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Abstract We consider the model of the one-dimensional cookie random walk when
the initial cookie distribution is spatially uniform and the number of cookies per site is
finite. We give a criterion to decide whether the limiting speed of the walk is non-zero.
In particular, we show that a positive speed may be obtained for just three cookies per
site. We also prove a result on the continuity of the speed with respect to the initial
cookie distribution.

Keywords Law of large numbers · Cookie or multi-excited random walk ·
Branching process with migration
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1 Introduction

We consider the model of the multi-excited random walk, also called cookie random
walk, introduced by Zerner [13] as a generalization of the model of the excited random
walk described by Benjamini and Wilson [3] (see also [4] for a continuous time
analogue). The aim of this paper is to study under which conditions the speed of a
cookie random walk is strictly positive. In dimension d ≥ 2, this problem was solved
by Kozma [7,8], who proved that the speed is always non-zero. In the one-dimensional
case, the speed can either be zero or strictly positive. We give here a necessary and
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626 A.-L. Basdevant, A. Singh

sufficient condition to determine if the walk’s speed is strictly positive when the initial
cookie environment is deterministic, spatially uniform and with a finite number of
cookies per site. Let us start with an informal definition of such a process:

Let us put M ≥ 1 “cookies” at each site of Z and let us pick p1, p2, . . . , pM ∈
[ 1

2 , 1). We say that pi represents the “strength” of the i th cookie at any given site.
Then, a cookie random walk X = (Xn)n≥0 is simply a nearest neighbour random
walk, eating the cookies it finds along its path by behaving in the following way:

• If Xn = x and there is no remaining cookie at site x , then X jumps at time n + 1
to x + 1 or x − 1 with equal probability 1

2 .
• If Xn = x and there remain the cookies with strengths p j , p j+1, . . . , pM at this

site, then X eats the cookie with attached strength p j (which therefore disappears
from this site) and then jumps at time n + 1 to x + 1 with probability p j and to
x − 1 with probability 1 − p j .

This model is a particular case of self-interacting random walk: the position of X at
time n +1 depends not only of its position at time n but also on the number of previous
visits to its present site. Therefore, X is not a Markov process.

Let us now give a formal description of the general model. We define the set of
cookie environments by � = [ 1

2 , 1]N∗×Z. Thus, a cookie environment is of the form
ω = (ω(i, x))i≥1,x∈Z where ω(i, x) represents the strength of the i th cookie at site
x . Given x ∈ Z and ω ∈ �, a cookie random walk starting from x in the cookie
environment ω is a process (Xn)n≥0 on some probability space (�,F , Pω,x ) such
that:

⎧
⎨

⎩

Pω,x {X0 = x} = 1,

Pω,x {|Xn+1 − Xn| = 1} = 1,

Pω,x {Xn+1 = Xn + 1 | X1, . . . , Xn}=ω( j, Xn) where j =�{0≤ i ≤n , Xi = Xn}.

In this paper, we restrict our attention to the set of environments �u
M ⊂ � which are

spatially uniform with at most M ≥ 1 cookies per site:

ω ∈ �u
M ⇐⇒

⎧
⎨

⎩

for all x ∈ Z and all i ≥ 1 ω(i, x) = ω(i, 0),

for all i > M ω(i, 0) = 1
2 ,

for all i ≥ 1 ω(i, 0) < 1.

The last condition ω(i, 0) < 1 is introduced only to exclude some possible degenerate
cases but can be relaxed (see Remark 2.4). A cookie environment ω ∈ �u

M may be
represented by (M, p̄) where

p̄ = (p1, . . . , pM ) = (ω(1, 0), . . . , ω(M, 0)).

In this case, we shall say that the associated cookie random walk is an (M, p̄)-cookie
random walk and we will use the notation P(M, p̄) instead of Pω.

The question of the recurrence or transience of a cookie random walk was solved
by Zerner [13] for general cookie environments (even in the case where the initial
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On the speed of a cookie random walk 627

cookie environment may itself be random). In particular, he proved that, if X is an
(M, p̄)-cookie random walk, there is a phase transition according to the value of

α = α(M, p̄)
def=

M∑

i=1

(2pi − 1) − 1. (1)

• If α ≤ 0 then the walk is recurrent i.e. lim sup Xn = − lim inf Xn = +∞ a.s.
• If α > 0 then X is transient toward +∞ i.e. lim Xn = +∞ a.s.

In particular, for M = 1, the cookie random walk is always recurrent for any choice
of p̄. However, as soon as M ≥ 2, the cookie random walk can either be transient or
recurrent, depending on p̄. Zerner [13] also proved that the speed of an (M, p̄)-cookie
random walk X is always well defined (but may or may not be zero). Precisely,

• there exists a constant v(M, p̄) ≥ 0 such that

Xn

n
−→
n→∞ v(M, p̄) P(M, p̄)-almost surely.

• The speed is monotonic in p̄: if p̄ = (p1, . . . , pM ) and q̄ = (q1, . . . , qM ) are two
cookie environments such that pi ≤ qi for all i , then v(M, p̄) ≤ v(M, q̄).

• The speed of a (2, p̄)-cookie random walk is always 0.

The question of whether one can construct an (M, p̄)-cookie random walk with
strictly positive speed was affirmatively answered by Mountford et al. [9] who consi-
dered the case where all the cookies have the same strength p ∈ [ 1

2 , 1) i.e. the cookie

vector p̄ has the form [p]M
def= (p, . . . , p). They showed that:

• For any p ∈ ( 1
2 , 1), there exists an M0 such that for all M > M0 the speed of the

(M, [p]M )-cookie random walk is strictly positive.
• If M(2p − 1) < 2, then the speed of the (M, [p]M )-cookie random walk is zero.

They also conjectured that when M(2p − 1) > 2, the speed should be non-zero. The
aim of this paper is to prove that such is indeed the case.

Theorem 1.1 Let X denote a (M, p̄)-cookie random walk, then

lim
n→∞

Xn

n
= v(M, p̄) > 0 ⇐⇒ α(M, p̄) > 1

where α(M, p̄) is given by (1).

In particular, we see that a non-zero speed may be achieved for as few as three cookies
per site. Comparing this result with the transience/recurrence criteria, we have a second
order phase transition at the critical value α = 1. In fact, it is proved in [2] that, in the

zero speed case 0 < α < 1, the rate of transience of Xn is of order n
α+1

2 .
One would certainly like an explicit calculation of the limiting velocity in terms

of the cookie environment (M, p̄) but this seems a challenging problem (one can still
look at Corollary 3.7 where we give an implicit formula for the speed). However, one
can prove that the speed is continuous in p̄ and has a positive right derivative at all its
critical points:
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Fig. 1 Simulation of the speed of a (3, [p]3)-cookie random walk

Theorem 1.2 • For each M, the speed v(M, p̄) is a continuous function of p̄ in �u
M .

• For any environment (M, p̄c) with α(M, p̄c) = 1, there exists a constant C > 0
(depending on (M, p̄c)) such that

lim
p̄→ p̄c
p̄∈�u

M
α( p̄)>1

v(M, p̄)

α(M, p̄) − 1
= C.

In particular, for M ≥ 3, the (unique) critical value for an (M, [p]M )-cookie random
walk is pc = 1

M + 1
2 and the function v(p) is continuous, non-decreasing, zero for

p ≤ pc, and admits a finite strictly positive right derivative at pc (see Fig. 1).
The remainder of this paper is organized as follow. In the next section, we construct

a Markov process associated with the hitting time of the cookie random walk. The
method is similar to that used by Kesten et al. [6] for the determination of the rates of
transience of a random walk in a one-dimensional random environment. It turns out
that, in our setting, the resulting process is a branching process with random migration.
The study of this process and of its stationary distribution is undertaken in Sect. 3. This
enables us to complete the proof of Theorem 1.1. Finally, the last section is dedicated
to the proof of Theorem 1.2.

2 An associated branching process with migration

In the remainder of this paper, X = (Xn)n≥0 will denote a (M, p̄)-cookie random
walk. Since the speed of a recurrent cookie random walk is zero, we shall also assume
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On the speed of a cookie random walk 629

that we are in the transient regime i.e.

α(M, p̄) =
M∑

i=1

(2pi − 1) − 1 > 0. (2)

For the sake of brevity, we simply write Px for P(M, p̄),x and P instead of P0 (the
process starting from 0). Let Tn stand for the hitting time of level n ≥ 0 by X :

Tn = inf{k ≥ 0 , Xk = n}. (3)

For 0 ≤ k ≤ n, let U n
i denote the number of jumps of the cookie random walk from

site i to site i − 1 before reaching level n

U n
i = �{0 ≤ k < Tn, Xk = i and Xk+1 = i − 1}.

Let Kn stand for the total time spent by X in the negative half-line up to time Tn

Kn = �{0 ≤ k ≤ Tn, Xk < 0}.

A simple combinatorial argument readily yields

Tn = Kn − U n
0 + n + 2

n∑

k=0

U n
k .

Notice that, as n tends to infinity, the random variable Kn increases toward K∞, the
total time spent by the cookie random walk in the negative half line. Similarly, U n

0
increases toward U∞

0 , the total number of jumps from 0 to −1. Since X is transient,
K∞ + U∞

0 is almost-surely finite and therefore

Tn ∼
n→∞ n + 2

n∑

k=0

U n
k . (4)

Let us now prove that, for each n, the reverse process (U n
n , U n

n−1, . . . , U n
1 , U n

0 ) has the
same law as the n first steps of some branching process Z with random migration. We
first need to introduce some notations. Let (Bi )i≥1 denote a sequence of independent
Bernoulli random variables under P with distribution:

P{Bi = 1} = 1 − P{Bi = 0} =
{

pi if i ≤ M ,
1
2 if i > M .

(5)

For j ∈ N, define

k j = min{k ≥ 1, �{1 ≤ i ≤ k, Bi = 1} = j + 1}
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and
A j = �{1 ≤ i ≤ k j , Bi = 0} = k j − j − 1.

We have the following easy lemma:

Lemma 2.1 • For any i, j ≥ 0, we have P{A j = i} > 0.
• For all j ≥ M, we have

A j
law= AM−1 + ξ1 + · · · + ξ j−M+1 (6)

where (ξi )i≥0 are i.i.d. random variables independent of AM−1 with geometrical
distribution starting from 0 and with parameter 1

2 i.e. P{ξ1 = i} = (1/2)i+1.

Proof The first part of the lemma is a direct consequence of the assumption that p̄ is
such that pk < 1 for all k. To prove the second part, we simply notice that kM−1 ≥ M
so that, for j ≥ M , the random variable A j − AM−1 has the same law as the random
variable

min{k ≥ 1, �{1 ≤ i ≤ k, B̃i = 1} = j + 1 − M} − j − 1 + M (7)

where (B̃i )i≥0 is a sequence of i.i.d. random variables independent of AM−1, with
common Bernoulli distribution P{B̃i = 0} = P{B̃i = 1} = 1

2 . It is clear that (7) has
the same law as ξ1 + · · · + ξ j−M+1. ��

We now consider a process Z = (Zn, n ≥ 0) and a family of probabilities (Pz)z≥0
such that, under Pz , the process Z is a Markov chain starting from z, with transition
probabilities: {

Pz{Z0 = z} = 1,

Pz{Zn+1 = k | Zn = j} = P{A j = k}.
Since the family of probabilities (Pz) depends on the law of the cookie environment
(M, p̄), we should rigourously write P(M, p̄),z instead of Pz . However, when there is no
possibility of confusion, we shall keep using the abbreviated notation. Furthermore,
we simply write P for P0 and E stands for the expectation with respect to P.

Let us now notice that, in view of the previous lemma, Zn under Pz may be inter-
preted as the number of particles alive at time n of a branching process with random
migration starting from z, that is a branching process which allows immigration and
emigration (see [11] for a survey of these processes). Indeed:

• If Zn = j ≥ M − 1 then, according to Lemma 2.1, Zn+1 has the same law as
∑ j−M+1

k=1 ξk + AM−1, i.e. M − 1 particles emigrate and the remaining particles
reproduce according to a geometrical law with parameter 1

2 and there is also an
immigration of AM−1 new particles.

• If Zn = j ∈ {0, . . . , M − 2} then Zn+1 has the same law as A j i.e. all the j
particles emigrate and A j new particles immigrate.

We can now state the main result of this section:

Proposition 2.2 For each n ∈ N, (U n
n , U n

n−1, . . . , U n
0 ) under P has the same law as

(Z0, Z1, . . . , Zn) under P.

123
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Proof The argument is similar to the one given by Kesten et al. [6]. Recall that U n
i

represents the numbers of jumps of the cookie random walk X from i to i − 1 before
reaching n. Then, conditionally on (U n

n , U n
n−1, . . . , U n

i+1), the number of jumps U n
i

from i to i − 1 depends only on the number of jumps from i + 1 to i , that is, depends
only on U n

i+1. This shows that (U n
n , U n

n−1, . . . , U n
0 ) is indeed a Markov process.

By definition, Z0 = 0 P-a.s. and U n
n = 0 P-a.s. It remains to compute P{U n

i =
k | U n

i+1 = j}. Note that the number of jumps from i to i − 1 before reaching level
n is equal to the number of jumps from i to i − 1 before reaching i + 1 for the first
time plus the sum of the number of jumps from i to i − 1 between two consecutive
jumps from i + 1 to i which occur before reaching level n. Thus, conditionally on
{U n

i+1 = j}, the random variable U n
i has the same law as the number of failures (i.e.

Bk = 0) in the Bernoulli sequence (B1, B2, B3, . . .) defined by (5) before obtaining
exactly j + 1 successes. This is precisely the definition of A j and therefore P{U n

i =
k | U n

i+1 = j} = P j {Z1 = k}. ��
Since U n

0 is the number of jumps from 0 to −1 of the cookie random walk X before
reaching level n and since we assumed that the cookie random walk X is transient,
U n

0 increases almost surely toward the total number U∞
0 of jumps of X from 0 to −1.

In view of the previous proposition, this implies that under P, Zn converges in law
toward a random variable which we denote by Z∞.

Let us also note that Z is an irreducible Markov chain (this is a consequence of part
1 of Lemma 2.1). Since Z converges in law toward a limiting distribution, this shows
that Z is in fact a positive recurrent Markov chain. In particular, Zn converges in law
toward Z∞ independently of its starting point (i.e. the law of Z∞ is the same under
any Px ) and the law of Z∞ is also the unique invariant probability for Z .

Corollary 2.3 Recall that v(M, p̄) denotes the limiting speed of the cookie random
walk X. We have

v(M, p̄) = 1

1 + 2E[Z∞] (with the convention 0 = 1
+∞ ).

In particular, the speed of an (M, p̄)-cookie random walk is non zero iff the limiting
random variable Z∞ of its associated process Z has a finite expectation.

Proof Since X is transient, we have the well known equivalence valid for v ∈ [0,∞]:
Xn

n
−→
n→∞ v P-a.s. ⇐⇒ Tn

n
−→
n→∞

1

v
P-a.s. (8)

On the one hand, this equivalence and (4) yield

1

n

n∑

k=0

U n
k −→

n→∞
1

2v(M, p̄)
− 1

2
P-a.s. (9)

On the other hand, making use of an ergodic theorem for the positive recurrent Markov
chains Z with stationary limiting distribution Z∞ (see for instance Theorem 1.10.2
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on p. 53 of [10]), we find that

1

n

n∑

i=1

Zk →
n→∞ E[Z∞] P-a.s. (10)

(note that this result is valid even if E[Z∞] = ∞). Proposition 2.2 implies that the
limits in (9) and (10) are the same. This completes the proof of the corollary. ��

Remark 2.4 We assumed in the definition of an (M, p̄) cookie environment that

pi = 1 for all 1 ≤ i ≤ M .

This hypothesis is intended only to ensure that Z , starting from 0, is not almost surely
bounded (for instance, if p1 = 1 then 0 is a absorbing state for Z ). More generally,
one may check from the definition of the random variables A j that Z starting from 0
is almost surely unbounded iff

�{1 ≤ j ≤ i , p j = 1} ≤ i

2
for all 1 ≤ i ≤ M . (11)

When this condition fails, Z starting from 0 is almost surely bounded by M − 1, thus
E[Z∞] < ∞ and the speed of the associated cookie random walk is strictly positive.
Otherwise, when (11) is fulfilled, Z ultimately hits any level x ∈ N with probability
1 and the proof of Theorem 1.1 below remains valid.

3 Study of Z∞

We proved in the previous section that the strict positivity of the speed of the cookie
random walk X is equivalent to the existence of a finite first moment for the limiting
distribution of its associated Markov chain Z . We shall now show that, for any cookie
environment (M, p̄) (with α(M, p̄) > 0), we have

E[Z∞] def= E(M, p̄)[Z∞] < ∞ ⇐⇒ α(M, p̄) > 1.

This will complete the proof of Theorem 1.1. We start by proving that Z∞ cannot have
moments of any order.

Proposition 3.1 We have

E

[
Z M−1∞

]
= +∞.

Proof Let us introduce the first return time to 0 for Z :

σ = inf{n ≥ 1 , Zn = 0}.
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Since Z is a positive recurrent Markov chain, we have 1 ≤ E0[σ ] < ∞ and the
invariant probability measure is given for any y ∈ N by

P{Z∞ = y} =
E0

[∑σ−1
k=0 1{Zk=y}

]

E0[σ ] .

A monotone convergence argument yields

E0

[
σ−1∑

k=0

Z M−1
k

]

= E0[σ ]E[Z M−1∞ ] (12)

(where both side of this equality may be infinite). We can find n0 ∈ N
∗ such that

P0{Zn0 = M, n0 < σ } > 0 (in fact, since we assume that pi < 1 for all i , we can
choose n0 = 1). Therefore, making use of the Markov property of Z , we find that

E0

[
σ−1∑

k=0

Z M−1
k

]

≥ P0{Zn0 = M, n0 < σ }EM

[
σ−1∑

k=0

Z M−1
k

]

= P0{Zn0 = M, n0 < σ }
∞∑

k=0

EM

[
Z M−1

k∧σ

]
. (13)

In view of (12) and (13), we just need to prove that

∞∑

k=0

EM

[
Z M−1

k∧σ

]
= ∞. (14)

We now use a coupling argument. Let again (ξi )i≥1 denote a sequence of i.i.d. geo-
metrical random variables with parameter 1/2. We define an inhomogeneous Markov
chain Z̃ such that, under Pz :

• Z̃0 = z.
• Z̃1 has the same law as

∑Z̃0
i=1 ξi .

• For n ≥ 1, Z̃n+1 has the same law as
∑min(0,Z̃n−(M−1))

i=1 ξi (with the convention
∑0

1 = 0).

Thus, Z̃ is a branching process with min(Z̃n, M − 1) emigrants at each unit of time,
except at time n = 0 where no emigration occurs.

Recall that Z is a branching process with migration, where at most min(Zn, M −1)

particles emigrate at each unit of time, and has the same offspring reproduction law
as Z̃ . Therefore, for any z ≥ 0, the process Z̃ under Pz is stochastically dominated
by Z under Pz+M−1 (we need to shift the starting point by M − 1 because Z̃ has no
emigration at time n = 0). Since 0 is an absorbing state for Z̃ , this implies that, for
all n ≥ 0,

E1[Z̃ M−1
n ] ≤ EM [Z M−1

n∧σ ]. (15)
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The process Z̃ belongs to the class of processes studied by Vinokurov [12]. Moreover,
all the assumptions of Theorem 2 and 3 of [12] are fulfilled (in the notation of [12],
we have θ = M − 1). Therefore, there exist two constants c1, c2 > 0, such that, as n
tends to infinity,

P1{Z̃n > 0} ∼ c1

nM
and P1{Z̃n > n | Z̃n > 0} ∼ c2.

Thus

E1[Z̃ M−1
n ] = E1[Z̃ M−1

n |Z̃n > 0]P1{Z̃n > 0}
≥ nM−1

P1{Z̃n > n | Z̃n > 0}P1{Z̃n > 0} ∼ c1c2

n
. (16)

The combination of (15) and (16) yields (14). ��
Remark 3.2 In view of the last proposition and Corollary 2.3, we recover the fact that
for M = 2, the speed of the cookie random walk is always zero.

In order to study more precisely the distribution of Z∞, we need the following
lemma:

Lemma 3.3 We have

E
[
AM−1

] = 2
M∑

i=1

(1 − pi ).

Proof Recall that (Bi )i≥1 denotes a sequence of independent Bernoulli random
variables with distribution given by (5). Let L = �{1 ≤ i ≤ M, Bi = 1} = ∑M

i=1 Bi ,
we have

E[L] =
M∑

i=1

pi .

Recall also that AM−1 denotes the number of failures in the sequence (Bi )i≥1 before
obtaining M successes. Furthermore, M − L represents the number of failures in the
subsequence (Bi )1≤i≤M . So we may rewrite AM−1 in the form

AM−1 = M − L +
(

inf
{

j ≥ 0,

M+ j∑

i=M+1

Bi = M − L
}

− (M − L)
)

= inf
{

j ≥ 0,

M+ j∑

i=M+1

Bi = M − L
}

(with the convention
∑M

M+1 = 0). Therefore, given L , the random variable AM−1
represents the number of trials needed to get M − L successes along the unbiased
coin tossing sequence (Bi )i≥M+1. Thus, given L , the random variable AM−1 has a
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negative binomial distribution with parameters M − L and p = 1/2. In particular, we
have E[AM−1 | L] = 2(M − L) and we conclude that

E[AM−1] = E[E[AM−1 | L]] = E[2(M − L)] = 2
M∑

i=1

(1 − pi ).

��

We now study the law of the limiting distribution Z∞ of the Markov chain Z . This
is done via the study of its probability generating function (p.g.f.)

G(s) = E

[
s Z∞

]
for s ∈ [0, 1].

Lemma 3.4 The p.g.f. G of Z∞ is the unique p.g.f. solution of the following equation

1 − G

(
1

2 − s

)

= a(s)(1 − G(s)) + b(s) for all s ∈ [0, 1], (17)

with

a(s) = 1

(2 − s)M−1E
[
s AM−1

] ,

and

b(s) = 1 − 1

(2 − s)M−1E
[
s AM−1

]

+
M−2∑

k=0

G(k)(0)

k!

(
E

[
s Ak

]

(2 − s)M−1E
[
s AM−1

] − 1

(2 − s)k

)

.

Proof The law of Z∞ is a stationary distribution for the Markov chain Z , therefore

G(s) = E

[
EZ∞

[
s Z1

]]
=

∞∑

k=0

P{Z∞ = k}Ek

[
s Z1

]

=
M−2∑

k=0

P{Z∞ = k}Ek

[
s Z1

]
+

∞∑

k=M−1

P{Z∞ = k}Ek

[
s Z1

]
.

By the definition of Z , the random variable Z1 under Pk has the same law as Ak

under P. Moreover, according to Lemma 2.1, for k ≥ M − 1, Ak has the same law
as AM−1 + ξ1 + · · · + ξk−M+1 where (ξi )i≥1 is a sequence of i.i.d. random variables
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independent of AM−1 and with geometric distribution with parameter 1
2 . Thus,

G(s) =
M−2∑

k=0

P{Z∞ = k}E
[
s Ak

]
+

∞∑

k=M−1

P{Z∞ = k}E
[
s AM−1+ξ1+···+ξk+1−M

]

=
M−2∑

k=0

P{Z∞ = k}E
[
s Ak

]
+ E

[
s AM−1

]

E
[
sξ

]M−1

∞∑

k=M−1

P{Z∞ = k}E [
sξ

]k

=
M−2∑

k=0

P{Z∞ = k}
(

E
[
s Ak

]
− E

[
s AM−1

]
E

[
sξ

]k+1−M
)

+ E
[
s AM−1

]

E
[
sξ

]M−1 G
(
E

[
sξ

])
.

Since E
[
sξ

] = 1
2−s , and k!P{Z∞ = k} = G(k)(0), we get

G(s) =
M−2∑

k=0

G(k)(0)

k!
(

E
[
s Ak

]
− E

[
s AM−1

]
(2 − s)M−1−k

)

+E
[
s AM−1

]
(2 − s)M−1G

(
1

2 − s

)

,

from which we deduce that G solves (17).
Furthermore, using the same arguments as above and going backward, we can check

that if some p.g.f. satisfies (17), then the associated probability distribution is statio-
nary for the irreducible Markov chain Z . In view of the uniqueness of the stationary
distribution, we conclude that G is indeed the unique p.g.f. satisfying Eq. (17). ��

Given two functions f and g, we use the classical notation f (x) = O(g(x)) in
the neighbourhood of zero if | f (x)| ≤ C |g(x)| for some constant C and all |x | small
enough.

Lemma 3.5 The functions a and b of Lemma 3.4 are analytic on (0, 2). In particular,
they admit a Taylor expansion of any order near point 1 and, as x goes to 0:

a(1 − x) = 1 − αx + O(x2),

b(1 − x) = O(x).

Proof Recall the definitions of the random variables Ak given in Sect. 2. Since a
geometric random variable with parameter 1

2 admits exponential moments of order
strictly smaller than 2, it follows that the p.g.f. s �→ E[s Ak ] are strictly positive and
analytic on (0, 2). From the explicit form of the functions a and b given in the previous
lemma, we conclude that these two functions are indeed analytic on (0, 2). A Taylor
expansion of a near 1 gives

a(1 − x) = 1 − (M − 1 − E[AM−1]) x + O(x2) = 1 − αx + O(x2), (18)
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where we used Lemma 3.3 for the last equality. Since G is a p.g.f. we have G(1) = 1
which, in view of (17), yields b(1) = 0 and therefore b(1 − x) = O(x). ��

The following proposition relies on a careful study of Eq. (17) and is the key to the
proof of Theorem 1.1.

Proposition 3.6 Recall that

α =
M∑

i=1

(2pi − 1) − 1 > 0.

The p.g.f. G of Z∞ is such that, as x > 0 goes to 0:

• if 0 < α < 1, then 1 − G(1 − x) ∼ cxα , for some constant c > 0.
In particular E[Z∞] = +∞.

• if α = 1, then 1 − G(1 − x) ∼ cx | ln x |, for some constant c > 0.
In particular E[Z∞] = +∞.

• if α > 1, then 1 − G(1 − x) = b′′(1)
2(α−1)

x + O(x2∧α).

In particular E[Z∞] = b′′(1)
2(α−1)

< +∞.

Proof Since G is a p.g.f, it is completely monotonic and we just need to prove the
proposition along the sequence x = 1

n with n ∈ N
∗. Making use of Lemma 3.4 with

s = 1 − 1
n , we get, for all n ≥ 1

1 − G

(

1 − 1

n + 1

)

= a

(

1 − 1

n

)(

1 − G

(

1 − 1

n

))

+ b

(

1 − 1

n

)

.

Let us define the sequence (un)n≥1 by

{
u1

def= 1 − G(0) = 1 − P{Z∞ = 0} > 0,

un
def= 1−G(1−1/n)

∏n−1
i=1 a(1−1/ i)

for n ≥ 2.
(19)

We also use the notation

rn
def= b(1 − 1/n)

∏n
i=1 a(1 − 1/ i)

.

Hence, (un) is a sequence of positive numbers which satisfies the relation

un+1 = un + rn,

thus

un = u1 +
n−1∑

j=1

r j .
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This equality may be rewritten

1 − G

(

1 − 1

n

)

=
n−1∏

i=1

a

(

1 − 1

i

)
⎛

⎝1 − G(0) +
n−1∑

j=1

r j

⎞

⎠ . (20)

In view of Lemma 3.5, we can write the Taylor expansion of a of order M near 1 in
the form

a(1 − x) = 1 − αx + a2x2 + · · · + aM x M + O(x M+1).

Using the classical result

n∑

i=1

1

i
= ln n + γ0 + · · · + γM

nM
+ O

(
1

nM+1

)

,

we deduce that

n∏

i=1

a

(

1 − 1

i

)

= C

nα

(

1 + a′
1

n
+ a′

2

n2 + · · · + a′
M−1

nM−1 + O

(
1

nM

))

with C > 0.

(21)
Lemma 3.5 also states that, when b is not identically 0, there exists a unique k ∈
{1, 2, . . .} such that

b(1 − x) = Dk xk + O(xk+1), with Dk = 0. (22)

If b is identically 0, we use the convention k = +∞. In particular, when k is finite,
combining (21) and (22) , we deduce that

rn = DkC−1nα−k + O(nα−k−1). (23)

This implies, whenever α − k > −1 that

n−1∑

j=1

r j = DkC−1

α − k + 1
nα−k+1 + O(1 ∨ nα−k). (24)

Let us now assume that k = 1. Combining (20), (21) and (24) we find that 1 −
G(1 − 1

n ) converges towards D1
α

= 0 as n tends to infinity but this cannot happen
because G is continuous at 1− with G(1) = 1. Thus, we have shown that in fact

k ≥ 2.

We now consider the three cases α > 1, α = 1, α < 1 separately.

α > 1
We have three sub-cases: either α > k − 1, or α < k − 1, or α = k − 1 with k ≥ 3.
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• α > k − 1: Just as before, combining (20), (21) and (24), we now get

1 − G

(

1 − 1

n

)

= Dk

(α − k + 1)nk−1 + O

(
1

nk∧α

)

.

If k were strictly larger than 2, we would have

lim
n→∞ n(1 − G(1 − 1/n)) = 0

and therefore G ′(1) = E[Z∞] = 0 which cannot be true because Z is a positive
random variable which is not equal to zero almost surely. Thus k must be equal to
2 and

1 − G

(

1 − 1

n

)

= D2

(α − 1)n
+ O

(
1

n2∧α

)

. (25)

Using the equality D2 = b′′(1)
2 , we conclude that

E[Z∞] = b′′(1)

2(α − 1)
< +∞.

• α < k − 1: We prove that this case never happens. Indeed, in view of (23) we find
that ∞∑

j=1

r j < ∞

(this result also trivially holds when k = ∞ since r j is equally zero in this case).
Combining this with (20) and (21) we see that

1 − G

(

1 − 1

n

)

= O

(
1

nα

)

.

Since α > 1, this implies, just as in the previous case, that E[Z∞] = 0, which is
absurd.

• α = k − 1 and k ≥ 3: Again, we prove that this case is empty. Using (23), we get

rn ∼ DkC−1

n
.

With the help of (20) and (21), we conclude that

1 − G

(

1 − 1

n

)

∼ Dk
ln n

nk−1 .

Since k ≥ 3, we again obtain E[Z∞] = 0, which is unacceptable.
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Thus, we have completed the proof of the proposition when α > 1 and we proved by
the way that k must be equal to 2 and that b′′(1) > 0.

α = 1
We first prove, just as in the previous cases, that k = 2. Let us suppose that k ≥ 3.

In view of Lemma 3.5, we can write the Taylor expansion of b of order M near 1 in
the form

b(1 − x) = D3x3 + · · · + DM x M + O(x M+1) (26)

where Di ∈ R for i ∈ {3, 4, . . . , M}. Combining (21) and (26) we deduce that

n−1∑

j=1

r j = g0 + g1

n
+ g2

n2 + · · · + gM−2

nM−2 + O

(
1

nM−1

)

. (27)

Therefore, in view of (20), (21) and (27), we get

1 − G

(

1 − 1

n

)

= λ1

n
+ λ2

n2 + · · · + λM−1

nM−1 + O

(
1

nM

)

.

Comparing with the Taylor expansion of the p.g.f. G, we conclude that E(Z M−1∞ ) < ∞
which contradicts Proposition 3.1. Thus, k = 2 and (23) yields

rn ∼ D2C−1

n
with D2 = 0. (28)

In view of (20) and (21), this estimate implies

1 − G

(

1 − 1

n

)

∼ D2
ln n

n
,

and therefore
E[Z∞] = +∞. (29)

α < 1
Since k ≥ 2, Eq. (23) yields

∞∑

j=1

r j < ∞

(of course, this is trivially true when k = ∞). Thus, the sequence (un) defined by (19)
converges to a constant c1 ≥ 0. Suppose first that c1 = 0. In this case, k cannot be
infinite (because when k = ∞, the sequence (un) is constant and then c1 = u1 > 0).
From (23) we deduce that

un = −
∞∑

j=n

r j ∼ DkC−1

(k − α − 1)nk−α−1 ,
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therefore, with the help of (21) we get

1 − G

(

1 − 1

n

)

= un

n−1∏

i=1

a

(

1 − 1

i

)

∼ Dk

(k − α − 1)nk−1 .

Since k ≥ 2, this implies that n(1 − G(1 − 1/n)) converges to a finite constant and so
E[Z∞] < ∞. We have already noticed that this implies a strictly positive speed for the
cookie random walk in the associated cookie environment (M, p̄). But (by possibly
extending the value of M) we can always construct a cookie environment (M, q̄) such
that p̄ ≤ q̄ and α(q̄) = 1. In view of (29), the associated cookie random walk has zero
speed and this contradicts a monotonicity result of Zerner (cf. Theorem 17 of [13]).
Therefore c1 cannot be 0 and by (19) and (21), we get

1 − G

(

1 − 1

n

)

= un

n−1∏

i=1

a

(

1 − 1

i

)

∼ c1C

nα
.

��

Theorem 1.1 is now a direct consequence of the last proposition and Corollary 2.3.
Moreover, in view of the expression of E[Z∞] given in the previous proposition, we
get the following expression for the limiting speed:

Corollary 3.7 For any cookie environment such that α ≥ 1, we have b′′(1) > 0 and
the speed of the walk is given by the formula

v = α − 1

α − 1 + b′′(1)
.

In view of a classical Abelian/Tauberian Theorem (cf. Sect. XIII.5 of [5]), we also
deduce from Proposition 3.6 the following estimate concerning the tail distribution of
Z∞ in the zero speed case:

Corollary 3.8 When α ≤ 1, there exists a constant c > 0 such that

P {Z∞ > n} ∼
n→∞

{
c/nα if 0 < α < 1,
(c ln n)/n if α = 1.

(30)

Remark 3.9 Recall that the random variable Z∞ has the same distribution as the total
number of jumps from 0 to −1 for the cookie random walk. We may also relate this
quantity to the total number R of returns to the origin. Indeed, since U n

0 (resp. U n
1 )

stands for the respective total number of jumps from 0 to −1 (resp. from 1 to 0) before
reaching level n, the total number of returns to the origin before reaching level n is
U n

0 +U n
1 which, under P, has the same distribution as Zn + Zn−1 under P. Therefore,
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we may express the p.g.f. H of the random variable R in term of the p.g.f. G of Z∞:

H(s) = E

[
s Z∞EZ∞

[
s Z∞

]]

= 1

a(s)
G

(
s

2 − s

)

+
M−2∑

k=0

G(k)(0)

k! sk
(

E

[
s Ak

]
− 1

a(s)(2 − s)k

)

.

In particular, Proposition 3.6 holds for H and the tail distribution of the total number
of returns to the origin when α ≤ 1 has the same form as in (30).

Remark 3.10 In the particular case M = 2 (there are at most two cookies per site), the
only unknown in the definition of the function b is G(0). Since we know that b′(1) = 0
(cf. the beginning of the proof of Proposition 3.6) we can explicitly calculate G(0),
that is the probability that the cookie random walk never jumps from 0 to 1, which
is also the probability that the cookie random walk never hits −1. According to the
previous remark, we can also calculate the probability that the cookie random walk
never returns to 0. Hence, we recover Theorem 18 of [13] in the case of a deterministic
cookie environment.

4 Continuity of the speed and differentiability at the critical point

The aim of this section is to prove Theorem 1.2. Recall that Corollary 3.7 states that

v(M, p̄) =
{

0 if α(M, p) ≤ 1,
α−1

α−1+b′′(1)
if α(M, p) > 1,

where b′′(1) stands for the second derivative at point 1 of the function b defined in
Lemma 3.4. Furthermore, when α(M, p̄) = 1, then b′′(1) is strictly positive (cf. (28)).
Hence, in order to prove Theorem 1.2, we just need to show that b′′(1) = b′′

(M, p̄)(1)

is a continuous function of p̄ in �u
M . It is also clear from the definition of the random

variables Ak that the functions

p̄ →
(

E(M, p̄)

[
s Ak

])(i)
(1) (i.e. the i th derivative at point 1)

are continuous in p̄ in �u
M for all k ≥ 0 and all i ≥ 0 (they are polynomial functions

in p1, . . . , pM ). Therefore, it simply remains to prove that, for all k ≥ 0, the functions

p̄ → P(M, p̄) {Z∞ = k}

are continuous in �u
M . The following lemma is based on the monotonicity of the hitting

times of a cookie random walk with respect to the environment.

Lemma 4.1 Let (M, p̄) be a cookie environment such that α(M, p̄) > 0. Then there
exist ε > 0 and f : N �→ R+ with limn→+∞ f (n) = 0 such that

∀q̄ ∈ B( p̄, ε) ∀ j ∈ N ∀n ∈ N |P(M,q̄) {Z∞ = j} − P(M,q̄) {Zn = j} | ≤ f (n),
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where

B( p̄, ε) =
{

q̄ = (q1, . . . , qM ),
1

2
≤ qi < 1, α(M, q̄) > 0 and

M∑

i=1

|pi − qi | ≤ ε
}
.

Proof Let us fix (M, p̄) with α(M, p̄) > 0. For ε > 0, define the vector p̄ε =
(pε

1, . . . , pε
M ) by pε

i = max( 1
2 , pi −ε). We can choose ε > 0 such that α(M, p̄ε) > 0.

Then, for all q̄ ∈ B( p̄, ε), we have
p̄ε ≤ q̄ (31)

(where ≤ denotes the canonical partial order on R
M ). Let us now pick q̄ ∈ B( p̄, ε),

j ∈ N and n ∈ N. Recall that U∞
0 denotes the total number of jumps of the cookie

random walk from 0 to −1 and

P(M,q̄){Z∞ = j} = P(M,q̄){U∞
0 = j} = P(M,q̄){X jumps j times from 0 to -1},

and

P(M,q̄){Zn = j} = P(M,q̄){U n
0 = j}

= P(M,q̄){X jumps j times from 0 to −1 before reaching n}.

Hence

|P(M,q̄){Z∞ = j} − P(M,q̄){Zn = j}| = |P(M,q̄){U∞
0 = j} − P(M,q̄){U n

0 = j}|
≤ P(M,q̄){U n

0 = U∞
0 }

= P(M,q̄){A}, (32)

where A is the event “X visits −1 at least once after reaching level n”. Recall the
notation ω = ω(i, x)i≥1,x∈Z for a general cookie environment given in the intro-
duction. Let now ωX,n denote the (random) cookie-environment obtained when the
cookie random walk X hits level n for the first time and shifted by n, i.e. for all x ∈ Z

and i ≥ 1, if the initial cookie environment is ω, then

ωX,n(i, x) = ω( j, x + n) where j = i + �{0 ≤ k < Tn, Xk = x + n}.

With this notation we have

P(M,q̄) {A} = E(M,q̄)

[
PωX,n {X visits −(n + 1) at least once}] .

Besides, X has not eaten any cookie at the sites x ≥ n before time Tn . Thus, the
environment ωX,n satisfies

ωX,n(i, x) = qi , for all x ≥ 0 and i ≥ 1 (with the convention qi = 1
2 for i > M).
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Hence, in view of (31), the random cookie environment ωX,n is larger (for the
canonical partial order) than the deterministic environment ω p̄ε defined by

{
ω p̄ε (i, x) = 1

2 , for all x < 0 and i ≥ 1,

ω p̄ε (i, x) = pε
i , for all x ≥ 0 and i ≥ 1 (with the convention pε

i = 1
2 for i ≥ M).

Thus, Lemma 15 of [13] yields

PωX,n {X visits −(n + 1) at least once} ≤ Pω p̄ε {X visits −(n + 1) at least once}.

In view of (32) we deduce that

|P(M,q̄){Z∞ = j} − P(M,q̄){Zn = j}| ≤ f (n),

where f (n) = Pω p̄ε {X visits −(n + 1) at least once} does not depend of q̄ . It remains
to prove that f (n) tends to 0 as n goes to infinity. Let us first notice that

Pω p̄ε {∀n ≥ 0 Xn ≥ 0} = P(M, p̄ε){∀n ≥ 0 Xn ≥ 0},

since these probabilities depend only on the environments on the half line [0,+∞).
Recall also that the cookie random walk in the environment (M, p̄ε) is transient (we
have chosen ε such that α(M, p̄ε) > 0), thus

P(M, p̄ε){∀n ≥ 0 Xn ≥ 0} = P(M, p̄ε){U∞
0 = 0} = P(M, p̄ε){Z∞ = 0} > 0.

Hence

Pω p̄ε {∀n ≥ 0 Xn ≥ 0} > 0,

which implies

Pω p̄ε {Xn = 0 infinitely often} < 1,

and a 0–1 law (cf. Proposition 5 of [13]) yields

Pω p̄ε {Xn = 0 infinitely often} = Pω p̄ε {Xn ≤ 0 infinitely often} = 0.

Therefore, limn→∞ f (n) = 0. ��
Recall that the transition probabilities of the Markov chain Z are given by the law

of the random variables Ak :

P(M, p̄) {Zn+1 = j | Zn = i} = P(M, p̄) {Ai = j} .
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It is therefore clear that for each fixed n and each k, the function p̄ → P(M, p̄) {Zn = k}
is continuous in p̄ in �u

M . Writing

|P(M,q̄) {Z∞ = k} − P(M, p̄) {Z∞ = k} | ≤ |P(M,q̄) {Z∞ = k} − P(M,q̄) {Zn = k} |
+|P(M,q̄) {Zn = k} − P(M, p̄) {Zn = k} | + |P(M, p̄) {Z∞ = k} − P(M, p̄) {Zn = k} |

and in view of the previous lemma, we conclude that for each k the function p̄ →
P(M, p̄) {Z∞ = k} is also continuous in p̄ in �u

M , which completes the proof of
Theorem 1.2.
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