ

⎞
⎠

2

ds

⎫⎪⎬
⎪⎭

≤ C

⎧⎪⎨
⎪⎩‖ψ(·)‖2

�[0,T ] + sup
t∈[0,T ]

E

⎛
⎝

T∫

t

g0(t, s)ds

⎞
⎠

2

+ E

T∫

0

⎛
⎝

T∫

t

L0(t, s)ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ .

(4.38)
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Combining the above with (5.1), we obtain

E

⎧⎨
⎩|Y (t)|2 +

T∫

0

|Z(t, s)|2ds +
T∫

t

|Z(s, t)|2ds

⎫⎬
⎭

≤ C

⎧⎪⎨
⎪⎩‖ψ(·)‖2

�[0,T ] + sup
t∈[0,T ]

E

⎛
⎝

T∫

t

g0(t, s)ds

⎞
⎠

2

+ E

T∫

0

⎛
⎝

T∫

t

L0(t, s)ds

⎞
⎠

2

dt

⎫⎪⎬
⎪⎭ .

(4.39)
Then (4.18) follows from the above and (4.13). ��

Note that the above theorem does not give the continuity of t �→ Y (t) in any sense.
As a matter of fact, due to the dependence of the generator g(t, s, y, z, ζ ) on ζ (namely,
the term Z(s, t) appears in the drift of the BSVIE), the continuity of Y (·) becomes
very subtle. The next result is about the continuity of Y (·).
Theorem 4.2 Let (H2)′ hold. Then

E

⎧⎨
⎩|Y (t)− Y (t̄)|2 +

T∫

t∨t̄

|Di
t Y (s)− Di

t̄ Y (s)|2ds +
T∫

t∨t̄

|Z(t, s)− Z(t̄, s)|2ds

+
t∧t̄∫

S

|Z(t, s)−Z(t̄, s)|2ds+
T∫

t∨t̄

|Zi (s, t)−Zi (s, t̄)|2ds

+
T∫

t∨t̄

T∫

t∨t̄

|Di
t Z(s, τ )−Di

t̄ Z(s, τ )|2dτds

⎫⎬
⎭

≤ C E

⎧⎨
⎩|ψ(t)− ψ(t̄)|2 +

T∫

t∨t̄

|Di
tψ(s)− Di

t̄ψ(s)|2ds

+
⎛
⎝

T∫

t∨t̄

|g(t, s,Y (s), Z(t, s), Z(s, t))− g(t̄, s,Y (s), Z(t, s), Z(s, t))|ds

⎞
⎠

2

+
T∫

t∨t̄

( T∫

t∨t̄

|[Di
t g](s, τ,Y (τ ), Z(s, τ ), Z(τ, s))

−[Di
t̄ g](s, τ,Y (τ ), Z(s, τ ), Z(τ, s))|dτ

)2

ds

+
⎛
⎜⎝

t∨t̄∫

t∧t̄

|g(t, s,Y (s), Z(t, s), Z(s, t))|ds

⎞
⎟⎠

2

+
t∨t̄∫

t∧t̄

|Z(t, s)|2ds
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+
T∫

t∨t̄

∣∣∣E[Di
t Y (s)

∣∣ Ft ] − E[Di
t Y (s)

∣∣ Ft̄ ]
∣∣∣2 ds

⎫⎬
⎭ , ∀t, t̄ ∈ [0, T ].

(4.40)

Consequently, in the case that ψ(·) ∈ �c[0, T ] and t �→ g(t, s, y, z, ζ ) and t �→
[Di

t g](s, τ, s, y, z, ζ ) (1 ≤ i ≤ d) are all continuous, we have

(Y (·), Z(· , ·)) ∈ Yc[0, T ] × Zc[0, T ]. (4.41)

Proof By Corollary 3.6 with p = 2 [see (3.31) with
h(t, s, z) = g(t, s,Y (s), z, Z(s, t))],

E

⎧⎪⎨
⎪⎩|Y (t)− Y (t̄)|2 +

T∫

t∨t̄

|Z(t, s)− Z(t̄, s)|2ds +
t∧t̄∫

S

|Z(t, s)− Z(t̄, s)|2ds

⎫⎪⎬
⎪⎭

≤ C E

⎧⎪⎨
⎪⎩|ψ(t)− ψ(t̄)|2 +

⎛
⎜⎝

t∨t̄∫

t∧t̄

|g(t, s,Y (s), Z(t, s), Z(s, t))|ds

⎞
⎟⎠

2

+
t∨t̄∫

t∧t̄

|Z(t, s)|2ds

+
⎛
⎝

T∫

t∨t̄

|g(t, s,Y (s), Z(t, s), Z(s, t))− g(t̄, s,Y (s), Z(t, s), Z(s, t̄))|ds

⎞
⎠

2
⎫⎪⎬
⎪⎭

≤ C E

⎧⎪⎨
⎪⎩|ψ(t)− ψ(t̄)|2 +

⎛
⎜⎝

t∨t̄∫

t∧t̄

|g(t, s,Y (s), Z(t, s), Z(s, t))|ds

⎞
⎟⎠

2

+
t∨t̄∫

t∧t̄

|Z(t, s)|2ds

+
⎛
⎝

T∫

t∨t̄

|g(t, s,Y (s), Z(t, s), Z(s, t))− g(t̄, s,Y (s), Z(t, s), Z(s, t))|ds

⎞
⎠

2

+
T∫

t∨t̄

|Z(s, t)− Z(s, t̄)|2ds

⎫⎬
⎭ . (4.42)

Thus, we need to estimate the last term on the right hand side of the above. To this
end, let t, t̄ ∈ [0, T ]. By (4.17), we have
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Di
t Y (s)− Di

t̄ Y (s) = Di
tψ(s)− Di

t̄ψ(s)

+
T∫

s

{
[Di

t g](s, τ,Y (τ ), Z(s, τ ), Z(τ, s))− [Di
t̄ g](s, τ,Y (τ ), Z(s, τ ), Z(τ, s))

+gy(s, τ,Y (τ ), Z(s, τ ), Z(τ, s))[Di
t Y (τ )− Di

t̄ Y (τ )]
+

d∑
i=1

[
gz j (s, τ,Y (τ ), Z(s, τ ), Z(τ, s))[Di

t Z j (s, τ )− Di
t̄ Z j (s, τ )]

+gζ j (s, τ,Y (τ ), Z(s, τ ), Z(τ, s))[Di
t Z j (τ, s)− Di

t̄ Z j (τ, s)]
}

dτ

−
T∫

s

[Di
t Z(s, τ )− Di

t̄ Z(s, τ )]dW (τ ), s ∈ [t ∨ t̄, T ].

(4.43)
Consequently, by Theorem 3.7,

E

⎧⎨
⎩

T∫

t∨t̄

|Di
t Y (s)− Di

t̄ Y (s)|2ds +
T∫

t∨t̄

T∫

t∨t̄

|Di
t Z(s, τ )− Di

t̄ Z(s, τ )|2dτds

⎫⎬
⎭

≤ C E

⎧⎨
⎩

T∫

t∨t̄

|Di
tψ(s)− Di

t̄ψ(s)|2ds

+
T∫

t∨t̄

( T∫

t∨t̄

|[Di
t g](s, τ,Y (τ ), Z(s, τ ), Z(τ, s))

−[Di
t̄ g](s, τ,Y (τ ), Z(s, τ ), Z(τ, s))|dτ

)2

ds

⎫⎬
⎭ . (4.44)

Next, by (4.16), we have

E

T∫

t∨t̄

|Zi (s, t)− Zi (s, t̄)|2ds = E

T∫

t∨t̄

|E[Di
t Y (s)

∣∣ Ft ] − E[Di
t̄ Y (s)

∣∣ Ft̄ ]|2ds

≤ 2E

T∫

t∨t̄

{
|E[Di

t Y (s)
∣∣ Ft ]−E[Di

t Y (s)
∣∣ Ft̄ ]|2+|E[Di

t Y (s)−Di
t̄ Y (s)

∣∣ Ft̄ ]|2
}

ds

≤ 2E

T∫

t∨t̄

{
|E[Di

t Y (s)
∣∣ Ft ] − E[Di

t Y (s)
∣∣ Ft̄ ]|2 + |Di

t Y (s)− Di
t̄ Y (s)|2

}
ds.

(4.45)

Then (4.40) follows, which further yields (4.41). ��
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5 An optimal control problem

In this section, we discuss an optimal control problem for stochastic Volterra integral
equations with Bolza type cost functionals. More precisely, we consider the following
state equation:

X (t) = ϕ(t)+
t∫

0

b(t, s, X (s), u(s))ds +
t∫

0

σ(t, s, X (s), u(s))dW (s), t ∈ [0, T ],

(5.1)
where X (·) and u(·) are state and control processes, respectively; b : �× R

n × U →
R

n , σ : � × R
n × U → R

n×d are given maps and ϕ(·) ∈ L p
F
(�; C([0, T ]; R

n));
U ⊆ R

n is convex. The cost functional is defined to be the following Bolza form:

J (u(·)) = E

⎡
⎣

T∫

0

g(t, X (t), u(t))dt + h(X (T ))

⎤
⎦ , (5.2)

with g : [0, T ] × R
n × U → R and h : R

n → R being given maps as well. In the
above, all the functions can be random. Note that in [33], only the case h = 0 (and
one-dimensional situation) was considered.

We now introduce the following assumption. The conditions assumed are more
than sufficient. One can relax many of them. But we prefer these strong conditions to
make the presentation simple.

(H3) Let b, σ , and h be continuous in (t, s, X, u), and differentiable in the variables
X and u, with bounded derivatives. Also,

|b(t, s, 0, u)| + |σ(t, s, 0, u)| ≤ C, ∀(t, s) ∈ �, u ∈ U. (5.3)

We let

U �= {u : [0, T ] ×� → U
∣∣ u(·) is F-progressively measurable

}
. (5.4)

It is not hard to show that under (H3), for any ϕ(·) ∈ L p
F
(�; C([0, T ]; R

n)) and u(·) ∈
U , (5.1) admits a unique solution X (·) ∈ L p

F
(�; C([0, T ]; R

n)). Thus the cost func-
tional J (u(·)) is well-defined. Our optimal control problem can be stated as follows.

Problem (C). Find a ū(·) ∈ U such that

J (ū(·)) = inf
u(·)∈U

J (u(·)). (5.5)

Any ū(·) satisfying (5.5) is called an optimal control of Problem (C), the corresponding
state process X̄(·) is called an optimal state process and (X̄(·), ū(·)) is called an optimal
pair.

Next result is called the duality principle of linear stochastic integral equations,
which will play an important role below.

123



Backward stochastic Volterra integral equations 69

Theorem 5.1 Let Ai (· , ·) ∈ L∞([0, T ]; L∞
F
(0, T ; R

n×n)) (i = 0, 1, . . . , d), ϕ̄(·) ∈
L2

F
(0, T ; R

n), andψ(·) ∈ L2((0, T )×�; R
n). Let ξ(·) ∈ L2

F
(0, T ; R

n)be the solution
of FSVIE:

ξ(t) = ϕ(t)+
t∫

0

A0(t, s)ξ(s)ds +
t∫

0

d∑
i=1

Ai (t, s)ξ(s)dWi (s), t ∈ [0, T ], (5.6)

and (Y (·), Z(· , ·)) ∈ H2[0, T ] be the adapted M-solution to the following BSVIE:

Y (t)=ψ(t)+
T∫

t

[
A0(s, t)T Y (s)+

d∑
i=1

Ai (s, t)T Zi (s, t)

]
ds

−
T∫

t

Z(t, s)dW (s), t ∈ [0, T ]. (5.7)

Then the following relation holds:

E

T∫

0

〈 ξ(t), ψ(t) 〉 dt = E

T∫

0

〈ϕ(t),Y (t) 〉 dt. (5.8)

Further, suppose for each i = 0, 1, · · · , d, t �→ Ai (t, s) is continuous at t = T ,
ϕ(·) ∈ C([0, T ]; R

n), and η ∈ L2
FT
(�; R

n). Let (Y (·), Z(· , ·)) ∈ H2[0, T ] be the
adapted solution to the following BSVIE:

Y (t) = ψ(t)+ A0(T, t)T η +
d∑

i=1

Ai (T, t)T ζi (t)

+
T∫

t

[
A0(s, t)T Y (s)+

d∑
i=1

Ai (s, t)T Zi (s, t)

]
ds

−
T∫

t

Z(t, s)dW (s), t ∈ [0, T ], (5.9)

where ζ(·) ≡ (ζ1(·), . . . , ζd(·)) ∈ L2
F
(0, T ; R

n×d) is the unique process that satisfies

η = Eη +
T∫

0

ζ(t)dW (t). (5.10)
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Then the following holds:

E

⎧⎨
⎩〈 ξ(T ), η 〉 +

T∫

0

〈 ξ(t), ψ(t) 〉 dt

⎫⎬
⎭ = E

⎧⎨
⎩〈 ϕ̄(T ), η 〉 +

T∫

0

〈 ϕ̄(t),Y (t) 〉 dt

⎫⎬
⎭ .

(5.11)

Proof We first look at (5.8). Observe the following:

E

T∫

0

〈 ϕ̄(t),Y (t) 〉 dt

= E

T∫

0

〈
ξ(t)−

t∫

0

A0(t, s)ξ(s)ds −
d∑

i=1

t∫

0

Ai (t, s)ξ(s)dWi (s),Y (t)

〉
dt

= E

T∫

0

〈 ξ(t),Y (t) 〉 dt − E

T∫

0

T∫

s

〈 ξ(s), A0(t, s)T Y (t) 〉 dtds

−
d∑

i=1

E

T∫

0

〈 t∫

0

Ai (t, s)ξ(s)dWi (s), EY (t)+
t∫

0

Z(t, s)dW (s)

〉
dt

= E

T∫

0

〈 ξ(t),Y (t) 〉 dt − E

T∫

0

T∫

t

〈 ξ(t), A0(s, t)T Y (s) 〉 dsdt

−
d∑

i=1

E

T∫

0

t∫

0

〈 Ai (t, s)ξ(s), Zi (t, s) 〉 dsdt

= E

T∫

0

〈
ξ(t),Y (t)−

T∫

t

[
A0(s, t)T Y (s)+

d∑
i=1

Ai (s, t)T Zi (s, t)

]
ds

〉
dt

= E

T∫

0

〈
ξ(t), ψ(t)−

T∫

t

Z(t, s)dW (s)

〉
dt = E

T∫

0

〈 ξ(t), ψ(t) 〉 dt. (5.12)

Thus, (5.8) holds. Now, for (5.11), we denote

ψ̂(t) = ψ(t)+ A0(T, t)T η +
d∑

i=1

Ai (T, t)T ζi (t). (5.13)
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Then by what we have proved, one has

E

T∫

0

〈 ϕ̄(t),Y (t) 〉 dt = E

T∫

0

〈 ξ(t), ψ̂(t) 〉 dt

= E

T∫

0

〈 ξ(t), ψ(t)+ A0(T, t)T η +
d∑

i=1

Ai (T, t)T ζi (t) 〉 dt

= E

T∫

0

(
〈 ξ(t), ψ(t) 〉+ 〈 A0(T, t)ξ(t), η 〉 +

d∑
i=1

〈 Ai (T, t)ξ(t), ζi (t) 〉
)

dt

= E

T∫

0

〈 ξ(t), ψ(t) 〉 dt + E 〈 ξ(T )− ϕ̄(T ), η 〉 . (5.14)

This proves (5.11). ��
We now prove the following theorem called Pontryagin’s maximum principle.

Theorem 5.2 Let (H3) hold. Let (X̄(·), ū(·)) be an optimal pair of Problem (C). Then
there exists a unique adapted M-solution (Y (·),Y0(·), η(·); Z(· , ·), Z0(· , ·), ζ(·)) of
the following BSVIE:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y (t) = gx (t, X̄(t), ū(t))+ bx (T, t, X̄(t), ū(t))T hx (X̄(T ))+
d∑

i=1

σ i
x (T, t, X̄(t), ū(t))T ζi (t)

+
T∫

t

⎡
⎣bx (s, t, X̄(t), ū(t))T Y (s)+

d∑
i=1

σ i
x (s, t, X̄(t), ū(t))Zi (s, t)

⎤
⎦ ds −

T∫

t

Z(t, s)dW (s),

Y0(t) = bu(T, t, X̄(t), ū(t))T hx (X̄(T ))+
d∑

i=1

σ i
u(T, t, X̄(t), ū(t))T ζi (t)

+
T∫

t

⎡
⎣bu(s, t, X̄(t), ū(t))T Y (s)+

d∑
i=1

σ i
u(s, t, X̄(t), ū(t))TZi (s, t)

⎤
⎦ ds −

T∫

t

Z0(t, s)dW (s),

η(t) = hx (X̄(T ))−
T∫

t

ζ(s)dW (s),

(5.15)

such that

〈 Y0(t)+ gu(t, X̄(t), ū(t)), u − ū(t) 〉 ≥ 0, ∀u ∈ U, t ∈ [0, T ], a.s. (5.16)

Note that the third equation in (5.15) is actually a BSDE, and the second equation in
(5.15) is a BSVIE in which the drift and the free term do not depend on (Y0(·), Z0(· , ·)).
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Proof Let (X̄(·), ū(·)) be an optimal pair of Problem (C). Take any u(·) ∈ U . Since
U is convex, for any ε ∈ (0, 1),

uε(·) �= ū(·)+ ε[u(·)− ū(·)] ∈ U . (5.17)

Let Xε(·) be the solution of (5.1) corresponding to uε(·). Define

ξε(t) = Xε(t)− X̄(t)

ε
, t ∈ [0, T ]. (5.18)

Then ξε(·) → ξ(·) in L2
F
(0, T ; R

n) with ξ(·) satisfying the following:

ξ(t) =
t∫

0

{
bx (t, s, X̄(s), ū(s))ξ(s)+ bu(t, s, X̄(s), ū(s))[u(s)− ū(s)]} ds

+
t∫

0

d∑
i=1

{
σ i

x (t, s, X̄(s), ū(s))ξ(s)+σ i
u(t, s, X̄(s), ū(s))[u(s)−ū(s)]

}
dWi (s)

≡ ϕ̄(t)+
t∫

0

bx (t, s, X̄(s), ū(s))ξ(s)ds+
t∫

0

d∑
i=1

σ i
x (t, s, X̄(s), ū(s))ξ(s)dWi (s),

(5.19)
where

ϕ̄(t) =
t∫

0

bu(t, s, X̄(s), ū(s))[u(s)− ū(s)]ds

+
t∫

0

d∑
i=1

σ i
u(t, s, X̄(s), ū(s))[u(s)− ū(s)]dWi (s), t ∈ [0, T ]. (5.20)

Now, let (Y (·),Y0(·), Z(· , ·), Z0(· , ·)) be the unique adapted M-solution to BSVIE
(5.15). By the optimality of (X̄(·), ū(·)), and the duality principle (Theorem 5.1), we
have

0 ≤ J (uε(·))− J (ū(·))
ε

→ E

⎧⎨
⎩〈 hx (X̄(T )), ξ(T ) 〉 +

T∫

0

[〈 gx (t, X̄(t), ū(t)), ξ(t) 〉

+ 〈 gu(t, X̄(t), ū(t)), u(t)− ū(t) 〉] dt

⎫⎬
⎭
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= E

⎧⎨
⎩〈 hx (X̄(T )), ϕ̄(T ) 〉 +

T∫

0

[〈 Y (t), ϕ̄(t) 〉

+ 〈 gu(t, X̄(t), ū(t)), u(t)− ū(t) 〉] dt

⎫⎬
⎭

= E

T∫

0

〈 bu(T, t, X̄(t), ū(t))T hx (X̄(T ))+
d∑

i=1

σ i
u(T, t, X̄(t), ū(t))T ζi (t)

+
T∫

t

[
bu(s, t, X̄(t), ū(t))T Y (s)+

d∑
i=1

σ i
u(s, t, X̄(t), ū(t))T Zi (s, t)

]
ds

+gu(t, X̄(t), ū(t)), u(t)−ū(t) 〉 dt

= E

T∫

0

〈 Y0(t)+ gu(t, X̄(t), ū(t)), u(t)− ū(t) 〉 dt.

Since the above holds for all u(·) ∈ U[0, T ], we obtain (5.16). ��

Now, we define

H(t, X̄(t), ū(t),Y (·), Z(· , t), u)
�= − [Y0(t)+ gu(t, X̄(t), ū(t))

]T
u

= −E

⎧⎨
⎩gu(t, X̄(t), ū(t))+ bu(T, t, X̄(t), ū(t))T hx (X̄(T ))

+
d∑

i=1

σ i
u(T, t, X̄(t), ū(t))T ζi (t)

+
T∫

t

[
bu(s, t, X̄(t), ū(t))T Y (s)+

d∑
i=1

σ i
u(s, t, X̄(t), ū(t))T Zi (s, t)

]
ds
∣∣∣ Ft

⎫⎬
⎭

T

u,

(5.21)
then (5.16) can be written as

H(t, X̄(t), ū(t),Y (·), Z(· , t), ū(t)) = max
u∈U

H(t, X̄(t), ū(t),Y (·), Z(· , t), u).

(5.22)

We call H(·) defined by (5.21) the Hamiltonian of our optimal control problem, call
(5.16) (and (5.22)) the maximum condition, and call the first BSVIE in (4.1) the adjoint
equation of (4.5), along the optimal pair (X̄(·), ū(·)).

By putting (1.1), and (5.15)–(5.16) together (dropping the bars in (X̄(·), ū(·))), we
obtain the following system:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X (t) = ϕ(t)+
t∫

0

b(t, s, X (s), u(s))ds +
t∫

0

σ(t, s, X (s), u(s))dW (s),

Y (t) = gx (t, X (t), u(t))+ bx (T, t, X (t), u(t))T hx (X (T ))+
d∑

i=1

σ i
x (T, t, X (t), u(t))T ζi (t)

+
T∫

t

⎡
⎣bx (s, t, X (t), u(t))T Y (s)+

d∑
i=1

σ i
x (s, t, X (t), u(t))T Zi (s, t)

⎤
⎦ ds −

T∫

t

Z(t, s)dW (s),

Y0(t) = bu(T, t, X (t), u(t))T hx (X (T ))+
d∑

i=1

σ i
u(T, t, X (t), u(t))T ζi (t)

+
T∫

t

⎡
⎣bu(s, t, X (t), u(t))T Y (s)+

d∑
i=1

σ i
u(s, t, X (t), u(t))T Zi (s, t)

⎤
⎦ ds −

T∫

t

Z0(t, s)dW (s),

η(t) = hx (X (T ))−
T∫

t

ζ(s)dW (s),

[Y0(t)+ gu(t, X (t), u(t))]T [v − u(t)] ≥ 0, ∀v ∈ U, t ∈ [0, T ], a.s.
(5.23)

This is a couple systems of FSVIE and BSVIE. The coupling is through the maximum
condition (via u(·)). We call (5.23) a forward–backward stochastic Volterra integral
equation (FBSVIE, for short). To get some feeling about the above results, let us look
at an important special case—the linear-quadratic (LQ, for short) problem. Thus, we
consider the following linear state equation:

X (t)=ϕ(t)+
t∫

0

[A0(t, s)X (s)+B0(t, s)u(s)] dt

+
d∑

i=1

t∫

0

[Ai (t, s)X (s)+Bi (t, s)u(s)] dWi (s), (5.24)

with the cost functional:

J (ϕ(·), u(·)) = 1

2
E

⎧⎨
⎩

T∫

0

[〈 Q(t)X (t), X (t) 〉+ 〈 R(t)u(t), u(t) 〉] dt

+ 〈 G X (T ), X (T ) 〉
⎫⎬
⎭ . (5.25)

For the simplicity of presentation, we make the following assumption.

(H4) Let T > 0. Let maps A0, . . . , Ad : � → R
n×n , B0, . . . , Bd : � → R

n×m ,
Q : [0, T ] → Sn , R : [0, T ] → Sm be all continuous, and G ∈ Sn , where Sn

is the set of all (n × n) symmetric matrices. Assume that Q and G are positive
semi-definite, R is uniform positive definite. Let ϕ(·) ∈ L2

F
(�; C([0, T ]; R

n)).
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We refer to the problem of minimizing (5.25) subject to (5.24) over the control set
U = L2

F
(0, T ; R

m) as Problem (LQ). Note that all the coefficients are assumed to
be deterministic. In the case that some or all coefficients are allowed to be random,
the discussion can still be carried out, with a little more complicated looking. It is
not hard to see that under (H4), for any ϕ(·) ∈ L2

F
(�; C([0, T ]; R

n)), the functional
u(·) �→ J (ϕ(·), u(·)) is quadratic and uniformly positive definite. Thus, there exists a
unique optimal control u(·). Further, by a result similar to Theorem 5.2, and regard-
ing our LQ problem as an abstract minimization problem for a quadratic functional
with linear constraints, we see that the following FBSVIE admits a unique adapted
M-solution:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X (t) = ϕ(t)+
t∫

0

[
A0(t, s)X (s)− B0(t, s)R(s)−1Y0(s)

]
dt

+
d∑

i=1

t∫

0

[
Ai (t, s)X (s)− Bi (t, s)R(s)−1Y0(s)

]
dWi (s),

Y (t) = Q(t)X (t)+ A0(T, t)T G X (T )+
d∑

i=1

Ai (T, t)T ζi (t)

+
T∫

t

[
A0(s, t)T Y (s)+

d∑
i=1

Ai (s, t)T Zi (s, t)

]
ds −

T∫

t

Z(t, s)dW (s),

Y0(t) = B0(T, t)T G X (T )+
d∑

i=1

Bi (T, t)T ζi (t)

+
T∫

t

[
B0(s, t)T Y (s)+

d∑
i=1

Bi (s, t)T Zi (s, t)

]
ds −

T∫

t

Z0(t, s)dW (s),

η(t) = G X (T )−
T∫

t

ζ(s)dW (s),

(5.26)

by which we mean that X (·) satisfies the first FSVIE in the usual sense and (Y (·),Y0(·),
η(·), Z(· , ·), Z0(· , ·), ζ(·)) is the adapted M-solution of the corresponding BSVIE.
The optimal control is given by

u(t) = −R(t)−1Y0(t), t ∈ [0, T ]. (5.27)

Since all the coefficients are deterministic, in the case that ϕ(·) ∈ �c[0, T ], for any
1 ≤ i ≤ d and r ∈ [0, T ], (Di

r X (·), Di
r Y (·), Di

r Y0(·), Di
rη(·), Di

r Z(· , ·), Di
r Z0(· , ·),

Di
rζ(·)) will satisfy the same FBSVIE as (5.26), with ϕ(·) replaced by Di

rϕ(·). This
will lead to X (·), ζi (·) ∈ �c[0, T ]. Then by the regularity results from Section 4, we
have the continuity of Y (·) and Y0(·). Hence the optimal control u(·) given by (5.27)
is also continuous. Along this line, there are some other related interesting prob-
lems, including the so-called causality of the optimal control ([26,35]), corresponding
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Riccati type equations, etc. Relevant investigations are still undergoing, and results
will be reported in our forthcoming papers.
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