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Abstract In Briand and Hu (Probab Theory Relat Fields 136(4):604–618, 2006), the
authors proved an existence result for BSDEs with quadratic generators with respect
to the variable z and with unbounded terminal conditions. However, no uniqueness
result was stated in that work. The main goal of this paper is to fill this gap. In order to
obtain a comparison theorem for this kind of BSDEs, we assume that the generator is
convex with respect to the variable z. Under this assumption of convexity, we are also
able to prove a stability result in the spirit of the a priori estimates stated in Karoui
et al. (Math Finance 7(1):1–71, 1997). With these tools in hands, we can derive the
nonlinear Feynman–Kac formula in this context.

Mathematics Subject Classification (2000) 60H10

1 Introduction

Since the first existence and uniqueness result for backward stochastic differential
equations (BSDEs in short for the remaining of the paper) of Pardoux and Peng [14],
lots of works have been done in this area and the original Lipschitz assumption on the
generator, the function f in the BSDE

Yt = ξ +
T∫

t

f (s,Ys, Zs) ds −
T∫

t

Zs · d Bs, 0 ≤ t ≤ T, (1)
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544 P. Briand, Y. Hu

has been weakened in many situations. Let us recall that, in the previous equation,
we are looking for a pair of processes (Y, Z) which is required to be adapted with
respect to the filtration generated by the Brownian motion B. Even though there exist
some improvements of Pardoux–Peng’s result for multidimensional BSDEs (see e.g.
[3,13] ), the case of real valued BSDEs meaning that Y is a real process is easier to
handle. The main reason for the gap between the real case and the multidimensional
one comes from the comparison theorem which turns out to be a powerful tool to
construct solutions for real valued BSDEs. Roughly speaking, a comparison theorem
for BSDEs allows one to compare solutions to BSDEs as soon as one can compare
the terminal conditions (ξ in the previous equation) and the generators. In particular,
a classical strategy in order to obtain a solution to the BSDE (1) consists in construct-
ing an increasing sequence of solutions to BSDEs and then passing to the limit. This
method is used for instance in [11] for continuous generators with a linear growth.
But one of the most important application of this approach is the work of Kobylanski
[10] concerning quadratic BSDEs. We should point out that quadratic BSDE means
a BSDE whose generator has a quadratic growth with respect to the variable z. For
these quadratic BSDEs, all the classical results, existence and uniqueness, comparison
theorem and stability of solutions, has been stated in [10] but with the restriction that
the terminal conditions have to be bounded random variables.

It was known for a long time that the boundedness of the terminal condition is not
really needed for studying a quadratic BSDE. Actually, on simple examples, on can
see that the existence of an exponential moment of sufficiently large order is enough
to get a solution. In [4], existence of solutions to quadratic BSDEs with unbounded
terminal conditions was studied and it was proved that the existence of an exponential
moment of ξ is a sufficient condition in order to construct a solution. However the
question of uniqueness of solutions in this setting was left open in that work. Qua-
dratic BSDEs with bounded terminal conditions has an interesting feature : Z • B,
the stochastic integral of the process Z with respect to the Brownian motion B, is a
BMO-martingale. This observation can be used to obtain uniqueness see [9] and also
other properties [2]. When the terminal condition is not bounded, Z • B is, in general,
no more a BMO-martingale: this is a difficulty for uniqueness.

The main contribution of this paper is to obtain a uniqueness result for quadratic
BSDEs with unbounded terminal conditions when the generator of (1) is assumed
to be in addition convex or concave with respect to the variable z. Let us mention
that convex generators appear naturally for BSDEs associated to stochastic control
problems, see e.g. [8]. With this further assumption, it is possible to obtain a com-
parison theorem for solutions to unbounded quadratic BSDEs which of course gives
uniqueness see Sect. 3. The key idea for proving this result is the following: instead of
trying to estimate the difference of two solutions, say Y and Y ′, we estimate, for each
θ ∈ (0, 1), Y − θY ′; this allows to take advantage of the convexity of the generator.
Moreover, it turns out that the convexity of the generator with respect to the variable
z is also a convenient assumption to obtain a stability result. The proof of this last
result relies mainly on the same computation mentioned before even though technical
difficulties arise and impose us to go into details carefully. Finally all these results
yield the nonlinear Feynman–Kac formula in this framework.
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Quadratic BSDEs with convex generators and unbounded terminal conditions 545

The paper is organized as follows. In Sect. 2, we prove an existence result in the
spirit of [4]: here, we work with generators which are quadratic with respect to z and
monotone with respect to y. This monotonicity assumption allows as usual to get rid
of the growth assumption on the generator with respect to y. Section 3 is devoted to the
comparison theorem from which we get as a byproduct an existence and uniqueness
result for quadratic BSDEs with unbounded terminal conditions. In Sect. 4, we obtain
a stability result in our framework and finally in the last section we derive the nonlinear
Feynman–Kac formula.

Let us close this introduction by giving the notations which we will use in all the
paper. For the remaining of the paper, let us fix a nonnegative real number T > 0. First
of all, B = {Bt }t≥0 is a standard Brownian motion with values in Rd defined on some
complete probability space (�,F ,P). {Ft }t≥0 is the natural filtration of the Brownian
motion B augmented by the P-null sets of F . All the measurability notions will refer
to this filtration. In particular, the sigma-field of predictable subsets of [0, T ] × � is
denoted P .

As mentioned in the introduction, we will deal only with real valued BSDEs which is
an equation of type (1). The function f is called the generator and ξ the terminal condi-
tion. Let us recall that a generator is a random function f : [0, T ]×�×R×Rd −→ R
which is measurable with respect to P ⊗ B(R)⊗ B(Rd) and a terminal condition is
simply a real FT —measurable random variable.

By a solution to the BSDE (1) we mean a pair (Y, Z) = {(Yt , Zt )}t∈[0,T ] of pre-
dictable processes with values in R × Rd such that P-a.s., t �−→ Yt is continuous,
t �−→ Zt belongs to L2(0, T ), t �−→ f (t,Yt , Zt ) belongs to L1(0, T ) and P-a.s.

Yt = ξ +
T∫

t

f (s,Ys, Zs) ds −
T∫

t

Zs · d Bs, 0 ≤ t ≤ T .

We will sometimes use the notation BSDE(ξ, f ) to say that we consider the BSDE
whose generator is f and whose terminal condition is ξ ;

(
Y f (ξ), Z f (ξ)

)
means a

solution to the BSDE(ξ, f ). A solution
(
Y f (ξ), Z f (ξ)

)
is said to be minimal if P-a.s.,

for each t ∈ [0, T ], Y f
t (ξ) ≤ Y g

t (ζ )whenever P-a.s. ξ ≤ ζ and f (t, y, z) ≤ g(t, y, z)
for all (t, y, z).

(
Y f (ξ), Z f (ξ)

)
is said to be minimal in some space B if it belongs to

this space and the previous property holds true as soon as (Y g(ζ ), Z g(ζ )) ∈ B.
For any real p ≥ 1, S p denotes the set of real-valued, adapted and càdlàg processes

{Yt }t∈[0,T ] such that

‖Y‖S p := E
[
sup0≤t≤T |Yt |p]1/p

< +∞.

(S p, ‖ · ‖S p ) is a Banach space.
Mp

(
Rd

)
or simply Mp denotes the set of (equivalent classes of) predictable pro-

cesses {Zt }t∈[0,T ] with values in Rd such that
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‖Z‖Mp := E

⎡
⎢⎣
⎛
⎝

T∫

0

|Zs |2 ds

⎞
⎠

p/2⎤
⎥⎦

1/p

< +∞.

Mp
(
Rd

)
is a Banach space endowed with this norm. We set S = ∪p>1S p, M =

∪p>1Mp and S∞ stands for the set of predictable bounded processes.
Finally, we will say that a real process Y , adapted and càdlàg, belongs to E if the

random variable Y ∗ = sup0≤t≤T |Yt | has exponential moments of all orders and we
recall that Y belongs to the class (D) as soon as the family {Yτ : τ ≤ T stopping time}
is uniformly integrable.

2 An existence result

In this section, we prove a straightforward generalization of the existence result for
quadratic BSDEs we obtained in [4]. We consider here the case where the generator
has some monotonicity property with respect to the variable y. As usual, this kind of
assumptions allows to get rid of the (linear) growth of the generator f in y. See e.g.
[3,5,13]. Of course, we still consider the case of a generator with a quadratic growth
in the variable z and of an unbounded terminal condition. In this section we assume
the following on the generator.

Assumption (A.1) There exist two constants β ≥ 0 and γ > 0 together with a pro-
gressively measurable nonnegative stochastic process {α(t)}0≤t≤T and a deterministic
continuous nondecreasing function ϕ : R+ −→ R+ with ϕ(0) = 0 such that, P-a.s.,

(i) for all t ∈ [0, T ], (y, z) �−→ f (t, y, z) is continuous;
(ii) monotonicity in y : for each (t, z) ∈ [0, T ] × Rd ,

∀y ∈ R, y ( f (t, y, z)− f (t, 0, z)) ≤ β|y|2;

(iii) growth condition:

∀(t, y, z) ∈ [0, T ] × R × Rd , | f (t, y, z)| ≤ α(t)+ ϕ(|y|)+ γ

2
|z|2.

Let us denote by h the (random) function h(t, x) = α(t)+βx . First of all, we want
to derive a sharp estimate for solutions to the BSDE (1). The idea is the following: we
apply Itô–Tanaka’s formula to compute U (t, |Yt |) = eγψ(t,|Yt |) with ψ to be chosen
later. Actually, ψ will be of the following form:

ψ(t, x) = ψ̄(t, x)+
t∫

0

ᾱ(r)dr,
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Quadratic BSDEs with convex generators and unbounded terminal conditions 547

where ψ̄ is a smooth function and ᾱ is an adapted process with paths in L1(0, T ) a.s.
Let us denote L the local time of Y at 0. We have

|Yt | = |ξ | +
T∫

t

sgn(Ys) f (s,Ys, Zs) ds −
T∫

t

sgn(Ys)Zs · d Bs −
T∫

t

d Ls,

and, from the growth of f (A.1) (ii)–(iii),

sgn(Ys) f (s,Ys, Zs) = sgn(Ys) ( f (s,Ys, Zs)− f (s, 0, Zs))+ sgn(Ys) f (s, 0, Zs)

≤ β|Ys | + α(s)+ γ

2
|Zs |2 = h(s, |Ys |)+ γ

2
|Zs |2. (2)

From Itô’s formula, we derive the equality

dU (t, |Yt |)
γU (t, |Yt |) = ( − ψx (t, |Yt |) sgn(Yt ) f (t,Yt , Zt )+ ψt (t, |Yt |)

+γ
2
ψx (t, |Yt |)2|Zt |2

)
dt

+1

2
ψxx (t, |Yt |)|Zt |2dt + ψx (t, |Yt |) d Lt

+ψx (t, |Yt |) sgn(Yt )Zt · d Bt .

If ψx (t, x) ≥ 1 for x ≥ 0, we have, taking into account the inequality (2),

ψx (t, |Yt |) sgn(Yt ) f (t,Yt , Zt )− ψt (t, |Yt |)− γ

2
ψx (t, |Yt |)2|Zt |2

≤ ψx (t, |Yt |)h(t, |Yt |)− ψt (t, |Yt |).

The idea is now clear; we want to find a solution ψ to the PDE: for s ∈ [0, T ],

ψt (t, x)− h(t, x)ψx (t, x) = 0, ψ(s, x) = �(x), t ∈ [s, T ],

such that ψx (t, x) ≥ 1 and ψxx (t, x) ≥ 0 for x ≥ 0. But the previous PDE can
be solved by the method of characteristics (see e.g. [1]). Let {v(u; t, x)}0≤u≤t be the
solution to the integral solution

v(u; t, x) = x +
t∫

u

h(r, v(r; t, x)) dr, 0 ≤ u ≤ t.

It is easy to check that,

d

du
ψ (u, v(u; t, x)) = 0,
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hence

ψ(t, x) = ψ(t, v(t; t, x)) = ψ(s, v(s; t, x)) = � (v(s; t, x)) .

In our case, h(r, x) = α(r)+ βx , the solution is given by the formula

v(u; t, x) = xeβ(t−u) +
t∫

u

α(r)eβ(r−u) dr.

We choose �(x) = x and we get, if σ is a stopping time such that s ≤ σ ≤ T ,

eγ |Ys | = U (s, |Ys |) ≤ U (σ, |Yσ |)−
σ∫

s

γU (t, |Yt |)ψx (t, |Yt |) sgn(Yt )Zt · d Bt . (3)

This computation leads the following a priori estimate.

Proposition 1 Let (Y, Z) be a solution to the BSDE (1) such that the process

exp

⎛
⎝γ eβT |Yt | + γ

T∫

0

α(r)eβr dr

⎞
⎠

belongs to the class (D). Then, P-a.s.,

∀t ∈ [0, T ], |Yt | ≤ 1

γ
log E

⎛
⎝exp

⎛
⎝γ eβ(T −t)|ξ | + γ

T∫

t

α(r)eβ(r−t)dr

⎞
⎠∣∣∣Ft

⎞
⎠ . (4)

Proof Let s ∈ [0, T ]. Set, as beforeψ(t, x) = xeβ(t−s)+∫ t
s α(r)e

β(r−s) dr , U (t, x) =
eγψ(t,x). Let us consider, for each integer n ≥ 1, the following stopping time:

σn = inf

⎧⎨
⎩t ∈ [s, T ] : γ 2

t∫

s

U 2(r, |Yr |)ψx (r, |Yr |)2|Zr |2 dr ≥ n

⎫⎬
⎭ ∧ T .

It follows from the inequality (3) and the definition of σn that

eγ |Ys | ≤E

(
eγψ(σn ,|Yσn |)∣∣Fs

)
≤E

⎛
⎝exp

⎛
⎝γ eβ(T −s)|Yσn | + γ

T∫

s

α(r)eβ(r−s)dr

⎞
⎠∣∣∣Fs

⎞
⎠ .

Thus, the inequality follows by sending n to infinity. ��
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Quadratic BSDEs with convex generators and unbounded terminal conditions 549

Remark It is clear, from the previous computations, that an a priori estimate can be
stated for functions h which are not linear as we did. For instance, it is possible to
obtain such an estimate when

y ( f (t, y, z)− f (t, 0, z)) ≤ |y|ρ(|y|)

where ρ : R+ −→ R+ is convex, C1 with ρ(0) = 0; | f (t, y, z)| ≤ α+ϕ(|y|)+ γ
2 |z|2

(α > 0) and

+∞∫

0

du

h(u)
= +∞, with h(u) = ρ(u)+ α.

In this case, one has to choose ψ(t, x) = �−1(t − s +�(x)) where

�(x) =
x∫

0

du

h(u)
.

See e.g. [4,12].

As a byproduct of this a priori estimate, we see that, when |ξ | and |α|1 := ∫ T
0 α(s) ds

are bounded random variables, any solution (Y, Z) to (1) such that eγ eβT |Yt | belongs
to the class (D), is actually bounded. More precisely,

|Yt | ≤ eβT ‖|ξ | + |α|1‖∞.

This observation allows to generalize a little bit, with exactly the same proofs, some
of Kobylanski’s results [10].

Lemma 2 (M. Kobylanski) Let the assumption (A.1) hold. If ξ and |α|1 are bounded
random variables, then the BSDE (1) has a minimal bounded solution (and a maximal
one also).

Moreover, let ( fn)n≥1 be a sequence of generators satisfying (A.1) with (α, β, γ, ϕ)
independent of n such that ( fn(t, yn, zn))n≥1 converges to f (t, y, z) as soon as
(yn, zn) −→ (y, z) and let (ξn)n≥1 be a sequence of terminal conditions converg-
ing almost surely to ξ . Let us assume that, for each n ≥ 1, the BSDE associated to ξn

and fn has a solution (Y n, Zn) ∈ S∞ × M2 such that (Y n)n≥1 is nondecreasing and,
for some constant C, supn≥1 ‖Y n‖∞ ≤ C.

Then, there exists (Y, Z) ∈ S∞ × M2, solution to the BSDE (1), such that (Y n)n≥1
converges to Y uniformly on [0, T ] in probability and (Zn)n≥1 converges to Z in M2.

We are now in position to generalize to this framework the result we obtained
in [4].
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550 P. Briand, Y. Hu

Proposition 3 Let (A.1) hold.
If |ξ | + |α|1 has an exponential moment of order γ eβT , then the BSDE (1) has a

solution (Y, Z) such that

∀t ∈ [0, T ], |Yt | ≤ 1

γ
log E

⎛
⎝exp

⎛
⎝γ eβ(T −t)|ξ | + γ

T∫

t

α(r)eβ(r−t)dr

⎞
⎠ ∣∣∣ Ft

⎞
⎠ .

(5)

Proof Let us assume that ξ and f are nonnegative. For each integer n ≥ 1, we consider
ξn = ξ ∧ n and fn(t, y, z) = 1t≤σn f (t, y, z) where

σn = inf

⎧⎨
⎩t ∈ [0, T ] :

t∫

0

α(s) ds ≥ n

⎫⎬
⎭ ∧ T .

According to the first part of the Lemma 2, let (Y n, Zn) ∈ S∞ × M2 be the minimal
bounded solution to the BSDE whose terminal condition is ξn and whose generator is
fn . It follows, from Proposition 1, that for each n ≥ 1,

∣∣Y n
t

∣∣ ≤ 1

γ
log E

(
exp

(
γ eβT (|ξ | + |α|1)

)
| Ft

)
:= Xt .

Since ξn ≤ ξn+1, fn ≤ fn+1 and since we are dealing with minimal solutions, the
sequence (Y n) is nondecreasing. We have in mind to use the stability property quoted
in the second part of Lemma 2. To use this result, we need to know that the sequence
(Y n) remains bounded which, of course, is not true in general. To overcome this dif-
ficulty the idea is to use the previous estimate and to work on random time interval
instead of working on the whole interval [0, T ]. To do this, let, for k ≥ 1, τk be the
following stopping time

τk = inf{t ∈ [0, T ] : Xt ≥ k} ∧ T .

By construction the sequence (in n) Y n
k (t) = Y n

t∧τk
remains bounded in k. Setting

moreover Zn
k (t) = Zn

t 1t≤τk , we have

Y n
k (t) = Y n

τk
+

T∫

t

1t≤τk∧σn f
(
s,Y n

k (s), Zn
k (s)

)
ds −

T∫

t

Zn
k (s) · d Bs .

We apply the second part of Lemma 2 to obtain, for each k, a solution (Yk, Zk) to the
BSDE

Yk(t) = ξk +
τk∫

t

f (s,Yk(s), Zk(s)) ds −
τk∫

t

Zk(s) · d Bs, with ξk = supn≥1 Y n
τk
.
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Quadratic BSDEs with convex generators and unbounded terminal conditions 551

But by construction, τk ≤ τk+1 so we have the localization property

Yk+1(t ∧ τk) = Yk(t), Zk+1(t)1t≤τk = Zk(t).

If we define the processes Y and Z on [0, T ] by the formula

Yt = Y1(t)1t≤τ1 +
∑
k≥2

Yk(t) 1]τk−1,τk ](t), Zt = Z1(t)1t≤τ1 +
∑
k≥2

Zk(t) 1]τk−1,τk ](t),

the previous BSDE is rewritten as follows

Yt = ξk +
τk∫

t

f (s,Ys, Zs) ds −
τk∫

t

Zs · d Bs .

The last point is the fact that, P-a.s., τk = T for k large enough which allows to send
k to +∞ in the previous equation to prove that (Y, Z) is a solution to (1). Of course,
the inequality of the theorem is verified by the process Y since it is verified by each
process Y n in view of Proposition 1.

In the general case, we use a double approximation; ξn,p = ξ+ ∧ n − ξ− ∧ p,

f n,p(t, y, z) = 1t≤σn f +(t, y, z)− 1t≤σp f −(t, y, z).

��
Corollary 4 Let the assumption (A.1) hold.

If |ξ | + |α|1 has an exponential moment of order λ > γ eβT then the BSDE (1) has
a solution (Y, Z) such that Y satisfies the inequality (5) and Z belongs to M2.

In the case where |ξ | + |α|1 has exponential moments of all order, this solution is
such that Y belongs to E and Z belongs to Mp for all p ≥ 1. More precisely, for each
p > 1,

E

⎡
⎢⎣exp

(
γ p sup

0≤t≤T
|Yt |

)
+

⎛
⎝

T∫

0

|Zs |2 ds

⎞
⎠

p/2⎤
⎥⎦ ≤ C E

[
exp

(
pγ (|ξ | + |α|1)

)]
(6)

where C depends on p, γ , β and T .

Proof Let (Y, Z) the solution to (1) obtained in Theorem 3. Then Y satisfies the
estimate (5). It follows immediately from this estimate and Doob’s maximal inequal-
ity that eγY ∗

belongs to Sq for some q > 1 when ζ := |ξ | + |α|1 has an exponential
moment of order λ > γ eβT and that the estimate (6) holds true for Y when ζ has
exponential moments of all order. To obtain the results for the process Z , we argue as
in [4].
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For n ≥ 1, let τn be the following stopping time

τn = inf

⎧⎨
⎩t ≥ 0 :

t∫

0

e2γ |Ys ||Zs |2 ds ≥ n

⎫⎬
⎭ ∧ T,

and let us consider the function from R+ into itself defined by

u(x) = 1

γ 2

(
eγ x − 1 − γ x

)
.

x �−→ u(|x |) is C2 and we have from Itô’s formula, with the notation sgn(x) =
−1x≤0 + 1x>0,

u(|Y0|) = u(|Yt∧τn |)+
t∧τn∫

0

(
u′(|Ys |) sgn(Ys) f (s,Ys, Zs)− 1

2
u′′(|Ys |)|Zs |2

)
ds

−
t∧τn∫

0

u′(|Ys |) sgn(Ys)Zs · d Bs .

It follows from (2) and since u′(x) ≥ 0 for x ≥ 0 that

u(|Y0|) ≤ u(|Yt∧τn |)+
t∧τn∫

0

u′(|Ys |) (α(s)+ β|Ys |) ds −
t∧τn∫

0

u′(|Ys |) sgn(Ys)Zs · d Bs

−1

2

t∧τn∫

0

(
u′′(|Ys |)− γ u′(|Ys |)

) |Zs |2ds.

Moreover, we have (u′′ − γ u′)(x) = 1 and u(x) ≥ 0 for x ≥ 0, so taking the
expectation of the previous inequality

1

2
E

⎡
⎣

τn∫

0

|Zs |2 ds

⎤
⎦ ≤ E

⎡
⎣ 1

γ 2 sup
t∈[0,T ]

eγ |Yt | + 1

γ

T∫

0

eγ |Ys | (α(s)+ β|Ys |) ds

⎤
⎦ .

Fatou’s lemma together with the fact that eγ |Yt | ∈ Sq for some q > 1 gives the result
when ζ has an exponential moment of order λ > γ eβT .
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For the second part of the result, let us observe that

1

2

τn∫

0

|Zs |2 ds ≤ 1

γ 2 sup
0≤t≤T

eγ |Yt | + 1

γ

T∫

0

eγ |Ys | (α(s)+ β|Ys |) ds

+ sup
0≤t≤T

∣∣∣∣∣∣
t∧τn∫

0

u′(|Ys |) sgn(Ys)Zs · d Bs

∣∣∣∣∣∣ .

It follows from the BDG inequalities, since |y| ≤ eγ |y|/γ and u′(|y|) ≤ eγ |y|/γ , that

E

⎡
⎢⎣
⎛
⎝

τn∫

0

|Zs |2 ds

⎞
⎠

p/2
⎤
⎥⎦ ≤ C E

⎡
⎢⎣epγY ∗ + epγY ∗/2|α|p/2

1 +
⎛
⎝

τn∫

0

e2γ |Ys ||Zs |2 ds

⎞
⎠

p/4
⎤
⎥⎦

≤ C ′
E

[
epγY ∗ + epγY ∗/2|α|p/2

1

]
+ 1

2
E

⎡
⎢⎣
⎛
⎝

τn∫

0

|Zs |2 ds

⎞
⎠

p/2
⎤
⎥⎦

from which the result follows using Fatou’s lemma. ��

3 Comparison theorem

Let us consider now the main topic of this paper: uniqueness for quadratic BSDEs
with unbounded terminal condition. We state in this section a comparison theorem
for solutions to quadratic BSDEs and let us recall first that, in the bounded case, such
a result exists (see [10]) even though it requires more assumptions than those in the
existence result. In our unbounded framework the situation is exactly the same: the
assumptions to prove uniqueness are stronger than those needed for existence. In par-
ticular, a very convenient way to derive the comparison theorem is to assume that the
generator is convex (or concave) with respect to the variable z. From the point of view
of PDEs, the convexity of the generator seems a natural assumption see e.g. [6]. Let
us consider the following assumption on the generator f .

Assumption (A.2) There exist two constants γ > 0 and β ≥ 0 together with a non-
negative progressively measurable stochastic process {α(t)}0≤t≤T such that, P-a.s.,

(i) for all t ∈ [0, T ], for all y ∈ R, z �−→ f (t, y, z) is convex;
(ii) for all (t, z) ∈ [0, T ] × Rd ,

∀ (
y, y′) ∈ R2,

∣∣ f (t, y, z)− f (t, y′, z)
∣∣ ≤ β

∣∣y − y′∣∣ ;
(iii) f has the following growth:
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∀(t, y, z) ∈ [0, T ] × R × Rd , | f (t, y, z)| ≤ α(t)+ β |y| + γ

2
|z|2;

(iv) |α|1 has exponential moment of all order.

Theorem 5 (Comparison theorem) Let (Y, Z) be a solution to (1) and (Y ′, Z ′) be a
solution to the BSDE associated to the terminal condition ξ ′ and to the generator f ′
such that both Y and Y ′ belongs to E , namely,

∀λ > 0, E

[
eλY ∗ + eλY ′∗]

< +∞.

We assume that, P-a.s.,

ξ ≤ ξ ′, ∀(t, y, z) ∈ [0, T ] × R × Rd , f (t, y, z) ≤ f ′(t, y, z).

If f verifies (A.2), then P-a.s., for each t ∈ [0, T ], Yt ≤ Y ′
t .

If moreover, Y0 = Y ′
0, then

P

⎛
⎝ξ ′ − ξ = 0,

T∫

0

(
f ′ − f

) (
t,Y ′

t , Z ′
t

)
dt = 0

⎞
⎠ > 0.

Proof The idea is the following: instead of trying to estimate the difference between
the processes Y and Y ′, we estimate Y − θY ′, for each θ ∈ (0, 1), in order to take
advantage of the convexity of the generator. Similar idea is also used for quadratic
PDEs in [6] where the authors prove that u − θu′ is nonpositive for two solutions u
and u′.

Let θ ∈ (0, 1) and let us set Ut = Yt − θY ′
t and Vt = Zt − θ Z ′

t . Let us consider a
real stochastic process {a(t)}0≤t≤T , progressively measurable, with integrable paths
to be chosen later. We set, for all t ∈ [0, T ], At = ∫ t

0 a(s) ds. We have, from Itô’s
formula,

eAt Ut = eAT UT +
T∫

t

eAs Fs ds −
T∫

t

eAs Vs · d Bs, 0 ≤ t ≤ T,

where, of course,

Ft = (
f (t,Yt , Zt )− θ f ′ (t,Y ′

t , Z ′
t

)) − a(t)Ut . (7)

Let us set as usual δ f (t) = (
f − f ′) (t,Y ′

t , Z ′
t

)
so that

f (t,Yt , Zt )− θ f ′ (t,Y ′
t , Z ′

t

) = f (t,Yt , Zt )− θ f
(
t,Y ′

t , Z ′
t

) + θδ f (t)

= (
f (t,Yt , Zt )− f

(
t,Y ′

t , Zt
)) + (

f
(
t,Y ′

t , Zt
)

−θ f
(
t,Y ′

t , Z ′
t

)) + θδ f (t).
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Since f is convex with respect to z, the second term of the right hand side of the
previous inequality can be easily bounded from above. Indeed,

f
(
t,Y ′

t , Zt
) = f

(
t,Y ′

t , θ Z ′
t + (1 − θ)

Zt − θ Z ′
t

1 − θ

)

≤ θ f
(
t,Y ′

t , Z ′
t

) + (1 − θ) f

(
t,Y ′

t ,
Zt − θ Z ′

t

1 − θ

)

and from the growth of the generator f , (A.2) (iii),

f
(
t,Y ′

t , Zt
) ≤ θ f

(
t,Y ′

t , Z ′
t

) + (1 − θ)
(
α(t)+ β

∣∣Y ′
t

∣∣) + γ

2(1 − θ)

∣∣Zt − θ Z ′
t

∣∣2 .
(8)

Roughly speaking, the first term does not change anything since it depends more
or less only on y and f is Lipschitz with respect to this variable. We get rid of it with
a classical linearization. Let us write

f (t,Yt , Zt )− f
(
t,Y ′

t , Zt
) = f (t,Yt , Zt )− f

(
t, θY ′

t , Zt
)

+ f
(
t, θY ′

t , Zt
) − f

(
t,Y ′

t , Zt
)

= a(t)Ut + f
(
t, θY ′

t , Zt
) − f

(
t,Y ′

t , Zt
)

where a(t) = [
f (t,Yt , Zt )− f

(
t, θY ′

t , Zt
)]
/Ut when Ut �= 0 and a(t) = β in the

other case. Since f is β-Lipschitz, a is bounded by β and

f (t,Yt , Zt )− f
(
t,Y ′

t , Zt
) ≤ a(t)Ut + (1 − θ)β

∣∣Y ′
t

∣∣ . (9)

If we choose for a the process we have just introduced, we get, from (8) and (9),
coming back to the definition of F (7),

Ft ≤ (1 − θ)
(
α(t)+ 2β

∣∣Y ′
t

∣∣) + γ

2(1 − θ)
|Vt |2 + θδ f (t). (10)

Now, we get rid of the quadratic term with an exponential change of variables. Let
c ≥ 0 and let us set Pt = eceAt Ut , Qt = cPt Vt eAt . From Itô’s formula we deduce that

Pt = PT + c

T∫

t

PseAs

(
Fs − ceAs

2
|Vs |2

)
ds − c

T∫

t

eAs Ps Vs · d Bs

:= PT +
T∫

t

Gs ds −
T∫

t

Qs · d Bs .
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Equation (10) yields, since c is nonnegative,

Gt ≤ cPt e
At

{
(1 − θ)

(
α(t)+ 2β

∣∣Y ′
t

∣∣) + θδ f (t)
}

+cPt e
At

(
γ

2(1 − θ)
− ceAt

2

)
|Vt |2 .

But At ≥ −βT so that, if we choose c = c(θ) := γ eβT /(1 − θ) we obtain the
following inequality,

Gt ≤ Pt e
At

(
θc(θ)δ f (t)+ γ eβT (

α(t)+ 2β
∣∣Y ′

t

∣∣)) . (11)

Finally, let us introduce the processes

Dt = exp

⎛
⎝

t∫

0

eAs
(
θc(θ)δ f (s)+ γ eβT (

α(s)+ 2β
∣∣Y ′

s

∣∣)) ds

⎞
⎠ ,

P̃t = Dt Pt , Q̃t = Dt Qt .

Once again Itô’s formula gives us, for any stopping time τ such that 0 ≤ t ≤ τ ≤ T ,

P̃t ≤ P̃τ −
τ∫

t

Q̃s · d Bs .

Let us consider, for n ≥ 1, τn the stopping time

τn = inf

⎧⎨
⎩u ≥ t :

u∫

t

∣∣Q̃s
∣∣2 ds ≥ n

⎫⎬
⎭ ∧ T .

We get from the previous equation

Pt ≤ E

⎛
⎝exp

⎛
⎝

τn∫

t

eAs
(
θc(θ)δ f (s)+ γ eβT (

α(s)+ 2β
∣∣Y ′

s

∣∣)) ds

⎞
⎠ Pτn

∣∣∣ Ft

⎞
⎠ ,

and, in view of the integrability assumption on α, Y and Y ′, since |As | ≤ βT , we can
send n to infinity to obtain

Pt ≤ E

⎛
⎝exp

⎛
⎝

T∫

t

eAs
(
θc(θ)δ f (s)+ γ eβT (

α(s)+ 2β
∣∣Y ′

s

∣∣)) ds

⎞
⎠ PT

∣∣∣ Ft

⎞
⎠ .
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On the other hand,
(
ξ − θξ ′) = (1 − θ)ξ + θ

(
ξ − ξ ′) ≤ (1 − θ)|ξ | + θδξ , and since

δξ and δ f are nonpositive, we finally derive the inequality

exp

(
γ eβT +At

1 − θ

(
Yt − θY ′

t

))

≤ E

⎛
⎝exp

⎧⎨
⎩

γ θ

1 − θ

⎛
⎝δξ +

T∫

t

δ f (s) ds

⎞
⎠ + γ e2βT

⎛
⎝|ξ | +

T∫

t

(
α(s)+ 2β

∣∣Y ′
s

∣∣) ds

⎞
⎠
⎫⎬
⎭

∣∣∣∣ Ft

⎞
⎠ .

(12)

In particular, since δξ and δ f are nonpositive and βT + At ≥ 0,

Yt − θY ′
t ≤ 1 − θ

γ
log E

⎛
⎝exp

⎧⎨
⎩γ e2βT

⎛
⎝|ξ | +

T∫

t

(
α(s)+ 2β

∣∣Y ′
s

∣∣) ds

⎞
⎠
⎫⎬
⎭

∣∣∣∣ Ft

⎞
⎠ ,

and sending θ to 1, we get Yt − Y ′
t ≤ 0 which gives the first part of the result.

For the second part of the theorem, if in addition we have Y0 = Y ′
0, then, coming

back to the inequality (12), we deduce that

eγ eβT Y0 ≤ E

⎡
⎣exp

⎧⎨
⎩

γ θ

1 − θ

⎛
⎝δξ +

T∫

0

δ f (s) ds

⎞
⎠ + γ e2βT

⎛
⎝|ξ | +

T∫

0

(
α(s)+ 2β

∣∣Y ′
s

∣∣) ds

⎞
⎠
⎫⎬
⎭
⎤
⎦ ,

and, once again, sending θ to 1, we get

0< eγ eβT Y0 ≤ E

⎡
⎣1

δξ+∫ T
0 δ f (s) ds=0 exp

⎧⎨
⎩γ e2βT

⎛
⎝|ξ | +

T∫

0

(
α(s)+ 2β

∣∣Y ′
s

∣∣) ds

⎞
⎠
⎫⎬
⎭
⎤
⎦

which says that P

(
δξ = 0,

∫ T
0 δ f (s) ds = 0

)
> 0. ��

As a byproduct, we obtain, using Corollary 4, the following existence and unique-
ness result.

Corollary 6 Let the assumption (A.2) hold and let us assume moreover that the ran-
dom variables |ξ | and |α|1 have exponential moments of all order. Then the BSDE (1)
has a unique solution (Y, Z) such that Y belongs to E and Z belongs to Mp for each
p ≥ 1.

4 Stability

As we have seen in the previous section, the convexity of the generator with respect
to the variable z leads to the comparison theorem. It turns out that we can also derive a
stability result under this assumption. To be more precise, let us consider a generator
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f for which (A.2) holds with parameters (α, β, γ ) together with a sequence of gen-
erators ( fn)n≥1 : for each n ≥ 1, fn satisfy (A.2) with parameters (αn, β, γ ). Finally,
let ξ and (ξn)n≥1 be random terminal values such that, for each λ > 0,

E

[
eλ(|ξ |+|α|1)

]
+ supn≥1 E

[
eλ(|ξn |+|αn |1)

]
< +∞. (13)

According to Corollary 6, let (Y, Z) be the solution to the BSDE (1) and let us
introduce, for each n ≥ 1, (Y n, Zn) the solution to the BSDE

Y n
t = ξn +

T∫

t

fn(s,Y n
s , Zn

s ) ds −
T∫

t

Zn
s · d Bs .

Proposition 7 Let (A.2) hold for f and fn and let us assume moreover that the
inequality (13) holds true.

If ξn −→ ξ P-a.s. and, m being the Lebesgue measure on [0, T ], m ⊗ P-a.e., for
each (y, z) ∈ R × Rd , fn(t, y, z) −→ f (t, y, z), then, for each p ≥ 1,

E

⎡
⎢⎣exp

(
sup0≤t≤T |Y n

t − Yt |
)p +

⎛
⎝

T∫

0

|Zn
s − Zs |2 ds

⎞
⎠

p/2⎤
⎥⎦ −→ 0.

Proof It follows from Corollary 4 and the integrability assumptions (13) that the
sequence ((Y n, Zn))n≥1 satisfies, for each p ≥ 1,

sup
n≥1

E

⎡
⎢⎣exp

(
sup0≤t≤T |Y n

t |)p +
⎛
⎝

T∫

0

|Zn
s |2 ds

⎞
⎠

p/2⎤
⎥⎦ < +∞.

It is thus enough to prove that

sup0≤t≤T |Y n
t − Yt | +

T∫

0

|Zn
s − Zs |2 ds

converges to 0 in probability to get the result of the proposition.
Let us fix θ ∈ (0, 1) and n ≥ 1. First of all, since fn is convex in z and β-Lipschitz

in y, we can argue exactly as in the proof of the comparison theorem (Theorem 5) to
estimate Y n

t − θYt . Setting Pt = eceAt Ut and Qt = cPt eAt (Zn
t − θ Zt ) where

at = [
fn

(
t,Y n

t , Zn
t

) − fn
(
t, θYt , Zn

t

)]
/
[
Y n

t − θYt
]
, At =

t∫

0

a(s) ds, c = γ eβT

1 − θ
,
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we have d Pt = −Gt dt + Qt · d Bt , with, see the inequality (11),

Gt ≤ Pt e
At

(
cθδn f (t)+ γ eβT (αn(t)+ 2β |Yt |)

)
,

where δn f (t) stands for ( fn − f ) (t,Yt , Zt ). Buy taking into account the fact that a(t)
is bounded by β, we have

Gt ≤ Ptγ e2βT
( |δn f (t)|

1 − θ
+ αn(t)+ 2β|Yt |

)
.

Let us introduce as before the process

Dn
t = exp

⎛
⎝γ e2βT

t∫

0

(αn(s)+ 2β|Ys |) ds

⎞
⎠ ;

we get from Itô’s formula

Dn
t Pt ≤ E

⎛
⎝Dn

T PT + γ e2βT

1 − θ

T∫

t

Ps Dn
s |δn f (s)|ds

∣∣∣ Ft

⎞
⎠ .

We observe that, since a is bounded by β,

Ps ≤ Gn(θ) := sup
0≤t≤T

exp

(
γ e2βT

1 − θ
(|Yt | + |Y n

t |)
)
,

PT ≤ Xn(θ) := exp

(
γ e2βT

1 − θ
(|ξn − θξ | ∨ |ξ − θξn|)

)
.

With these notations, we derive the inequality

Y n
t − θ Yt ≤ (1 − θ)e−βT −At

γ

× log E

⎛
⎝Dn

T Xn(θ)+ γ e2βT

1 − θ
Dn

T Gn(θ)

T∫

t

|δn f (s)|ds
∣∣∣ Ft

⎞
⎠

and finally, since log x ≤ x ,

Y n
t − Yt ≤ (1 − θ)|Yt | + 1 − θ

γ
E
(
Dn

T Xn(θ) | Ft
)

+e2βT
E

⎛
⎝Dn

T Gn(θ)

T∫

t

|δn f (s)|ds
∣∣∣ Ft

⎞
⎠ . (14)
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Now we want to find an upper bound for Yt − Y n
t and to do this we use the same

approach. Once again, let θ ∈ (0, 1) and let us set Ut = Yt − θY n
t , Vt = Zt − θ Zn

t .
We have

dUt = −Ht dt + Vt · d Bt

with Ht = f (t,Yt , Zt ) − θ fn(t,Y n
t , Zn

t ). To get the same inequality, we split H in
the following way:

Ht = f (t,Yt , Zt )− fn(t,Yt , Zt )+ fn(t,Yt , Zt )− θ fn(t,Y n
t , Zn

t )

= −δn f (t)+ fn(t,Yt , Zt )− θ fn(t,Yt , Zn
t )+ θ fn(t,Yt , Zn

t )− θ fn(t,Y n
t , Zn

t ).

As before, the convexity of fn with respect to z leads to

fn(t,Yt , Zt )− θ fn(t,Yt , Zn
t ) ≤ (1 − θ)(αn(t)+ β|Yt |)+ γ

2(1 − θ)
|Vt |2.

For the third term, let us introduce the process

a(t) = fn(t,Yt , Zn
t )− fn(t,Y n

t , Zn
t )

Yt − Y n
t

1|Yt −Y n
t |>0

which is bounded by β so that

θ fn(t,Yt , Zn
t )− θ fn(t,Y n

t , Zn
t ) = θa(t)(Yt − Y n

t ) = a(t)(θYt − Yt + Yt − θY n
t )

≤ β(1 − θ)|Yt | + a(t)Ut .

It follows from the previous inequalities that

Hs ≤ |δn f (s)| + (1 − θ)(αn(s)+ 2β|Ys |)+ γ

2(1 − θ)
|Vs |2 + a(s)Us

with a bounded by β. It follows from Itô’s formula that, taking as usual At =∫ t
0 a(s) ds,

eAt Ut = eAT UT +
T∫

t

eAs Fs ds −
T∫

t

eAs Vs d Bs, 0 ≤ t ≤ T,

with

Fs ≤ |δn f (s)| + (1 − θ)(αn(s)+ 2β|Ys |)+ γ

2(1 − θ)
|Vs |2.
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This is the same inequality as (10). As a by product, we deduce that the inequality (14)
is valid also for Yt − Y n

t , namely,

Yt − Y n
t ≤ (1 − θ)|Y n

t | + 1 − θ

γ
E
(
Dn

T Xn(θ) | Ft
)

+e2βT
E

⎛
⎝Dn

T Gn(θ)

T∫

t

|δn f (s)|ds
∣∣∣ Ft

⎞
⎠

and finally we have

|Y n
t − Yt | ≤ (1 − θ)

(|Y n
t | + |Yt |

) + 1 − θ

γ
E
(
Dn

T Xn(θ) | Ft
)

+e2βT
E

⎛
⎝Dn

T Gn(θ)

T∫

0

|δn f (s)|ds
∣∣∣ Ft

⎞
⎠ . (15)

Let us fix ε > 0. We have from (15) and Doob’s maximal inequality

P

(
sup

0≤t≤T
|Y n

t − Yt | > ε

)
≤ 3(1 − θ)

ε
E

[
sup

0≤t≤T

(|Y n
t | + |Yt |

)]

+3(1 − θ)

γ ε
E
[
Dn

T Xn(θ)
]

+e2βT 3

ε
E

⎡
⎣Dn

T Gn(θ)

T∫

0

|δn f (s)|ds

⎤
⎦

and since, for θ ∈ (0, 1), the sequences
(

sup0≤t≤T

(|Y n
t | + |Yt |

)
n≥1

)
,
(
Dn

T

)
n≥1 and

(Gn(θ))n≥1 are bounded in all Lp spaces, we deduce from Hölder’s inequality

P

(
sup

0≤t≤T
|Y n

t − Yt | > ε

)
≤ 1 − θ

ε
C (1 + ‖Xn(θ)‖2)+ C(θ)

ε

∥∥∥∥∥∥
T∫

0

|δn f (s)|ds

∥∥∥∥∥∥
2

.

(16)

Let us recall that Xn(θ) = exp
(
γ e2βT

1−θ (|ξn − θξ | ∨ |ξ − θξn|)
)

so, as n goes to ∞,

Xn(θ) converges to exp
(
γ e2βT |ξ |) almost surely and actually in all Lp spaces in

view of the integrability assumptions on the sequence (ξn)n≥1 (see (13)). Moreover,
|δn f (s)| = | f − fn|(s,Ys, Zs) converges to 0 m ⊗ P-a.e. and, since

|δn f (s)| ≤ α(s)+ αn(s)+ 2β|Ys | + γ |Zs |2,
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Corollary 6 and the inequality (13) ensures the convergence to 0 of
∫ T

0 |δn f (s)| ds in
all Lp spaces. The inequality (16) yields, for all 0 < θ < 1,

lim sup
n→+∞

P

(
sup

0≤t≤T
|Y n

t − Yt | > ε

)
≤ 1 − θ

ε
C
(

1 +
∥∥∥exp

(
γ e2βT |ξ |

)∥∥∥
2

)
,

and, sending θ to 1, we obtain the convergence of sup0≤t≤T |Y n
t − Yt | to 0 in proba-

bility. As we mentioned before, we obtain the convergence of esup0≤t≤T |Y n
t −Yt | in all

Lp spaces.
To get the convergence of

∫ T
0 |Zn

s − Zs |2 ds to 0 in probability, let us just mention
that, from Itô’s formula we have

E

⎡
⎣

T∫

0

|Zn
s − Zs |2 ds

⎤
⎦

≤ E

⎡
⎣|ξn − ξ |2 + 2 sup

0≤t≤T
|Y n

t − Yt |
T∫

0

| fn(s,Y n
s , Zn

s )− f (s,Ys, Zs)| ds

⎤
⎦

from which the result follows directly. ��

5 Application to quadratic PDEs

In this section, we give an application of our results concerning BSDEs to PDEs which
are quadratic with respect to the gradient of the solution. More precisely, we want to
obtain the nonlinear Feynman–Kac formula in this framework. Let us consider the
following semilinear PDE

∂t u(t, x)+ Lu(t, x)+ f
(
t, x, u(t, x), σ ∗∇x u(t, x)

) = 0, u(T, ·) = g, (17)

where L is the infinitesimal generator of the diffusion Xt0,x0 solution to the SDE

Xt = x0+
t∫

t0

b(s, Xs)ds+
t∫

t0

σ(s, Xs)d Bs, t0 ≤ t ≤ T, Xt = x0, t ≤ t0. (18)

The nonlinear Feynman–Kac consists in proving that the function defined by the
formula

∀(t, x) ∈ [0, T ] × Rn, u(t, x) := Y t,x
t (19)
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where, for each (t0, x0) ∈ [0, T ] × Rn ,
(
Y t0,x0 , Zt0,x0

)
stands for the solution to the

following BSDE

Yt = g
(
Xt0,x0

T

) +
T∫

t

f
(
s, Xt0,x0

s ,Ys, Zs
)

ds −
T∫

t

Zs · d Bs, 0 ≤ t ≤ T, (20)

is a solution, at least a viscosity solution, to the PDE (17). Our objective is to derive
this probabilistic representation for the solution to the PDE when the nonlinearity f
is quadratic with respect to ∇x u and when g is an unbounded function.

Let us first give our assumptions concerning the linear part of the PDE namely the
coefficients of the diffusion.

Assumption (A.3) Let b : [0, T ] × Rn −→ Rn and σ : [0, T ] × Rn −→ Rn×d be
continuous functions and let us assume that there exists β ≥ 0 such that:

(i) for all t ∈ [0, T ], |b(t, 0)| ≤ β, and

∀ (
x, x ′) ∈ Rn × Rn,

∣∣b(t, x)−b
(
t, x ′)∣∣+∣∣σ(t, x)−σ (

t, x ′)∣∣ ≤ β
∣∣x − x ′∣∣ ;

(ii) σ is bounded.

Under the assumption (A.3), for each (t0, x0) ∈ [0, T ] × Rn , the SDE (18) has a
unique solution denoted Xt0,x0 . Classical results on SDEs show that, for each p ≥ 1,
Xt0,x0 belongs to S p. Actually, since σ is assumed to be a bounded function, for
1 ≤ p < 2, we have

∀λ > 0, E

[
sup0≤t≤T e

λ

∣∣∣Xt0,x0
t

∣∣∣p]
≤ C eλC|x |p

,

where the constant C depends upon p, T , β, λ and ‖σ‖∞. Indeed, we have

sup
t0≤t≤u

∣∣Xt0,x0
t

∣∣ ≤ |x0| + βT + β

u∫

t0

sup
t0≤t≤s

∣∣Xt0,x0
t

∣∣ ds + sup
t0≤t≤T

∣∣∣∣∣∣
t∫

t0

σ
(
s, Xt0,x0

s

)
d Bs

∣∣∣∣∣∣
and we deduce from Gronwall’s lemma the inequality

sup
t0≤t≤u

∣∣Xt0,x0
t

∣∣ ≤
⎛
⎝|x0| + βT + sup

t0≤t≤T

∣∣∣∣∣∣
t∫

t0

σ
(
s, Xt0,x0

s

)
d Bs

∣∣∣∣∣∣

⎞
⎠ eβT .

It follows from the Dambis–Dubins–Schwarz representation of the continuous
martingale

t∫

0

σ(s) d Bs, with σ(s) = σ
(
s, Xt0,x0

s

)
1t0<s≤T + 1s>T
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that, for λ > 0 and 1 ≤ p < 2,

E

⎡
⎣ sup

t0≤t≤T
exp

⎛
⎝λ

∣∣∣∣∣∣
t∫

t0

σ
(
s, Xt0,x0

s

)
d Bs

∣∣∣∣∣∣
p⎞
⎠
⎤
⎦ ≤ E

[
sup

0≤t≤‖σ‖2∞T
eλ|Bt |p

]
,

which is a finite constant depending on p, λ, T and ‖σ‖∞.
With this observation in hands, we can give our assumptions on the nonlinear term

of the PDE, the generator f , and the terminal condition.

Assumption (A.4) Let f : [0, T ] × Rn × R × Rd −→ R and g : Rn −→ R be
continuous and let us assume moreover that there exist two constants β ≥ 0 and
1 ≤ p < 2 such that:

(i) for each (t, x, z) ∈ [0, T ] × Rn × Rd ,

∀ (
y, y′) ∈ R2,

∣∣ f (t, x, y, z)− f
(
t, x, y′, z

)∣∣ ≤ β
∣∣y − y′∣∣ ;

(ii) for each (t, x, y) ∈ [0, T ] × Rn × R, z �−→ f (t, x, y, z) is convex on Rd ;
(iii) for each (t, x, y, z) ∈ [0, T ] × Rn × R × Rd ,

| f (t, x, y, z)| + |g(x)| ≤ β
(

1 + |x |p + |y| + |z|2
)
.

Since, for 1 ≤ p < 2, sup
∣∣Xt0,x0

t

∣∣p
has exponential moments of all orders, the

growth condition on f and g allows one to use Corollary 6 to construct a unique solu-
tion,

(
Y t0,x0 , Zt0,x0

)
, to the BSDE (20). Moreover, Y t0,x0 belongs to E and the process

Zt0,x0 belongs to the space Mp for each p ≥ 1.
It is worth noticing that Y t0,x0

t0 is actually deterministic for each point (t0, x0) ∈
[0, T ] × Rn . Indeed, the process

{
Xt0,x0

t
}

t0≤t≤T is known to be measurable with
respect to the filtration generated by the increments of the Brownian motion after
time t0 and it is by now well known that the process

{(
Y t0,x0

t , Zt0,x0
t

)}
t0≤t≤T inherits

this property. As a byproduct of this observation, u defined by the formula (19) is a
deterministic function. Let us prove that u is a viscosity solution to the PDE (17).

Proposition 8 Let the assumptions (A.3) and (A.4) hold.
The function u defined by (19) is continuous on [0, T ] × Rn and satisfies

∀(t, x) ∈ [0, T ] × Rn, |u(t, x)| ≤ C (1 + |x |p).

Moreover u is a viscosity solution to (17).

Before proving this result, let us recall what is a viscosity solution to (17).

Definition A continuous function u on [0, T ] × Rn such that u(T, x) = g(x) is said
to be a viscosity subsolution (respectively supersolution) to (17) if

∂tϕ(t0, x0)+ Lϕ(t0, x0)+ f
(
t0, x0, u(t0, x0), σ

∗∇xϕ(t0, x0)
) ≥ 0,

(respectively ≤ 0)
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as soon as u−ϕ has a local maximum (respectively minimum) at (t0, x0) ∈ (0, T )×Rn

where ϕ is a smooth function.
A viscosity solution is both a viscosity subsolution and a viscosity supersolution.

Proof Our proof uses standard arguments since, in our setting, the BSDEs have all
the properties required: comparison and stability. First of all, the continuity of u is
an immediate consequence of the stability property (Proposition 7) since the map
(t, x) �−→ Xt,x is known to be continuous. Secondly, the growth of the function u
comes directly from the general estimate on Y see (5).

Let us briefly explain why u is a viscosity subsolution to (17). Let ϕ be a smooth
function such that u − ϕ has a local maximum at the point (t0, x0) ∈ (0, T ) × Rn .
Without loss of generality, we can assume that ϕ(t0, x0) = u(t0, x0) and we want to
prove that

∂tϕ(t0, x0)+ Lϕ(t0, x0)+ f
(
t0, x0, u(t0, x0), σ

∗∇xϕ(t0, x0)
) ≥ 0.

Let us assume that the previous inequality does not hold. By continuity, there exist
δ > 0 and 0 < α ≤ T − t0 such that

u(t, x) ≤ ϕ(t, x), and,

∂tϕ(t, x)+ Lϕ(t, x)+ f
(
t, x, u(t, x), σ ∗∇xϕ(t, x)

) ≤ −δ

as soon as t0 ≤ t ≤ t0 + α and |x − x0| ≤ α.
Let τ be the following stopping time

τ = inf
{
u ≥ t0 : ∣∣Xt0,x0

u − x0
∣∣ ≥ α

} ∧ (t0 + α).

The proof consists in applying the comparison theorem, actually the strict version, to
the processes

(
Y t0,x0

t∧τ , 1t≤τ Zt0,x0
t

)
and

(
ϕ
(
t ∧ τ, Xt0,x0

t∧τ
)
, 1t≤τ σ ∗∇xϕ

(
t, Xt0,x0

t
))

respectively solution to the BSDEs

Yt = Yt0+α +
t0+α∫

t

1s≤τ f
(
s, Xt0,x0

s ,Ys, Zs
)

ds −
t0+α∫

t

Zs · d Bs,

Y ′
t = ϕ

(
τ, Xt0,x0

τ

) +
t0+α∫

t

−1s≤τ {∂tϕ + Lϕ} (s, Xt0,x0
s

)
ds −

t0+α∫

t

Z ′
s · d Bs .

In order to compare the terminal conditions and the generators of these BSDEs, let
us recall that the uniqueness of solutions to (20) yields the Markov property:

Y t0,x0
t = u

(
t, Xt0,x0

t
)
, t ≥ t0.
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Hence, we can rewrite the first BSDE in the following way

Yt = u
(
τ, Xt0,x0

τ

) +
t0+α∫

t

1s≤τ f
(
s, Xt0,x0

s , u
(
s, Xt0,x0

s

)
, Zs

)
ds −

t0+α∫

t

Zs · d Bs .

By definition of the stopping time τ , we have u
(
τ, Xt0,x0

τ

) ≤ ϕ
(
τ, Xt0,x0

τ

)
together

with

1s≤τ f
(
s, Xt0,x0

s , u
(
s, Xt0,x0

s

)
, Z ′

s

)
= 1s≤τ f

(
s, Xt0,x0

s , u
(
s, Xt0,x0

s

)
, σ ∗∇xϕ(s, Xt0,x0

s )
)

≤ −1s≤τ {∂tϕ + Lϕ} (s, Xt0,x0
s

) − δ1s≤τ .

Moreover, it is worth noticing that

t0+α∫

t0

−1s≤τ (∂tϕ+Lϕ+ f)
(
s, Xt0,x0

s , u
(
s, Xt0,x0

s

)
, σ ∗∇xϕ

(
s, Xt0,x0

s

))
ds ≥δ(τ−t0)

and of course P(τ = t0) = 0. Thus, we can apply the second part of the comparison
theorem, Theorem 5 above, and we get u(t0, x0) = Yt0 < Y ′

t0 = ϕ(t0, x0). But we
have assumed that u(t0, x0) = ϕ(t0, x0): u has to be a subsolution to (17). The fact
that u is a supersolution and thus a solution can be shown in the same way. ��
Remark When f does not depend on the variable y it can be shown that u is the unique
viscosity solution with quadratic growth: |u(t, x)| ≤ C

(
1 + |x |2). This follows from

the uniqueness results in [6] concerning Bellman–Isaacs equation.
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