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Abstract We study the threshold θ ≥ 2 contact process on a homogeneous tree
Tb of degree κ = b + 1, with infection parameter λ ≥ 0 and started from a prod-
uct measure with density p. The corresponding mean-field model displays a discon-
tinuous transition at a critical point λMF

c (κ, θ) and for λ ≥ λMF
c (κ, θ) it survives

iff p ≥ pMF
c (κ, θ, λ), where this critical density satisfies 0 < pMF

c (κ, θ, λ) < 1,
limλ→∞ pMF

c (κ, θ, λ) = 0. For large b, we show that the process on Tb has a
qualitatively similar behavior when λ is small, including the behavior at and close
to the critical point λc(Tb, θ). In contrast, for large λ the behavior of the process
on Tb is qualitatively distinct from that of the mean-field model in that the crit-
ical density has pc(Tb, θ,∞) := limλ→∞ pc(Tb, θ, λ) > 0. We also show that
limb→∞ bλc(Tb, θ) = �θ , where 1 < �2 < �3 < · · · , limθ→∞ �θ = ∞, and
0 < lim infb→∞ bθ/(θ−1) pc(Tb, θ,∞) ≤ lim supb→∞ bθ/(θ−1) pc(Tb, θ,∞) < ∞.
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514 L. R. Fontes, R. H. Schonmann

1 Introduction and results

1.1 Preliminaries

Threshold contact processes form a natural class of interacting particle systems (see,
e.g., [8] for background to the area). They are most naturally defined on a graph or
oriented graph G = (V, E). In both cases V is an arbitrary countable set, whose
elements are called vertices or sites. When G is a graph, E ⊂ {{v, u} : v, u ∈ V } is
its set of edges, also called bonds. When G is an oriented graph, E ⊂ V × V is its set
of oriented edges, also called oriented bonds. We denote the influence neighborhood
of v ∈ V in G by

N G,v =
{

{u ∈ V : {v, u} ∈ E}, if G is a graph,

{u ∈ V : (v, u) ∈ E}, if G is an oriented graph.

The degree of the site v ∈ V is the cardinality of NG,v . The threshold θ contact process
on G is now defined as the Markov process on {0, 1}V with flip rates at v ∈ V at time
t ≥ 0 given by

• 1 flips to 0 at rate 1.
• 0 flips to 1 at rate λ in case there are at least θ sites of NG,v in state 1 at time t ,

and at rate 0 otherwise.

The parameter λ ≥ 0 is called the infection rate. The state of the process at each site at
each time is called the spin at that site at that time. A spin 0 is interpreted as a vacant
or healthy site, while a spin 1 is interpreted as an occupied or infected site. It is well
known (see, e.g., Chapt. I of [8]) that such rates define a unique Markov process. Note
that the flip rates above are attractive (see Chap. III of [8]), a property that has many
consequences.

When θ = 1, the threshold contact process is easier to analyze, among other reasons
because it has an additive dual process. (In this dual process infected sites become
healthy at rate 1, and they infect simultaneously all their neighbors at rate λ.) The
behavior of the process is not expected then to be qualitatively different from that of
the much studied (linear) contact process (see Chap. VI of [8] and Part I of [9]). For this
reason we will focus in this paper on the cases θ ≥ 2, which are more challenging and
do present a different qualitative behavior. As we will explain in the next subsection,
this difference in behavior is indicated by the associated mean-field model. In the end
of this introduction we will review some results about threshold θ ≥ 2 and related
models, from [2,4–6,10].

For coupling purposes, it is convenient to construct the process using a system of
Poisson marks. For this purpose, associate to each site in V two independent Poisson
processes: one with rate 1, and one with rate λ. Mark the arrival times of the former
with symbols D (for “down”) and those of the latter with symbols U (for “up”). Make
these Poisson processes independent from site to site. Use the marks now in the obvious
way, to define the process: A spin 1 at site v flips to 0 when it encounters a D mark
there; a spin 0 at site v flips to 1 when it encounters an U mark there and at least θ

neighbors of v have spin 1 at that time. The probability space on which these Poisson
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Threshold contact processes 515

processes are defined will be large enough to accommodate the process started from
arbitrary initial configurations.

We will denote by (η
µ

G,θ,λ;t )t≥0 the process started from a random distribution
picked according to law µ at time 0. When µ is product measure with density p we
will use the notation (η

p
G,θ,λ;t ). When there is no risk of confusion, G, θ and λ may

be omitted from the notation.
The point mass on the configuration with all sites in state i ∈ {0, 1} will be denoted

δG,i . The distribution δG,0 is trivially invariant for the threshold θ contact process, when
θ > 0. By attractivity, η1

G,θ,λ;t ⇒ νG,θ,λ, as t → ∞, where ⇒ denotes convergence
in distribution, and νG,θ,λ is called the upper invariant measure.

We say that the process started from the distribution µ dies out when η
µ

G,θ,λ;t ⇒
δG,0, as t → ∞. When this happens for every µ, we simply say that the process dies
out. Attractivity implies that the process dies out precisely when νG,θ,λ = δG,0. When
the process does not die out, we will say that it survives.

For v ∈ V , set

ρ
µ

G,θ,λ;t (v) = P

(
η

µ

G,θ,λ;t (v) = 1
)

.

We will use for ρ
µ

G,θ,λ;t (v) the same conventions on notation as for η
µ

G,θ,λ;t . Also, when

G is such that ρ
µ

G,θ,λ;t (v) does not depend on v, we will omit v from this notation.
The critical point for the threshold θ contact process on G is defined by

λc(G, θ) = sup{λ : νG,θ,λ = δG,0}
= sup

{
λ : for each v ∈ V , ρ1

G,θ,λ;t (v) → 0 as t → ∞}
.

Clearly, the convergence of ρ1
G,θ,λ;t (v) to 0 cannot be faster then exponential.

Explicitly:

ρ1
G,θ,λ;t (v) ≥ P(there is no D mark at v from time 0 to t) ≥ e−t , (1.1)

for t ≥ 0. It is natural to define

λexp(G, θ) = sup
{
λ : for each v ∈ V , ρ1

G,θ,λ;t (v)→ 0 exponentially fast as t → ∞}
.

Obviously

λexp(G, θ) ≤ λc(G, θ),

and it is interesting to decide when equality holds.
Even when the process survives, it may happen that for small p > 0, η

p
G,θ,λ;t ⇒

δG,0, as t → ∞. By attractivity, if this happens for some value of p, it will also happen
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516 L. R. Fontes, R. H. Schonmann

for smaller values of p. This leads to the following definitions:

pc(G, θ, λ) = sup
{

p ∈ [0, 1] : η
p
G,θ,λ;t ⇒ δG,0, ast → ∞}

= sup
{

p ∈ [0, 1] : for each v ∈ V , ρ
p
G,θ,λ;t (v) → 0 as t → ∞}

,

pexp(G, θ, λ) = sup
{

p ∈ [0, 1] : for each v ∈ V , ρ
p
G,θ,λ;t (v)

→ 0 exponentially fast as t → ∞}
.

As above, obviously

pexp(G, θ, λ) ≤ pc(G, θ, λ),

and again it is interesting to decide when equality holds.
When (η

p
G,θ,λ;t ) survives, it is natural to ask if it converges in distribution as t → ∞.

This is in general a difficult question, but the following provides a partial answer and,
as a by-product, an estimate on pc(G, θ, λ).

Proposition 1 For any G, θ and λ, for p ≥ λ/(λ + 1),

η
p
G,θ,λ;t ⇒ νG,θ,λ, as t → ∞. (1.2)

Therefore, if the process survives for a certain value of λ, then

pc(G, θ, λ) ≤ λ

λ + 1
. (1.3)

Proof Let βG,p be the product measure with density p. For any θ ≥ 0, the threshold
θ contact process is stochastically dominated by the threshold 0 contact process. This
latter process is simply an independent flip process whose unique invariant distribution
is βG,λ/(λ+1). Hence, for p ≥ λ/(λ + 1),

νG,θ,λ ≤ βG,λ/(λ+1) ≤ βG,p ≤ δG,1, stochastically.

But as t → ∞, we know that η
νG,θ,λ

G,θ,λ;t ⇒ νG,θ,λ and η1
G,θ,λ;t ⇒ νG,θ,λ. Therefore

(1.2) also holds. �	
Remark on case θ = 1: In that case, duality can easily be used to show that in
Proposition 1, (1.2) holds for every p > 0 and hence (1.3) can be replaced by
pc(G, θ, λ) = 0.

1.2 The mean-field model

When G is regular of degree κ (i.e., each site has κ neighbors), it is natural to compare
the evolution of the threshold contact process on G with a corresponding “mean-field”
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evolution. By this we mean the evolution of a deterministic density (ρ
MF,p
κ,θ,λ;t )t≥0, which

is governed by

d

dt
ρ

MF,p
κ,θ,λ;t = −ρ

MF,p
κ,θ,λ;t + λ

(
1 − ρ

MF,p
κ,θ,λ;t

)
Bin

(
κ, ρ

MF,p
κ,θ,λ;t , θ

)
, (1.4)

with ρ
MF,p
κ,θ,λ;0 = p, and where

Bin(κ, x, θ) =
κ∑

i=θ

(
κ

i

)
xi (1 − x)κ−i

is the probability that a binomial random variable with κ attempts and probability of
success x is larger than or equal to θ .

To explain the origin of this mean-field evolution and its relationship with the
threshold contact process on G, we observe that from the definition of that process,
for each v ∈ V ,

d

dt
ρ

p
G,θ,λ;t (v) = −ρ

p
G,θ,λ;t (v)

+ λP

(
η

p
G,θ,λ;t (v) = 0, #

{
u ∈ NG,v : η

p
G,θ,λ;t (u) = 1

}
≥ θ

)
.

One then obtains (1.4) if one pretends that the κ + 1 random variables η
p
G,θ,λ;t (v),

η
p
G,θ,λ;t (u), u ∈ NG,v , are i.i.d., with common density ρ

MF,p
κ,θ,λ;t .

Trivially, ρ
MF,0
κ,θ,λ;t = 0, for all t ≥ 0. When p ∈ (0, 1], it clearly follows from (1.4)

that ρ
MF,p
κ,θ,λ;t ≥ pe−t > 0, for all t ≥ 0. It will then be convenient to rewrite (1.4) as

d

dt
log

(
ρ

MF,p
κ,θ,λ;t

)
= H

(
κ, θ, λ; ρ

MF,p
κ,θ,λ;t

)
, (1.5)

where

H(κ, θ, λ; x) = −1 + λ
1 − x

x
Bin(κ, x, θ), x ∈ (0, 1].

Note that when θ ≥ 2, then 0 ≤ Bin(κ, x, θ) ≤ (κ2/2)x2, and hence

lim
x↘0

H(κ, θ, λ; x) = −1. (1.6)

Also important are the elementary facts that H(κ, θ, λ; x) is continuous in x and in λ,
H(κ, θ, λ; 1) = −1, H(κ, θ, 0; x) = −1, and, provided κ ≥ θ , for each x ∈ (0, 1),
H(κ, θ, λ; x) is strictly increasing in λ, with limλ→∞ H(κ, θ, λ; x) = ∞.
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518 L. R. Fontes, R. H. Schonmann

These facts motivate the definition of the critical point

λMF
c (κ, θ) = sup

{
λ ≥ 0 : sup

x∈(0,1]
H(κ, θ, λ; x) < 0

}
,

and the critical density

pMF
c (κ, θ, λ) = inf{x ∈ (0, 1] : H(κ, θ, λ; x) ≥ 0}.

Note that the facts above imply that, when κ ≥ θ ≥ 2,

0 < λMF
c (κ, θ) < ∞,

and

0 < pMF
c (κ, θ, λ) < 1 for λ ≥ λMF

c (κ, θ).

Moreover pMF
c (κ, θ, λ) is strictly decreasing in λ ≥ λMF

c (κ, θ), with

lim
λ→∞ pMF

c (κ, θ, λ) = 0. (1.7)

Define

DMF(κ, θ) =
{
(λ, p) ∈ [0,∞] × [0, 1] : λ < λMF

c (κ, θ) or p < pMF
c (κ, θ, λ)

}
.

Proposition 2 For every κ ≥ θ ≥ 2, the following dichotomy holds.
In case (λ, p) ∈ (DMF(κ, θ))c,

ρ
MF,p
κ,θ,λ;t ≥ pMF

c (κ, θ, λ) > 0, for all t ≥ 0. (1.8)

In case (λ, p) ∈ DMF(κ, θ), then for some C ∈ (0,∞),

pe−t ≤ ρ
MF,p
κ,θ,λ;t ≤ Ce−t , for all t ≥ 0. (1.9)

In particular, a discontinuous transition happens at λMF
c (κ, θ).

Proof The only statement that requires explanation is the upper bound in (1.9). To
prove it, note first that (1.5) implies that when (λ, p) ∈ DMF(κ, θ) we have
limt→∞ ρ

MF,p
κ,θ,λ;t = 0. Using (1.5) a second time now, this time in combination with

(1.6), shows that for any ε > 0, there is C ′ ∈ (0,∞) such that

ρ
MF,p
κ,θ,λ;t ≤ C ′e−(1−ε)t , for all t ≥ 0.
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Using this estimate in combination with (1.4) now yields, since θ ≥ 2,

d

dt
ρ

MF,p
κ,θ,λ;t ≤ −ρ

MF,p
κ,θ,λ;t + λ

κ2

2
(C ′)2e−2(1−ε)t .

Multiplying by et , we obtain

d

dt

(
etρ

MF,p
κ,θ,λ;t

)
≤ λ

κ2

2
(C ′)2e−(1−2ε)t .

Supposing ε < 1/2, integration in t from 0 to s yields

esρ
MF,p
κ,θ,λ;s − p ≤

s∫
0

λ
κ2

2
(C ′)2e−(1−2ε)t dt

≤
∞∫

0

λ
κ2

2
(C ′)2e−(1−2ε)t dt = C ′′ < ∞.

(1.9) follows, with C = C ′′ + p. �	
It is easy to see that λMF

c (κ, θ) → 0, as κ → ∞. The rate at which this con-
vergence occurs is also easily identified from standard facts about convergence of
binomial distributions to Poisson distributions. For this purpose extend the definition
of Bin(κ, x, θ) to be 1 when x > 1, and observe that straightforward computations
then yield

Bin(κ, γ /κ, θ) → Poisson(γ, θ) :=
∑
i≥θ

e−γ γ i

i ! , as κ → ∞, (1.10)

uniformly in γ > 0. The corresponding limit for the function H(κ, θ, λ; x) is

H(κ, θ, φ/κ; γ /κ) → −1 + φ
Poisson(γ, θ)

γ
, as κ → ∞,

uniformly in γ > 0, for each φ > 0. From this it is easy to derive

lim
κ→∞ κλMF

c (κ, θ) = �θ := inf
γ>0

γ

Poisson(γ, θ)
. (1.11)

The constants �θ can easily be shown to satisfy

1 < �2 < �3 < · · · and lim
θ→∞ �θ = ∞.

Remark on case θ = 1: In this case, in contrast to (1.6), we have limx↘0 H(κ, θ, λ; x)=
−1 + λκ . It is an instructive exercise to use this fact and the bound H(κ, θ, λ; x) <
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520 L. R. Fontes, R. H. Schonmann

−1 + λκ , for x > 0, to analyze the behavior of the mean-field model in this case. In
contrast to Proposition 2, one finds a continuous transition at λMF

c (κ, 1) = 1/κ , with
pMF

c (κ, 1, λ) = 0 for all λ > λMF
c (κ, 1). The analogue of (1.11) is also true, with

�1 = 1.

1.3 Results for the process on homogeneous trees

We will study threshold contact processes on the homogeneous tree Tb, of degree
b + 1.

Our first result provides conditions for survival of the process on Tb based on the
survival of the mean-field model with κ = b (note: not κ = b + 1) and λ/(λ + 1) in
place of λ.

Theorem 1 If b ≥ 2 and θ ≥ 2 are such that λMF
c (b, θ) < 1, then

λc(Tb, θ) ≤ λMF
c (b, θ)

1 − λMF
c (b, θ)

< ∞, (1.12)

and for λ > λMF
c (b, θ)/(1 − λMF

c (b, θ)),

pc(Tb, θ, λ) ≤ pMF
c (b, θ, λ/(λ + 1)) < 1. (1.13)

Since we know that limb→∞ λMF
c (b, θ) = 0, the hypothesis of Theorem 1 are

satisfied when b is large. Moreover, combining this theorem with (1.11), we learn that

lim sup
b→∞

bλc(Tb, θ) ≤ �θ. (1.14)

This result will be sharpened in Theorem 3 below. In our approach to the proof of
Theorem 3, we will prove first the somewhat technical Theorem 2 below. Note that
thanks to (1.14), this theorem covers the behavior near λc(Tb, θ), when b is large. This
theorem should be compared to Proposition 2.

Theorem 2 For each θ ≥ 2 and A ∈ (0,∞), there are b0, δ ∈ (0,∞) such that if
b ≥ b0 and λ ≤ A/b, then for every p ∈ [0, 1] the following dichotomy holds. Either

lim inf
T →∞

1

T

T∫
0

ρ
p
Tb,θ,λ;t dt ≥ δ

b
, (1.15)

or, for some C ∈ (0,∞),

ρ
p
Tb,θ,λ;t ≤ Ce−t , for all t ≥ 0. (1.16)

Moreover, for b ≥ b0 the set

DA(Tb, θ) = {(λ, p) ∈ [0, A/b] × [0, 1] : alternative (1.16) holds}
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is an open subset of [0, A/b]×[0, 1] in the relative topology induced by the Euclidean
topology of R

2.

Note that alternative (1.15) implies that the process survives when it starts with
density p. For p = 1, (1.15) is equivalent to each one of the statements

ρ1
Tb,θ,λ;t ≥ δ

b
, for all t ≥ 0,

and

ρ1
Tb,θ,λ;∞ := lim

t→∞ ρ1
Tb,θ,λ;t ≥ δ

b
.

The following is immediate from Theorem 2, (1.14) and (1.3).

Corollary 1 For each θ ≥ 2, the following statements hold when b is large.

0 < λexp(Tb, θ) = λc(Tb, θ) < ∞,

and the process survives at this critical point. Moreover for λ ≥ λc(Tb, θ) close to
this critical point,

0 < pexp(Tb, θ, λ) = pc(Tb, θ, λ) < 1,

and the process started from this critical density pc(Tb, θ, λ) survives.

Note that in particular, under the conditions in Corollary 1,

pc(Tb, θ, λc(Tb, θ)) < 1.

Theorem 2 and Corollary 1 show qualitative similarities between the behavior of
the threshold contact process on Tb and the corresponding mean-field model, when b
is large and λ is small. The next theorem shows a related quantitative similarity.

Theorem 3 For each θ ≥ 2,

lim
b→∞ bλexp(Tb, θ) = lim

b→∞ bλc(Tb, θ) = �θ . (1.17)

Remark on case θ = 1: In that case, duality can easily be used to show that (1.17) also
holds, with �1 = 1.

In contrast to the results above, for large values of λ, the process on Tb and the mean-
field model behave differently, as the comparison between the following theorem and
(1.7) shows. Set

pexp(Tb, θ,∞) = lim
λ→∞ pexp(Tb, θ, λ), pc(Tb, θ,∞) = lim

λ→∞ pc(Tb, θ, λ).
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522 L. R. Fontes, R. H. Schonmann

Theorem 4 For each b ≥ 2 and θ ≥ 2,

pc(Tb, θ,∞) ≥ pexp(Tb, θ,∞) > 0.

We do not know if the critical densities pc(Tb, θ,∞) and pexp(Tb, θ,∞) are
identical to each other, but the next theorem shows that at least they display similar
behavior as b → ∞.

Theorem 5 For each θ ≥ 2,

0 < lim inf
b→∞ bθ/(θ−1) pexp(Tb, θ,∞) ≤ lim sup

b→∞
bθ/(θ−1) pc(Tb, θ,∞) < ∞.

(1.18)

1.4 Results for the process on oriented homogeneous trees

As a tool, for comparison purposes and for its own sake, we will also study the threshold
contact process on an oriented graph �Tb, obtained from Tb in a fashion described next.

First we introduce some notation. We embed a copy of Z in Tb and use the notation
L = L0 to denote the set of vertices of Tb covered by this embedding. Abusing
notation, we will denote the elements of L by the names of the elements of Z that
they represent in this embedding. We will also refer to site 0 as the root of Tb. Define,
inductively in n ≥ 1, Ln as the set of vertices which are neighbors to some vertex in
Ln−1 and are not in ∪n−1

i=0 Li .
With this notation, include (v, u) in the set of oriented edges of �Tb if v, u ∈ L and

u = v + 1, or if v ∈ Ln−1 and u ∈ Ln , for some n ≥ 1.
Theorems 1 to 5 have analogues for the threshold θ contact process on �Tb.

Theorem 1 for Tb is actually a corollary to the same statement for �Tb. Theorem 2
and Corollary 1 admit much stronger versions for �Tb; those are stated as Theorem 6
and Corollary 2 below. The analogues of Theorems 3, 4 and 5 for �Tb are also true and
can either be obtained from the corresponding results for Tb, or can more easily be
proved directly.

Theorem 6 For each θ ≥ 2 and b ≥ 2, the following dichotomy holds for every λ ≥ 0
and p ∈ [0, 1]. Either

ρ
p
�Tb,θ,λ;t ≥ pMF

c (b, θ, λ), for all t ≥ 0, (1.19)

or, for some C ∈ (0,∞),

ρ
p
�Tb,θ,λ;t ≤ Ce−t , for all t ≥ 0. (1.20)

Moreover, for every θ ≥ 2 and b ≥ 2, the set

D(�Tb, θ) = {(λ, p) ∈ [0,∞) × [0, 1] : alternative (1.20) holds}
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is an open subset of [0,∞) × [0, 1] in the relative topology induced by the Euclidean
topology of R

2.

Corollary 2 For each θ ≥ 2 and b ≥ 2 for which λexp(�Tb, θ) < ∞, the following
statements hold.

λMF
c (b, θ) ≤ λexp(�Tb, θ) = λc(�Tb, θ),

and the process survives at this critical point. Moreover for λ ≥ λc(�Tb, θ),

pMF
c (b, θ, λ) ≤ pexp(�Tb, θ, λ) = pc(�Tb, θ, λ) < 1,

and the process started from this critical density pc(�Tb, θ, λ) survives.

We do not know if the first inequality in each display in Corollary 2 holds for the
threshold contact process on Tb. But it is known that the second of these does not hold
for the process on Z

d , d ≥ 3, with θ = 2, as reviewed in the next subsection.

1.5 Related previous results

Threshold contact processes with θ = 2 and closely related models have been studied
in [2,4–6,10], sometimes under the name “sexual contact process”, and mostly on Z

d .
In [10] discrete time versions were studied, and contour arguments were used to show
survival. In [6] these contour methods were adapted to continuous time; their main
result can be stated as follows using our terminology. Let �Z2 be the oriented graph
obtained from Z

2 by setting N�Z2,v
= {v + (1, 0), v + (0, 1)}. It is proved in [6] that

λc(�Z2, 2) < ∞. Note that, by stochastic domination, this implies that λc(Z
d , 2) < ∞,

for d ≥ 2. In [2] a renormalization procedure was introduced, which can replace the
contour methods in proving survival. In [4] and [5] continuous time models which can
be seen as modified threshold θ = 2 contact processes on Z

d were studied. In one of
these modified models the flip rates at v ∈ Z

d at time t ≥ 0 are given by

• 1 flips to 0 at rate 1.
• 0 flips to 1 at rate λ in case there are at least 2 sites of NZd ,v that are separated

from each other by Euclidean distance
√

2 and are in state 1 at time t .

The most important result from [4,5] in connection to the current paper is the fact
that for this modified model in d ≥ 3, when λ is large, survival occurs starting from
any positive density p. Since the threshold 2 contact process dominates that modified
model, we learn that when d ≥ 3 and λ is large, pc(Z

d , 2, λ) = 0. This means that
the qualitative behavior of the θ = 2 threshold contact process on Z

d , d ≥ 3, deviates
from that of the corresponding mean-field models (for which pMF

c (2d, 2, λ) > 0, for
all λ > 0), but this deviation is in the “opposite direction” of the deviation observed in
the corresponding models on homogeneous trees (for which, contrary to the mean-field
model, limλ→∞ pc(T2d−1, 2, λ) > 0).

The only results that we are aware of for threshold θ ≥ 2 contact processes on trees
are the following ones, from [6]. There the authors consider the model with θ = 2
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524 L. R. Fontes, R. H. Schonmann

on �T2. They state that the contour methods used in that paper can be used to prove
that this process survives when λ is large. They then prove, using this result, that the
transition at λc(�T2, 2) is discontinuous (our Corollary 2 extends this result).

1.6 Organization of the paper

In Sect. 2 we prove the results about the threshold contact process on �Tb (obtaining
Theorem 1 as a corollary). In Sect. 3 we prove the results about the threshold contact
process on Tb when b is large and λ is small, namely, Theorems 2 and 3. In Sect, 4 we
prove the results about the threshold contact process on Tb when λ is large, namely,
Theorems 4 and 5; for this purpose the bootstrap percolation model will be introduced
as a tool.

2 Comparison between the model on �Tb and the mean-field model

In this section we will prove the analogue of Theorem 1 for �Tb and Theorem 6.
Both theorems result from a fairly direct comparison with the mean-field model. This
comparison is based on writing down, for an arbitrary site v, the differential equation

d

dt
ρ

p
�Tb,θ,λ;t = −ρ

p
�Tb,θ,λ;t

+ λP

(
η

p
�Tb,θ,λ;t (v) = 0, #

{
u ∈ N�Tb,v

: η
p
�Tb,θ,λ;t (u) = 1

}
≥ θ

)
,

(2.1)

and noticing that �Tb has the special property that the random variables η
p
�Tb,θ,λ;t (u),

u ∈ N�Tb,v
, are independent and have the same distribution as η

p
�Tb,θ,λ;t (v). If the

random variable η
p
�Tb,θ,λ;t (v) were also independent of those, (2.1) would reduce to

the mean-field equation (1.4), but this independence does not hold. In each one of the
two proofs below we deal with this lack of independence in a different way.

Proof of Theorem 1 and its analogue for �Tb We will prove that for arbitrary b ≥ 2
and θ ≥ 2, if λMF

c (b, θ) < 1, and λ > λMF
c (b, θ)/(1 − λMF

c (b, θ)), then

pc(�Tb, θ, λ) ≤ pMF
c (b, θ, λ/(λ + 1)) < 1. (2.2)

This suffices, since it obviously implies

λc(�Tb, θ) ≤ λMF
c (b, θ)

1 − λMF
c (b, θ)

< ∞, (2.3)

and (1.12) and (1.13) follow respectively from (2.3) and (2.2), since the threshold θ

contact process on Tb stochastically dominates the threshold θ contact process on �Tb.
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Only the first inequality in (2.2) needs to be proved. For this purpose consider the
arbitrary site v that appears in (2.1) and define the following event E : ηp

�Tb,θ,λ;0(v) = 0,

and either there is no U nor D mark at v between times 0 and t , or else, the last such
mark is a D mark. By using the time reversibility of Poisson processes, a standard
computation gives

P(E) ≥ 1

λ + 1
(1 − p). (2.4)

The event E is clearly independent of the random variables η
p
�Tb,θ,λ;t (u), u ∈ N�Tb,v

.

Since also E ⊂ {ηp
�Tb,θ,λ;t (v) = 0}, it follows from (2.1), (2.4) and the observation

after (2.1) that

d

dt
ρ

p
�Tb,θ,λ;t ≥ −ρ

p
�Tb,θ,λ;t + λP

(
E, #

{
u ∈ N�Tb,v

: η
p
�Tb,θ,λ;t (u) = 1

}
≥ θ

)
= −ρ

p
�Tb,θ,λ;t + λP (E) P

(
#

{
u ∈ N�Tb,v

: η
p
�Tb,θ,λ;t (u) = 1

}
≥ θ

)
≥ −ρ

p
�Tb,θ,λ;t + λ

λ + 1
(1 − p)Bin

(
b, ρ

p
�Tb,θ,λ;t , θ

)
. (2.5)

It is convenient to rewrite (2.5) as

d

dt
ρ

p
�Tb,θ,λ;t ≥ L

(
b, θ, λ, p; ρ

p
�Tb,θ,λ;t

)
, (2.6)

where

L(b, θ, λ, p; x) = x H(b, θ, λ/(λ + 1); x) + λ

λ + 1
Bin(b, x, θ)(x − p),

x ∈ [0, 1].

When λMF
c (b, θ) < 1 and λ > λMF

c (b, θ)/(1 − λMF
c (b, θ)), then λ/(λ + 1) >

λMF
c (b, θ). So pMF

c (b, θ, λ/(λ + 1)) < 1, and for p > pMF
c (b, θ, λ/(λ + 1))

arbitrarily close to pMF
c (b, θ, λ/(λ + 1)) we have H(b, θ, λ/(λ + 1); p) > 0. It

follows then that also L(b, θ, λ, p; p) > 0. We claim that

inf
t≥0

ρ
p
�Tb,θ,λ;t ≥ p > 0. (2.7)

Indeed, set

tp = inf
{

t ≥ 0 : ρ
p
�Tb,θ,λ;t < p

}
.

If (2.7) were false, we would have tp < ∞. Then by the continuity of ρ
p
�Tb,θ,λ;t in t ,

we would have ρ
p
�Tb,θ,λ;tp

= p, and d/dtρ p
�Tb,θ,λ;t ≤ 0, at t = tp. But (2.6) implies
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d/dtρ p
�Tb,θ,λ;t ≥ L(b, θ, λ, p; p) > 0, at t = tp. This contradiction proves (2.7),

which implies

pc(�Tb, θ, λ) ≤ p.

Since p can be taken arbitrarily close to pMF
c (b, θ, λ/(λ + 1)), the proof of (2.2) is

complete. �	
Proof of Theorem 6 Applying Harris’ inequality to (2.1), we obtain

d

dt
ρ

p
�Tb,θ,λ;t ≤ −ρ

p
�Tb,θ,λ;t + λP

(
η

p
�Tb,θ,λ;t (v) = 0

)
× P

(
#

{
u ∈ Nv : η

p
�Tb,θ,λ;t (u) = 1

}
≥ θ

)
.

From the observation after (2.1), now

d

dt
ρ

p
�Tb,θ,λ;t ≤ −ρ

p
�Tb,θ,λ;t + λ

(
1 − ρ

p
�Tb,θ,λ;t

)
Bin

(
b, ρ

p
�Tb,θ,λ;t , θ

)
, (2.8)

which for p > 0 is equivalent to

d

dt
log

(
ρ

p
�Tb,θ,λ;t

)
≤ H

(
b, θ, λ; ρ

p
�Tb,θ,λ;t

)
. (2.9)

If p = 0, then (1.20) holds. Suppose that p > 0 and (1.19) fails. Then (2.9) implies
that ρ

p
�Tb,θ,λ;t → 0 as t → ∞. The proof that (1.20) hold then can be completed as the

proof of Proposition 2. This shows that for each λ and p either (1.19) or (1.20) hold.
The statement about the set D(�Tb, θ) follows now from the fact that the negation

of (1.19) is a “finite-time condition”:

ρ
p
�Tb,θ,λ;t < pMF

c (b, θ, λ), for some t ≥ 0. (2.10)

If (2.10) holds for some (λ, p), then, by continuity, it also holds close to this point,
with the same t . �	

3 The regime of small λ

In this section we will prove Theorems 2 and 3. We will abbreviate the notation,
omitting Tb, θ and λ for instance in:

η
p
Tb,θ,λ;t = η

p
t , ρ

p
Tb,θ,λ;t = ρ

p
t , NTb,v = Nv.

We will compare the threshold contact process on Tb with the similar process in
which the spin of one of the neighbors of the root is frozen in the state 1. Recall the
definition of L from Sect. 1.4, and the corresponding terminology and notation. In
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our modified process the flip rates are as in the threshold θ contact process on Tb,
except for the site −1, where the spin is kept frozen in the state 1. We will start this
modified process with each site other than site −1 taking independently the value +1
with probability p, and being in state 0, otherwise. The notation η

∗,p
t will denote this

process. Define also

σ
l,p
t = P(η

∗,p
t (l) = 1), l ∈ Z,

and abbreviate σ
p

t = σ
0,p
t .

For comparison, we will also consider the trivial threshold 0 contact process on Tb,
i.e., the process in which the spin of each site flips independently of anything else,
with 0 flipping to 1 at rate λ, and 1 flipping to 0 at rate 1. Let π

p
t be the probability

that in this process a given site is in state 1 at time t , when at time 0 this probability
is set to π

p
0 = p. It is elementary that for every p ∈ [0, 1], π

p
t ≤ π1

t ↘ λ/(λ + 1) as
t → ∞. In particular, there is t̃(λ) such that

π
p
t ≤ λ, for t ≥ t̃(λ). (3.1)

By attractivity, for any p ∈ [0, 1], t ≥ 0 and 0 ≤ l1 ≤ l2,

ρ
p
t ≤ σ

l2,p
t ≤ σ

l1,p
t ≤ π

p
t . (3.2)

Lemma 1 For arbitrary b ≥ 2, θ ≥ 2, p ∈ [0, 1] and t ≥ 0,

d

dt
σ

l,p
t ≤ −σ

l,p
t + λbσ

l+1,p
t , l ≥ 0. (3.3)

And

d

dt
σ

l,p
t ≤ −σ

l,p
t + λ

{
π

p
t bσ

p
t + Bin(b, σ

p
t , θ)

}
, l ≥ 1. (3.4)

Proof We will use the following terminology. For each site v of Tb, the b sites in
N�Tb,v

will be called forward neighbors of v and the single site in NTb,v\N�Tb,v
will

be called the backward neighbor of v.
From the definition of (η

∗,p
t ) and σ

l,p
t ,

d

dt
σ

l,p
t = −σ

l,p
t + λP

(
η

∗,p
t (l) = 0, #

{
u ∈ Nl : η

∗,p
t (u) = 1

} ≥ θ
)

≤ −σ
l,p
t + λP

(
#

{
u ∈ Nl : η

∗,p
t (u) = 1

} ≥ θ
)
. (3.5)

Inequality (3.3) follows from (3.5) and the observation that, since θ ≥ 2, for the
site l to have at least θ occupied neighbors, it must have at least one occupied forward
neighbor.

To derive (3.4) from (3.5), we compare the process η
∗,p
t with a further modified

process in which the spins at the sites −1 and l are both frozen in the state 1, while
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the spins at other sites evolve as in the threshold θ contact process. In this modified
process, the spins at the neighbors of l evolve independently of each other. Note that
by attractivity, the distribution of (η

∗,p
t (u))u∈Nl is therefore stochastically dominated

by a product measure in which the forward neighbors of l have probability σ
p

t of being
occupied, while the backward neighbor of l has probability π

p
t of being occupied. The

probability in the r.h.s. of (3.5) is now estimated from above by the probability that
either the backward neighbor of l and at least one of its forward neighbors are both
occupied (recall θ ≥ 2), or else that at least θ of its forward neighbors are occupied.

�	

Lemma 2 For arbitrary θ ≥ 2 and A ∈ (0,∞), there are b∗, δ∗, t∗ ∈ (0,∞), such
that if b ≥ b∗ and λ ≤ A/b, then for every p ∈ [0, 1] the following dichotomy holds.
Either

σ
p

t ≥ δ∗

b
, for all t ≥ t∗, (3.6)

or, for some C ∈ (0,∞),

σ
p

t ≤ Ce−0.6t , for all t ≥ 0. (3.7)

Remark The exponential rate 0.6 in (3.7), could be replaced with any rate smaller
than 1, with minor modifications in the proof and a larger value for b∗. In our proof
of Theorem 2, all that we will need about this rate is that it is larger than 1/2.

Proof For later convenience, we take b∗ = 9A3. We will use Lemma 1, and for this
purpose we need to estimate π

p
t . Under the assumptions in the lemma that we are

proving, we have λ ≤ A/b ≤ A/b∗ = 1/(9A2) =: λ̂. Let (π̂
p
t )t≥0 be defined in the

same way as (π
p
t )t≥0, but with λ̂ replacing λ. Clearly π

p
t ≤ π̂

p
t . So, by (3.1), there is

t∗ = t̃(λ̂) which depends on A, but not on b or λ (once they satisfy the conditions in
the lemma), such that π

p
t ≤ λ̂ = 1/(9A2), for every p ∈ [0, 1] and t ≥ t∗.

We use now the two inequalities in Lemma 1. The first one with l = 0 and the
second one with l = 1. We suppose that t ≥ t∗, so that we can use the estimate above
on π

p
t . Since also λ ≤ A/b, these inequalities read then

d

dt
σ

p
t ≤ −σ

p
t + Aσ

1,p
t ,

d

dt
σ

1,p
t ≤ −σ

1,p
t + 1

9A
σ

p
t + A

b
Bin(b, σ

p
t , θ).

Multiply the first of these inequalities by 1/(3
√

A) and the second one by
√

A, and
add the resulting inequalities to obtain

d

dt
xt ≤ −2

3
xt + A3/2

b
Bin(b, σ

p
t , θ), t ≥ t∗, (3.8)
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where

xt = 1

3
√

A
σ

p
t + √

Aσ
1,p
t .

By (3.2) σ
1,p
t ≤ σ

p
t . Therefore we obtain the following comparison between xt

and σ
p

t :

1

3
√

A
σ

p
t ≤ xt ≤

{
1

3
√

A
+ √

A

}
σ

p
t (3.9)

From (3.8), the fact that Bin(b, σ
p

t , θ) ≤ b2(σ
p

t )2/2 (since θ ≥ 2) and the first
inequality in (3.9),

d

dt
xt ≤ −2

3
xt + 3

2
A5/2b(xt )

2 =: G(xt ), t ≥ t∗.

Note that G(x) < 0 for 0 < x < 4/(9A5/2b), and limx↘0 G(x)/x = −2/3 < −0.6.
One can use these facts, as in the proof of Proposition 2, to conclude that if there is
some t̃ ≥ t∗ such that

xt̃ <
4

9A5/2b
, (3.10)

then there is some C ′ < ∞ such that

xt ≤ C ′e−0.6t , for all t ≥ 0. (3.11)

But from (3.9), the condition (3.10) is implied by

σ
p

t̃
<

4

3A2(1 + 3A)b
,

and (3.11) implies (3.7) with C = 3
√

AC ′. This completes the proof of the lemma,
with δ∗ = 4/(3A2(1 + 3A)). �	
Lemma 3 For arbitrary θ ≥ 2 and A ∈ (0,∞), there is b1 ∈ (0,∞), such that if
b ≥ b1 and λ ≤ A/b, then for every p ∈ [0, 1] and l ≥ 0,

ρ
p
t ≥ σ

l,p
t −

(
1√
b

)l+1

(3.12)

Proof To derive (3.12) we consider the discrepancies between the processes (η
p
t ) and

(η
∗,p
t ). We construct these two processes using the same structure of Poisson marks,

and for every site v of Tb we set

δt (v) = η
∗,p
t (v) − η

p
t (v).
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In this fashion, δt takes the value 1 at the sites where the processes disagree at time t ,
and 0 at the other sites.

Observe that a D mark eliminates a discrepancy, while a U mark will possibly
create a discrepancy at a site v only if at least one neighbor of v has a discrepancy at
the time of this mark. Therefore δt ≤ ζ

∗,0
t , where (ζ

∗,0
t ) is a process in which the spin

at the site −1 is frozen in the state 1 while all other spins are initially set to 0, and
evolve with the following rules at each site v �= −1:

• 1 flips to 0 at Poisson D marks at v.
• 0 flips to 1 at Poisson U marks at v if and only if at least one of the spins in Nv is

in state 1 at the time of that mark.

Note that these flip rules are those of the threshold 1 contact process on Tb, with
infection parameter λ.

The threshold 1 contact process is stochastically dominated by the contact process,
in which spins flip at rates:

• 1 flips to 0 at rate 1.
• 0 flips to 1 at rate λ times the number of sites of Nv in state 1 at time t .

We denote by (ξ
∗,0
t ) the process on Tb, in which the spin at the site −1 is frozen in the

state 1 while all other spins are initially set to 0, and then allowed to evolve according
to the flip rates of this contact process.

The chain of comparisons presented above implies that

σ
l,p
t − ρ

p
t = P

(
δt (l) = 1

) ≤ P
(
ζ

∗,0
t (l) = 1

) ≤ P
(
ξ

∗,0
t (l) = 1

)
.

Let (ξ
{v}
t ) denote the contact process started from the configuration in which only

the site v is occupied (and no spin is frozen). Self-duality for the contact process
implies

P
(
ξ

∗,0
t (l) = 1

) = P
(
ξ {l}

s (−1) = 1, for some s ∈ [0, t])
≤ P

(
ξ {l}

s (−1) = 1, for some s ≥ 0
)

= P
(
ξ {0}

s (l + 1) = 1, for some s ≥ 0
) =: u(l + 1).

The function u(·) has played an important role in the study of the contact process on
Tb. The proof of (3.12) will be complete once we argue that under our hypothesis,

u(l) ≤
(

1√
b

)l

.

For this purpose we refer to results in Chap. 4 in Part I of [9], where references to the
original contributions can be found. The contact process on Tb, b ≥ 2, has two critical
points 0 < λ1(b) < λ2(b) < ∞. Theorem 4.1 in Part I of [9] tells us that λ2(b) ≥
1/(2

√
b). Therefore we can find b1 so that λ ≤ A/b < λ2(b), when b ≥ b1. Display

(4.49) of Part I of [9] tells us that u(l) ≤ (β(λ))l , where β(λ) := liml→∞(u(l))1/ l .
Finally Theorem 4.65 in Part I of [9] tells us that β(λ) ≤ 1/

√
b when λ ≤ λ2(b). This

completes the proof of (3.12). �	
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Lemma 4 For arbitrary θ ≥ 2 and A ∈ (0,∞), there are b0, δ, δ
∗, t∗ ∈ (0,∞), such

that if b ≥ b0 and λ ≤ A/b, then for every p ∈ [0, 1] the following dichotomy holds.
Either (3.6) and (1.15) both hold, or else (3.7) and (1.16) both hold.

Proof Let b∗, δ∗ and t∗ be as in Lemma 2. We will take b0 ≥ b∗, so that under the
hypothesis of the lemma that we are proving we know from Lemma 2 that either (3.6)
or (3.7) holds.

Suppose first that (3.6) holds. Define

ρ̄ p = lim inf
T →∞

1

T

T∫
0

ρ
p
t dt, σ̄ l,p = lim inf

T →∞
1

T

T∫
0

σ
l,p
t dt, σ̄ p = σ̄ 0,p.

From (3.3) and λ ≤ A/b, for each l ≥ 0,

A
1

T

T∫
0

σ
l+1,p
t dt ≥ 1

T

T∫
0

σ
l,p
t dt + σ

l,p
T − σ

l,p
0

T
.

Hence,

Aσ̄ l+1,p ≥ σ̄ l,p.

By induction in l and (3.6), we obtain now

σ̄ l,p ≥ σ̄ p

Al
≥ δ∗

Alb
. (3.13)

We use now Lemma 3, and for this suppose that b ≥ max{b∗, b1}. Then, from (3.12)
and (3.13), we obtain

ρ̄ p ≥ σ̄ l,p −
(

1√
b

)l+1

≥ δ∗

Alb
−

(
1√
b

)l+1

≥ δ∗

Alb

(
1 − A

δ∗

(
A√
b

)l−1
)

.

Taking b0 ≥ max{b∗, b1} large enough, we have A/
√

b ≤ 1/2, when b ≥ b0. Hence
there is l̂ such that

ρ̄ p ≥ δ∗

2Al̂b
,

for all b ≥ b0. We conclude that (1.15) holds then with δ = δ∗/(2Al̂).
Suppose now that (3.7) holds. From the definition of (η

p
t ) and ρ

p
t ,

d

dt
ρ

p
t = −ρ

p
t + λP

(
η

p
t (0) = 0, #

{
u ∈ Nl : η

p
t (0) = 1

} ≥ θ
)

≤ −ρ
p
t + λP

(
#

{
u ∈ Nl : η

p
t (0) = 1

} ≥ θ
)
. (3.14)
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We compare the process (η
p
t ) with the modified process in which the spin at the root

is frozen in the state 1, while the spins at other sites evolve as in the threshold θ

contact process. In this modified process, the spins at the neighbors of the root evolve
independently of each other. Note that by attractivity, the distribution of (η

p
t (u))u∈N0

is therefore stochastically dominated by a product measure with density σ
p

t . Therefore,

d

dt
ρ

p
t + ρ

p
t ≤ λBin(b + 1, σ

p
t , θ) ≤ λ

(b + 1)2

2
(σ

p
t )2 ≤ C ′e−1.2t ,

for some C ′ < ∞, where in the last step we used (3.7). Multiplying both sides of this
differential inequality by et and integrating yields (1.16) (see the end of the proof of
Proposition 2 for an identical estimate). �	
Proof of Theorem 2 Lemma 4 established the claimed dichotomy. It also implied that
under the hypothesis of Theorem 2, (1.16) is equivalent to the negation of (3.6), i.e.,

σ
p

t <
δ∗

b
, for some t ≥ t∗. (3.15)

The statement about the set DA(Tb, θ) follows then from the fact that if (3.15) holds
for some (λ, p), then it also holds close to this point (with the same t). (As in the proof
of Theorem 6, this is a typical “finite-time condition” argument.) �	
Proof of Theorem 3 Since (1.14) has already been proved, we only have to prove that

lim inf
b→∞ bλexp ≥ �θ. (3.16)

For this purpose, let A < �θ and λ = A/b. We will show that then

ρ1∞ ≤ 1

b3/2 , when b is large. (3.17)

From Theorem 2 and the remarks after that theorem, we know that this implies that,
when b is large, alternative (1.16) must hold and hence λ ≤ λexp. Therefore bλexp ≥ A,
and since A can be taken arbitrarily close to �θ , (3.17) implies (3.16).

From the proof of Proposition 1, in the introduction, we know that if p ≥ λ/(λ+1),
then ρ1∞ ≤ ρ

p
t , for every t ≥ 0. Therefore (3.17) will follow once we show that

inf
t≥0

ρλ
t ≤ 1

b3/2 , when b is large. (3.18)

To prove this claim, we use again (3.14), but this time we compare the process
(η

p
t )t≥0 with the modified process in which the spin at the root is frozen in the state 0,

while the spins at other sites evolve as in the threshold θ contact process. We denote
this modified process by (η

�,p
t )t≥0. Let FT be the event that the origin is vacant at
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time 0 and that between time 0 and time T there is no U mark at the origin. Then, for
0 ≤ t ≤ T ,

P
(
#

{
u ∈ Nl : η

p
t (0) = 1

} ≥ θ
) ≤ P

(
#

{
u ∈ Nl : η

p
t (u) = 1

} ≥ θ, FT
) + P((FT )c)

= P

(
#

{
u ∈ Nl : η

�,p
t (u)=1

}
≥θ, FT

)
+P((FT )c)

≤ P

(
#

{
u ∈ Nl : η

�,p
t (u) = 1

}
≥ θ

)
+ p + λT .

In the modified process (η
�,p
t )t≥0, the spins at the neighbors of the root evolve inde-

pendently of each other. Note that by attractivity, the distribution of (η
�,p
t (u))u∈N0 is

therefore stochastically dominated by a product measure with density ρ
p
t . Therefore,

(3.14) yields

d

dt
ρ

p
t ≤ −ρ

p
t + λ

(
Bin(b + 1, ρ

p
t , θ) + p + λT

)
, 0 ≤ t ≤ T .

We will use this inequality with p = λ = A/b and T = b1/4. We also change variables
to xt = (b + 1)ρ

p
t . The inequality above then implies

d

dt
xt ≤ −xt + ABin

(
b + 1,

xt

b + 1
, θ

)
+ A

b
+ 2A2

b3/4 , 0 ≤ t ≤ b1/4.

If (3.18) were false, then there would be arbitrarily large b for which

xt >
1

b1/2 , for all t ≥ 0. (3.19)

We would then have, for the b for which (3.19) holds,

d

dt
log(xt ) ≤ −1 + A

xt
Bin

(
b + 1,

xt

b + 1
, θ

)
+ A

b1/2 + 2A2

b1/4 , 0 ≤ t ≤ b1/4.

(3.20)

Thanks to (1.10), as b → ∞, the right hand side of this inequality, as a function of xt ,
converges uniformly to

F(xt ) = −1 + A
Poisson(xt , θ)

xt
.

Since A < �θ , we have supx>0 F(x) = −C , for some C > 0. Therefore (3.20)
yields, when b is large,

d

dt
log(xt ) ≤ −C

2
, 0 ≤ t ≤ b1/4.
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This implies

xb1/4 ≤ x0e−(C/2)b1/4 = A
b + 1

b
e−(C/2)b1/4

,

which for large b contradicts (3.19). This contradiction proves (3.18), and completes
the proof of (3.16). �	

4 The regime of large λ

In this section we will prove Theorems 4 and 5. Our lower bounds on pexp(Tb, θ,∞)

will be obtained by comparison with a bootstrap percolation model that we describe
next.

The continuous time bootstrap percolation model on the graph or oriented graph
G = (V, E) with threshold θ and infection parameter λ can be defined by taking the
threshold contact process (ηG,θ,λ;t )t≥0 on G, with same threshold θ , and suppressing
all the flips from 1 to 0. In other words, the bootstrap percolation process has flip rates
at v ∈ V at time t ≥ 0 given by

• 1 flips to 0 at rate 0.
• 0 flips to 1 at rate λ in case there are at least θ sites of NG,v in state 1 at time t ,

and at rate 0 otherwise.

We will denote by (ζ
µ

G,θ,λ;t )t≥0 the resulting process, started from a random distribution
picked according to law µ at time 0. If one uses the same Poisson system of D and U
marks to construct (η

µ

G,θ,λ;t ) and (ζ
µ

G,θ,λ;t ), then, clearly

η
µ

G,θ,λ;t ≤ ζ
µ

G,θ,λ;t , for all t ≥ 0. (4.1)

It is also clear that ζ
µ

G,θ,λ;t is increasing in time, and therefore has a limit, ζµ

G,θ,λ;∞.

Also note that ζ
µ

G,θ,λ;∞ does not depend on λ > 0, and that it can be obtained by the
following iteration. Let S0 be the set of sites which at time 0 are in state 1. Recursively
define then

Sn = Sn−1 ∪ {v ∈ (Sn−1)
c : # {NG,v ∩ Sn−1} ≥ θ}, n ≥ 1.

The sets Sn increase, and their limit is ∪n Sn = S∞ = ζ
µ

G,θ,λ;∞. (This iteration is often
taken as the definition of bootstrap percolation in discrete time.)

From (4.1), it follows that, for any λ > 0, the sites that are vacant in S∞ are vacant
in the process (η

µ

G,θ,λ;t ) at all times.
When G = Tb, the observation in the last paragraph can be used as follows.

Consider the clusters of occupied sites in S∞, i.e., the connected components of the
subgraph of Tb induced by the sites in S∞. It is easy to see that since θ ≥ 2, the sites
that belong to finite clusters of S∞ will eventually be in state 0 in the process η

µ

G,θ,λ;t .
Suppose that µ is product measure with density p. If S∞ contains almost surely
only finite clusters, then for any λ > 0 the process (η

p
Tb,θ,λ;t )t≥0 dies out. Therefore
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p ≤ pc(Tb, θ,∞). The next lemma provides a stronger conclusion under a stronger
assumption. In its statement and its proof, we will use the following terminology and
notation for Tb. The distance between two sites is the length of the path that connects
them. We will use Bn for the ball of radius n and center at the origin. The outside
neighbors of a site v are the neighbors of v that are farther apart from the origin than v

(each site v �= 0 has b outside neighbors, and the origin has b + 1 outside neighbors).
Denote by Rn the event that the site 0 and some site separated from it by distance n
are in the same cluster of S∞.

Lemma 5 Suppose that for bootstrap percolation on Tb, started from product measure
with density p, P(Rn) decays exponentially with n. Then p ≤ pexp(Tb, θ,∞).

Proof Let (η
Bn
Tb,θ,λ;t ) be the threshold contact process started with the ball of radius

n around the origin fully occupied and all other sites vacant. From the observations
above,

P

(
η

p
Tb,θ,λ;t (0) = 1, (Rn)c

)
≤ P

(
η

Bn
Tb,θ,λ;t (0) = 1

)
. (4.2)

The process (η
Bn
Tb,θ,λ;t ) is stochastically dominated by the process started from the

same configuration, in which a spin 0 never flips and a spin 1 flips to 0, at rate 1, iff
all its outside neighbors are in state 0. For this process, let τv , v ∈ Bn , be the random
amount of time needed for the spin at v to flip to 0 after the moment when it became
allowed to flip. Clearly the τv , v ∈ Bn , are i.i.d., with exponential distribution with
mean 1. A simple induction argument, starting from the sites at distance n from the
root, and moving inwards, shows that the root will then flip to 0 at the random time

max
π∈�n

∑
v∈π

τv,

where �n is the set of (b + 1)bn−1 paths from 0 to the sites that are at distance n from
it.

We obtain therefore, from (4.2), and the hypothesis of the lemma

P

(
η

p
Tb,θ,λ;t (0) = 1

)
≤ P(Rn) + P

(
η

p
Tb,θ,λ;t (0) = 1, (Rn)c

)

≤ C1e−C2n + P

(
max
π∈�n

∑
v∈π

τv ≥ t

)

≤ C1e−C2n + (b + 1)bn−1
P

(∑
v∈π̃

τv ≥ t

)
,

where C1, C2 are positive finite constants and π̃ is an arbitrary element of �n . Taking
n = �εt�, for some ε > 0 small enough, a standard large deviation estimate for
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Poisson random variables (see, e.g., (A.1) in the Appendix of [7]) shows that

P

(∑
v∈π̃

τv ≥ t

)
≤ C3e−C4n,

where C3 ∈ (0,∞) and C4 is large enough that e−C4 < b. The last two displayed

inequalities imply then that P

(
η

p
Tb,θ,λ;t (0) = 1

)
decays exponentially with t , com-

pleting the proof. �	
Bootstrap percolation on homogeneous trees has been studied in [3] and [1]. Below

we could build on some of their estimates. Nevertheless, for the reader’s benefit, and at
little extra cost, we will present a self-contained approach to our problem of estimating
P(Rn), in order to use Lemma 5.

To study the bootstrap percolation process on Tb, it is convenient to study also,
as a tool, the bootstrap percolation processes on its subgraph T

+
b , induced by the

following subset V +
b of vertices. The set V +

b is the minimal set of vertices of Tb with
the properties that 0 ∈ V +

b and if v ∈ V +
b then N�Tb,v

⊂ V +
b . We will also consider

bootstrap percolation on the oriented graph �T+
b , which has as set of vertices also V +

b ,
and defined then by N�T+

b ,v
= N�Tb,v

.

First we observe that bootstrap percolation on T
+
b and on �T+

b are strongly related
to each other in the following way. If we start them from a same set of occupied sites,
S0, then for n ≥ 0, either both will have the root in Sn or neither one will have it. To
see this, given a set of sites R of T

+
b , say that a site v ∈ R is hidden from the root in

R if there is another site u ∈ R which belongs to the path which connects the root to
v. Observe that if in the iteration which defines Sn for either one of the two processes
that we are considering we eliminate all the sites that are hidden from the root in Sn−1,
we do not change the truth or falsehood of the statement that the root belongs to Sn .
But with this modification, the sets Sn are the same for both processes.

It is easy to write down a recursion for the probability p+
n that the root belongs to

Sn in the bootstrap percolation process on T
+
b or �T+

b , started from product distribution
with density p. In the last paragraph we argued that p+

n is the same for both processes.
Now, for the process on �T+

b , the root will belong to Sn in case it belongs to S0, or in
case it does not belong to S0, but at least θ of the sites in N�T+

b ,0 are in Sn−1. This

observation and some obvious facts about the geometry of �T+
b yield:

p+
n = p + (1 − p)Bin(b, p+

n−1, θ), (4.3)

with initial condition p+
0 = p.

The right-hand-side of (4.3) is an increasing continuous function of p+
n . Therefore

p+
n ↗ p+∞ := inf{x > 0 : x = p + (1 − p)Bin(b, x, θ)}. (4.4)

The limit p+∞ is the probability that the root belongs to S∞ in this bootstrap percolation
process on T

+
b or �T+

b . Since θ ≥ 2, p+∞ ≤ inf{x > 0 : x = p + (b/2)2x2}. It is easy
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to use this observation to conclude that

p+∞ ↘ 0 as p ↘ 0. (4.5)

The following concept will be used in the proof of Theorem 4. Consider bootstrap
percolation on G = (V, E), and let W ⊂ V and w ∈ W . We will say that “w is
eventually W -internally occupied” if w becomes eventually occupied in the bootstrap
percolation process restricted to W . To make the definition precise, set SW

0 = S0 ∩ W ,

SW
n = SW

n−1 ∪ {v ∈ W\SW
n−1 : #{NG,v ∩ SW

n−1} ≥ θ}, n ≥ 1.

We now say that w is eventually W -internally occupied in case w ∈ SW∞ := ∪n SW
n .

Note that this event depends only on the initial configuration of occupied sites in W .

Proof of Theorem 4 We will use Lemma 5, and for this purpose we need to estimate
P(Rn). Consider bootstrap percolation on Tb and let {0 ↔ n} denote the event that
the sites 0 and n belong to the same cluster of S∞. Note that this is the same as the
event that the sites 0, 1, . . . , n are all eventually occupied in this bootstrap percolation
process.

We will use the definition in the last paragraph before this proof in the case G = Tb,
W = Lc. Note that the subgraph of Tb induced by W (i.e., the subgraph of Tb obtained
by removing L from the set of vertices, along with the edges incident to these vertices)
is an infinite collection of copies of T

+
b . The roots of these copies of T

+
b are neighbors

to the sites in L, with each site in L being neighbor to b − 2 of these roots. For j ∈ L,
define X j as the number of neighbors of the site j which are eventually W -internally
occupied. When bootstrap percolation on Tb is started from product measure with
density p, it follows from the remarks above that each X j has a binomial distribution
corresponding to b − 2 attempts each with probability p+∞ of success, where p+∞ is
given by (4.4). Clearly the X j are also mutually independent.

For each j ∈ L define a grade as follows. If the site j is in state 1 at time 0, give
this site grade A. If not, give this site the grade according to: also grade A if X j ≥ θ ,
grade B if X j = θ − 1, grade C if X j = θ − 2, grade F if X j ≤ θ − 3. The probability
of obtaining grades A, B or C are then, respectively:

pA = p + (1 − p)Bin(b − 2, p+∞, θ),

pB = (1 − p)Bin(b − 2, p+∞, θ − 1), (4.6)

pC = (1 − p)Bin(b − 2, p+∞, θ − 2).

Observe that if {0 ↔ n} occurs, then the following must happen:

(i) No site in 0, 1, . . . , n can have grade F.
(ii) If the sites j and k, with 0 ≤ j < k ≤ n both have grade C, then there must

exist a site i with j < i < k with grade A.

For a given realization of the process, denote by n A, nB and nC , respectively, the
number of sites in {0, . . . , n} which receive grades A, B, and C . Then (i) implies

n A + nB + nC = n + 1, (4.7)
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while (ii) implies

n A ≥ nC − 1. (4.8)

Since there are 3n+1 ways to assign grades A, B and C to the sites in {0, . . . , n}, it
follows that

P(0 ↔ n) ≤ 3n+1 max
n A,nB ,nC

n A+nB+nC =n+1
n A≥nC −1

(pA)n A(pB)nB (pC )nC

≤ 3n+1 max
n A,nB ,nC

2n A+nB≥n

(pA)n A(pB)nB (pC )nC

≤ 3n+1 max
n A,nB

n A+nB≥n/2

(pA)n A(pB)nB

≤ 3n+1(max{pA, pB})n/2. (4.9)

From the geometry of Tb and (4.9) we obtain

P(Rn) ≤ (b + 1)bn−1
P(0 ↔ n) ≤ 3

b + 1

b

[
3b(max{pA, pB})1/2

]n
.

But (4.5) and (4.6) imply that for p > 0 small enough, max{pA, pB} < 1/(3b)2, and
hence

P(Rn) → 0, exponentially fast as n → ∞.

Lemma 5 now implies pexp(Tb, θ,∞) ≥ p > 0. �	
We turn now to the proof of Theorem 5. The origin of the exponent θ/(θ − 1) there

is the following. Bin(b, γ /bα, θ) is of order 1/bα for large b iff α = θ/(θ − 1). The
precise version of this statement that we need below is the following one, which can
be checked by elementary computations. For arbitrary γ̄ > 0,

θ !
γ θ

bθ/(θ−1)Bin(b, γ /bθ/(θ−1), θ) → 1, as b → ∞, (4.10)

uniformly in γ ∈ (0, γ̄ ]. This has the following consequence for the mean-field model.
For arbitrary γ̄ > 0,

H(b, θ, λ; γ /bθ/(θ−1)) → −1 + λ
γ θ−1

θ ! , as b → ∞,

uniformly in γ ∈ (0, γ̄ ]. Therefore, for arbitrary λ > 0,

bθ/(θ−1) pMF
c (b, θ, λ) → (θ !/λ)1/(θ−1), as b → ∞. (4.11)
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Proof of Theorem 5 From (1.13), in Theorem 1,

pc(Tb, θ,∞) ≤ pMF
c (b, θ, 1).

Combined with (4.11), this implies

lim sup
b→∞

bθ/(θ−1) pc(Tb, θ,∞) ≤ (θ !)1/(θ−1),

which provides the upper bound in (1.18).
The proof of the lower bound in (1.18),

lim inf
b→∞ bθ/(θ−1) pc(Tb, θ,∞) > 0, (4.12)

builds on the proof of Theorem 4. We will use the same notation as in that proof.
Define also γ = pbθ/(θ−1), γn = p+

n bθ/(θ−1), and γ∞ = p+∞bθ/(θ−1). The recursion
(4.3) implies

γn ≤ γ + bθ/(θ−1)Bin
(
b, γn−1/bθ/(θ−1), θ

)
(4.13)

Set

γ̄ = inf
{

x > 0 : x = γ + 2xθ /θ !}.
(In this definition the factor 2 is arbitrary; any number larger than 1 could be used
instead.) Since θ ≥ 2, for small γ > 0 we have 0 < γ̄ < ∞, and

γ̄ = γ + 2
(γ̄ )θ

θ ! . (4.14)

Moreover, similarly to (4.5),

γ̄ ↘ 0 as γ ↘ 0. (4.15)

Our next goal is to prove that when b is large

p+∞ ≤ γ̄

bθ/(θ−1)
(4.16)

From (4.10), there is b̄ such that for 0 ≤ y ≤ γ̄ and b ≥ b̄,

bθ/(θ−1)Bin
(
b, y/bθ/(θ−1), θ

) ≤ 2yθ

θ ! . (4.17)

Since γ + 2xθ /θ ! is increasing in x , when y < γ̄ , we have γ + 2yθ /θ ! ≤ γ̄ . Note
that γ ≤ γ̄ . Hence (4.13) and (4.17) imply, by induction on n, that γn ≤ γ̄ . Therefore
γ∞ ≤ γ̄ and (4.16) follows.
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Combining (4.6), (4.16) and (4.15) we obtain, when b is large,

pA ≤ γA

bθ/(θ−1)
,

pB ≤ γB

b
, (4.18)

pC ≤ γC

b(θ−2)/(θ−1)
,

where limγ↘0 γA = limγ↘0 γB = limγ↘0 γC = 0. Note that (4.18) implies the
following technical estimate:

max
{
(pA)2, (pB)2, pC pA

} ≤ γ ′

b2 , (4.19)

where limγ↘0 γ ′ = 0. This estimate is useful in combination with the following one:

P(0 ↔ n) ≤ 3n+1
(

max
{
(pA)2, (pB)2, pC pA

})(n/2)−1
. (4.20)

To prove this inequality, one can match pairs of sites in {0, . . . , n} in the following
way. Recall that if the event {0 ↔ n} happens, then the facts (i) and (ii) in the proof of
Theorem 4 must happen. From fact (ii) we know that each site which receives a grade
C is followed eventually by a site with grade A, except possibly for the last site with
grade C. Pair each site with a grade C with the first site with grade A after it, leaving
possibly one unmatched site with grade C. Considering the sites with grade A which
are unmatched to any site with grade C, we match the first of these sites to the second
one, the third to the fourth, etc, leaving at most one unmatched site with grade A.
Finally we match the first site with grade B to the second such site, the third site with
grade B to the fourth such site, etc, leaving at most one unmatched site with grade B.
Since the number of sites in {0, . . . , n} is n+1 and there are at most 3 unmatched sites,
the number of matched pairs is at least ((n + 1) − 3)/2 = (n/2) − 1. The estimate
(4.20) now follows from the fact that the number of ways to assign grades A, B and C
to the sites in {0, . . . , n}, is 3n+1.

Combining (4.19) with (4.20), we obtain, when b is large,

P(Rn) ≤ (b + 1)bn−1
P(0 ↔ n) ≤ (b + 1)bn−13n+1

(
γ ′

b2

)(n/2)−1

= 27(b + 1)b
(

3
√

γ ′
)n−2

.

By taking γ > 0 sufficiently small, we can make 3
√

γ ′ < 1. Then

P(Rn) → 0, exponentially fast as n → ∞.

Lemma 5 now implies bθ/(θ−1) pexp(Tb, θ,∞) ≥ bθ/(θ−1) p = γ > 0. This proves
(4.12). �	
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