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Abstract For a class of non-uniformly ergodic Markov chains (Xn) satisfying
exponential or polynomial beta-mixing, under observations (Yn) subject to an IID
noise with a positive density, it is shown that wrong initial data is forgotten in the
mean total variation topology, with a certain exponential or polynomial rate.

Mathematics Subject Classification (2000) 60G35 · 62M20 · 93E11 · 93E15

1 Introduction

We consider a discrete time filter for a Markov chain (Xn) with values in the Euclidean
space Rd , with observations (Yn) from R�,

Xn+1 = Xn + b(Xn)+ σ(Xn)ξn+1, (n ≥ 0), (1)

Yn = h(Xn)+ Vn (n ≥ 1). (2)

Here (ξn, Vn) is a sequence of IID random vectors of dimension d + � with densities
denoted by qξ (x) qV (y), b(·) is a d-dimensional vector-function, σ(·) a d× d matrix-
function, h(·) an �-dimensional vector-function. Suppose the exact initial distribution
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412 M. L. Kleptsyna, A. Yu. Veretennikov

of X0 denoted by µ0, is known with some error. The main problem addressed in this
paper is whether or not this error is forgotten by the optimal filtering algorithm in
the long run. More precisely the setting is explained in the Sect. 2.2 below, because
it requires new definitions. This setting is called a memoryless observation channel.
Notice that if observations were not conditionally independent given X ’s, say,

Un =
n∑

i=1

(h(Xi )+ Vi ),

then one could easily reconstruct its memoryless equivalent version,

Yn = Un −Un−1.

So, conditional independence of the observations is not restrictive here.
As it was noticed in [14], the representation of the filtering algorithm below (see (7))

often allows a good modelling, although it rarely allows a good computing of all inte-
grals.

Under uniform ergodicity assumptions, this problem was discussed in [2,7,14],
where the limiting independence of the optimal filter algorithm on a wrong initial data
has been established, along with certain exponential bounds, in continuous and dis-
crete cases. See also [12], and discussion and further examples and counterexamples
in [3,6]; see also [15] concerning a linear non-ergodic case.

The non-compact case attracted attention, especially in the last decade, and several
papers considered this problem in the following partial cases. In [1] a non-compact
case with linear observations and sufficiently small noise in observations was tackled.
Small noise conditions appeared also in [5,16]. In [4], observation noise is assumed
to be bounded, along with some additional condition on the positiveness of the noise
density. In [14] and [13], mixing or “pseudo-mixing” conditions on the conditional
kernel are assumed; the former is a uniform ergodic case which is essentially a compact
case even though in a possibly non-compact state space, while the latter assumes that
the observation noise is, again, small enough in a certain sense. All these cases do not
allow Gaussian noise of an arbitrary level of intensity. In [17], a variational approach
was applied to the filtering systems with a gradient type drift and linear observation
part under additional assumptions. Our model is more general; this is essentially a
non-compact and non-uniformly ergodic case, although it may not include some of
the models from the cited papers.

Among technical tools that we use, there are the Birkhoff or Hilbert metric, as
in [2] and [14], and recurrence or ergodicity bounds. The idea of the approach is
that under appropriate ergodicity assumptions, the signal process spends most of its
time in some compact ball, where the techniques of the compact case is applicable.
The rest allows a good exponential or polynomial bound. The implementation of this
idea, however, is less straightforward, due to several technical reasons. Firstly, we
double our Markov process (X, Y ) using another independent version of it, (X̃ , Ỹ ),
and, thence, we wish not the original signal process, but the doubled one, (X, X̃), to
spend most of its time in some compact. Secondly, the Birkhoff metric does not suit
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On discrete time ergodic filters with wrong initial data 413

well to any splitting of integrals and measures, so that this should be arranged in the
original total variation metric. Thirdly, one has to estimate some unusual conditional
probabilities after a certain substitution, Ỹ �→ Y ; they should be tackled using some
new hints. We suggest two methods for this. The first method exploits the idea that
good contraction holds true except on some rare event, related to the doubled signal
process; this event is a subset of two further rare events, each of which is determined by
only one of the two independent signal processes. Here “rare” means that both events
allow some good estimates. This method essentially uses the condition (A3) below,
and exponential or polynomial recurrence assumptions. The second method is based
on a completely different idea how to tackle the same rare event, namely, using some
analogue of Girsanov’s change of measure, which makes signals and observations
independent. This method requires more restrictive recurrence assumptions, but does
not use the assumption (A3). Hence, the two main results are essentially different.
At the same time, the “first part” of their proofs is the same, and this is the reason to
combine them in one paper.

Technically, we use a simple splitting of the space of trajectories of our doubled
signal process into 2n+1 parts, depending on whether it is in some appropriate compact
or outside this compact at every fixed time from 0 to n. The common part of the proofs
of the two theorems is an estimate on the “good” event that the doubled signal process
visits some compact frequently.

Surprisingly, stopping times do not help here, possibly because they do not agree
well enough with the Birkhoff metric.

The paper is arranged as follows: the Sect. 2 contains the assumptions, the main
results, and some auxiliaries; the Sect. 3 is devoted to the proof of the first main result,
and the Sect. 4 to the proof of the second one. We consider only Gaussian noises in the
Theorem 2, although some results clearly can be obtained by this approach for more
general models; see the Remark 3 after the statement of the Theorem 2 below.

2 Assumptions, main results, auxiliaries

2.1 Assumptions

The first group of assumptions serves the case of initial measures which satisfy the
assumption of absolute continuity, see (A3) below. The measure equivalence is not
assumed. The assumption (A3) is used directly in the end of the proof of the Theorem 1.

(A1) We assume that

0 < inf
x

inf|λ|=1
λ∗σσ ∗(x)λ ≤ sup

x
sup
|λ|=1

λ∗σσ ∗(x)λ <∞,

where λ ∈ Rd , the function b is locally bounded, and there exist p = 0, 1,
M > 0 and r ∈ (0,+∞] such that

( |x + b(x)|
|x | − 1

)
|x |1+p ≤ −r, |x | ≥ M; (3)
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if p = 1 then we understand this as a limit with r = +∞, that is,

lim sup
|x |→∞

( |x + b(x)|
|x | − 1

)
|x |2 = −∞. (4)

(A2) The noise (ξn, Vn) is a sequence of IID random vectors with Eξk = 0; the
component ξn and Vn are independent; if p = 0, we assume E exp(c|ξ |) <∞;
if p = 1, we assume E |ξ |m <∞ for every m > 0; in all cases, for any R > 0
we assume,

CR := sup
|x |,|v|≤R

qξ (x)

qξ (v)
<∞,

the density qV is assumed to be positive everywhere; the function h is locally
bounded.

(A3) The measure µ0 is absolute continuous with respect to ν0, and, moreover,

∥∥∥∥
dµ0

dν0

∥∥∥∥
L∞(ν0)

<∞.

Moreover, both initial measures µ0 and ν0 possess some exponential moment,
that is, there exists c > 0 such that

∫
ec|x |(µ0(dx)+ ν0(dx)) <∞. (5)

Remark 1 The some exponential moment for initial measures condition can be relaxed,
depending on p. Gaussian noise condition is not used in this group of assumptions.

In the condition (A3) we do not require that the two measures are equivalent,but
just an absolute continuity of µ0 with respect to ν0. The uniform norm L∞ can be
easily relaxed to dµ0/dν0 ∈ La with any a > 1; this would just change the constants
in the final estimate in the Theorem 1. If a = 1—which means simply an absolute
continuity—we can show just convergence in probability, without any useful bound.
However, in the Theorem 2 we give certain estimate for convergence rate in this case
under additional assumptions on other components of the system.

One may ask, what might happen if there is no even absolute continuity at all. In
this case, if there is an absolute continuity at some k0 > 0, one can repeat all consid-
erations below starting from this k0, that would not change the final conclusion about
the convergence rate. However, one should take care about the filter algorithm itself:
if the observations which are given do not correspond to the initial measure, and there
is no absolute continuity of measures, the algorithm, generally speaking, may not be
able to run at all. One possible solution could be to find or model some other imaginary
observations, that suit the wrong initial measure, and run the algorithm until it can
work with given observations Y . We do not discuss further details here.
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On discrete time ergodic filters with wrong initial data 415

The second group of assumptions serves the case when (A3) may fail. The recur-
rence and moment assumptions are more restrictive here, and the function h is bounded;
the proof of the Theorem 2 is more involved.

(A′1) (Recurrence) We assume that

0 < inf
x

inf|λ|=1
λ∗σσ ∗(x)λ ≤ sup

x
sup
|λ|=1

λ∗σσ ∗(x)λ <∞,

the function b is locally bounded, and

lim|x |→∞ (|x + b(x)| − |x |) = −∞.

(A′2) (Gaussian noises) The noise (ξn, Vn) is an IID standard Gaussian random
sequence of random variables of dimension d+�. The function h is bounded.

(A′3) (Exponential moments) Both initial measures µ0 and ν0 possess some expo-
nential moment, that is, there exists c > 0 such that

∫
ec|x |(µ0(dx)+ ν0(dx)) <∞. (6)

See the Remark 3 below concerning some possible extensions for (A′2).

2.2 Setting and main results

The setting is based on the algorithm that solves the exact filtering problem, which, as
any Bayesian algorithm, depends on the initial data. Hence, we are going to plug in a
new initial measure instead of the exact one into the algorithm. The filtered sequence
is constructed via the observations (Yn), as a sequence of conditional probabilities,
Pµ0(Xn ∈ · | FY

n )—where FY
n = σ(Yk : 1 ≤ k ≤ n)—with the initial measure µ0.

Via the Bayes formula, this conditional measure can be represented as a probability
measure for any Y , via the following non-linear operator S̄Y1,...,Yn ,µ0

n , which we will
denote for simplicity by S̄Y,µ0

n , applied to the measure µ0,

Pµ0(Xn ∈ dxn | Y1, . . . , Yn) =
∫ n∏

i=1

Q(xi−1, dxi )c
µ0
i �(xi , Yi )µ0(dx0)

= dµ0
n

∫ n∏

i=1

Q(xi−1, dxi )�(xi , Yi )µ0(dx0) =: µ0 S̄Y,µ0
n (dxn). (7)

Here �(xi , yi ) is a conditional density of Yi at yi , given Xi = xi ,

�(xi , yi ) = qV (yi − h(xi ))
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(remind that qV denotes the density of V1), or

�(xi , Yi ) = qV (Yi − h(xi )),

and Q(x, dx ′) is a transition kernel for the Markov chain Xn, n ≥ 0, that is,

Q(x, dx ′) = 1√
det(σ ∗σ)(x)

qξ (σ (x)−1(x ′ − x − b(x))) dx ′

(remind that qξ denotes the density of ξ1). The random normalization constant dµ0
i is

defined as follows,

dµ0
i =

⎛

⎝Eµ0

⎛

⎝
i∏

j=1

�(X j , y j )

⎞

⎠

∣∣∣∣∣∣
y1=Y1,...yi=Yi

⎞

⎠
−1

,

and, correspondingly,

cµ0
i =

dµ0
i

dµ0
i−1

=
Eµ0

(∏i−1
j=1 �(X j , y j )

)

Eµ0

(∏i
j=1 �(X j , y j )

)

∣∣∣∣∣∣
y1=Y1,...yi=Yi

.

For the reader’s convenience let us show the formula for dµ0
n . Using standard

notations for conditional and joint densities, dropping the index µ0 for probability
and expectation, and denoting just for this short explanation, X̄n = (X1, . . . , Xn),
Ȳn = (Y1, . . . , Yn), we have,

P(X̄n ∈ A | Ȳn) =
∫

A

f (x̄n | Ȳn) dx̄n

=
∫

A

f (x̄n, Ȳn)

f (Ȳn)

f (x̄n)

f (x̄n)
dx̄n = 1

f (Ȳn)

∫

A

f (Ȳn | x̄n) f (x̄n) dx̄n

= 1

f (Ȳn)

∫

A

∏
�(xi , Yi ) f (x̄n) dx̄n = dn

∫

A

∏
�(xi , Yi ) f (x̄n) dx̄n,

due to the assumption of conditional independence of (Yi )’s given (Xi ). Hence, dn =
f (Ȳn)−1, and for A = (Rd)n , we get,

1 = dn

∫ ∏
�(xi , Yi ) f (x̄n) dx̄n = dn E

(∏
�(Xi , yi )

) ∣∣∣
ȳn=Ȳn

.

Now the “wrong initialization” problem can be formulated more precisely as fol-
lows. One does not know the measure µ0 exactly, but only some its approximation
ν0. Hence, one plugs in the observed values Y ’s and this new measure ν0 into the
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On discrete time ergodic filters with wrong initial data 417

formula (7). The problem is whether this algorithm forgets its wrong initial data in the
long run, that is, whether the difference between the conditional measures provided
by the algorithms with the exact and wrong initial data converges to zero in some
suitable topology. However, even before we pose this question about convergence, we
shall decide whether this operation of using ν0 instead of µ0 is well-defined. In which
case it is well-defined and in which it is not? The answer is that it is not well-defined
if and only if our actually observed vector Ȳn is impossible under ν0 for some n,
or, equivalently, if the vector-value (X0, . . . , Xn) starting from the distribution ν0 is
impossible under the observed Ȳn for some n. Since clearly any value of (X0, . . . , Xn)

with X0 ∈ supp(µ0) is possible, we have a sufficient condition for our operation to be
well-defined, supp(ν0) ⊂ supp(µ0), or, equivalently,

ν0 � µ0. (8)

This condition is sufficient whatever all other distributions are. Notice that in many
papers on the subject this is, indeed, assumed. However, it is not necessary if we impose
some other additional requirements, e.g., if the density of V1 is positive everywhere,
which we have assumed in both groups of our assumptions, see (A2) and (A′2).

Another issue is that while using the Birkhoff metric and induction we will need
equivalent measures with bounded derivatives, see (12) below. So it looks as if (8)
should have been assumed, at least. However, recall that induction can be started not
necessarily from zero. On the other hand, after the first application of the “mixing
inequality” (13) we will get comparable measures, that is, equivalent measures with
bounded derivatives, as required. Thus, we can start our induction (12) from n = 1.
This is why the condition (8), which seems so natural and nearly indispensable, in
fact, is not required here.

Now we shall explain how one can interpret this setting in a probabilistic way, using
again some Markov dynamics and conditioning. This is important for our presenta-
tion, although logically it might not necessarily follow from the previous paragraphs.
In fact, for the initial distribution ν0, we have another sequences of measures and
observations,

dν0
n

∫ n∏

i=1

Q(xi−1, dxi )�(xi , Ỹi )ν0(dx0) = ν0 S̄Ỹ ,ν0
n (dxn) ≡ νn(dxn).

This can be, indeed, regarded as another conditional expectation, for the same Mar-
kov process starting from another initial distribution ν0, given some new observations
(Ỹ1, . . . , Ỹn). Without losing a generality, we can and will assume that this pair, (X̃ , Ỹ ),
is defined on some independent probability space; we will not change our notation for
the probability measure, nor for expectation, though, both now apply to the process
(X, Y, X̃ , Ỹ ). However, due to the setting, only original observations Y are available,
so that we are obliged to identify (Ỹ1, . . . , Ỹn) with (Y1, . . . , Yn), that is, we keep
the original observations that have risen from the original initial data µ0, as though
they were initialized by its substitution ν0. The result, ν0 S̄Y,ν0

n , is still some condi-
tional probability, namely, the conditional distribution of νn given (Ỹ1, . . . , Ỹn), after
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the values (Ỹ1, . . . , Ỹn) have been replaced by (Y1, . . . , Yn). This operation is well
defined almost surely with respect to the measure Pµ0 , due to our assumptions on the
density qV .

The main question here is about a discrepancy of the filter with a wrong measure
ν0 instead of µ0 and the exact one, or, in other words, about the difference of the two
measures,

(µ0 S̄Y,µ0
n − ν0 S̄Y,ν0

n )(dxn),

whether it is reasonably small for large values of n. We will be interested in the distance
in the mean total variation norm with respect to the original initial measure µ0.

Theorem 1 1. Under the assumptions (A1)–(A3) above, the following bounds hold
true:

Eµ0‖µ0 S̄Y,µ0
n − ν0 S̄Y,ν0

n ‖T V ≤
{

Cmn−m, p = 1 ∀m > 0,

C exp(−cn), p = 0.
(9)

2. In addition, the following pathwise inequalities hold true:

(i) If

Eµ0‖µ0 S̄Y,µ0
n − ν0 S̄Y,ν0

n ‖T V ≤ Cn−m,

then, for every m′ < m, not necessarily integer, there exists a (random) n0
such that

‖µ0 S̄Y,µ0
n − ν0 S̄Y,ν0

n ‖T V ≤ n−m′+1, n ≥ n0.

(ii) If

Eµ0‖µ0 S̄Y,µ0
n − ν0 S̄Y,ν0

n ‖T V ≤ C exp(−cn),

then for any c′ < c, there exists a (random) n0 such that

‖µ0 S̄Y,µ0
n − ν0 S̄Y,ν0

n ‖T V ≤ C exp(−c′n), n ≥ n0.

Theorem 2 1. Under the assumptions (A′1)–(A′3) above, the following holds true:
there exists c0 > 0 such that

Eµ0‖µ0 S̄Y,µ0
n − ν0 S̄Y,ν0

n ‖T V ≤ C exp(−c0n). (10)

2. In addition, the following pathwise inequalities hold true: for any c < c0, there is
a random time n0 which is finite almost surely, such that

‖µ0 S̄Y,µ0
n − ν0 S̄Y,ν0

n ‖T V ≤ C exp(−cn), n ≥ n0.
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On discrete time ergodic filters with wrong initial data 419

Remark 2 Notice that in the Theorem 1 the constants in the right hand side of the
main inequality can be chosen uniformly over every class of problems with uniformly
bounded values of the integrals in the assumption on the initial measures, all coeffi-
cients, non-degeneracy constant of the matrix σσ ∗, and all other constants (A2)–(A3).
Similarly, one can state uniform bounds for appropriate classes of problems in the
Theorem 2.

Remark 3 In the Theorem 2, non-Gaussian noises in both components of the system
could be considered by this approach, too, under some general assumptions on the
noise likelihood ratio functions. A simple sufficient condition for that is

sup
|x |,|x̃ |,|x ′|≤R

Q(x, dx ′)
Q(x̃, dx ′)

<∞ ∀R > 0,

for Q, and

0 < C−1 <
qV (y − h(x))

qV (y)
≤ C <∞ ∀x, y,

for qV (or �), which can be checked for densities like qV (x) = 1
2 exp(−|x |), and

qV (x) = Ck(1+ |x |)−k, k ≥ 2. For densities with lighter tails our hypothesis is that
the latter condition may be replaced by

0 < C−1 ≤
∫ (

qV (y − h(x))

qV (y)

)4

dy ≤ C <∞,

or some further extensions of this condition. In this case, the likelihood ratios are the
analogues of the Girsanov type exponentials in the proof of the Theorem 2 below. Of
course, the noise centering condition is not essential under (A′1). We postpone a more
detailed discussion about other cases till further papers.

Remark 4 One relevant and important counterexample can be found in [3], although
it is not a counterexample to any particular theorem. A simpler counterexample to
theorems could be constructed as follows. Suppose there is no mixing in the sense that
the process X has two separated ergodic classes, and support of µ0 lies in one of them,
while support of ν0 lies in the other one. Then, one just may not be able to use Y ’s
in the filter algorithm, at least, if the support of the observation noise distribution is
bounded. In this case the filter may never be able to start working with a wrong initial
measure, and the principle that the filter forgets wrong initial data fails.

The continuous time case can be treated similarly, although with some essential
technical changes; see [9,10].

3 The proof of Theorem 1

1. Let us introduce some indicators. First of all, in this proof, x stands for the whole
sequence (x1, . . . , xn), and likewise for x̃ , and the same for the random sequences
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X , X̃ , and Y . As suggested above in the setting, we consider independent couples
(X, Y ) and (X̃ , Ỹ ), with initial distributions of the first components, L(X0) = µ0 and
L(X̃0) = ν0. For every i ≥ 0, let Mi := max(|Xi |, |X̃i |). For fixed R and n, we denote
by δ a (non-random) vector of dimension n+ 1 with coordinates 1 or 0 at every place,
and the following indicators, with a convention 00 = 1,

1δ(X, X̃) :=
n∏

i=0

(1(Mi ≤ R))δi (1− 1(Mi ≤ R))1−δi

≡
n∏

i=0

(1(δi = 1)1(Mi ≤ R)+ 1(δi = 0)1(Mi > R)).

Remind that this indicator function depends on R and n as parameters, which are
dropped from the notation. In some cases it will be useful to present the latter indica-
tor as

1δ(X, X̃) =
n∏

i=0

1δ(i, Mi ),

where for any M > 0,

1δ(i, M) = (1(δi = 1)1(M ≤ R)+ 1(δi = 0)1(M > R)).

For every δ let us define

J = J (δ) := {i : 0 ≤ i ≤ n, δi = 1}.

Denote by � the set of all possible values of the vector δ.
Let us define new operators on the spaces of normalized and non-normalized mea-

sures on R2d = Rd × Rd , or, rather, on the space of pairs of measures, each on Rd ,
as follows,

(µ, ν)S̄Y ;µ0,ν0
n (A × B)

=
∫ ∫

1(xn ∈ A, x̃n ∈ B)

×
(

n∏

i=1

cµ0
i cν0

i �(xi , Yi )�(x̃i , Yi )Q(xi−1, dxi )Q(x̃i−1, dx̃i )

)
µ(dx0)ν(dx̃0),

and

(µi , νi )SY ;R;δ
i :i+1 (A × B)

=
∫ ∫

1(xi+1 ∈ A, x̃i+1 ∈ B)1δ(xi , x̃i ) 1δ(xi+1, x̃i+1)

×�(xi+1, Yi+1)�(x̃i+1, Yi+1)Q(xi , dxi+1)Q(x̃i , dx̃i+1)µi (dxi )νi (dx̃i ),
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On discrete time ergodic filters with wrong initial data 421

and (we use a double integral notation just to emphasize that we integrate with respect
to the variables x and x̃)

(µ, ν)S̄Y ;R;δ;µ0,ν0
n (A × B)

=
∫ ∫

1(xn ∈ A, x̃n ∈ B)1δ(x, x̃)

×
(

n∏

i=1

cµ0
i cν0

i �(xi , Yi )�(x̃i , Yi )Q(xi−1, dxi )Q(x̃i−1, dx̃i )

)
µ(dx0)ν(dx̃0),

and

(µ, ν)SY ;R;δ
n (A × B)

=
∫ ∫

1(xn ∈ A, x̃n ∈ B)1δ(x, x̃)

×
(

n∏

i=1

�(xi , Yi )�(x̃i , Yi )Q(xi−1, dxi )Q(x̃i−1, dx̃i )

)
µ(dx0)ν(dx̃0),

which can be equivalently presented as

(µ, ν)SY ;R;δ
n (A × B) = (µ, ν)

n−1∏

i=0

SY ;R;δ
i :i+1 (A × B).

We remind that all the operators above correspond to the independent pairs of (X, Y )

and (X̃ , Ỹ ), due to the direct product of the integrals with respect to the variables xi ’s
and x̃i ’s.

Now we define a notion which will play a crucial role in the sequel. For every δ, let

eY ;δ;µ0,ν0
n := (µ0, ν0)S̄Y ;R;δ;µ0,ν0

n (R2d) ≡ Eµ0,ν0(1δ(Z) | Y, Ỹ )

∣∣∣
Ỹ=Y

,

where Z = (X, X̃). Due to the assumption on the density qV , these random variables
are well-defined. Notice that the symmetry in the definition of S̄ implies a very impor-
tant identity,

eY ;δ;µ0,ν0
n = eY ;δ;ν0,µ0

n .
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Indeed, since all restrictions on x are the same as those on x̃ , or, in other words, because
1δ(x, x̃) = 1δ(x̃, x), we conclude,

eY ;δ;µ0,ν0
n =

∫ ∫
1δ(x, x̃)

(
n∏

i=1

cµ0
i cν0

i �(xi , Yi )�(x̃i , Yi )Q(xi−1, dxi )Q(x̃i−1, dx̃i )

)

×µ0(dx0)ν0(dx̃0) =
∫ ∫

1δ(x̃, x)

×
(

n∏

i=1

cµ0
i cν0

i �(x̃i , Yi )�(xi , Yi )Q(x̃i−1, dx̃i )Q(xi−1, dxi )

)

×µ0(dx0)ν0(dx̃0)(by change of variables, xi ←→ x̃i , for all i’s)

=
∫ ∫

1δ(x, x̃)

(
n∏

i=1

cν0
i cµ0

i �(xi , Yi )�(x̃i , Yi )Q(xi−1, dxi )Q(x̃i−1, dx̃i )

)

× ν0(dx0)µ0(dx̃0) = eY ;δ;ν0,µ0
n .

Notice that the replacement of Ỹ by Y is well defined, because under the integrals we
only have likelihood functions that depend on Ỹ , but not on the couple Y, Ỹ together.
Next, denote

(µ, ν)ŜY ;R;δ;µ0,ν0
n (A × B) := (eY ;δ;µ0,ν0

n )−1 (µ, ν)S̄Y ;R;δ;µ0,ν0
n (A × B).

The sense of the last notation is that the result of this action is a normalized measure
restricted to the event 1δ(X, X̃) = 1.

Next important step is due to the fact that the distance in total variation for the mea-
sures in Rd can be estimated from above via the correspondingly duplicated measures,
and the latter can be split into 2n+1 terms as follows,

‖µ0 S̄Y ;µ0,ν0
n − ν0 S̄Y ;ν0,µ0

n ‖T V

≤ ‖(µ0, ν0)S̄Y ;µ0,ν0
n − (ν0, µ0)S̄Y ;ν0,µ0

n ‖T V

≤
∑

δ∈�
‖(µ0, ν0)S̄Y ;R;δ;µ0,ν0

n − (ν0, µ0)S̄Y ;R;δ;µ0,ν0
n ‖T V

(because ‖∑ ·‖ ≤∑ ‖ · ‖)
= 2

∑

δ∈�
sup

D

(
eY ;δ;µ0,ν0

n (µ0, ν0)ŜY ;R;δ;µ0,ν0
n (D)−eY ;δ;ν0,µ0

n (ν0, µ0)ŜY ;R;δ;µ0,ν0
n (D)

)
.

= 2
∑

δ∈�
eY ;δ;µ0,ν0

n sup
D

(
(µ0, ν0)ŜY ;R;δ;µ0,ν0

n (D)− (ν0, µ0)ŜY ;R;δ;µ0,ν0
n (D)

)
,

where D runs all Borel sets B(R2d). The fact that the (random) normalization constant
is the same for the two measures has been used essentially here. The first inequality
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in the chain of expressions above can be explained as follows,

(1/2) ‖(µ0, ν0)S̄Y ;µ0,ν0
n − (ν0, µ0)S̄Y ;ν0,µ0

n ‖T V

= sup
D

(∫
1((xn, x̃n) ∈ D)µ0(dx0)ν0(dx̃0)

×
(

n∏

i=1

cµ0
i cν0

i �(xi , Yi )�(x̃i , Yi )Q(xi−1, dxi )Q(x̃i−1, dx̃i )

)

−
∫

1((xn, x̃n) ∈ D)ν0(dx0)µ0(dx̃0)

)

×
(

n∏

i=1

cµ0
i cν0

i �(xi , Yi )�(x̃i , Yi )Q(xi−1, dxi )Q(x̃i−1, dx̃i )

)

≥ sup
A∈B(Rd )

∫
1((xn, x̃n) ∈ A × Rd)µ0(dx0)ν0(dx̃0)

×
(

n∏

i=1

cµ0
i cν0

i �(xi , Yi )�(x̃i , Yi )Q(xi−1, dxi )Q(x̃i−1, dx̃i )

)

−
∫

1((xn, x̃n) ∈ A × Rd)ν0(dx0)µ0(dx̃0)

×
(

n∏

i=1

cµ0
i cν0

i �(xi , Yi )�(x̃i , Yi )Q(xi−1, dxi )Q(x̃i−1, dx̃i )

))

(here we will change variables in the second integral, x �→ x̃ and vice versa)

= sup
A∈B(Rd )

(∫
1((xn, x̃n) ∈ A × Rd)µ0(dx0)ν0(dx̃0)

×
(

n∏

i=1

cµ0
i cν0

i �(xi , Yi )�(x̃i , Yi )Q(xi−1, dxi )Q(x̃i−1, dx̃i )

)

−
∫

1((x̃n, xn) ∈ A × Rd)ν0(dx̃0)µ0(dx0)

×
(

n∏

i=1

cµ0
i cν0

i �(xi , Yi )�(x̃i , Yi )Q(xi−1, dxi )Q(x̃i−1, dx̃i )

))

= sup
A∈B(Rd )

(∫
1(xn ∈ A)

(
n∏

i=1

cµ0
i �(xi , Yi )Q(xi−1, dxi )

)
µ0(dx0)

−
∫

1(x̃n ∈ A)

(
n∏

i=1

cν0
i �(x̃i , Yi )Q(x̃i−1, dx̃i )

)
ν0(dx̃0)

)

= (1/2) ‖µ0 S̄Y ;µ0
n − ν0 S̄Y ;ν0

n ‖T V .
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We will use the Birkhoff metric for positive measures, see [11], and also [2,14]
(where it is called Hilbert metric; one more synonym is the projective metric),

ρ(µ, ν) =
{

ln (inf s : µ ≤ sν)
(sup t : µ ≥ tν)

, if finite,

+∞, otherwise.

Another equivalent definition reads,

ρ(µ, ν) =
{

ln sup(dµ/dν)+ ln sup(dν/dµ), if finite,
+∞, otherwise.

Due to the inequality for the total variation norm and the Birkhoff metric
(see [2,14]), and since both measures below—that is, (µ0, ν0)ŜY ;R;δ;µ0,ν0

n and
(ν0, µ0)ŜY ;R;δ;µ0,ν0

n —are normalized, we have,

2 sup
D

(
(µ0, ν0)ŜY ;R;δ;µ0,ν0

n (D)− (ν0, µ0)ŜY ;R;δ;µ0,ν0
n (D)

)

≤ 2

ln 3
ρ

(
(µ0, ν0)ŜY ;R;δ;µ0,ν0

n , (ν0, µ0)ŜY ;R;δ;µ0,ν0
n

)
. (11)

We claim that there exists πR < 1 such that if k ≥ 1, then

ρ((µ0, ν0)ŜY ;R;δ;µ0,ν0
n , (ν0, µ0)ŜR;δ;µ0,ν0

n )

≡ ρ
(
(µ0, ν0)SY ;R;δ

n , (ν0, µ0)SY ;R;δ
n

)
≤ CRπk−1

R , (12)

where

k = #1(δ) :=
n∑

j=1

1( j − 1 ∈ J, j ∈ J ),

or, in words, #1(δ) is the total number of consequent pairs of ones in δ. This follows
by induction from the following two inequalities, see, e.g., [14]; we use here short
notations (µi , νi ) = (µ0ν0)SY ;R;δ

i .

(1◦) For every i ,

ρ
(
(µi , νi )SY ;R;δ

i :i+1 , (νi , µi )SY ;R;δ
i :i+1

)
≤ ρ ((µi , νi ), (νi , µi )).

(2◦) There exists πR < 1 such that if i ∈ J and i + 1 ∈ J ,

ρ
(
(µi , νi )SY ;R;δ

i :i+1 , (νi , µi )SY ;R;δ
i :i+1

)
≤ πRρ ((µi , νi ), (νi , µi )).
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The latter follows from the Proposition 3.9 from [14], with the contraction
constant, πR ≤ (1− C̃−2

R )/(1+ C̃−2
R ), due to the “mixing condition”

sup
DR

Qi :i+1(x0, x̃0, dx ′, dx̃ ′)
Qi :i+1(v0, ṽ0, dx ′, dx̃ ′)

≤ sup
DR

supx det σ ∗σ(x)

infx det σ ∗σ(x)
sup
DR

(
qξ (σ

−1(x ′ − v0 − b(v0))

qξ (σ−1(x ′ − x0 − b(x0))

)2

=: C̃R <∞, (13)

with DR := {(x0, x̃0, v0, ṽ0, x ′, x̃ ′) : |x0|, |x̃0|, |v0|, |ṽ0|, |x ′|, |x̃ ′| ≤ R}. and
Then, the meaning of the inequality (2◦) is that the replacement of non-random
kernels Q by random ones Q� does not change the supremum of the derivative
of one measure with respect to another.

For the completeness and reader’s convenience, we remind the proof of the inequal-
ity (1◦). If using the second version of the definition for the Birkhoff metric, it suffices
to check, for every i , that firstly,

f 1
i+1 := sup

d(µi+1, νi+1)

d(νi+1, µi+1)
≤ sup

d(µi , νi )

d(νi , µi )
=: f 1

i ,

and secondly,

f 2
i+1 := sup

d(νi+1, µi+1)

d(µi+1, νi+1)
≤ sup

d(νi , µi )

d(µi , νi )
=: f 2

i ,

where d(µ, ν)/d(ν, µ) means a Radon–Nikodym derivative. The two inequalities can
be proved similarly, so we only check the first one. We estimate,

f 1
i+1 = sup(µi+1, νi+1)(dxi+1, dx̃i+1)/(νi+1, µi+1)(dxi+1, dx̃i+1)

= sup

∫
µi (dxi )νi (dx̃i )Q(xi , dxi+1)Q(x̃i , dx̃i+1)�(xi , Yi )�(x̃i , Yi )∫
νi (dxi )µi (dx̃i )Q(xi , dxi+1)Q(x̃i , dx̃i+1)�(xi , Yi )�(x̃i , Yi )

(remind that both integrals are with respect to dxi d x̃i only)

≤ sup f 1
i

∫
νi (dxi )µi (dx̃i )Q(xi , dxi+1)Q(x̃i , dx̃i+1)�(xi , Yi )�(x̃i , Yi )∫
νi (dxi )µi (dx̃i )Q(xi , dxi+1)Q(x̃i , dx̃i+1)�(xi , Yi )�(x̃i , Yi )

= f 1
i × 1.

In the last inequality, we have replacedµi (dxi )νi (dx̃i )byνi (dxi )µi (dx̃i ) in the numer-
ator, with the help of the bound on the derivative, f 1

i .
The induction base k = 1 (not k = 0) in (12) is valid due to the fact that after

the first pair of ones, the measures become comparable, by virtue of (13); and the
induction step follows from (2◦) directly.
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Now we can estimate as follows,

Eµ0,ν0‖µ0 S̄Y,µ0
n − ν0 S̄Y,ν0

n ‖T V

≤
∑

δ∈�; #1(δ)≥1

CRπ
#1(δ)−1
R Eµ0,ν0 eY ;δ;µ0,ν0

n

+ 2
∑

δ∈�; #1(δ)=0

EeY ;δ;µ0,ν0
n sup

D
((µ0, ν0)ŜY ;R;δ;µ0,ν0

n (D)

−(ν0, µ0)ŜY ;R;δ;µ0,ν0
n (D))

≤
∑

δ∈�
CR(π

#1(δ)−1
R ∧ 1)Eµ0,ν0 eY ;δ;µ0,ν0

n . (14)

Hence, our main goal here is to estimate the expectation Eµ0,ν0 eY ;δ;µ0,ν0
n . Notice that

the constant CR in (12) and (14) could be chosen independently of R and induction
could start from k = 0, if we assume in addition to (A3) that µ0 and ν0 are equivalent
with a bounded derivative ‖dν0/dµ0‖L∞(µ0) <∞.

2. Let us split the sum
∑

δ∈� into two parts, with #1(δ)≥ εn, and with #1(δ) < εn,
where ε > 0 is to be chosen. Whatever 0 < ε < 1, we have, for n large enough,

∑

δ: #1(δ)≥εn

(π
#1(δ)−1
R ∧ 1)Eµ0 eY ;δ;µ0,ν0

n

=
∑

δ: #1(δ)≥εn

(π
#1(δ)−1
R ∧ 1)Eµ0 Eµ0,ν0(1δ(X, X̃) | Y, Ỹ )

∣∣∣
Ỹ=Y

≤ πεn−1
R

∑

δ: #1(δ)≥εn

Eµ0 Eµ0,ν0(1δ(X, X̃) | Y, Ỹ )

∣∣∣
Ỹ=Y

= πεn−1
R Eµ0

∑

δ: #1(δ)≥εn

Pµ0,ν0

(
1δ(X, X̃) | Y, Ỹ

) ∣∣∣
Ỹ=Y

= πεn−1
R Eµ0 Pµ0,ν0

⎛

⎝
⋃

δ: #1(δ)≥εn

1δ(X, X̃) | Y, Ỹ

⎞

⎠
∣∣∣
Ỹ=Y
≤ πεn−1

R . (15)

The equality in the last line here is because the indicators 1δ(X, X̃) with different δ’s
correspond to disjoint events, and due to linearity.

Hence, our main task remains to estimate the second term of the sum,

∑

δ: #1(δ)<εn

(π
#1(δ)−1
R ∧ 1)Eµ0

(
Eµ0,ν0(1δ(X, X̃) | Y, Ỹ )

∣∣∣
Ỹ=Y

)

≤
∑

δ: #1(δ)<εn

Eµ0

(
Eµ0,ν0(1δ(X, X̃) | Y, Ỹ )

∣∣∣
Ỹ=Y

)
. (16)
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We have,

∑

δ: #1(δ)<εn

Eµ0

(
Eµ0,ν0(1δ(X, X̃) | Y, Ỹ )

∣∣∣
Ỹ=Y

)

= Eµ0

⎛

⎝
∑

δ: #1(δ)<εn

Eµ0,ν0(1δ(X, X̃) | Y, Ỹ )

∣∣∣
Ỹ=Y

⎞

⎠

= Eµ0

⎛

⎝Eµ0,ν0(
∑

δ: #1(δ)<εn

1δ(X, X̃) | Y, Ỹ )

∣∣∣
Ỹ=Y

⎞

⎠. (17)

Let us introduce some new indicators: let 0 < R be large enough, and

#1(X)R :=
n∑

k=0

1(|Xk | ≤ R), #0(X)R =
n∑

k=0

1(|Xk | > R).

Let us show that by the Dirichlet principle,

1

(
#1(X)R ≥ 1+ 3+ ε

4
n, #1(X̃)R ≥ 1+ 3+ ε

4
n

) ∑

δ: #1(δ)<εn

1δ(X, X̃) = 0. (18)

Indeed, first of all, notice that

∑

δ: #1(δ)<εn

1δ(X, X̃) = 1

(
n∑

i=1

1(|Xi−1| ∨ |X̃i−1| ∨ |Xi | ∨ |X̃i | ≤ R) < εn

)
.

If all |Xk | ∨ |X̃k | ≤ R, then
∑n

i=1 1(|Xi−1| ∨ |X̃i−1| ∨ |Xi | ∨ |X̃i | ≤ R) = n.
Every “large” coordinate |Xk | > R or |X̃k | > R, 0 ≤ k ≤ n, can reduce the sum∑n

i=1 1(|Xi−1|∨|X̃i−1|∨|Xi |∨|X̃i | ≤ R) at most by two. So, if this sum has a value
less than εn, this means that at least (1 − ε)n/2 coordinates |Xk | or |X̃k | are greater
than |R|, i.e., #0(X)R + #0(X̃)R > 1−ε

2 n; hence, either #1(X)R < 1 + 3+ε
4 n, or

#1(X̃)R < 1+ 3+ε
4 n,—since otherwise #0(X)R ≤ 1−ε

4 n and #0(X̃)R ≤ 1−ε
4 n. Thus,∑n

i=1 1(|Xi−1| ∨ |X̃i−1| ∨ |Xi | ∨ |X̃i | ≤ R) < εn, implies #1(X) < 1+ (3+ ε)n/4
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or #1(X̃) < 1+ (3+ ε)n/4, so, (18) holds true. Hence, we have,

Eµ0

⎛

⎝Eµ0,ν0

⎛

⎝
∑

δ: #1(δ)<εn

1δ(X, X̃) | Y, Ỹ

⎞

⎠
∣∣∣
Ỹ=Y

⎞

⎠

≤ Eµ0

⎛

⎝Eµ0,ν0

⎛

⎝1

(
#1(X)R <

3+ ε

4
n

) ∑

δ: #1(δ)<εn

1δ(X, X̃) | Y, Ỹ

⎞

⎠
∣∣∣
Ỹ=Y

⎞

⎠

+Eµ0

⎛

⎝Eµ0,ν0

⎛

⎝1

(
#1(X̃)R <

3+ ε

4
n

) ∑

δ: #1(δ)<εn

1δ(X, X̃) | Y, Ỹ

⎞

⎠
∣∣∣
Ỹ=Y

⎞

⎠

≤ Eµ0

(
Eµ0,ν0

(
1

(
#1(X)R <

3+ ε

4
n

)
| Y, Ỹ

) ∣∣∣
Ỹ=Y

)

+Eµ0

(
Eµ0,ν0

(
1

(
#1(X̃)R <

3+ ε

4
n

)
| Y, Ỹ

) ∣∣∣
Ỹ=Y

)

= Eµ0

(
Eµ0

(
1

(
#1(X)R <

3+ ε

4
n

)
| Y

))

+Eµ0

(
Eν0

(
1

(
#1(X̃)R <

3+ ε

4
n

)
| Ỹ

) ∣∣∣
Ỹ=Y

)

(because X does not depend on Ỹ , nor X̃ depends on Y ).

We estimate,

Eµ0

(
Eµ0

(
1

(
#1(X)R <

3+ ε

4
n

)
| Y

))
= Eµ0

(
1

(
#1(X)R <

3+ ε

4
n

))
. (19)

Next, we estimate the other term, using the assumption (A3),

Eµ0

(
Eν0

(
1

(
#1(X̃)R <

3+ ε

4
n

)
| Ỹ

) ∣∣∣
Ỹ=Y

)

≤ C2 Eν0

(
Eν0

(
1

(
#1(X̃)R <

3+ ε

4
n

)
| Ỹ

) ∣∣∣
Ỹ=Y

)

(because Eµ0 F(X, Y ) ≤ C2 Eν0 F(X, Y ))

= C2 Eν0

(
Eν0

(
1

(
#1(X̃)R <

3+ ε

4
n

)
| Ỹ

))

(because Eν0 F(X, Y ) = Eν0 F(X̃ , Ỹ ))

= C2 Eν0

(
1

(
#1(X̃)R <

3+ ε

4
n

))
,

similarly to (19) where we had the equality.
3. Let n ≥ n0, n0 be large enough (at least n0 > 4/(1 − ε)), and 1 > ε′ >

(1/n0)+(3+ε)/4. Due to the bounds which easily follow from [18] and [19], the latter

123



On discrete time ergodic filters with wrong initial data 429

expectation possesses an appropriate bound, exponential or polynomial, depending on
the value p, if R is chosen large enough, namely,

Eµ0 1(#1(X)R < ε′n) ≤
{

Cmn−m, p = 1, ∀ m > 0,

C exp(−cn), p = 0.
(20)

This follows readily from the hitting time estimates for τ̂ = inf(t ≥ 0 : |Xt | ≤ R),
see [18,19],

{
Ex τ̂

k ≤ Cm(1+ |x |m) (∀m > 2k) (p = 1, ∀k > 0),

Ex exp(ατ̂ ) ≤ C exp(c|x |) (∃C, c, α > 0) (p = 0),
(21)

due to the inequality Pµ0(#1(X)R < ε′n) ≤ Pµ0(τ̂ε′n > n),—where τ̂1 = τ̂ , and by
induction τ̂n+1 := inf(t ≥ τ̂n + 1 : |Xt | ≤ R), n ≥ 1,—and due to exponential
Chebyshev’s inequality in the case p = 0, and by standard inequalities for semi-
martingales in the case p = 1. By virtue of (21), it can be shown by induction, in each
case:

• [p = 0] We have,

Px (τ̂ε′n > n)≤ exp(−αn + ε′n ln C + c|x |), (22)

where the value C := sup|x |≤R E exp(ατ̂ ) can be done arbitrarily close to 1 by
choosing large R. Hence, we get an exponential upper bound for Px (τ̂ε′n > n).

• [p = 1] Let ε′ < ε′′ < 1. We have,

Px(τ̂ε′n > n)= Px

⎛

⎝
ε′n∑

i=1

(τ̂k − τ̂k−1) > n

⎞

⎠ ≤ Cm(1+ |x |m)((1− ε′′)n)−knk/2,

(23)

with any m > 2k, if we choose R so large that ε′ sup|x ′|≤R Ex ′((τ̂k − τ̂k−1)

| X τ̂k−1) < ε′′ < 1.

Both (22) and (23) have been proved in [18,19], correspondingly, so we do not repeat
the calculus in either case. For convenience of reading, however, recall the idea of
the proofs. In both cases due to the choice of ε′, the mean value of τ̂k − τ̂k−1 is less
that (ε′)−1. So, in the case p = 0 one can apply exponential martingale inequalities,
which lead to (22). In the case p = 1 one applies polynomial martingale inequalities
that generalize the fact that the k-th moment of the sum of independent identically
distributed random variables growth as nk/2, and this is why we get the multiple nk/2

in the right hand side of (23).
Hence, in both cases (20) holds true. Some more details concerning similar bounds

can be found in the proof of the Theorem 2 below, see (27)–(28).
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4. Hence, we get the estimate for the expression in (17),

Eµ0

⎛

⎝Eµ0,ν0

⎛

⎝
∑

δ: #1(δ)<εn

1δ(X, X̃) | Y, Ỹ

⎞

⎠
∣∣∣
Ỹ=Y

⎞

⎠ ≤
{

Cmn−m, p = 1,

C exp(−cn), p = 0.

for all m > 0 in the case p = 1. Combining this with the earlier inequalities (14) and
(15), we obtain in both cases the final estimate (9), which in the case p = 0 may have
a new constant c in the exponential.

5. The non-averaged bounds follow from Chebyshev’s inequality and the
Borel–Cantelli lemmae. The Theorem 1 is proved.

4 The proof of Theorem 2

1. We continue the proof from the estimates (14)–(16). Remind that our main task
remains to estimate the second term of the sum (14),

∑

δ: #1(δ)<εn

(π
#1(δ)−1
R ∧ 1)Eµ0

(
Eµ0,ν0(1δ(X, X̃) | Y, Ỹ )

∣∣∣
Ỹ=Y

)

≤
∑

δ: #1(δ)<εn

Eµ0

(
Eµ0,ν0(1δ(X, X̃) | Y, Ỹ )

∣∣∣
Ỹ=Y

)
.

Remind that now we cannot use the assumption (A3), and the idea to tackle this term
is quite different. Remind that now the noise (ξ, V ) is Gaussian. Let

γ = exp

⎛

⎝−
∑

i≤n

h(Xi )Yi + 1

2

∑

i≤n

h2(Xi )−
∑

i≤n

h(X̃i )Ỹi + 1

2

∑

i≤n

h2(X̃i )

⎞

⎠.

We will use one more version of the Bayes formula,

Eµ0,ν0(1δ(X, X̃) | Y, Ỹ ) =
Eγ

µ0,ν0

(
1δ(X, X̃)γ−1 | Y, Ỹ

)

Eγ
µ0,ν0(γ

−1 | Y, Ỹ )

, (24)

where for any measure P , we denote by Pγ the measure with a density d Pγ /d P = γ ,
and Eγ then denotes expectation with respect to this measure Pγ . For the reader’s
convenience, remind the proof. For any bounded measurable function g = g(Y, Ỹ )

we can check the definition of the conditional probability as follows,
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Eµ0,ν0 g
Eγ

µ0,ν0

(
1δ(X, X̃)γ−1 | Y, Ỹ

)

(
Eγ

µ0,ν0(γ
−1 | Y, Ỹ )

)

= Eγ γ−1g
Eγ

µ0,ν0

(
1δ(X, X̃)γ−1 | Y, Ỹ

)

(
Eγ

µ0,ν0(γ
−1 | Y, Ỹ )

)

= Eγ
µ0,ν0

⎛

⎝g
Eγ

µ0,ν0

(
1δ(X, X̃)γ−1 | Y, Ỹ

)

(
Eγ

µ0,ν0(γ
−1 | Y, Ỹ )

)
(

Eγ
µ0,ν0

(
γ−1

)
| Y, Ỹ

)
⎞

⎠

= Eγ
µ0,ν0

(
g Eγ

µ0,ν0

(
1δ(X, X̃)γ−1 | Y, Ỹ

))

= Eγ
µ0,ν0

(
g 1δ(X, X̃)γ−1

)
= Eµ0,ν0

(
g 1δ(X, X̃)

)
.

Let us emphasize that here we do not need to substitute Ỹ by Y , because the matter
was simply to check the definition of conditional expectation.

Next, due to the Cauchy–Bouniakovsky–Schwarz inequality—known in older
monographs either as the Cauchy–Bouniakovsky, or Cauchy–Schwarz’, we follow
here some recent suggestions of unification—for the conditional expectation we esti-
mate the numerator in (24),

Eγ
µ0,ν0

(
1δ(X, X̃)γ−1 | Y, Ỹ

)

≤
(

Eγ
µ0,ν0

(
1δ(X, X̃) | Y, Ỹ

))1/2 (
Eγ

µ0,ν0

(
γ−2 | Y, Ỹ

))1/2
.

The denominator will be treated separately.
The further plan uses the following idea. Firstly, under Pγ

µ0,ν0 , the couples of
processes (X, X̃) and (Y, Ỹ ) are independent—a discrete version of Girsanov’s
Theorem—so that

Eγ
µ0,ν0

(
1δ(X, X̃) | Y, Ỹ

)
= Eγ

µ0,ν0
1δ(X, X̃) = Eµ0,ν0 1δ(X, X̃),

which is a non-random value. The last equality is also due to Girsanov’s Theorem;
its sense is that the density γ does not change the distribution of the non-observable
process. Secondly, we will show that the expectation of the second factor divided by
the denominator, with respect to Pµ0,ν0 , or, equivalently, with respect to Pµ0 ,

Eµ0

(
Eγ

µ0,ν0

(
γ−2 | Y, Ỹ

)∣∣∣
Ỹ=Y

)1/2

Eγ
µ0,ν0(γ

−1 | Y, Ỹ )

∣∣∣
Ỹ=Y

= Eγ
µ0

γ−1

(
Eγ

µ0,ν0

(
γ−2 | Y, Ỹ

) ∣∣∣
Ỹ=Y

)1/2

Eγ
µ0,ν0(γ

−1 | Y, Ỹ )

∣∣∣
Ỹ=Y

, (25)

does not exceed some exponential exp(Cn), with a constant C that depends only on
‖h‖L∞ . Finally, as we will see shortly, the expression Eµ0,ν0 1δ(X, X̃) can be made
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smaller that exp(−Cn) with any C under an appropriate choice of R, if #1(δ)< εn.
Hence, we will get an exponential bound for the second part of the sum (14), too. Let
us start this programme.

2. Denominator in (25). We are going to estimate it from below. We have,

Eγ
µ0,ν0

(γ−1 | Y, Ỹ )

∣∣∣
Ỹ=Y
= Eγ

µ0,ν0

×
⎛

⎝exp

⎛

⎝
∑

i≤n

h(Xi )Yi − 1

2

∑

i≤n

h(Xi )
2+

∑

i≤n

h̃(X̃i )Ỹi− 1

2

∑

i≤n

h(X̃i )
2

⎞

⎠ | Y, Ỹ

⎞

⎠
∣∣∣
Ỹ=Y

≥ e−Cn Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝
∑

i≤n

h(Xi )Yi +
∑

i≤n

h(X̃i )Ỹi | Y, Ỹ

⎞

⎠
∣∣∣
Ỹ=Y

= e−Cn Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝
∑

i≤n

h(Xi )Yi

⎞

⎠ | Y
⎞

⎠ Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝
∑

i≤n

h(X̃i )Ỹi

⎞

⎠ | Ỹ
⎞

⎠

≥ e−Cn

⎛

⎝Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝−
∑

i≤n

h(Xi )Yi

⎞

⎠ | Y
⎞

⎠

⎞

⎠
−1

×
⎛

⎝Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝−
∑

i≤n

h(X̃i )Ỹi

⎞

⎠ | Ỹ
⎞

⎠

⎞

⎠
−1 ∣∣∣

Ỹ=Y
.

In other words,

(
Eγ

µ0,ν0
(γ−1 | Y, Ỹ )

∣∣∣
Ỹ=Y

)−1 ≤ e+Cn

⎛

⎝Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝−
∑

i≤n

h(Xi )Yi

⎞

⎠ | Y
⎞

⎠

⎞

⎠

×
⎛

⎝Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝−
∑

i≤n

h(X̃i )Ỹi

⎞

⎠ | Ỹ
⎞

⎠

⎞

⎠
∣∣∣
Ỹ=Y

.

The first conditional expectation in the latter bound suits well our further applications
of the Bouniakovsky–Cauchy–Schwarz inequality. The second one suits it as well,
because it can be re-written as

⎛

⎝Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝−
∑

i≤n

h(X̃i )Ỹi

⎞

⎠ | Ỹ
⎞

⎠

⎞

⎠
∣∣∣
Ỹ=Y

=
⎛

⎝Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝−
∑

i≤n

h(X̃i )Yi

⎞

⎠ | Y
⎞

⎠

⎞

⎠,

since X̃ and Ỹ are independent under Pγ .
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Further, with p > 1, r = p2—we will use p = 4 —

⎛

⎝Eγ
µ0,ν0

⎛

⎝Eγ
µ0,ν0

(exp

⎛

⎝−
∑

i≤n

h(X̃i )Yi

⎞

⎠ | Y )

⎞

⎠
p⎞

⎠
1/p

≤
⎛

⎝Eγ
µ0,ν0

⎛

⎝Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝−p
∑

i≤n

h(X̃i ) Yi

⎞

⎠ | Y
⎞

⎠

⎞

⎠

⎞

⎠
1/p

=
⎛

⎝Eγ
µ0,ν0

exp

⎛

⎝−p
∑

i≤n

h(X̃i )Yi

⎞

⎠

⎞

⎠
1/p

=
⎛

⎝Eγ
µ0,ν0

exp

⎛

⎝−p
∑

i≤n

h(X̃i )Yi − r
∑

i≤n

h(X̃i )
2 + r

∑

i≤n

h(X̃i )
2

⎞

⎠

⎞

⎠
1/p

≤
⎛

⎝Eγ
µ0,ν0

exp

⎛

⎝−2p
∑

i≤n

h(X̃i )Yi − 2r
∑

i≤n

h(X̃i )
2
i

⎞

⎠

⎞

⎠
1/2p

×
⎛

⎝Eγ exp(2r
∑

i≤n

h(X̃i )
2
i )

⎞

⎠
1/2p

=
⎛

⎝Eγ
µ0,ν0

exp

⎛

⎝−2p
∑

i≤n

h(X̃i )Yi − 4p2

2

×
∑

i≤n

h(X̃i )
2
i

⎞

⎠

⎞

⎠
1/2p ⎛

⎝Eγ exp(2r
∑

i≤n

h(X̃i )
2
i )

⎞

⎠
1/2p

≤
(

eCn
)1/2p = eCn,

with a generic constant C > 0, which depends only on ‖h‖L∞
Similarly, and, in fact, even simpler, we estimate the term

⎛

⎝Eγ

⎛

⎝Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝−
∑

i≤n

h(Xi )Yi

⎞

⎠ | Y
⎞

⎠

⎞

⎠
p⎞

⎠
1/p

≤
⎛

⎝Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝−p
∑

i≤n

h(Xi )Yi

⎞

⎠

⎞

⎠

⎞

⎠
1/p

≤ eCn .

3. Numerator in (25). Similarly—and also simpler—we treat the numerator. We are
to estimate it from above. We have,

Eγ
µ0,ν0

(
γ−2 | Y, Ỹ

) ∣∣∣
Ỹ=Y

= Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝2
∑

i≤n

h(Xi )Yi−
∑

i≤n

h(Xi )
2+2

∑

i≤n

h(X̃i )Ỹi−
∑

i≤n

h(X̃i )
2

⎞

⎠| Y, Ỹ

⎞

⎠
∣∣∣
Ỹ=Y
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≤ e+Cn Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝2
∑

i≤n

h(Xi )Yi + 2
∑

i≤n

h(X̃i )Ỹi

⎞

⎠ | Y, Ỹ

⎞

⎠
∣∣∣
Ỹ=Y

= e+Cn Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝2
∑

i≤n

hi Yi

⎞

⎠ | Y
⎞

⎠ Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝
∑

i≤n

h(X̃i )Ỹi

⎞

⎠ | Ỹ
⎞

⎠

≤ e+Cn

⎛

⎝Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝2
∑

i≤n

h(Xi )Yi

⎞

⎠ | Y
⎞

⎠

⎞

⎠

×
⎛

⎝Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝2
∑

i≤n

h(X̃i )Ỹi

⎞

⎠ | Ỹ
⎞

⎠

⎞

⎠
∣∣∣
Ỹ=Y

.

In other words,

(
Eγ

µ0,ν0
(γ−2 | Y, Ỹ )

∣∣∣
Ỹ=Y

)1/2 ≤ e+Cn

⎛

⎝Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝2
∑

i≤n

h(Xi )Yi

⎞

⎠ | Y
⎞

⎠

⎞

⎠
1/2

×
⎛

⎝Eγ
µ0,ν0

⎛

⎝exp

⎛

⎝2
∑

i≤n

h(X̃i )Ỹi

⎞

⎠ | Ỹ
⎞

⎠

⎞

⎠
1/2 ∣∣∣

Ỹ=Y
.

The rest is similar to the calculus made for the denominator. Whence, due to Hölder’s
inequality,

Eγ
µ0

γ−1

(
Eγ

µ0,ν0

(
γ−2 | Y, Ỹ

) ∣∣∣
Ỹ=Y

)1/2

Eγ
µ0,ν0(γ

−1 | Y, Ỹ )

∣∣∣
Ỹ=Y

≤
(
Eγ γ−4

)1/4
eCn/2

⎛

⎝Eγ exp

⎛

⎝4
∑

i≤n

h(Xi )Yi

⎞

⎠

⎞

⎠
1/4⎛

⎝Eγ exp

⎛

⎝4
∑

i≤n

h(X̃i )Yi

⎞

⎠

⎞

⎠
1/4

×
⎛

⎝Eγ exp

⎛

⎝−2
∑

i≤n

h(Xi )Yi

⎞

⎠

⎞

⎠
1/4⎛

⎝Eγ exp

⎛

⎝−2
∑

i≤n

h(X̃i )Yi

⎞

⎠

⎞

⎠
1/4

≤ exp(Cn),

(26)

with C > 0 which depends only on ‖h‖L∞ , because all factors allow this upper bound.

4. The term
∑

δ: #1(δ)<εn Eµ0,ν0 1δ(X, X̃) = Eµ0,ν0

∑
δ: #1(δ)<εn 1δ(Z). This is now

the last and the main issue; emphasize that we are looking for a bound of this
non-conditional probability, which, for every 0 < ε < 1, should be less than any
exponential, if the value R is chosen large enough. Intuitively, this looks reasonable
under our assumption (A1), which is sufficient for an exponential mixing; however,
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we will not use any mixing bounds directly, and we suppose that it would not be easy
to use them anyway. We will use the hint from the proof of the previous theorem,
reducing the problem to estimates for X and X̃ separately.

We have,

Eµ0,ν0

∑

δ: #1(δ)<εn

1δ(Z)

= Pµ0,ν0

(
n∑

i=1

1(|Xi−1| ≤ R, |X̃i−1| ≤ R, |Xi | ≤ R, |X̃i | ≤ R) < εn

)
.

Hence, it suffices to show—see (18)—that for every c > 0, 0 < ε < 1,

Pµ0

(
n∑

i=0

1(|Xi | ≤ R) < nε

)
≤ e−Cn, (27)

and

Pν0

(
n∑

i=1

1(|X̃i | ≤ R) < nε

)
≤ e−Cn, (28)

all if R is large enough. Both inequalities can be proved similarly, we will establish
the first one. Notice that the bounds are similar to (20) in the proof of the Theorem 1
above. The reason why we give more details here is that there no appropriate reference
to exponential inequalities with an arbitrary constant.

Given the recurrent Markov process Xk, k ≥ 0, let us construct a dominating
one-dimensional random walk, ζk , on Z+ = {0, 1, . . .}. The idea is that for every
trajectory of X , this random walk ζ will dominate X at all times, more precisely,
ζk ≥ (|Xk | − R)+, and because of its simple structure, certain exponential bounds
can be easily computed for ζ . An idea of enlargement of the probability space will be
used, although we will not change notation for the probability measure.

For any time k, let

xk := −[−(|Xk | − R)+],

or, by words, xk is the least integer which is not less than (|Xk | − R)+; of course,
xk ≥ 0. Then, by induction, define

x̃0 := x0; x̃k+1 − x̃k :=
{

xk+1 − xk, xk+1 − xk ≥ −1,

xk − 1, xk+1 − xk < −1.

Generally speaking, the process x̃k is not Markov, although the pair (Xk, x̃k) is; the
jumps of x̃ are −1, 0, 1, . . .; and its jumps are not less than the jumps of the process
xk , therefore, x̃k ≥ xk . Since xk ≥ (|Xk | − R)+, we have also,

x̃k ≥ (|Xk | − R)+.
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In particular, x̃k = 0 implies (|Xk | − R)+ = 0, that is, |Xk | ≤ R.
Since the process (x̃k) is not Markov, we will “spoil” it further to get a simpler

Markov dominating random walk. Define the non-random values,

qR, j := sup
X0

P(x̃1 = x̃0 + j | X0), j ≥ 1,

and

q(+)
R,0 := sup

X0: x0>0
P(x̃1 = x̃0 | X0),

and

q(0)
R,0 := 1−

∑

j≥1

qR, j ,

and, finally,

q(+)
R,−1 := 1−

∑

j≥1

qR, j − q(+)
R,0.

Due to the assumptions, there exist C > 0 and q̄R → 0, R → ∞, such that for
every j ≥ 1,

qR, j ≤ Cq̄ j
R, (29)

with

lim
R→∞ q̄R = 0. (30)

Moreover,

lim
R→∞ sup

X0: x0>0
q(+)

R,0(X0) = 0. (31)

Indeed, consider firstly the case j ≥ 1. Notice that x̃k+1 − x̃k = j is equivalent to
xk+1 − xk = j , which, by definition, is equivalent to

[−(|Xk | − R)+] − [−(|Xk+1| − R)+] = j.

It follows,

0 ≤ j − 1 < (|Xk+1| − R)+ − (|Xk | − R)+ < j + 1.
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This implies,

|Xk+1| > |Xk | + j − 1.

Indeed, if |Xk | ≤ R, then 0 ≤ j − 1 < (|Xk+1| − R)+ − (|Xk | − R)+ means
simply 0 ≤ j − 1 < (|Xk+1| − R)+, or, equivalently, 0 ≤ j − 1 < |Xk+1| − R, or
|Xk+1| > R+ j−1 ≥ |Xk |+ j−1. If |Xk | > R and (|Xk+1|−R)+−(|Xk |−R)+ ≥ 0,
we have, (|Xk+1| − R)− (|Xk | − R) > j − 1, or |Xk+1| − |Xk | > j − 1, as required.
Thus,

x̃k+1 − x̃k = j ≥ 1 implies |Xk+1| ≥ R, & |Xk+1| − |Xk | > x̃k+1 − x̃k − 1.

Therefore,

sup
x̃0

Px̃0(x̃1 = x̃0 + j) ≤ sup
x̃0

Px̃0(x̃1 − x̃0 ≥ j)

≤ sup
X0

P(|X1| − |X0| > j − 1; |X1| ≥ R | X0).

We will consider separately

sup
X0: |X0|≤R/4

P(|X1| − |X0| > j − 1; |X1| ≥ R | X0)

and

sup
X0: |X0|>R/4

P(|X1| − |X0| > j − 1; |X1| ≥ R | X0).

We estimate,

sup
|X0|≤R/4

P(|X1| − |X0| > j − 1; |X1| ≥ R | X0) ≤ sup
|X0|≤R/4

P (|X1|

≥ j − 1

2
+ R

2
| X0

)
≤ sup
|X0|≤R/4

P

(
|X0 + b(X0)| + c|ξ1| ≥ j − 1

2
+ R

2
| X0

)
.

Here we split the supremum into two,

sup
|X0|≤R/4

≤ sup
|X0|≤R0

+ sup
R0<|X0|≤R/4

,

where R0 is chosen so that

sup
|x |≥R0

(|x + b(x)| − |x |) ≤ 0.
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Moreover, denote

C0 := sup
|x |≤R0

(|x + b(x)| − |x |) <∞.

Remind that b is locally bounded. We have, with R0 < R/4 and any λ > 0,

sup
|X0|≤R0

P

(
|X0 + b(X0)| + c|ξ1| ≥ j − 1

2
+ R

2
| X0

)

≤ sup
|X0|≤R0

P

(
|X0 + b(X0)| − |X0| + c|ξ1| ≥ j − 1

2
+ R

2
− R0 | X0

)

≤ sup
|X0|≤R0

P

(
|X0 + b(X0)| − |X0| + c|ξ1| ≥ j − 1

2
+ R

2
− R

4
| X0

)

≤ sup
|X0|≤R0

P

(
|X0 + b(X0)| − |X0| + c|ξ1| ≥ R

4
+ j − 1

2
| X0

)

≤ P

(
c|ξ1| ≥ R

4
+ j − 1

2
− C0

)
≤ exp

(
−λ

(
R

4
+ j − 1

2
− C0

))
Eeλc|ξ1|.

Here we can take, for example, λ = 1. Further, estimate

sup
R0<|X0|≤R/4

P

(
|X0 + b(X0)| + c|ξ1| ≥ j − 1

2
+ R

2
| X0

)

≤ sup
R0<|X0|≤R/4

P

(
|X0 + b(X0)| − |X0| + c|ξ1| ≥ j − 1

2
+ R

2
− R

4
| X0

)

≤ P

(
c|ξ1| ≥ j − 1

2
+ R

4
− C0

)
≤ exp

(
−λ(

j − 1

2
+ R

4
− C0)

)
Eeλc|ξ1|.

Finally, due to (A1), with α(R) := − sup|x |≥R(|x + b(x)| − |x |), we have,
0 ≤ α(R)→∞, R→∞, and

sup
X0: |X0|>R/4

P(|X1| − |X0| > j − 1; |X1| ≥ R | X0)

≤ sup
|X0|>R/4

P(|X0 + b(X0)| − |X0| + c|ξ1| > j − 1 | X0)

≤ P(c|ξ1| > j − 1+ α(R/4) | X0) ≤ exp(−λ( j − 1+ α(R/4)))Eec|ξ1|.

E.g., one can take λ = 1, to satisfy (29).

Consider the case j = 0 & xk > 0. The same calculus as above, gives a similar
estimate. Indeed, xk > 0 implies 0 < |Xk | − R ≤ xk . Hence, we have, with any
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positive λ in the last line,

sup
Xk : |Xk |>R

P(|Xk+1 − |Xk | > −1; |Xk | ≥ R | Xk)

≤ sup
|X0|>R

P(|X0 + b(X0)| + c|ξ1| − |X0| > −1 | X0)

≤ P(c|ξ1| > −1+ α(R) | X0) ≤ exp(−λ(−1+ α(R))) Eeλc|ξ1|.

Again, one can take λ = 1 here.
5. Our next issue is to construct a dominating Markov process for x̃k , at last. All we
need for this is to adjust the transition probabilities, so that they would not depend on
Xk . For this aim, we will increase slightly all probabilities of jumps up, as well as zero
if the state is positive, still keeping them small enough. For convenience of reading,
we provide the construction below. Let

ζ0 = x̃0.

Further, for j ≥ 0 define

ζk+1 = ζk + j, on the set (x̃k+1 = x̃k + j) ∩ (x̃k > 0).

On some part of the set (xk > 0)∩ (x̃k+1 = x̃k − 1), we will allow ζk+1 = ζk − 1, but
on some other part of this set the increment ζk+1−ζk may be non-negative: 0, 1, 2, . . .

The following paragraph explains the details.
Consider random variables

�qR, j (Xk) := qR, j − P(x̃k+1 = x̃k + j | Xk),

and, in the case x̃k > 0, define

ζk+1 = ζk + j, j ≥ 0, on the set (x̃k+1 = x̃k − 1) ∩ (a j−1 < χk+1 ≤ a j ),

where χk+1 is a new independent random variable which is uniformly distributed on
[0, 1], and the non-random values a j are defined by the equalities,

a j =
∑

0≤i≤ j

�qR,i (Xk), a−1 = 0.

On the complementary set,

(x̃k+1 = x̃k − 1) ∩
⎛

⎝χk+1 ≥ lim
j→∞ a j ≡

∑

0≤i<∞
�qR,i (Xk)

⎞

⎠ ,

we define

ζk+1 = ζk − 1.
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If x̃k = 0, we define, in a similar manner,

ζk+1 = ζk + j, if x̃k+1 = x̃k + j, j > 0,

and,

ζk+1 = ζk + j, j > 0, on the set (x̃k+1 = x̃k) ∩ (a j−1 < χk+1 ≤ a j ).

Further, let

ζk+1 = ζk − 1,

on the set

(ζk > 0) ∩ (xk+1 − xk = −1) ∩
⎛

⎝χk+1 ≥
∑

0≤i<∞
�qR,i (Xk)

⎞

⎠,

and

ζk+1 = ζk,

on the set

(ζk = 0) ∩ (xk+1 − xk = 0) ∩
⎛

⎝χk+1 ≥
∑

0≤i<∞
�qR,i (Xk)

⎞

⎠.

Notice that all transition probabilities for the process ζk are non-random, given the
current state ζk at time k; moreover, they clearly do not depend on time k either. Indeed,
we have,

P(ζk+1 − ζk = j | ζk) = qR, j , j ≥ 1, ζk > 0;
P(ζk+1 − ζk = 0 | ζk) = q(+)

R,0, ζk > 0;
P(ζk+1 − ζk = −1 | ζk) = q(+)

R,−1, ζk > 0;
P(ζk+1 − ζk = j | ζk = 0) = qR, j , j ≥ 1;
P(ζk+1 − ζk = 0 | ζk = 0) = q(0)

R,0.

All these equalities follow directly from the construction. For example, for j ≥ 1,
ζ > 0,

P(ζk+1 − ζk = j | ζk) = qR, j ,

as required.
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Hence, (ζk, k ≥ 0) is a Markov chain with the state space {0, 1, 2, . . .}, and the
following matrix of transition probabilities, with the usual notation pi j = P(ζk+1 =
j | ζk = i),

(
pi j

)
0≤i, j<∞ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q(0)
R,0 qR,1 qR,2 qR,3 qR,4 . . .

q(+)
R,−1 q(+)

R,0 qR,1 qR,2 qR,4 . . .

0 q(+)
R,−1 q(+)

R,0 qR,1 qR,2 . . .

0 0 q(+)
R,−1 q(+)

R,0 qR,1 . . .

0 0 0 q(+)
R,−1 q(+)

R,0 . . .

0 0 0 0 q(+)
R,−1 . . .

. . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Moreover, remind that the inequalities (29)–(31) hold true.
Next, by the construction,

ζk ≥ x̃k,

because all jumps of ζk are greater than or equal to the jumps of x̃k at any time k,
and, of course, ζ0 = x̃0. The reason why we need this process is that for this simple
random walk one can use explicit formulae for some asymptotics, as shown below.

Notice that ζk = 0 implies |Xk | ≤ R. Therefore, it is sufficient to show that for any
ε > 0,

P

(
n∑

k=0

1(ζk > 0) ≥ εn

)
≤ e−Cn, (32)

In turn, (32) follows from the inequality,

P(τ̄ ≥ εn) ≤ e−Cn, (33)

with any C > 0 if R > 0 is large enough, where

τ̄ =
n∑

j=0

τ j ,

and

τ0 := inf(k ≥ 1 : ζk−1 > 0, ζk = 0)− k0,

where

k0 := inf(k ≥ 0 : ζk > 0),
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and τ j , j > 0, are defined similarly by induction,

τ j := inf(k > τ j−1 : ζk−1 > 0, ζk = 0)− k j , where k j := inf(� ≥ τ j−1 : ζ� > 0).

Naturally, all τ j are independent and identically distributed, except, perhaps, τ1 if
ζ0 > 0; the latter is independent from the others, too, but may have a different distri-
bution. We have,

P(τ̄ ≥ εn) ≤ e−λεn Eeλτ1
(
Eeλτ2

)n = exp
(−nελ+ ln Eeλτ1 + n ln Eeλτ2)

)
.

Due to (29)–(31), for every fixed λ > 0, we can choose R so large that both values
ln Eeλτ1 and ln Eeλτ2 are arbitrarily close to 1. Indeed, let

T := inf(k ≥ 0 : ζk = 0).

The standard Lyapunov function approach—e.g., as presented in [8]—applied to the
process exp(λζk + λ1k) with any λ > λ1 > 0, readily shows the following:

v(ζ0) := Eζ0 exp(λ1T ) ≤ C exp(λζ0), as q̄R → 0,

with any fixed C > 1. So,

Eeλτ2 ≤ 1+
∑

j≥1

Cq̄ jv( j) ≤ 1+ C
∑

j≥1

q̄ j exp(λ j)

≤ 1+ q̄R exp(λ)
1

1− q̄R exp(λ)
≈ 1.

Similarly,

Eeλτ1 ≤ 1+
∑

j≥1

P(ζ0 = j)v( j) ≤ 1+ C
∑

j≥1

q̃ j exp(λ j)

≤ 1+ q̃eλ 1

1− q̃ exp(λ)
≈ 1,

because due to the moment assumption from (A1),

P(ζ0 = j) ≤ Pµ0(|X0| > R + j − 1)

≤ e−(R−1+ j)Eµ0 e|X0| =
(

e−R+1
) j

Eµ0 e|X0| ≤ Cq̃ j

with an arbitrary small q̃ > 0, if R is large enough. Notice that it would be enough
to use just the fact that the value Eeλτ1 is finite; however, since λ may be arbitrarily
large, anyway we need the moment assumption which implies Eeλτ1 ≈ 1 for R large
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enough. Hence, one can choose any large λ > 0, and then for this fixed λ we choose
R large enough, so that, eventually, with some non-random n0,

P(τ̄ ≥ εn) ≤ exp(−λn/2), n ≥ n0.

Thus, the inequality (33) is satisfied, which finally implies,

∑

#0(δ)≥εn

Eµ0,ν0 1δ(X) ≤ exp(−λn/4), n ≥ n0,

with any large λ, if R is large enough. So, we get (27) and similarly (28). Now,
combining these bounds with (14) and (15), we get the desired inequality (10).
6. The pointwise bound follows immediately from Chebyshev’s inequality and the
Borel–Cantelli lemmae. The Theorem 2 is proved.
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