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Abstract Let Pn ∗Khn (x) = n−1h−d
n

∑n
i=1 K ((x − Xi )/hn) be the classical kernel

density estimator based on a kernel K and n independent random vectors Xi each
distributed according to an absolutely continuous law P on R

d . It is shown that the
processes f �−→ √

n
∫

f d(Pn ∗ Khn − P), f ∈ F , converge in law in the Banach
space �∞(F), for many interesting classes F of functions or sets, some P-Donsker,
some just P-pregaussian. The conditions allow for the classical bandwidths hn that
simultaneously ensure optimal rates of convergence of the kernel density estimator in
mean integrated squared error, thus showing that, subject to some natural conditions,
kernel density estimators are ‘plug-in’ estimators in the sense of Bickel and Ritov (Ann
Statist 31:1033–1053, 2003). Some new results on the uniform central limit theorem
for smoothed empirical processes, needed in the proofs, are also included.
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Keywords Kernel density estimation · Uniform central limit theorem · Plug-in
property · Smoothed empirical processes

1 Introduction

Let X1, . . . , Xn be independent identically distributed random vectors with common
law P on R

d and let Pn = n−1 ∑n
i=1 δXi be the corresponding empirical measure. If

nothing is known about the probability measure P, one typically estimates P by Pn ,
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334 E. Giné, R. Nickl

and this can be justified in many ways, in particular because the approximation error
Pn − P is asymptotically of the order n−1/2 uniformly over many classes of functions
F , that is, √

n

(∫

f dPn −
∫

f dP

)

= OP(1), (1)

in fact, the processes f �→ √
n
∫

f d(Pn − P), f ∈ F , converge in law to a nice
Gaussian process in �∞(F) (the P-Brownian bridge indexed by F). Such classes of
functions are known as P-Donsker classes. If on the other hand P has a density p0 with
respect to Lebesgue measure, the empirical measure Pn , which is a discrete random
measure, is not adequate for estimating p0. Rather, p0 is then estimated in a variety
of other ways, one of the oldest being by kernel smoothing of Pn , that is, by

pn(x) = Pn ∗ Khn (x) = 1

nhd
n

n∑

i=1

K

(
x − Xi

hn

)

(2)

where K is integrable and integrates to 1, Khn (x) := h−d
n K (x/hn), and hn → 0,

hn > 0.
Under suitable conditions it is well known (see e.g. [29, Sect. 24.3]) that pn is

an optimal estimator of p0 with respect to the mean integrated squared error (MISE)
in the sense of achieving the minimax rate over all estimators for densities in cer-
tain classes. Similar results can be shown for rates of convergence of pn to p0 in the
L1-distance, cf. [5]. However these are not the only ways in which to measure perfor-
mance of estimators for p0, in particular given that the empirical measure performs
already very good in the sense mentioned above (see (1)). The question arises as to
whether pn(x)dx , at least for suitably selected K and hn , is not only best in the mi-
nimax sense for the MISE and the L1 error, but is also as good as Pn in the sense that

√
n sup

f ∈F

∣
∣
∣
∣

∫

f (x)pn(x)dx −
∫

f (x)p0(x)dx

∣
∣
∣
∣ = OP(1), (3)

or, more specifically, in the sense that the processes f �→ √
n
∫

f (x)(pn − p0)(x)dx ,
f ∈ F , converge in law to a Gaussian process in the space �∞(F) for many classes of
functions F . In fact the question as to whether (3) holds has given rise in the literature to
several papers on ‘smoothed empirical processes’ (see [21,23,28,31], among others).
Although these authors prove uniform central limit theorems (henceforth UCLTs) that
apply to certain kernel density estimators, none of them obtains explicit results for the
most interesting bandwidths hn that are necessary to simultaneously obtain optimality
in MISE and L1 -error.

A first object of this article is to contribute to this literature in three ways: (1) by
revisiting the very nice central limit theorem of van der Vaart [29], whose proof, we
believe, requires clarification at a crucial point, and whose statement requires a (mi-
nor) additional condition to ensure correctness. (2) Van der Vaart’s theorem concerns
P-Donsker classes only and, as indicated by Radulović and Wegkamp [21], the smoo-
thed empirical process should converge to a Gaussian process even in situations when
the regular empirical processes are not tight, as long as the limiting Gaussian process
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Uniform central limit theorems for kernel density estimators 335

exists and is ‘nice’ (that is, for classes of functions F that are P-pregaussian but not
necessarily P-Donsker). Proving such a result is very different from the Donsker case,
in which case the UCLT is proved by showing that the smoothed empirical is close to
the regular non-smoothed empirical, which is not a viable strategy of proof in the non-
Donsker case. We provide a general uniform CLT for the smoothed empirical process
indexed by P-pregaussian classes of functions that is much more applicable than the
Radulović–Wegkamp result. Then, (3), we give meaningful examples and applications
of the previous results to particular (not necessarily Donsker-) classes of functions,
including bounded-variation, Hölder and Lipschitz, Sobolev, and Besov classes of
functions as well as many classes of sets in R

d , of interest in statistics. In particular
we obtain CLTs for kernel density estimators uniform over a continuous scale of Be-
sov classes of functions that range from very irregular pregaussian (non-Donsker) to
uniform Donsker.

To return to the question raised in (3) above, note that if p0 has smoothness of
order t (to be defined below), optimality in the MISE and L1-error is achieved for very
concrete hn (hn � n−1/(2t+d)) and for kernels satisfying certain properties (kernels of
‘order’ r ≥ t , also to be defined below), and the question above was whether one has
(3)—or even the UCLT—in precisely the situation when MISE and L1-error optimality
occurs. Estimators simultaneously satisfying these two kinds of optimality are called
plug-in estimators by Bickel and Ritov [3], who introduced the notion. As a second
object of this article—statistically more relevant than the first—we show that kernel
density estimators can be made to satisfy this ‘plug-in property’ for all the classes of
functions mentioned in the previous paragraph—even for some Besov classes that are
P-pregaussian but not P-Donsker – by just increasing the order of the kernel by d/2.
We thus provide concrete, meaningful examples of estimators satisfying the plug-in
property for a large variety of different classes of functions.

We should point out that the main difficulty in proving the plug-in property, aside
from the use of the right UCLTs for the ‘variance term’, resides in the treatment of the
bias. The bias term in the MISE-case is treated by combining the order of the kernel
K and the smoothness of p0, but this is not so simple if one is interested in the UCLT,
and we must find ways to use the order of K with the combined smoothness of p0 and
the elements of the class F . This is already implicit in comments in Bickel and Ritov
[3] regarding the estimation of the distribution function (F = {1(−∞,t] : t ∈ R}): in
this case one must essentially use that indicators of intervals are differentiable in the
sense of distributions.

Nickl [18,19] studies UCLTs and the plug-in property for other density estimators,
particularly, for nonparametric maximum likelihood estimators, sieved maximum like-
lihood estimators (for trigonometric sieves), as well as trigonometric series estimators.
The UCLTs proved in this article constitute another step in the direction of a better
understanding of the central limit theorem problem for density estimators.

This article is organized as follows: Sect. 2 introduces some notation and definitions,
Sect. 3 contains the uniform central limit theorems for smoothed empirical processes,
Sect. 4 deals with kernel density estimators over particular classes of functions and
contains the more statistically relevant results of the article, and Sect. 5 collects the
more technical proofs.
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336 E. Giné, R. Nickl

2 Notation and definitions

For an arbitrary (non-empty) set M , �∞(M)will denote the Banach space of bounded
real-valued functions H on M normed by

‖H‖M := sup
m∈M

|H(m)| .

We denote by BS the Borel-σ -algebra of a (non-empty) topological space S. For
h : R

d → R a Borel-measurable function and µ a Borel measure on R
d , we set

µh := ∫
Rd hdµ and ‖h‖p,µ := (

∫
Rd |h|p dµ)1/p, 1 ≤ p ≤ ∞ (where ‖h‖∞,µ

denotes the µ-essential supremum of |h|). We write Lp(Rd , µ) for the vector space of
all Borel-measurable functions h : R

d → R that satisfy ‖h‖p,µ < ∞, and L p(Rd , µ)

for the corresponding Banach spaces of equivalence classes [h]µ (modulo equality
µ-almost everywhere), h ∈ Lp(Rd , µ). We shall sometimes omit the underlying
space R

d and just write Lp(µ). The symbol λ will always denote Lebesgue measure
on R

d . Also we will use obvious analogues of these spaces and norms for complex
valued functions.

The symbol C(Rd) denotes the Banach space of bounded real-valued continuous
functions on R

d normed by the usual sup-norm ‖·‖∞. Let α = (α1, . . . , αd) be a
multi-index of nonnegative integers αi , set |α| = ∑d

i=1 αi , and let

Dα = ∂ |α|

(∂x1)
α1 · · · (∂xd)αd

denote the partial differential operator of order α. For α = 0 set Dα = id, and if
d = 1 we set D1 = D. For any nonnegative integer s, Cs(Rd) denotes the Banach
space of all bounded continuous real-valued functions that are s-times continuously
differentiable on R

d , equipped with the norm

‖ f ‖s,∞ =
∑

0≤|α|≤s

∥
∥Dα f

∥
∥∞ .

The Hölder spaces, for noninteger s > 0, are defined as ([s] denotes the integer part
of s)

Cs(Rd) =
⎧
⎨

⎩
f ∈ C(Rd) : ‖ f ‖s,∞ :=

∑

0≤|α|≤[s]

∥
∥Dα f

∥
∥∞

+
∑

α:|α|=[s]
sup
x �=y

|Dα f (x)− Dα f (y)|
|x − y|s−[s] < ∞

⎫
⎬

⎭
. (4)

The symbol C0(R
d) denotes the closed subspace of C(Rd) consisting of bounded

continuous real-valued functions f that vanish at infinity. Denote by C0(R
d)′ the

(topological) dual space of C0(R
d) normed by the usual (operator) norm ‖·‖′

C0
. Then
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Uniform central limit theorems for kernel density estimators 337

M(Rd) = C0(R
d)′ is the space of signed Borel measures of finite variation on R

d ,
and, as is well known, ‖µ‖′

C0
= ‖µ‖, where ‖µ‖ := |µ|(Rd) is the total variation

norm of µ, |µ| being the total variation measure of µ ∈ M(Rd).
The convolution of two signed Borel measures µ and ν on R

d is defined by
µ ∗ ν(E) = µ × ν(T −1(E)) where E ∈ BRd and where T : R

d × R
d → R

d

is addition T (x, y) = x + y, cf. Sect. 8.6 in [9]. This gives the usual convolution∫
Rd f (x − y)g(y)dy of functions f, g (if it is defined) by setting dµ = f dλ and

dν = gdλ. We recall here a few well-known facts on convolution of measures and
functions on R

d , that can be found, e.g., in Sect. 8.6 in [9] or in Sect. III.1.8 in [15]: If
f ∈ Lp(Rd , λ) (1 ≤ p ≤ ∞) and g ∈ Lq(Rd , λ) (1 ≤ q ≤ ∞) with 1/p + 1/q = 1,
then f ∗ g(x) defines an element of C(Rd) and (a special case of) Young’s inequality
gives

‖ f ∗ g‖∞ ≤ ‖ f ‖p,λ ‖g‖q,λ . (5)

Furthermore, if g ∈ Lp(Rd , λ) (1 ≤ p ≤ ∞) andµ ∈ M(Rd), then the function g ∗µ
is well defined λ-a.e. and satisfies

‖g ∗ µ‖p,λ ≤ ‖g‖p,λ ‖µ‖ . (6)

In the case where g ∈ C(Rd), g ∗ µ is in fact defined everywhere and contained in
C(Rd).

Let now (�,A, Pr)be a probability space and let P be a (Borel) probability measure
on R

d . Let ∅ �= F ⊆ L2(Rd ,P). A Gaussian process G : (�,A, Pr) × F → R

with mean zero and covariance EG( f )G(g) = P[( f − P f )(g − Pg)] for f, g ∈ F
is called a (generalized) P-Brownian bridge process indexed by F . The covariance
induces a semimetric ρ2

P
( f, g) = E[G( f )−G(g)]2 for f, g ∈ F . A class of functions

F ⊆ L2(Rd ,P) will be called P-pregaussian if such a Gaussian process G can be
defined such that for every ω ∈ �, the map f �−→ G( f, ω) is bounded and uniformly
continuous w.r.t. the semimetric ρP from F into R. See also pp. 92–93 in [8].

Given n independent random vectors X1, . . . , Xn identically distributed according
to some law P on R

d , we denote by Pn = n−1 ∑n
i=1 δXi the usual empirical mea-

sure. Throughout the paper, E denotes expectation w.r.t. the law P. [Also, we assume
throughout that the Xi are the coordinate projections of the infinite product probability
space ((Rd)N,B(Rd )N ,P

N).] For F ⊆ L2(Rd ,P), the F-indexed empirical process is
given by

f �−→ √
n (Pn − P) f = 1√

n

n∑

i=1

( f (Xi )− P f ).

Convergence in law of random elements in �∞ (F) is defined in the usual way, see
p. 94 in [8], and will be denoted by the symbol ��∞(F). The class F is said to
be P -Donsker if it is P-pregaussian and if

√
n (Pn − P) ��∞(F) G where G is

the (generalized) Brownian bridge process indexed by F . If F is P-Donsker for all
probability measures P on R it is called universal Donsker. It is called uniform Donsker
if convergence in law of

√
n (Pn − P) to G is uniform in a sense made precise in [13].
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338 E. Giné, R. Nickl

3 Uniform CLTs for smoothed empirical measures

Given a (pregaussian) class of functions F and the empirical measure Pn , we want
to study the limiting behavior in �∞ (F) of the random convolution product Pn ∗ µn

where the measures µn ∈ M(Rd) converge weakly to δ0, the Dirac measure at zero.
The leading special case is kernel density estimation, see Sect. 4, but in principle also
other random measures Pn ∗µn could be thought of (e.g., orthogonal series estimators).
Sometimes the convolutions Pn ∗ µn are called ‘smoothed’ empirical measures, but
we do not exclude discrete measures µn in our setup.

The fact that the signed measuresµn converge weakly to δ0, that is, that
∫
Rd f dµn →

f (0) for all real-valued bounded continuous functions on R
d , implies, by the uniform

boundedness principle, that supn ‖µn‖ < ∞ holds, and even that the sequence of the
total variation measures |µn| is uniformly tight (see, e.g., [15, p. 98]; in this book
as well as in some other references, what we call weak convergence is referred to as
narrow convergence). In most situations in statistics (e.g., in kernel density estimation)
the sequence µn enjoys an additional property, namely that |µn|(Rd\[−a, a]d) → 0
for all a > 0, and this property plays a role in some proofs. This property is also
natural in the sense that it does not allow for sequences such as µn = δ0 + δxn − δyn

with xn → x �= 0 and xn �= yn → x , which do not conform with the general intuition
of an approximate identity. So, we make the following definition:

Definition 1 A sequence {µn}∞n=1 of finite signed Borel measures on R
d is an approxi-

mate convolution identity if it converges weakly to point mass δ0 at 0. If, in addition,
for every a > 0, limn |µn|(Rd\[−a, a]d) = 0, then we call the sequence {µn}∞n=1 a
proper approximate convolution identity.

For example, if K ∈ L1(Rd , λ) satisfies
∫
Rd K (y)dy = 1, and if dµn(y) =

h−d
n K (h−1

n y)dy for 0 < hn → 0, then the sequence µn is a proper approximate
identity (we will often drop the word convolution): If f is bounded and continuous,
then ∫

Rd

h−d
n K (h−1

n y) f (y)dy =
∫

Rd

K (u) f (hnu)du → f (0)

by dominated convergence, and

∫

Rd\[−a,a]d

h−d
n |K (h−1

n y)|dy =
∫

Rd\[−a/hn ,a/hn ]d

|K (u)| du → 0

as n tends to infinity.
Now given an approximate identity µn , the centered smoothed empirical process

is defined, for f ∈ F , as
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Uniform central limit theorems for kernel density estimators 339

√
n(Pn − P) ∗ µn( f ) = √

n

⎛

⎜
⎝

∫

Rd

∫

Rd

f (x + y)dPn(x)dµn(y)

−
∫

Rd

∫

Rd

f (x + y)dP(x)dµn(y)

⎞

⎟
⎠

= 1√
n

n∑

i=1

⎛

⎜
⎝ f ∗ µ̄n(Xi )−

∫

Rd

f ∗ µ̄n(x)dP(x)

⎞

⎟
⎠

where µ̄n(A) = µn(−A) for A ∈ BRd and where it is assumed that f (x + ·) ∈
L1(|µn|) for all n and P-almost every x ∈ R

d . Clearly, if µn arises from a symmetric
kernel K , we have µn = µ̄n . Accordingly, the (uncentered) smoothed empirical
process, is given by

√
n(Pn ∗ µn − P)( f ) = 1√

n

n∑

i=1

( f ∗ µ̄n(Xi )− P f ) , f ∈ F .

3.1 Donsker classes

Let F be a translation invariant P-Donsker class of functions f : R
d �→ R, that is,

for any f ∈ F also f (· + y) belongs to F whenever y ∈ R
d . Given the usual theory

of empirical processes, the proof of van der Vaart’s [29] theorem mentioned in the
introduction is based on the statement “the functions x �→ ∫

f (x+y)dµ(y), for signed
measures [of finite variation], are weighted averages of elements of F”. However, this
assertion is not formally correct, the correct assertion requires clarification and we can
only verify it for Donsker classes of functions that satisfy an additional condition.

First it should be observed that Dudley’s [7] theorem to the effect that if F is a
P-Donsker class then the sequential closure, in L2(P) and pointwise simultaneously,
of its symmetric convex hull is also a P-Donsker class, can be slightly strengthened by
deleting the word ‘sequential’. Consider in L2(P) (or in a subset of it) the following
topologies: τ1, the topology of pointwise convergence, defined by the neighborhood
base N ( f ; x1, . . . , xr ; ε) = {g : |g(xi ) − f (xi )| < ε, 1 ≤ i ≤ r}, f : R

d �→ R,
xi ∈ R, ε > 0, r ∈ N; and τ2, defined by the (semi)metric ‖ f − g‖2,P. We recall that
τ = τ1 ∨ τ2, the coarsest topology finer than τ1 and τ2, is defined as follows (e.g.,
[24, p. 5]): if T0 = {A1 ∩ A2 : Ai ∈ τi , i = 1, 2}, then τ is the collection of arbitrary
unions of sets in T0. T0 is a neighborhood base for τ , and if a map is continuous for
either τ1 or τ2, then it is continuous for τ . Let us also recall that the symmetric convex
hull G of a class of functions F is the collection of functions of the form

∑r
i=1 αi fi ,

r ∈ N, fi ∈ F , and
∑r

i=1 |αi | ≤ 1. With these definitions, we have the following:

Theorem 1 (Extension of Dudley [7, Theorem 5.3]) Let F be a P-Donsker class of
functions. Then, the closure H in L2(P) for the τ topology of the symmetric convex
hull G of F is a P-Donsker class.
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340 E. Giné, R. Nickl

The proof is essentially the same as that of Dudley’s theorem: One combines almost
sure representations and the fact that, if Li , i ≤ n < ∞, are linear functionals defined
on the linear span of F that are continuous in either of the two topologies, then,

∥
∥
∥
∥
∥

n∑

i=1

Li

∥
∥
∥
∥
∥

F
=
∥
∥
∥
∥
∥

n∑

i=1

Li

∥
∥
∥
∥
∥

G
=
∥
∥
∥
∥
∥

n∑

i=1

Li

∥
∥
∥
∥
∥

H

[these maps Li consist of δX j (ω), P and (a suitable ‘linear’ version of) G]. The first
equality is clear and for the second equality we note the following. If h ∈ H, then δx for
every x , P and G are all τ -continuous at h (in the case of G because of Theorem 5.1(a)
in [7]), hence, given ε > 0 arbitrary, there exists a neighborhood N of h such that∣
∣
∑n

i=1 Li ( f − h)
∣
∣ < ε for all f ∈ N , and since N ∩G �= ∅ we have

∣
∣
∑n

i=1 Li (h)
∣
∣ <

supg∈G
∣
∣∑n

i=1 Li (g)
∣
∣ + ε, which gives the second identity by arbitrariness of ε.

Note that sequential closure coincides with topological closure in the case of τ2, but
not in the topology of pointwise convergence, so the above theorem is more general.
Also, note that the above theorem applies to any dilation of H, cH = {λh : |λ| ≤
c, h ∈ H}, 0 < c ≤ ∞.

The following two lemmas will make van der Vaart’s observation precise and there-
fore, combined with the previous theorem, validate his theorem under an extra condi-
tion. The first lemma is well known if Q = λ and f ∈ L2(Rd , λ) (note that conditions
(a)–(c) are then automatically satisfied), but in our setup we will need a result for not
necessarily translation-invariant measures Q, in particular, for finite measures; and
also for functions f in more general spaces.

Lemma 1 Let Q be a positive Borel measure on R
d , let µ ∈ M(Rd) be finite signed

measure on R
d , and let f : R

d → R be a Borel-measurable function. Assume that (a)
f (· − y) ∈ L2(Q) for all y ∈ R

d , b) f (x − ·) ∈ L1(|µ|) for Q-almost every x ∈ R
d ,

and (c) the function y �→ ‖ f (· − y)‖2,Q is in L1(|µ|). Then, the function

h(x) :=
∫

Rd

f (x − y)dµ(y)

is in the L2(Q)-closure of ‖µ‖ times the symmetric convex hull of F f := { f (· − y) :
y ∈ R

d}.

Proof The space L2(Q) is separable, and therefore so is F f . Hence there exists a
countable set {yk : k ∈ N} such that the set of functions { f (· − yk) : k ∈ N} is dense
in F f for the L2(Q)-norm. By standard arguments, for any g measurable, the function
y �→ ∫

Rd ( f (x − y)− g(x))2dQ(x) is measurable. Given ε > 0, set ε′ = ε/2‖µ‖ and
define the following measurable partition {Ak}∞k=1 of R

d :

A1 = {y ∈ R
d : ‖ f (· − y)− f (· − y1)‖2,Q < ε′},
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Uniform central limit theorems for kernel density estimators 341

and, recursively, for all k ∈ N,

Ak = ( k−1⋃

j=1

A j
)c ∩ {y ∈ R

d : ‖ f (· − y)− f (· − yk)‖2,Q < ε′}.

Now,

∫

Rd

f (x − y)dµ(y)−
r∑

k=1

f (x − yk)µ(Ak)

=
r∑

k=1

∫

Rd

( f (x − y)− f (x − yk))IAk (y)dµ(y)+
∫

⋃∞
k=r+1 Ak

f (x − y)dµ(y)

for Q-almost every x ∈ R
d , so that, by Minkowski for integrals and the definition of

Ak , ε′,
∥
∥
∥
∥
∥
∥
∥

∫

Rd

f (· − y)dµ(y)−
r∑

k=1

f (· − yk)µ(Ak)

∥
∥
∥
∥
∥
∥
∥

2,Q

≤
r∑

k=1

∫

Rd

‖ f (· − y)− f (· − yk)‖2,Q IAk (y)d|µ|(y)

+
∫

⋃∞
k=r+1 Ak

‖ f (· − y)‖2,Qd|µ|(y)

≤ ε/2 +
∫

⋃∞
k=r+1 Ak

‖ f (· − y)‖2,Qd|µ|(y).

Since the function y �→ ‖ f (· − y)‖2,Q is |µ| integrable and
⋃∞

k=r Ak ↓ ∅ as r → ∞,
it follows that there exists r < ∞ such that

∥
∥
∥
∥
∥
∥
∥

∫

Rd

f (x − y)dµ(y)−
r∑

k=1

f (x − yk)µ(Ak)

∥
∥
∥
∥
∥
∥
∥

2,Q

< ε

holds, which completes the proof. ��
Lemma 2 Let F be a translation invariant P-Donsker class of real-valued functions
on R

d and let M be a collection of signed Borel measures of finite variation such that
supµ∈M ‖µ‖ < ∞. Assume that for all f ∈ F and µ ∈ M, the functions

y �→ f (x − y) for all x ∈ R
d and y �→ ‖ f (· − y)‖2,P
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342 E. Giné, R. Nickl

are in L1(|µ|). Then, the class of functions

F̃ := { f ∗ µ : f ∈ F , µ ∈ M}

is P-Donsker.

Proof By Theorem 1 it suffices to show that for each f ∈ F and µ ∈ M, every
neighborhood of f ∗µ for the τ -topology has a non-void intersection with ‖µ‖-times
the symmetric convex hull of F f . By definition of the neighborhood base it suffices
to prove this only for any set of the form

Ax1,...,xr ,ε=
{
g ∈ L2(P) : ‖ f ∗ µ− g‖2,P < ε, | f ∗ µ(xi )− g(xi )| < ε, 1≤ i ≤ r

}
,

where r < ∞, xi ∈ R
d , and ε > 0. Define

Q = P + δx1 + · · · + δxr

and note that the hypotheses of Lemma 1 are satisfied by Q , µ ∈ M and f ∈ F . The
conclusion of that lemma is that ‖µ‖ times the symmetric convex hull of F f intersects
any neighborhood of f ∗ µ for the L2(Q)-(semi)-norm,

Bε = {g ∈ L2(P) : ‖ f ∗ µ− g‖2,Q < ε}, 0 < ε < ∞.

But obviously, Bε ⊆ Ax1,...,xr ,ε, which proves the lemma. ��
Next we give the modified van der Vaart theorem for smoothed empirical measures

over Donsker classes.

Theorem 2 (Modification of van der Vaart’s [28] theorem) Let F be a translation
invariant P-Donsker class of real-valued functions on R

d , and let {µn}∞n=1 be an
approximate convolution identity such that µn(R

d) = 1 for every n. Further assume
that for every n, F ⊆ L1(|µn|) and

∫
Rd ‖ f (· − y)‖2,Pd |µn| (y) < ∞ for all f ∈ F .

Then,

(a) the condition

sup
f ∈F

E

⎛

⎜
⎝

∫

Rd

( f (X + y)− f (X))dµn(y)

⎞

⎟
⎠

2

→n→∞ 0 (7)

is necessary and sufficient for

sup
f ∈F

∣
∣
∣
∣
∣

1√
n

n∑

i=1

(
f ∗ µ̄n(Xi )− f (Xi )− E[ f ∗ µ̄n(X)− f (X)])

∣
∣
∣
∣
∣
→n→∞ 0
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in outer probability, hence, for the centered smoothed empirical measures

{√
n((Pn − P) ∗ µn( f ) : f ∈ F}

to converge in law in �∞(F) to the P -Brownian bridge G indexed by F .
(b) Consequently, Condition (7) and

sup
f ∈F

√
n

∣
∣
∣
∣E

∫

Rd

( f (X + y)− f (X))dµn(y)

∣
∣
∣
∣ →n→∞ 0 (8)

are necessary and sufficient for
√

n ‖Pn ∗ µn − Pn‖F to converge to zero in outer
probability and for √

n(Pn ∗ µn − P) ��∞(F) G (9)

to hold, where G is the P-Brownian bridge indexed by F .
(c) The sufficiency parts of (a) and (b) hold as well if: (i) the approximate identi-

ties are allowed to be random, i.e., µn : (�,A, Pr) → M(Rd), assuming that
supn,ω ‖µn(ω)‖ < ∞ andµn → δ0 weakly in probability. (ii) F is not necessarily
translation invariant but contained in a translation-invariant class of functions
G so that G ⊆ L1(|µn|),

∫
Rd ‖ f (· − y)‖2,Pd |µn| (y) < ∞ for all f ∈ G and

Condition (7) holds with the supremum extending over G.

Proof Combine Lemma 2 with the proof of the theorem in [29], who considers
∫

f (x+
y)dµ(y) = f ∗ µ̄(x) in our notation. [Note that, if µn → δ0 weakly, then also
µ̄n → δ0 and the total variation norms ‖µ̄n‖ are uniformly bounded.] Since we shall
make extensive use of the sufficiency part of Part (b), we give a short, simple proof of
it. Consider the decomposition

Pn ∗ µn − Pn = (Pn − P) ∗ µn − (Pn − P)+ P ∗ µn − P.

Since (P ∗ µn − P) f = E
∫
R
( f (X + y)− f (X)) dµn(y), Condition (8) gives

‖P ∗ µn − P‖F = o(1/
√

n).

For the remaining part of the decomposition, note that

((Pn − P) ∗ µn − (Pn − P)) f = (Pn − P) (µ̄n ∗ f − f ).

Now,
⋃

n{µ̄n ∗ f − f : f ∈ F} is a P-Donsker class by Lemma 2 (together with a
simple permanence property, e.g., van der Vaart and Wellner [30], p. 192), so, since
by Condition (7) sup f ∈F P(µ̄n ∗ f − f )2 → 0, it follows that

sup
f ∈F

|(Pn − P)(µ̄n ∗ f − f )| = oP(1/
√

n).

The last two estimates prove (9) since F is P-Donsker. ��
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Remark 1 Part (c) of the theorem is of practical interest. By (i)—as was already
remarked by van der Vaart [29]—one may use data-driven choices of the bandwidth if
µn comes from a kernel function. Also, in (ii), if one is interested in a (not necessarily
translation-invariant) subset F of a translation-invariant Donsker class G, then one may
restrict the supremum in the bias condition (8) to this subclass. A leading example
where this may be useful is where it is known in advance that P is supported by a
proper subset of R

d .

There are other ways (besides Remark 1) of dispensing with the translation inva-
riance condition on the class F . In particular, this can be done if instead of assuming
that F is P-Donsker we impose the considerably more restrictive condition that F
satisfy

∞∫

0

sup
Q

√
H(F , L2(Q), ε‖F‖2,Q)dε < ∞, (10)

where the supremum is extended over all finitely supported probability measures
Q on R

d , F is an measurable envelope of F , and

H(F , L2(Q), ε) := log N (F , L2(Q), ε)

denotes the usual L2(Q)-metric entropy of F . In fact Rost [23], based on [32], who
generalized results from [1], proved that if F is uniformly bounded, countable (or
suitably measurable) and satisfies conditions (10), (7) and (8) then the central limit
theorem (9) holds. We will not use this result because the entropy condition is either not
satisfied or has not been proved for many classes of functions in this article, whereas
translation invariance does hold (at least in the sense of Remark 1).

3.2 Pregaussian classes

Radulović and Wegkamp [21] make the interesting observation that the smoothed
empirical process in (9) may in some cases converge in law in �∞(F) to G even if
F is not P-Donsker. This situation is entirely different from the situation considered
in the last section: whereas in the Donsker case the smoothed process gets closer and
closer to the un-smoothed empirical process, in the present situation the smoothed and
the un-smoothed empirical processes should drift away from each other as one will
converge and the other one will not. This means that the amount of smoothing allowed
in the non-Donsker case should have a lower bound: if we do not smooth enough, the
smoothed process might be too close to the original for it to converge.

Radulović and Wegkamp [21] prove their theorem by adapting the proof of
Theorem 3.2 in [11] on the relation between the pregaussian and the Donsker pro-
perties for uniformly bounded classes of functions. Their result has a limited scope
since they have to impose stringent conditions on F and P. In particular, their me-
thod seems only to work if F and P have compact support, and if the density of P

is twice differentiable and bounded from above and below on the support of F , see
also Remarks 3 and 9. In the following theorem, we will also adapt the Giné and Zinn

123



Uniform central limit theorems for kernel density estimators 345

[11] result. In the proof, we will use a dominating Gaussian process different from the
one Radulović and Wegkamp [21] use. The general theorem—which also allows for
unbounded classes of functions—will imply that classical kernel density estimators
can converge in law in �∞ (F) for pregaussian classes of functions F that are not
Donsker under only the assumption that P has a bounded density, see Theorem 9. We
refer to Sect. 4.2 for examples and more discussion.

For a given class of measurable functions F , we write

F ′
δ = { f − g : f, g ∈ F , ‖ f − g‖2,P ≤ δ}.

We will randomize the point masses δXi with a Rademacher sequence {εi }∞i=1, that
is, a sequence of independent symmetric random variables taking only the values +1
and −1, independent of the sequence {Xi }. In fact, we take all the variables, Xi , ε j ,
to be coordinate projections of an infinite product probability space. We will also
randomize by an orthogaussian sequence gi , which is taken to be independent from
the X j and the ε j in the same product space sense. The product probability measure
in this large product space is denoted by Pr .

Theorem 3 Let F be a P-pregaussian class of real-valued functions on R
d that is inva-

riant by translations and such that ‖P f ‖F < ∞ holds. Let {µn}∞n=1 be an approximate
convolution identity such that µn(R

d) = 1 for every n. Assume that F ⊆ L1(|µn|)
holds for every n and, in addition,

(a) for each n, the class of functions F̃n := { f ∗ µ̄n : f ∈ F} consists of functions
whose absolute values are bounded by a constant Mn;

(b) sup f ∈F E( f ∗ µ̄n(X)− f (X))2 → 0 as n → ∞ (that is, (7) holds);
(c) ∥

∥
∥
∥
∥

1√
n

n∑

i=1

εi f (Xi )

∥
∥
∥
∥
∥
(F̃n)

′
1/n1/4

→ 0 (11)

as n → ∞ in outer probability;
(d) For all 0 < ε < 1, H(F̃n, L2(P), ε) ≤ λn(ε)/ε

2 for functions λn(ε) such that
λn(ε) → 0 and λn(ε)/ε

2 → ∞ as ε → 0, uniformly in n, and then, the bounds
Mn of part (a) satisfy

Mn ≤
(

5
√

λn(1/n1/4)

)−1

(12)

for all n large enough.
Then, √

n(Pn − P) ∗ µn ��∞(F) G, (13)

where G is the P-Brownian bridge indexed by F . If, in addition, the bias condition
(8) is satisfied, then we also have

√
n(Pn ∗ µn − P) ��∞(F) G. (14)

Proof In the proof, we set ‖ f − g‖2,P = eP( f, g) for the sake of brevity. Let
ZP( f ) = G( f ) + (P f )g, f ∈ F , where g is N (0, 1) independent of G. Then
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E(ZP( f )−ZP(h))2 = e2
P
( f, h).Also, since |P( f −h)| ≤ eP( f, h) and ‖P f ‖F < ∞,

this process has bounded and eP-uniformly continuous sample paths (sample conti-
nuous for short). This implies in particular, by Sudakov’s theorem (e.g., [14, p. 81]),
that sup f ∈F P f 2 = C2

1 for some C1 < ∞. By the uniform boundedness principle,
supn ‖µn‖ = supn ‖µ̄n‖ < C2 for some C2 < ∞. Then, F being invariant by transla-
tions, we have for all f ∈ F andµ ∈ M that

∫ ‖ f (·− y)‖2,Pd|µ|(y) ≤ C1C2, where
M is the collection of all signed Borel measures whose total variation is bounded
by C2 and which integrate all the functions in F (note that {µ̄n}∞n=1 ⊆ M). Then
Lemma 1 gives that the class of functions F̃ := { f ∗ µ̄ : f ∈ F , µ ∈ M} is contained
in the eP-closure of C2 times the symmetric convex hull of F . Then, by Theorem 0.3
in [6], the process ZP extends to the whole class F̃ as a centered Gaussian process with
bounded and eP-uniformly continuous sample paths. This implies, again by Sudakov’s
theorem, that the class F̃ and (therefore also) the classes F̃n for every n, are eP totally
bounded, in fact,

ε2 H(F̃, eP, ε) → 0 as ε → 0. (15)

This shows that a function λ(ε) → 0 such that λ(ε)/ε2 → ∞ as ε → 0 as specified
in condition (d) always exists if F is P-pregaussian. We will use these observations in
the proof of tightness, but first we must deal with the finite dimensional distributions
and with randomization.

(1) Convergence of finite dimensional distributions. By the conditions on Mn [in (d)],
Mn/n1/2 ≤ (5n1/2)−1/2 for all n large enough, and, by condition (b), E(g ∗
µ̄n(X))2 → Eg2(X) for any linear combination g of functions in F . Then, by
Lindeberg’s theorem, 1√

n

∑n
i=1(g ∗ µ̄n(Xi ) − Eg ∗ µ̄n(X)) converges in law to

GP(g), hence, by Cramér-Wold, there is convergence of the finite dimensional
distributions in (13).

(2) Randomization in the asymptotic equicontinuity condition. By (1) and by the
asymptotic equicontinuity theorem on convergence in law of bounded processes
(e.g., Theorem 5.1.2 in [4]), the limit (13) will follow if we show

lim
δ→0

lim sup
n

Pr∗
{

sup
f ∈F ′

δ

1√
n

∣
∣
∣
∣
∣

n∑

i=1

( f ∗ µ̄n(Xi )− P( f ∗ µ̄n))

∣
∣
∣
∣
∣
> γ

}

= 0 (16)

for all γ > 0 (notice that, since ZP is sample continuous on F , Sudakov’s theorem
implies that (F , eP) is totally bounded). In order to apply the proof of Theorem 3.2
in [11], which is the model for the proof of this theorem, we should both randomize
the random variables involved in (16) and modify the set on which the sup is taken,
from F ′

δ to (F̃n)
′
δ , as will be seen in the development of the proof. To randomize,

we use Lemma 2.5 in [11], to the effect that if X (t), X ′(t), t ∈ T , are two
independent stochastic processes (defined in different components of a product
probability space),

Pr∗{‖X‖T > s} ≤ 1

1 − supT Pr{|X ′(t)| ≥ u} Pr∗{‖X − X ′‖T > s − u}.
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In our case, T = F ′
δ , X is the smoothed empirical process and X ′ an independent

copy. If we choose nδ < ∞ such that for n ≥ nδ , sup f ∈F ′
δ

E( f ∗ µ̄n(X) −
f (X))2 < δ2, which we can by condition b), we have sup f ∈F ′

δ
E( f ∗ µ̄n(X))2 ≤

4δ2, and the above inequality and Chebyshev, together with Rademacher rando-
mization, give

Pr∗
{

sup
f ∈F ′

δ

1√
n

∣
∣
∣
∣
∣

n∑

i=1

( f ∗ µ̄n(Xi )− P( f ∗ µ̄n))

∣
∣
∣
∣
∣
> γ

}

≤ 4Pr∗
{

sup
f ∈F ′

δ

1√
n

∣
∣
∣
∣
∣

n∑

i=1

εi f ∗ µ̄n(Xi )

∣
∣
∣
∣
∣
>
γ − 2

√
2δ

2

}

.

So, by choosing δ < γ/4, we conclude that in order to prove (16) it is sufficient
to show that for all γ > 0,

lim
δ→0

lim sup
n

Pr∗
{

sup
f ∈F ′

δ

1√
n

∣
∣
∣
∣
∣

n∑

i=1

εi ( f ∗ µ̄n)(Xi )

∣
∣
∣
∣
∣
> γ

}

= 0. (17)

Since for n ≥ nδ we also have that f ∈ F ′
δ implies f ∗ µ̄n ∈ (F̃n)

′
2δ , we conclude

that, in order to prove (17), it is sufficient to prove

lim
δ→0

lim sup
n

Pr∗
⎧
⎨

⎩
sup

f ∈(F̃n)
′
δ

1√
n

∣
∣
∣
∣
∣

n∑

i=1

εi f (Xi )

∣
∣
∣
∣
∣
> γ

⎫
⎬

⎭
= 0. (18)

(3) The main arguments of the proof, following the proof of Theorem 3.2 in [11]. We
take H = Hn to be a maximal collection h1, . . . , hm of functions from F̃n such
that P(hi − h j )

2 > 1/n1/2 if i �= j and, noting that the eP closed balls with
these centers and radius 1/n1/4 cover F̃n , we have, for n large enough so that
1/n1/4 ≤ δ/2,

Pr∗
⎧
⎨

⎩
sup

f ∈(F̃n)
′
δ

1√
n

∣
∣
∣
∣
∣

n∑

i=1

εi f (Xi )

∣
∣
∣
∣
∣
>3γ

⎫
⎬

⎭

≤ 2Pr∗
⎧
⎨

⎩
sup

f ∈(F̃n)
′
1/n1/4

1√
n

∣
∣
∣
∣
∣

n∑

i=1

εi f (Xi )

∣
∣
∣
∣
∣
>γ

⎫
⎬

⎭

+ Pr

{

max
h∈H′

2δ

1√
n

∣
∣
∣
∣
∣

n∑

i=1

εi h(Xi )

∣
∣
∣
∣
∣
> γ

}

.
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The limδ→0 lim supn of the first probability is zero by condition (c), and we are left
with checking that the same is true for the second. Letting

An :=
{

max
f ∈H′

2δ\{0}

∑n
i=1 h2(Xi )

nPh2 < 2

}

we get, for the second term,

Pr

{

max
h∈H′

2δ

1√
n

∣
∣
∣
∣
∣

n∑

i=1

εi h(Xi )

∣
∣
∣
∣
∣
> γ

}

≤ Pr{Ac
n}

+γ−1 EX Eε

(∥
∥
∥
∥

∑n
i=1 εi h(Xi )

n1/2

∥
∥
∥
∥H′

2δ

I (An)

)

:= (I)+ (II).

For (I) we notice that, by condition (d),

#H′
n ≤ exp

(
2 log N (F̃n, eP, 1/n1/4)

)
≤ exp

(
2λn(1/n1/4)n1/2

)
.

On the other hand, by Bernstein’s inequality, for any h ∈ H′
n \ {0},

Pr

{
n∑

i=1

(h2(Xi )− Ph2) > nPh2

}

≤ exp

(

− n2(Ph2)2

2nPh4 + 8M2
n nPh2/3

)

≤ exp

(

− nPh2

11M2
n

)

≤ exp

(

− n1/2

11M2
n

)

.

Hence, the hypotheses on Mn and λn(ε) give

Pr{Ac
n} ≤ exp

(

2λn(1/n1/4)n1/2 − n1/2

11M2
n

)

≤ exp

(

−3λn(1/n1/4)n1/2

11

)

→ 0,

as n → ∞.
For (II), for each n ∈ N and ω in An , consider the Gaussian process

Zω,n(h) = 1√
n

n∑

i=1

gi h(Xi (ω)), h ∈ Hn,
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where gi are i.i.d. N (0, 1) random variables independent of the variables X j (in the
sense described above). Its increments obviously satisfy, by the definition of An , that

Eg
(
Zω,n(h)− Zω,n(h

′)
)2 = 1

n

n∑

i=1

(
h(Xi (ω))− h′(Xi (ω))

)2

≤ 2P(h − h′)2

= E
(√

2ZP(h)− √
2ZP(h

′)
)2
,

where ZP is the Gaussian process defined on F̃ at the beginning of the proof, which is
sample continuous, and where Eg denotes integration only with respect to the variables
gi (with the X j (ω)fixed). So, we can apply a comparison theorem for Gaussian process
due to Fernique (e.g., Theorem 2.17(b) in [11]), to the effect that, for all n andω ∈ An ,

Eg

∥
∥
∥
∥

∑n
i=1 gi h(Xi (ω))√

n

∥
∥
∥
∥
(Hn)

′
2δ

≤ 4
√

2E sup
P(h−h′)2≤4δ2h,h′∈F̃

|ZP(h)− ZP(h
′)|

+ 26
√

2
(
δH1/2(F̃ , eP, δ)

)
.

The second term tends to zero as δ → 0 by (15) (Sudakov), and the first term by sample
path uniform continuity of ZP and integrability of suprema of sample continuous
Gaussian processes. Now, limδ→0 lim supn of (II) is zero by a simple comparison
principle (e.g., the first inequality in Lemma 2.9 in [11]). This proves (18) and therefore
concludes the proof of (13). (14) immediately follows from (13) and (8). ��
Remark 2 If the class F is uniformly bounded, then Conditions (a) and (d) are
automatically satisfied. [Note that F̃n is then also uniformly bounded by (6). Also, as
already mentioned in the proof, a function λ(ε) as specified in condition (d) always
exists, so (12) is then satisfied for M ≡ Mn .] If one has additional information on
λ(ε), this can be used to treat unbounded classes, see the proof of Theorem 10.

Remark 3 Invariance of F by translations is only used, in the previous proof, in order
to ensure that the processes {ZP( f ∗ µ̄n) : f ∈ F} = {ZP(h) : h ∈ F̃n} have the
L2(P) norms of their increments dominated by the L2(P) norms of the increments of
a single well behaved Gaussian process, in our case {ZP(h) : h ∈ ⋃∞

n=1 F̃n}, so that
we can apply Fernique’s comparison inequality (at the end of the proof). The same
effect is achieved by Radulović and Wegkamp [21] by imposing, instead of invariance
by translation, the condition

E [( f − g) ∗ µ̄n(X)]
2 ≤ C E[( f − g)(X)]2, f, g ∈ F ∪ {0}, (19)

for some C < ∞: then ZP( f ∗ µ̄n), f ∈ F , is dominated in the stated sense by
the nice process ZP( f ), f ∈ F (actually they impose a slightly stronger condition).
Notice that condition (19) also allows for control of the probability of the sets Ac

n . The
problem with this condition is that in practice it only applies to P with differentiable
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density p0 bounded away from zero, restricting the results, in particular, to p0 with
support of finite Lebesgue measure. If we impose condition (19), then it is easy to see
that the above proof does not require the full force of condition (7), but only

E[( f ∗ µ̄n(X)]2 → E[ f (X)]2, E[( f ∗ µ̄n(X)] → E[ f (X)], f ∈ F (20)

(which Radulović and Wegkamp [21] also need in their Theorem 2.1, but omit to
mention). With these two changes, that is (19) and (20) replacing the hypothesis of
translation invariance and condition (7), Theorem 3 still holds true. The above result
then contains (and slightly corrects) Theorem 2.1 in [21].

Remark 4 (Condition (c) in Theorem 3) Condition (c) is difficult to verify in general.
The typical tools for this are either uniform entropy bounds or bracketing entropy
bounds for F̃n . We state here the two most useful ones for further reference. See
Theorems 8 and 10 for an application of the inequalities below.

(1) It follows from the second maximal inequality in Theorem 2.14.2, p. 240 in [30],
a simple computation on bracketing numbers, and symmetrization, that

E∗
∥
∥
∥
∥
∥

1√
n

n∑

i=1

εi f (Xi )

∥
∥
∥
∥
∥
(F̃n)

′
n−1/4

≤ L

⎛

⎜
⎝

n−1/4∫

0

√

1 ∨ log N[](F̃n, L2(P), ε) dε + √
nMn I (Mn >

√
nan)

⎞

⎟
⎠ (21)

where an = n−1/4/

√
1 + 2 log N[](F̃n, L2(P), 2−1n−1/4), L < ∞ is a universal

constant, and log N[](F , L2(P), ε) is the usual L2(P)-bracketing metric entropy
of F , cf., e.g., p. 83 in [30].

(2) It follows from Theorem 3.1 in [10] that if F̃n satisfies

log N (F̃n, L2(Q), ε) ≤ Hn(Mn/ε), 0 < ε ≤ Mn,

for all finitely supported probability measures Q, where Hn is a non-decreasing
regularly varying function of exponent α ∈ [0, 2) with Hn(1) > 0, then

E∗
∥
∥
∥
∥
∥

1√
n

n∑

i=1

εi f (Xi )

∥
∥
∥
∥
∥
(F̃n)

′
1/n1/4

≤ L max

[

CHn

1

n1/4

√
Hn(2Mnn1/4), C2

Hn

Mn√
n

Hn(2Mnn1/4)

]

(22)

where L < ∞ is a universal constant and

CHn := sup
x≥1

∫∞
x u−2√Hn(u) du

x−1
√

Hn(x)
.
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[The theorem in [10] simplifies if the envelope is taken to be a constant, as we do
here: in this case, the bound (3.9) there is zero.]

3.3 Verification of Condition (7) in Theorems 2 and 3

We now discuss how to verify Condition (7)—that appears in both Theorems 2 and
3—for general classes of functions and sets.

3.3.1 Classes of functions on R

We first treat the case of functions on R. The symbol BV(R) will denote the space of
measurable functions R �→ R of bounded variation, equipped with the total variation
norm

‖ f ‖T V = sup

{
n∑

i=1

| f (xi )− f (xi−1)| : n ∈ N,−∞ < x1 < · · · < xn < +∞
}

.

(23)
Furthermore, consider a class of functions F ⊆ L2(R, λ) that satisfies

sup
f ∈F

⎛

⎜
⎝‖ f ‖2,λ + sup

0 �=z∈R

|z|−s

⎛

⎝
∫

R

| f (x + z)− f (x)|2 dx

⎞

⎠

1/2
⎞

⎟
⎠ < ∞ (24)

for some s > 0, that is, F is a bounded subset of the Besov space Bs
2∞(R) for some

s > 0; see also Remark 11ii. Note also that, if p0 is a bounded function, then the
conditions in Part (d) of the following proposition are automatically satisfied for any
precompact subset F of L2(R, λ).

Proposition 1 Let P be an absolutely continuous probability measure, dP(x) =
p0(x)dλ(x), and let F ⊆ L2(R,P). Let further {µn}∞n=1 be a proper approximate
convolution identity. Assume one of the following four conditions:

(a) F is a bounded subset of BV(R), or
(b) F is a bounded subset of Cs(R) for some s > 0, or
(c) F satisfies (24) for some s > 0 and p0 is a bounded function, or
(d) sup f ∈F E( f (X+y)− f (X))2 →0 as y →0 and supy∈R sup f ∈F P( f (·+y))2<∞.

Then Condition (7) holds, that is,

sup
f ∈F

E

(∫

R

( f (X + y)− f (X))dµn(y)

)2

→n→∞ 0

Proof Note first that in Part (a) we may assume without loss of generality that F is
uniformly bounded. [Otherwise, we define F ′ = { f − f (−∞+) : f ∈ F} which is
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again a bounded set in BV(R), see Sect. 3.5 in [9]. Then F ′ is uniformly supnorm-
bounded by sup f ∈F ‖ f ‖T V , and the expression in (7) stays the same if the sup is
extended only over F ′, as

∫
R
( f (X + y)− f (X))dµn(y) is zero for f constant.]

Now to prove the proposition, by Minkowski for integrals we have

sup
f ∈F

⎛

⎝E

(∫

R

( f (X + y)− f (X))dµn(y)

)2
⎞

⎠

1/2

≤ sup
f ∈F

∫

|y|≤δ

(
E( f (X + y)− f (X))2

)1/2
d|µn|(y)

+ sup
f ∈F

∫

|y|>δ

(
E( f (X + y)− f (X))2

)1/2
d|µn|(y)

:= (I)n,δ + (II)n,δ. (25)

In all four cases, we have supy∈R sup f ∈F P( f (· + y))2 ≤ D2 < ∞: For (a) and
(b) this follows from uniform boundedness of F , for (d) this holds by assumption,
and for (c) we have sup f ∈F P( f (· + y))2 ≤ sup f ∈F ‖ f ‖2

2,λ ‖p0‖∞ < ∞ since F
is a bounded subset of L2(R, λ). Now, {µn}∞n=1 being a proper approximate identity,
|µn|{|y| > δ} → 0 holds for all δ > 0 , and hence

lim
n
(II)n,δ ≤ 2D|µn|{|y| > δ} = 0

for all δ > 0. We now treat (I)n,δ , where we recall that supn ‖µn‖ < ∞ by the
uniform boundedness principle. If (a) holds, for f ∈ F , let ν f be the measure of
bounded variation defined by ν f (a, b] = f (b+)− f (a+), and note that except for a
countable set, f (x) = f (x+) (see after (26)). Also, in this case, the functions in F
are uniformly bounded, say by D. Then, for 0 < y < δ,

E( f (X + y)− f (X))2 ≤ 2DE | f (X + y)− f (X)|

≤ 2D

∞∫

−∞

⎛

⎝

x+y∫

x

d|ν f |(u)
⎞

⎠ p0(x)dx

= 2D

∞∫

−∞

u∫

u−y

p0(x)dxd|ν f |(u)

≤ 2D|ν f |(R) sup
λ(A)≤δ

∫

A

p0(x)dx,
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and likewise if −δ < y < 0. Hence, by the absolute continuity of the integral we have

lim
δ→0

sup
n
(I)n,δ ≤ lim

δ→0

⎛

⎝2D|ν f |(R) sup
λ(A)≤δ

∫

A

p0(x)dx

⎞

⎠

1/2

sup
n

‖µn‖ = 0.

If (b) holds, there is a constant c such that, for α = min(s, 1),

(I)n,δ ≤ c
∫

|y|≤δ
|y|αd|µn|(y) ≤ cδα sup

n
‖µn‖ → 0

as δ → 0, uniformly in n. If (c) holds, by (24) and boundedness of p0, there is c′ < ∞
such that

(E( f (X + y)− f (X))2)1/2 ≤ c′
⎛

⎝
∫

R

( f (x + y)− f (x))2dx

⎞

⎠

1/2

≤ c′|y|s

holds uniformly in F , and hence (I)n,δ → 0 as δ → 0, uniformly in n, as in case (b).
Finally, if (d) holds, (I)n,δ→0 uniformly in n as δ→0 since sup|y|≤δ sup f ∈F E( f (X+
y)− f (X))2 → 0 as δ → 0 and, by assumption, supn ‖µn‖ < ∞. ��

3.3.2 Classes of sets and functions in R
d

Parts (b), (c) and (d) of the previous proposition could be considered in higher dimen-
sions with only formal changes. However, if one is interested in applying Theorems 2
or 3 to classes of sets (or non-smooth functions) in R

d , then the smoothness require-
ments of (b) and (c) will not be appropriate. In this section we show how Condition (7)
can be verified for such classes, by using the notion of functions of bounded variation
in higher dimensions. Indicators of many relevant classes of sets will be shown to be
functions of bounded variation on R

d .
We need some notation: As usual, if f : R

d → R is a locally integrable function, it
gives rise to a distribution T f acting on the space D(Rd) of all infinitely differentiable
real-valued functions on R

d with compact support via integration. We define the partial
distributional derivative Dα

w f of a locally integrable function f as usual by the relation
Dα
wT f (φ) = (−1)|α| ∫

Rd f (x)(Dαφ)(x)dx , where φ ∈ D(Rd). If Dα
wT f (·) is, for

every α with |α| = 1, also a ’regular’ distribution given by another locally integrable
function g (or, alternatively, by a signed Borel measureµ), then we say that g (resp.µ)
is the weak derivative of f , and we write g = Dα

w f (µ = Dα
w f ); cf., e.g., p.42 in

Ziemer [33]. If f is differentiable in the classical sense, then of course Dα f = Dα
w f

holds λ-a.e. (as can be easily checked by integration by parts). Also, we set Dw f =
Dα
w f in case α = d = 1.
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The definition of bounded variation in (23) above does not immediately generalize
to higher dimensions. On the other hand, the following definition is possible:

BV(Rd)={ f : R
d →R locally integrable, Dα

w f ∈ M(Rd) for every α with |α|=1},

that is, BV(Rd) is the space of all locally integrable functions that have weak partial
derivatives of order one which are finite signed measures. The space BV(Rd) can be
equipped with the seminorm

‖ f ‖BV = max
α:|α|=1

∥
∥Dα

w f
∥
∥

where we recall that
∥
∥Dα

w f
∥
∥ = ∥

∥Dα
w f

∥
∥′

C0
is the total variation of the measure Dα

w f .
If d = 1, then f ∈ BV(R) if and only if there exists g ∈ BV(R) such that f = g

holds λ-a.e. To see this, for f ∈ BV(R) consider f̃ (x) = Dw f (−∞, x]. Clearly
f̃ ∈ BV(R) as it is the cumulative distribution function of Dw f ∈ M(R). Then
Dw f̃ = Dw f implies that f − f̃ equals a constant c almost everywhere, cf. p.51 in
Schwartz [25], so f ∈ [ f̃ + c]λ where f̃ + c ∈ BV(R). Conversely, if f ∈ BV(R),
then f̃ (x) = f (x+) − f (−∞+) defines a function in BV(R), right-continuous and
with left limits, equal to zero at −∞, which coincides with f (x)− f (−∞+) except
at most for a countable number of points (see, e.g., Sect. 3.5 in Folland [9]). The finite
signed measure ν f (a, b] = f̃ (b) − f̃ (a) for −∞ < a < b < ∞ is precisely Dw f ,
so f ∈ BV(R).

As a consequence, if f ∈ BV(R) and f̃ (x) = Dw f (−∞, x], then for all x, y in a
set � f such that λ(�c

f ) = 0, x < y, we have

| f (y)− f (x)| =
∣
∣
∣ f̃ (y)− f̃ (x)

∣
∣
∣ = |Dw f (x, y]| ≤ |Dw f | (x, y] (26)

and�c
f is countable if f ∈ BV(R). We shall use this fact repeatedly in the rest of this

paper, where we will usually write ν f for the measure Dw f . Also, by right-continuity
of f̃ and the definitions, we have

∥
∥ν f

∥
∥ = ‖ f ‖BV =

∥
∥
∥ f̃

∥
∥
∥

BV
=
∥
∥
∥ f̃

∥
∥
∥

T V
(27)

= sup

{
n∑

i=1

| f (xi )− f (xi−1)| : n ∈N,−∞< x1< · · ·< xn<+∞, xi ∈� f

}

≤ ‖ f ‖T V ,

where ‖ f ‖T V may be infinite (if f is in BV(R) but not in BV(R)).
In case d > 1, one has a characterization ofBV(Rd)which is in the same spirit. First,

some notation: For f ∈ BV(Rd), 1 ≤ i ≤ d, x̃i := (x1, . . . , xi−1, xi+1, . . . , xd) ∈
R

d−1 and t ∈ R define

fi,x̃i (t) = f (x1, . . . , xi−1, t, xi+1, . . . , xd),
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the functions of one variable obtained from f by freezing all but the i-th coordinate.
We will use the notation x = (x̃i , xi ) for x = (x1, . . . , xd).

Proposition 2 Let f ∈ L1(Rd , λ). Then f ∈ BV(Rd) if and only if fi,x̃i ∈ BV(R)
for almost every x̃i ∈ R

d−1 and

∫

Rd−1

∥
∥
∥ν fi,x̃i

∥
∥
∥ dx̃i < ∞

for every 1 ≤ i ≤ d, and then, this integral is dominated by ‖ f ‖BV .

Proof The proposition can be deduced from the proof of Theorem 5.3.5 in Ziemer [33].

One only has to note that
∥
∥
∥ν fi,x̃i

∥
∥
∥ coincides—for f ∈ BV(R)—with the essential

variation defined in that theorem, and that Theorem 5.3.1 in Ziemer [33] in fact holds
with U = R

d . ��
Using Proposition 2, one can prove the following result.

Proposition 3 Let P be an absolutely continuous probability measure, dP(x) =
p0(x)dλ(x), and let {µn}∞n=0 be a proper approximate convolution identity. Let F
be a uniformly bounded class of functions and assume either that

(a) the density p0 is a bounded function, F ⊆ L1(Rd , λ) ∩ BV(Rd) and
sup f ∈F ‖ f ‖BV < ∞, or

(b) the functions fi,x̃i exist for all 1 ≤ i ≤ d, x̃i ∈ R
d−1, f ∈ F and sup{∥∥ fi,x̃i

∥
∥

BV :
1 ≤ i ≤ d, x̃i ∈ R

d−1, f ∈ F} < ∞ holds.
Then Condition (7) holds, that is

sup
f ∈F

E

⎛

⎜
⎝

∫

Rd

( f (X + y)− f (X))dµn(y)

⎞

⎟
⎠

2

→ 0

as n tends to infinity.

Proof Using the same decomposition as in (25) above, we have

sup
f ∈F

⎛

⎜
⎝E

⎛

⎜
⎝

∫

Rd

( f (X + y)− f (X))dµn(y)

⎞

⎟
⎠

2⎞

⎟
⎠

1/2

≤ sup
f ∈F

∫

|y|≤δ

(
E( f (X + y)− f (X))2

)1/2
d|µn|(y)

+ sup
f ∈F

∫

|y|>δ

(
E( f (X + y)− f (X))2

)1/2
d|µn|(y)

:= (I)n,δ + (II)n,δ
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and, just as in the proof of Proposition 1, limn(II)n,δ = 0 for all δ > 0, noting that
uniform boundedness of F implies supy∈Rd sup f ∈F P( f (· + y))2 < ∞.

About the term (I)n,δ , we have the following: Let ui = (x1 + y1, . . . , xi + yi ,

xi+1, . . . , xd) for i = 1, . . . , d and let u0 = x = (x1, . . . , xd). Then, if D is the
uniform bound for F , we have

∫

Rd

( f (x + y)− f (x))2 p0(x)dx ≤ 2D
∫

Rd

| f (x + y)− f (x)| p0(x)dx

≤ 2D
d∑

i=1

∫

Rd

| f (ui )− f (ui−1)| p0(x)dx .

We now consider the i-th summand. Set ũi = (x1+y1, . . . , xi−1+yi−1, xi+1, . . . , xd)

so that in the notation from above ui = (ũi , xi + yi ) and ui−1 = (ũi , xi ). Also, recall
the measure ν fi,ũi

from Proposition 2 and set νi,ũi := ν fi,ũi
for brevity. Then we have

for (in case (a) almost) every ũi that | f (ui )− f (ui−1)| ≤ ∣
∣νi,ũi

∣
∣ (xi , xi + yi ] for

yi ≥ 0 and | f (ui )− f (ui−1)| ≤ ∣
∣νi,ũi

∣
∣ (xi + yi , xi ] for yi < 0 except for xi , xi + yi

in a set of measure zero (depending on ũi ), cf. (26). We only consider yi ≥ 0, the case
yi < 0 is similar. Since 0 ≤ yi ≤ δ we have—recalling x = (x̃i , xi )—that

∫

Rd

| f (ui )− f (ui−1)| p0(x)dx ≤
∫

Rd−1

∫

R

∣
∣νi,ũi

∣
∣ (xi , xi + yi ]p0(x̃i , xi )dxi d x̃i

≤
∫

Rd−1

∫

R

∣
∣νi,ũi

∣
∣ (xi , xi + δ]p0(x̃i , xi )dxi d x̃i

(28)

=
∫

Rd−1

∫

R

⎡

⎣

u∫

u−δ
p0(x̃i , xi )d

∣
∣νi,ũi

∣
∣ (u)

⎤

⎦ dxi d x̃i

=
∫

Rd−1

∫

R

⎡

⎣
∫

R

1[u−δ,u] p0(x̃i , xi )dxi

⎤

⎦d
∣
∣νi,ũi

∣
∣ (u)dx̃i .

Define λδ(x̃i , u) = ∫
R

1[u−δ,u] p0(x̃i , xi )dxi . Then

sup
u∈R

λδ(x̃i , u) =
∫

R

1[u−δ,u] p0(x̃i , xi )dxi → 0

as δ → 0 for each x̃i by absolute continuity of the integral of the function p0(x̃i , ·) ∈
L1(R, λ). Now distinguish cases (a) and (b):
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In case (a), set supx∈Rd p0(x) = C . Then—using a change of variables x̃i → ũi

and Proposition 2—the last integral in (28) is bounded by

Cδ
∫

Rd−1

∫

R

d
∣
∣νi,ũi

∣
∣ (u)dx̃i ≤ Cδ

∫

Rd−1

∥
∥νi,ũi

∥
∥ dũi ≤ Cδ ‖ f ‖BV ,

and this immediately gives limδ→0 lim supn((I)n,δ) = 0 since supn ‖µn‖ < ∞.
In case (b), the last integral in (28) is dominated by

sup
x̃i ∈Rd−1

∥
∥νi,ũi

∥
∥
∫

Rd−1

sup
u∈R

λδ(x̃i , u)dx̃i

and—since supu∈R λδ(x̃i , u)≤∫
R

p0(x̃i , xi )dxi and
∫
Rd−1

∫
R

p0(x̃i , xi )dxi d x̃i =1—
we have by dominated convergence that

lim
δ→0

lim sup
n
(I)n,δ

≤ 2Dd lim
δ→0

sup
f ∈F

(

sup
x̃∈Rd−1

∥
∥νi,ũi

∥
∥ sup

n
‖µn‖

) ∫

Rd−1

sup
u∈R

λδ(x̃i , u)dx̃i = 0,

which completes the proof of Part (b). ��

We note that Part (a) can also be proved by using results on Besov spaces, see
Lemma 7 in Sect. 5. [This lemma implies that any f ∈BV(Rd) is contained in the Besov
space B1

1∞(Rd), which in turn yields that supz �=0 |z|−r (
∫
Rd | f (x + z)− f (x)| dx) <

∞ holds for every r < 1. This L1-Hölder condition—together with uniform boun-
dedness of F—could then be applied just as in the proof of Part (c) of Proposition 1.]

Now any class of sets C ⊆ BRd gives rise to a class of locally integrable functions
{1C : C ∈ C}. Furthermore, results in geometric measure theory imply that many
sets C ∈ BRd correspond to functions 1C that are contained in BV(Rd). The class
of all sets whose indicators are in BV(Rd) is the class of all sets of finite perimeter,
see p. 299 in [33]. The following corollary gives two simple examples (convex sets
and sets with smooth differentiable boundaries) to which Proposition 3 applies. An
open set C ⊆ R

d is said to be a Cα-domain (α ≥ 2) if its boundary ∂C is a (d − 1)-
dimensional compact Riemannian submanifold of R

d of smoothness of order α. The
(d −1)-dimensional Hausdorff measure Hd−1(·) on ∂C defined in [33] then coincides
with the usual Riemannian ‘surface area’ on ∂C .

Corollary 1 Let P be an absolutely continuous probability measure on R
d , dP(x) =

p0(x)dλ(x), and let {µn}∞n=0 be a proper approximate convolution identity. Let C be
one of the following classes:

(a) the class C of all convex sets in R
d

(b) the class C of bounded C2-domains with Hd−1(∂C) bounded by a fixed constant.
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Then in both cases, but assuming in Part (b) that p0 is also bounded, we have

sup
C∈C

E

⎛

⎜
⎝

∫

Rd

(1C (X + y)− 1C (X))dµn(y)

⎞

⎟
⎠

2

→n→∞ 0.

Proof Part (a) follows from Proposition 3b, since the intersection of a convex set C
with any line parallel to the coordinate axes is either empty, a point, or an interval.
Hence sup{‖1Ci,x̃i

‖BV : 1 ≤ i ≤ d, x̃i ∈ R
d−1, C ∈ C} is at most 2. For Part (b), if

C is a C2-domain, then it follows from the Gauß–Green theorem that ‖1C‖BV can be
bounded by a constant times Hd−1(∂C), see, e.g., Remark 5.4.2 in [33], so the result
follows from Proposition 3a. ��
Remark 5 We note that the indicator of an arbitrary convex set C is not necessarily
in BV(Rd), but it is if C has finite diameter: In this case, the orthogonal projection
πi (C) of C on the subspace xi = 0 (1 ≤ i ≤ d) satisfies Hd−1(πi (C)) < ∞, and
it is easy to see that with α = (0, . . . , 1, . . . 0), where 1 is in the i-th place, one has∥
∥Dα

w1C
∥
∥ ≤ 2Hd−1(πi (C)), so ‖1C‖BV ≤ 2 max1≤i≤d Hd−1(πi (C)). In particular,

if C is a collection of convex sets of diameter bounded by a fixed constant D, then
we have in fact supC∈C ‖1C‖BV ≤ 2vd−1 Dd−1 where vd−1 is the volume of the unit
sphere in R

d−1. We will use this observation in Proposition 4.

4 Application of Theorems 2 and 3 to kernel estimators

In this section we illustrate how Theorems 2 and 3 can be applied—for several classes
F—to kernel density estimators. In most of this section, we discuss the case where F
is a class of functions on the real line, i.e. d = 1. In Sect. 4.1.3 we treat the case of
higher dimensions with a focus on classes of sets. Also, for simplicity, we will restrict
ourselves to symmetric kernel functions.

Definition 2 A kernel K : R → R of real order r > 0 is a Lebesgue integrable
function, symmetric around the origin, such that

∫

R

K (y)dy = 1,
∫

R

y j K (y)dy = 0 for j = 1, . . . , {r}, and

∫

R

|y|r |K (y)|dy < ∞

where {r} is the largest integer strictly smaller than r .

If hn > 0 is a sequence of real numbers converging to zero, then the classical kernel
density estimator is given by

Pn ∗ Khn (x) = 1

nhn

n∑

i=1

K

(
x − Xi

hn

)

. (29)
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We recall that dµn(y) = h−1
n K (h−1

n y)dy is a proper approximate identity (if hn → 0).
In density estimation, the following assumption is natural:

Condition 1 The random variables X1, . . . , Xn are i.i.d. according to the law P on R,
and dP(x) = p0(x)dλ(x). In fact, we take the variables Xi to be the coordinate
projections of the infinite product probability space (RN,BRN ,PN).

We will give sufficient conditions on hn and the order r of the kernel that imply the
UCLT √

n(Pn ∗ Khn − P) ��∞(F) G (30)

for many concrete classes F .

4.1 Donsker classes

In this subsection, we discuss UCLTs for kernel density estimators when the class of
functions F is Donsker. The main additional effort will be to give sharp bounds for
the bias term (8),

√
nh−1

n

∣
∣
∣
∣E

∫

Rd

( f (X + y)− f (X))K (y/hn)dy

∣
∣
∣
∣ = √

n|E( f ∗ Khn (X)− f (X))| (31)

(noting the symmetry of K ), in Theorem 2. We first treat the case where nothing else
is known about the Donsker class F other than that it is translation-invariant. Then,
for kernel density estimators it was already noticed in van der Vaart [29] that the bias
term can be controlled by straightforward methods that use smoothness assumptions
on the true density p0.

For integer t > 0, we denote by W t
1(R) the space of functions f whose derivatives

up to order t − 1 are in L1(R, λ), Dt−1 f is contained in BV(R) and Dt
w f is abso-

lutely continuous (i.e. Dt
w f ∈ L1(R, λ), also see Sect. 3.3.2). By convention we set

W0
1 (R) = L1(R, λ).

Lemma 3 Let dµh(x) = h−1 K (x/h)dλ(x) where K is a kernel of order t and let
dP(x) = p0(x)dx be a probability measure with a bounded density p0 ∈ W t

1(R). Let
f : R → R be a bounded function. Then

|E( f ∗ µh(X)− f (X))| ≤ 2‖ f ‖∞‖Dt
w p0‖1,λ

⎛

⎝
∫

R

|y|t K (y)|dy

⎞

⎠ ht .

Proof Routine application of Taylor’s formula and the definition of W t
1(R). ��

Given the preceding lemma, the following theorem—which is essentially van der
Vaart’s [28] observation for kernel smoothing—is then a straightforward application of
Theorem 2. [Note that conditions for (7) to hold were already given in Proposition 1.]
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360 E. Giné, R. Nickl

Theorem 4 Let Condition 1 hold with p0 ∈ W t
1(R) for some t > 0. Let K be a kernel

of order t and let hn > 0 be such that nh2t
n →n→∞ 0. Let F be a translation invariant

uniformly bounded P-Donsker class of functions satisfying Condition (7). Then

√
n(Pn ∗ Khn − P) ��∞(F) G,

where G is the P-Brownian bridge indexed by F .

Proof This follows easily from Theorem 2 and Lemma 3. ��

4.1.1 The bias term revisited

Theorem 4 is restrictive in various ways. First, the requirement that the true density p0
possesses some smoothness seems unnatural. One would rather expect that—as soon
as p0 is known to exist—a little smoothing should not make the density estimator to
deviate much from the empirical process in �∞ (F); more concretely, one would expect
the smoothness parameter t = 0 to be admissible if one is only interested in a UCLT
in �∞ (F). Secondly, Theorem 4 rules out classical kernel density estimators with
’textbook’ bandwidth hn � n−1/(2t+1), since then limn nh2t

n = limn n1−2t/(2t+1) = ∞
holds for every t ∈ N. Consequently one would have to take faster bandwidths than
hn � n−1/(2t+1) which would subsequently slow down the rate of convergence of the
kernel density estimator in mean integrated squared error. In particular, Theorem 4
does not allow for the construction of a ‘plug-in estimator’ in the sense of Bickel and
Ritov [3], see the introduction.

Both deficiencies have their origin in the debiasing Lemma 3. Maybe not surpri-
singly, it turns out that this bias bound is too crude for many interesting cases. Note
that, while Lemma 3 uses the fact that p0 is smooth, it does not use the fact that also f
may possess some ‘regularity’. We begin with a simple observation in this direction,
where the idea will be to use smoothness of f and p0 simultaneously.

Lemma 4 Let dµh(x) = h−1 K (x/h)dλ(x) where K is a kernel of order m ≥ 0 and
let dP(x) = p0(x)dx be a probability measure with a density p0 ∈ Lq(R, λ). Let
further f ∈ Lp(R, λ) where 1/p + 1/q = 1 and set f̄ (x) = f (−x) for x ∈ R. Then
f̄ ∗ p0 ∈ C(R) and we have for the bias term that

|E( f ∗ µh(X)− f (X))| =
∣
∣
∣
∣
∣
∣

∫

R

K (t)[ f̄ ∗ p0(ht)− f̄ ∗ p0(0)]dt

∣
∣
∣
∣
∣
∣
.

Proof Note that f ∗ K ∈ Lp(R, λ) by (6) which implies (by Hölder’s inequality) that
( f ∗ K ) · p0 is Lebesgue-integrable for every f ∈ F since p0 ∈ Lq(R, λ). Now, by
change of variables and Fubini, we have that
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E( f ∗ µh(X)− f (X)) = h−1
∫

R

∫

R

( f (x − y)− f (x))K (y/h)dyp0(x)dx

=
∫

R

∫

R

( f (x − th)− f (x))K (t)dtp0(x)dx

=
∫

R

K (t)

⎡

⎣
∫

R

f (x − th)p0(x)dx −
∫

R

f (x)p0(x)dx

⎤

⎦ dt

=
∫

R

K (t)

⎡

⎣
∫

R

f̄ (th − x)p0(x)dx−
∫

R

f̄ (0 − x)p0(x)dx

⎤

⎦dt

=
∫

R

K (t)[ f̄ ∗ p0(ht)− f̄ ∗ p0(0)]dt.

The expression on the right hand side is well defined since f ∈ Lp(R, λ) implies
f̄ ∈ Lp(R, λ) and hence f̄ ∗ p0 ∈ C(R) by (5). ��

So in the analysis of the bias term one really looks at smoothness of f̄ ∗ p0 instead
of at smoothness of only one of the factors of the convolution product. If nothing at
all is known about F except that it is Donsker, then f̄ ∗ p0 will inherit the smoothness
of p0 only and we are back at Theorem 4. But the advantage of Lemma 4 is that
one can combine the information on p0 and F . This can be done, e.g., by using the
following lemma. Recall from (26) that, if f ∈ BV(R), then there exists f̃ ∈ [ f ]λ
such that ν f ((a, b]) = f̃ (b) − f̃ (a) holds, where ν f = Dw f ∈ M(R) is a finite
signed measure.

Lemma 5 (a) Let f ∈ C(R) be such that D f exists and is bounded, and let ν ∈
M(R) be a finite signed measure. Then, for every x ∈ R, D( f ∗ ν)(x) exists and
D( f ∗ ν)(x) = (D f ∗ ν)(x) holds.

(b) Let g ∈ C(R), let f ∈ BV(R), and suppose that g ∗ f (x) is defined for every
x ∈ R. Then, for every x ∈ R, D(g ∗ f )(x) exists and D(g ∗ f )(x) = (g ∗ ν f )(x)
holds, where ν f is the finite signed measure defined by ν f ((a, b]) = f̃ (b)− f̃ (a).

Proof Part (a) By the mean value theorem and boundedness of D f , h−1[ f (x − y +
h)− f (x − y)] is uniformly bounded, hence, by dominated convergence, we have

D( f ∗ ν)(x) = lim
h→0

h−1

∞∫

−∞
( f (x − y + h)− f (x − y)) dν(y)dy

=
∞∫

−∞
lim
h→0

h−1[ f (x − y + h)− f (x − y)]dν(y)dy

=
∞∫

−∞
D f (x − y)dν(y)dy = (D f ∗ ν)(x),
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the last integral being convergent for every x ∈ R since D f is bounded.
Part (b) Clearly, (g ∗ f )(x) = (g ∗ f̃ )(x) holds for every x ∈ R, so we have

D(g ∗ f )(x) = lim
h→0

h−1

∞∫

−∞

(
f̃ (x − y + h)− f̃ (x − y)

)
g(y)dy

= lim
h→0

h−1

∞∫

−∞

x−y+h∫

x−y

dν f (t)g(y)dy

= lim
h→0

h−1

∞∫

−∞

x−t+h∫

x−t

g(y)dydν f (t)

=
∞∫

−∞
lim
h→0

h−1

x−t+h∫

x−t

g(y)dydν f (t)

=
∞∫

−∞
g(x − t)dν f (t) = g ∗ ν f (x)

for every x . The first two equalities follow from the definition of convolution, and from
definition of the measure ν f . The third is Fubini and the fourth equality follows from
g ∈ C(R) and Lebesgue’s dominated convergence theorem. The fifth equality follows
from the fundamental theorem of calculus. The integral in the last line converges for
every x ∈ R by boundedness of g. ��

If now, for example, f ∈ C1(R) and p0 ∈ BV(R), then, by applying the above
lemma twice, we have

D2( f ∗ p0) = D(D f ∗ p0) = (D f ∗ νp0) (32)

and hence ∥
∥
∥D2( f ∗ p0)

∥
∥
∥∞ ≤ ‖D f ‖∞

∥
∥νp0

∥
∥ < ∞ (33)

by (6) and since
∥
∥νp0

∥
∥ ≤ ‖p0‖T V < ∞ holds (see (27)), so it follows that the

convolution product p0 ∗ f is twice differentiable whereas p0 is only once (and this
only in the weak sense). The above ideas (and variations thereof) are exploited in the
next sections to improve upon Theorem 4 in many interesting special cases. Note that
a general version of Lemma 5 (including the multivariate case) is proved in Lemma 12
(by using Fourier-analytical methods).

Remark 6 It is instructive to consider the special case where ft (x) = 1(−∞,t](x)
in Lemma 4. Then p0 ∗ f̄t = p0 ∗ 1[−t,∞)(x) just equals the distribution function
∫ t+x
−∞ p0dλ, which—as was already noted by Bickel and Ritov [3]—can be seen directly

to have one more derivative than p0 ∈ C(R). [Note that then
∥
∥ν1(−∞,t]

∥
∥ = ‖δt‖ = 1

for every t in (33).]
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4.1.2 Examples of Donsker classes

1. Bounded Variation Classes Recall that any bounded subset U of BV(R) is a
uniform Donsker class, (see, e.g., Dudley [8, p. 329]). We introduce the parameter k
in order to gain some flexibility in the choice of the order of the kernel, see the remark
after the theorem.

Theorem 5 Let Condition 1 hold and suppose that p0 is a bounded function, in which
case we set t = 0 in what follows, or assume p0 ∈ Ct (R) for some real t > 0. Let U
be a bounded subset of BV(R). Let K be a kernel of order r = t + 1 − k for some k,
0 ≤ k < t + 1. If hn > 0 is such that ht+1−k

n n1/2 →n→∞ 0, then

√
n(Pn ∗ Khn − P) ��∞(U) G,

where G is the P-Brownian bridge indexed by U .

Proof Since (Pn ∗ Khn − P)( f + c) = (Pn ∗ Khn − P)( f ) for any constant c,
we may assume without loss of generality that the class U is uniformly bounded.
[Otherwise, consider U ′ = { f − f (−∞+) : f ∈ U}, which is uniformly bounded
by sup f ∈U ‖ f ‖T V .] Now, U being uniformly bounded, we have U ⊆ L1(|µn|) as
K ∈ L1(R, λ) and also sup f ∈U

∫
R

‖ f (· − y)‖2,Pd |µn| (y) < ∞. Moreover, Condi-
tion (7) of Theorem 2 is verified in Part (a) of Proposition 1.

Hence it remains to verify the bias condition (8). If t = 0 it follows as in the proof
of Lemma 5 (without limits) that { f̄ ∗ p0 : f ∈ U} is a bounded subset of the space
of bounded Lipschitz functions on R; therefore, using Lemma 4, we obtain that the
bias is dominated by Ch1−k

n with C depending only on K and sup f ∈U ‖ f ‖T V , which
completes the proof of the theorem for t = 0.

Finally, we consider the bias for t > 0. By using Lemma 5 iteratively, we have, for
f ∈ U ,

D[t]+1(p0 ∗ f ) = D[t](p0 ∗ ν f ) = D[t] p0 ∗ ν f (34)

recalling that [t] denotes the integer part of t . In particular, Dα(p0 ∗ f ) exists and is
a bounded and continuous function for every 0 ≤ α ≤ [t] + 1. We distinguish two
cases:

(a) In case t = [t] is an integer, we have from (34) and (6) that

sup
f ∈U

∥
∥
∥Dt+1(p0 ∗ f )

∥
∥
∥∞ ≤ ∥

∥Dt p0
∥
∥∞ sup

f ∈U

∥
∥ν f

∥
∥ < ∞, (35)

recalling
∥
∥ν f

∥
∥ ≤ ‖ f ‖T V (see (27) above).
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364 E. Giné, R. Nickl

(b) In the noninteger case t > [t] we show that D[t]+1(p0 ∗ f ) is Hölder-continuous
of order t − [t]. We have

|h|[t]−t
∣
∣
∣D[t]+1(p0 ∗ f )(x + h)− D[t]+1(p0 ∗ f )(x)

∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∫

R

|h|[t]−t
(

D[t] p0(x + y + h)− D[t] p0(x + y)
)

dν f (y)

∣
∣
∣
∣
∣
∣

≤
∥
∥
∥D[t] p0

∥
∥
∥

t−[t],∞
∥
∥ν f

∥
∥ , (36)

which is bounded uniformly in f ∈ U , since p0 ∈ Ct (R) implies D[t] p0 ∈
Ct−[t](R) and since the variation of ν f is uniformly bounded (using again

∥
∥ν f

∥
∥ ≤

‖ f ‖T V ).

Now, to bound the bias term, we use Lemma 4 (and the identity (31)): Note that,
if f ∈ U , then also f̄ ∈ U . Consider first t + 1 − k noninteger. Then by a Taylor
expansion,

∣
∣E( f ∗ Khn (X)− f (X))

∣
∣

=
∣
∣
∣
∣

∫

R

K (t)[D(p0 ∗ f̄ )(0)thn

+ · · · + 1

[t + 1 − k]! D[t+1−k](p0 ∗ f̄ )(0)t [t+1−k]h[t+1−k]
n ]dt

+ 1

[t + 1 − k]!h[t+1−k]
n

∫

R

K (t)t [t+1−k][D[t+1−k](p0 ∗ f̄ )(ζhnt)

−D[t+1−k](p0 ∗ f̄ )(0)]dt

∣
∣
∣
∣ (37)

for some 0 < ζ < 1. The first [t + 1 − k] terms in the above display are all equal to
zero by the choice of the kernel (cf. Definition 2). Note next that by either (35) or (36)
above, D[t+1−k](p0 ∗ f̄ ) is contained in Cα(R)where α = t +1−k −[t +1−k] > 0,
and—using again the assumption on the kernel—we have that the last term in (37) is
bounded in absolute value by

Cht+1−k
n

∫

R

|K (t)| |t |t+1−k ,

the constant C being equal to

C = 1

[t + 1 − k]! sup
f ∈U

∥
∥
∥D[t+1−k](p0 ∗ f )

∥
∥
∥∞,α

< ∞.
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Consequently, by the choice of hn , we obtain the bound

sup
f ∈U

√
n
∣
∣E( f ∗ Khn (X)− f (X))

∣
∣ = O(

√
nht+1−k

n ) = o(1) (38)

for the bias term. In case t + 1 − k integer,

∣
∣E( f ∗ Khn (X)− f (X))

∣
∣

=
∣
∣
∣
∣

∫

R

K (t)[D(p0 ∗ f̄ )(0)thn

+ · · · + 1

{t + 1 − k}! D{t+1−k}(p0 ∗ f̄ )(0)t {t+1−k}h{t+1−k}
n ]dt

+ 1

(t + 1 − k)!ht+1−k
n

∫

R

K (t)t t+1−k[Dt+1−k(p0 ∗ f̄ )(ζhnt)]dt

∣
∣
∣
∣ (39)

for some 0 < ζ < 1 yields (38) by choice of the kernel and since Dt+1−k(p0 ∗ f̄ ) is
sup-norm bounded uniformly in f ∈ U by either (35) or (36) above. ��
Remark 7 (Order of the kernel and MISE-optimal rates) We note that the parameter
k ≥ 0 allows for some flexibility in the choice of the order of the kernel. In the most
interesting case hn � n−1/(2t+1), where the kernel estimator simultaneously achieves
optimal rates of convergence in squared error loss, we have ht+1−k

n n1/2 →n→∞ 0 if
0 ≤ k < 1/2, so the kernel has to be of order

r > t + 1/2. (40)

In other words, if one wants classical kernel density estimators to satisfy a UCLT over
bounded variation classes, the order of the kernel has to be chosen larger by 1/2 than
usual. See also Remark 8 below for more discussion.

We also state the following immediate corollary for the cumulative distribution
function of the kernel estimator, which is essentially due to Bickel and Ritov [3].

Corollary 2 Let Condition 1 hold and suppose that p0 is a bounded function (case
t = 0) or assume that p0 ∈ Ct (R) for some real t > 0. Let K be a kernel of
order r > t + 1/2. Choose hn > 0 of order hn � n−1/(2t+1). Define the cumulative
distribution functions F̃n(t) = ∫ t

−∞(Pn ∗Khn )(x)dx as well as F(t) = ∫ t
−∞ p0(x)dx.

Then √
n(F̃n − F) �C(R) G,

where G is the P-Brownian bridge in C (R).

2. Hölder and Lipschitz classes We now deal with the Hölder classes

Fs,∞ = { f ∈ C(R) : ‖ f ‖s,∞ ≤ 1}, (41)
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Note that Fs,∞ for s < 1 contains the usual Lipschitz classes (considered, e.g., in [12]).
If s > 1/2 and

∫
R

|x |1+η dP(x) < ∞ holds for some η > 0, then Fs,∞ is a P-
Donsker class (see, e.g., Corollary 5 and Sect. 3.3.1 in Nickl and Pötscher [20]), and
these conditions can be shown to be (essentially) sharp (cf. Theorem 2 in [12] for the
Lipschitz case and also Theorems 4 and 6 in Nickl [17]). Recall the spaces W t

1(R)

defined before Lemma 3.

Theorem 6 Let Condition 1 hold and suppose that
∫
R

|x |1+η dP(x) < ∞ is satisfied
for some η > 0 and that p0 ∈ W t

1(R) for some t ≥ 0. Let Fs,∞ with s > 1/2 be given
as in (41). Let K be a kernel of order r = t + s − k for some k, 0 ≤ k < t + s. If
hn > 0 is such that ht+s−k

n n1/2 →n→∞ 0, then

√
n(Pn ∗ Khn − P) ��∞(Fs,∞) G,

where G is the P-Brownian bridge indexed by Fs,∞.

Proof Note first that, since Fs,∞ is P-Donsker and closed under translations, we can
apply Theorem 2b. Since Fs,∞ is uniformly bounded, we have Fs,∞ ⊆ L1(|µn|),
sup f ∈Fs,∞

∫
R

‖ f (· − y)‖2,Pd |µn| (y) < ∞, and Part 2 of Proposition 1 verifies
Condition (7). It remains to treat the bias term from Condition (8). First, observe the
following. For f ∈ W t

1(R), we have, for every 0 ≤ α ≤ t − 1, that Dα f ∈ BV(R),
and the corresponding finite signed measures νDα f defined in Part (b) of Lemma 5 are
in fact absolutely continuous. Using the convention dνDt−1 p0

= p0dλ in case t = 0,
we have, for f ∈ Fs,∞,

Dt+[s](p0 ∗ f ) = Dt (p0 ∗ D[s] f ) = νDt−1 p0
∗ D[s] f

by Lemma 5. In particular, Dα(p0∗ f ) exists and is a bounded and continuous function
for every 0 ≤ α ≤ t + [s]. If s = [s] integer, we conclude

sup
f ∈Fs,∞

∥
∥Dt+s(p0 ∗ f )

∥
∥∞ ≤ ∥

∥νDt−1 p0

∥
∥ sup

f ∈Fs,∞

∥
∥Ds f

∥
∥∞ < ∞ (42)

by (6), and if s is noninteger, it follows as in (36) that

sup
f ∈Fs,∞

∥
∥
∥Dt+[s](p0 ∗ f )

∥
∥
∥

s−[s],∞ < ∞ (43)

since D[s] f ∈ Cs−[s](R) by assumption.
Now, to finish the proof, we proceed as in Theorem 5 and apply Lemma 4 (and

the identity (31)). Consider first t + s − k noninteger. Then we have from a Taylor

123



Uniform central limit theorems for kernel density estimators 367

expansion that

∣
∣E( f ∗ Khn (X)− f (X))

∣
∣

=
∣
∣
∣
∣

∫

R

K (t)[D(p0 ∗ f̄ )(0)thn

+ · · · + 1

[t + s − k]! D[t+s−k](p0 ∗ f̄ )(0)t [t+s−k]h[t+s−k]
n ]dt

+ 1

[t + s − k]!h[t+s−k]
n

∫

R

K (t)t [t+s−k][D[t+s−k](p0 ∗ f̄ )(ζhnt)

−D[t+s−k](p0 ∗ f̄ )(0)]dt

∣
∣
∣
∣

holds for some 0 < ζ < 1. The first [t + s −k] terms in the above display are all equal
to zero by choice of the kernel. By either (42) or (43), D[t+s−k](p0 ∗ f̄ ) is contained in
Cα(R) for α = t + s − k −[t + s − k] > 0, and, by the same arguments as below (37)
in the proof of Theorem 5, we conclude that the last term in is bounded in absolute
value by

Cht+s−k
n

∫

R

|K (t)| |t |t+s−k ,

for some fixed constant C . This gives

sup
f ∈U

√
n
∣
∣E( f ∗ Khn (X)− f (X))

∣
∣ = O(

√
nht+s−k

n ) = o(1)

for the bias term. The case t +s −k integer is also similar as in the proof of Theorem 5,
and we omit it. ��
Remark 8 (Order of the kernel and MISE-optimal rates II) Again (cf. Remark 7), the
parameter k ≥ 0 allows for some flexibility in the choice of the order of the kernel. In
the most interesting case hn � n−1/(2t+1), one now has that ht+s−k

n n1/2 →n→∞ 0 if
0 ≤ k < s − 1/2, so—even as s varies—the order r of the kernel only has to satisfy

r > t + 1/2

as in (40). So the ’rule of thumb’ to obtain UCLTs—and hence Bickel and Ritov’s [3]
plug-in property—for classical kernel density estimators on the real line with band-
width hn � n−1/(2t+1) is to choose the kernel of an order higher by 1/2 than usual.

3. Sobolev classes Denote by F the Fourier–Plancherel transform on L2(R, λ) (see
Sect. 5). The Sobolev space of order s > 0 is defined as

Ws
2(R) = { f ∈ L2(R, λ) : ‖ f ‖s,2 :=

∥
∥
∥F−1[(1 + |·|2)s/2 F f (·)]

∥
∥
∥

2,λ
< ∞}. (44)
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As is well known (e.g., Theorem 3.5.1 in Malliavin [15]), f ∈ Ws
2(R) is equivalent

to Dα
w f ∈ L2(R, λ) for 0 ≤ α ≤ s and s > 0 integer, where Dα

w denotes the weak
differential operator of order α, see Sect. 3.3.2 above. Note that—if s > 1/2—the
Sobolev space can be viewed as consisting of bounded continuous functions (in the
sense that, if f ∈ Ws

2(R), then [ f ]λ contains one element which is in C(R)). It is
known that norm-balls in Ws

2(R) are universal Donsker classes if and only if s > 1/2
holds, see Marcus [16].

Theorem 7 Let Condition 1 hold and suppose that p0 ∈ W t
2(R) for some t ≥ 0.

Let Fs,2 = { f ∈ C(R) : ‖ f ‖s,2 ≤ 1} with s > 1/2. Let K be a kernel of order
r = t + s − k for some k, 0 ≤ k < t + s. If hn > 0 is such that ht+s−k

n n1/2 →n→∞ 0,
then √

n(Pn ∗ Khn − P) ��∞(Fs,2) G,

where G is the P-Brownian bridge indexed by Fs,2.

Proof We set shorthand 〈u〉α = (1 + |u|2)α/2 in what follows. Since Fs,2 is universal
Donsker and closed under translations, we can apply Theorem 2b. Note that Fs,2 is
uniformly bounded in view of

sup
f ∈Fs,2

‖ f ‖∞ ≤ sup
f ∈Fs,2

‖F f ‖1,λ ≤ sup
f ∈Fs,2

‖ f ‖s,2

∥
∥〈u〉−s

∥
∥

2,λ < ∞

by Fourier-inversion and the Plancherel theorem (see, e.g., Sect. III.2.4 in Malliavin
[15]), hence Fs,2 ⊆ L1(|µn|) and

sup
f ∈Fs,2

∫

R

‖ f (· − y)‖2,Pd |µn| (y) < ∞

for every n. Even more, one can show that Fs,2 is a bounded subset of Cs−1/2(R)

by using embeddings in 2.7.1 and Theorem 2.5.6/2 in Triebel [26], hence Part 2 of
Proposition 1 verifies Condition (7). We next verify the bias Condition (8). In the
case t + s integer, one has by well known facts in Fourier analysis (the relationships
F(D f )(u) = iuF f (u), F(p0 ∗ f ) = √

2πFp0 F f , Fourier inversion as well as
Plancherel’s theorem) that

‖p0 ∗ f ‖∞ + ‖D(p0 ∗ f )‖∞ + · · · + ∥
∥Dt+s(p0 ∗ f )

∥
∥∞

≤ √
2π

⎡

⎣
∫

R

(1 + |u| + · · · + |u|t+s) |Fp0(u)F f (u)| du

⎤

⎦

≤ C
∥
∥〈u〉t+s Fp0 F f

∥
∥

1,λ = C
∥
∥〈u〉t Fp0 〈u〉s F f

∥
∥

1,λ

≤ C ‖p0‖t,2 ‖ f ‖s,2

for some 0 < C < ∞, in particular, p0 ∗ f is contained in Ct+s(R) and

sup
f ∈Fs,2

‖p0 ∗ f ‖t+s,∞ < ∞
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is satisfied. [To be precise, the above argument establishes the inequality in the last
display only for an element of the equivalence class of p0 ∗ f . This element cannot
be different from p0 ∗ f as the latter is itself a continuous function (see before (5)
above).] The case of noninteger t + s follows from standard generalizations of the
above Fourier-analytical arguments, and we omit it. [It also follows from Lemma 12
below since Ws

2 = Bs
22 ⊂ Bs

2∞.] Now the bound

sup
f ∈U

√
n
∣
∣E( f ∗ Khn (X)− f (X))

∣
∣ = O(

√
nht+s−k

n ) = o(1)

for the bias term follows from the same arguments as in Theorem 6 above, noting
again that f ∈ Fs,2 implies f̄ ∈ Fs,2. ��

Again, a remark similar to Remark 8 applies for the bandwidth choice hn �
n−1/(2t+1). We also note that the above result can be generalized in a simple way
to the Sobolev spaces Ws

p(R) with 1 < p < ∞ if p0 ∈ W t
q(R) and 1/p + 1/q = 1.

4.1.3 Extensions to higher dimensions

On the one hand, Theorems 6 and 7 could be obtained in higher dimensions (i.e., in
R

d ) with only formal changes, if the smoothness index s satisfies s > d/2—which is
necessary for these classes to be Donsker (and pregaussian)—and if the kernel is of
order larger than t + d/2. We note here that, under the conditions of this multivariate
extension of Theorem 7, Bickel and Ritov [3, p. 1036f]. remarked that one can construct
a plug-in kernel estimator for the respective Sobolev classes for certain kernels K
satisfying |F K (u)− 1| ≤ B(1 ∧ |u|t+s) for some constant B. Theorem 7 shows
that this condition is not necessary, and that one can use classical kernels without any
problems to obtain even a UCLT, which implies the plug-in property, by only choosing
the order of the kernel larger by d/2. We also note here that, when dealing with classes
of functions in higher dimensions, it may be more convenient to treat the bias term
by Fourier-analytical methods (as in Theorem 7, cf. also Lemma 12 in Sect. 5) rather
than as in Lemma 5.

On the other hand, Theorem 5 does not easily generalize to higher dimensions.
Note that, whereas the spaces BV(R) can be generalized to higher dimensions, cf.
Sect. 3.3.2 above, balls in BV(Rd) are neither Donsker nor pregaussian if d > 1.
[This can be shown, e.g., by using results in Nickl [17].] But it is certainly of interest
to prove central limit theorems for the kernel density estimator that are uniform over
classes of suitable subsets of R

d . We give some results in this direction. In analogy
to Definition 2, define a kernel K : R

d → R of real order r > 0 to be a Lebesgue
integrable function, symmetric around the origin, such that

∫

Rd

K (y)dy = 1,
∫

Rd

|y|r |K (y)|dy < ∞ as well as

∫

R

y j
l K (y)dyl = 0 for l = 1, . . . , d and j = 1, . . . , {r}
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where y ∈ R
d is denoted by (y1, . . . , yd). If hn is a sequence of positive real numbers

converging to zero, then the sequence µn ∈ M(Rd) given by Khn (y)dλ(y) :=
h−d

n K (y/hn)dλ(y) is a proper approximate identity in the sense of Definition 1 above.
The usual kernel density estimator is then Pn ∗ Khn (x), and this notation is kept throu-
ghout the rest of this section.

Note that the classes in Part (a) of the following proposition include all paralle-
lepipeds and ellipsoids of uniformly bounded diameter, (by using the fact that these
classes are VC- and hence uniform Donsker classes, cf. Theorems 4.2.1 and 4.5.4 in
Dudley [8]), so, in particular, Euclidean balls and boxes in R

d . For Part (b), recall the
definition of a Cα domain from before Corollary 1. We set d > 1, as d = 1 follows
from Theorem 5.

Proposition 4 Let X1, . . . , Xn be i.i.d. according to the law P on R
d , d > 1, where

dP(x) = p0(x)dλ(x) with density p0. Suppose that p0 is a bounded function—in
which case we set t = 0 in what follows—or suppose p0 ∈ Ct (Rd) for some t > 0.
Let K be a kernel of order r = t + 1 − k for some k, 0 < k < t + 1. Let C be one of
the following classes:

(a) any translation-invariant P-Donsker class C of convex sets of diameter bounded
by a fixed constant, or

(b) all Cα-domains with a ≥ 2, α > (d−1)/2 and with both diameter and Hd−1(∂C)
bounded by a fixed constant.
If hn > 0 is such that ht+1−k

n n1/2 →n→∞ 0, and if, in Part (b), p0 is supported
in [−M,M]d for some finite positive M, then

√
n(Pn ∗ Khn − P) ��∞(C) G,

where G is the P-Brownian bridge indexed by C.

Proof We first show that the classes in (b) are P-Donsker: Since the diameters of
the domains C ∈ C are uniformly bounded, by the constant D say, and since p0 is
concentrated on [−M,M]d , we have ‖Pn − P‖C = ‖Pn − P‖CM D

where CM D is the
class of all elements in C that are ’properly’ contained in the cube [−M − D,M + D]d ,
i.e., the intersection of each C ∈ CM D with the complement of [−M − D,M + D]d

is empty. Then, w.l.o.g., [−M − D,M + D]d is equal to the unit cube, and Theorem
8.2.15 in Dudley [8] together with Ossiander’s CLT give the Donsker property of CM D ,
and hence of C, for α > (d − 1)/2.

Now, since all classes considered are uniformly bounded translation-invariant
P-Donsker classes for the laws in question, we only have to verify Conditions (7)
and (8) to apply Theorem 2. Corollary 1 verifies Condition (7) in both cases. Further-
more, the proof of this corollary, the remark below it and uniform boundedness of the
volume of elements of C, imply

sup
C∈C

(‖1C‖1,λ + ‖1C‖BV ) < ∞,

which we will use together with some results on Besov spaces in Sect. 5 to bound (8):
By Lemma 8 (and Remark 11)ii) below, the last display implies that {1C : C ∈ C} is
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a bounded subset of the Besov space B1
1∞(Rd). Also, p0 ∈ Ct (Rd) ⊆ Bt∞∞(Rd) by

(55). Hence, we can apply Lemma 12 below to obtain that the set {1C ∗ p0 : C ∈ C}
is bounded in Bt+1∞∞(Rd) and, by Remark 11, also in Ct+1−η(Rd) for every η > 0, in
particular for η = k. Then, as in Lemma 4, the bias term equals

|E(1C ∗ µhn (X)− 1C (X))| =

∣
∣
∣
∣
∣
∣
∣

∫

Rd

K (t)[1C̄ ∗ p0(hnt)− 1C̄ ∗ p0(0)]dt

∣
∣
∣
∣
∣
∣
∣

,

where C̄ = −C ∈ C in all three cases. Consequently, by obvious generalizations to
dimension d of the Taylor expansion arguments in Theorem 5, we conclude

sup
C∈C

√
n
∣
∣E(1C ∗ Khn (X)− 1C (X))

∣
∣ = O(

√
nht+1−k

n ) = o(1).

��
We note that the bias in the above proposition can also be bounded by adapting

arguments from the proof of Proposition 3.
On the one hand, the above proposition shows that—only under the assumption of

a bounded density—one can construct smoothed empirical measures that satisfy the
CLT uniformly over many Donsker classes of sets, and hence allows to improve on
the ’naive’ Theorem 4 above. Also, the bandwidth choice n−1/(2t+d)—which gives
optimal results in mean squared error—is ’almost’ admissible in case d = 2, as then
hn � n−1/(2t+2)−δ for some arbitrary δ > 0 implies ht+1−k

n n1/2 →n→∞ 0 for some
k > 0. On the other hand, in dimensions higher than 2, the bandwidths allowed for
in Proposition 4 have to be significantly faster than those that would be necessary
to obtain the plug-in property. Already Bickel and Ritov [3] noted this problem for
the case of distribution functions. The bias bound used in the proof above tries to
use ’generalized’ smoothness of the functions 1C , i.e., it uses that 1C has first order
distributional derivatives, regardless of the dimension, for a very large class of sets C ,
cf. also Sect. 3.3.2.

In special cases, one may be able to improve our general bound. Note that the bias
for a given set C is in fact equal to

|E(1C ∗ µhn (X)− 1C (X))| =

∣
∣
∣
∣
∣
∣
∣

∫

Rd

K (t)[1C̄ ∗ p0(hnt)− 1C̄ ∗ p0(0)]dt

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

∫

Rd

K (t)[P(C + hnt)− P(C)]dt

∣
∣
∣
∣
∣
∣
∣

,

where C + hnt denotes the translate of the set C by the vector hnt . Now consider, for
example, the case where P = λ |I is uniform on some cube I = [a, b]d , and C belongs
to a class C′ ⊆ C ∩ [a + δ, b − δ]d where δ > 0 and where C is one of the classes
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from the above proposition. [For example, C′ could consist of all balls contained in
[a + δ, b − δ]d .] If K has compact support, then both C ∈ C′ and its translate C + hnt
are contained in I for n large enough (independent of C) and every t in the support of
K . Consequently λ((C + hnt)∩ I ) = λ(C ∩ I ) from some n onwards by translation-
invariance of Lebesgue measure, so the bias is eventually exactly zero. Then the UCLT
follows directly from Theorem 2c (see also Remark 1) and Corollary 1, with the only
condition that hn → 0 as n → ∞. For more general classes C and measures P, similar
ideas might yield improvements on Proposition 4 above, but this is not the focus of
the present paper.

4.2 Pregaussian classes

Having verified that Theorem 2 applies to a large variety of interesting Donsker classes,
we now wish to discuss the case of pregaussian classes that are not Donsker, in which
case one has to apply Theorem 3. In particular, it is interesting to see to which extent
the general conditions imposed in that theorem work. We will be mostly interested in
classes of functions, so we restrict ourselves to the case d = 1 for simplicity.

We first consider arbitrary pregaussian classes of functions as in Radulović and
Wegkamp [21]. We will need the following well-known fact to verify Condition (11)
from Theorem 3, where we recall that log N[](·) denotes entropy with bracketing, see,
e.g., p. 83 in van der Vaart and Wellner [30].

Lemma 6 Define
VM := { f : R �→ R : ‖ f ‖T V ≤ M}

and let P(R) denote the set of all (Borel-) probability measures on R. Then, for
0 < ε ≤ M, we have

sup
Q∈P(R)

log N (VM , L2(Q), ε) ≤ sup
Q∈P(R)

log N[](VM , L2(Q), ε) ≤ K M

ε
.

Proof The first inequality follows from the definition of bracketing numbers. The
second inequality follows directly from Theorem 2.7.5 in van der Vaart and Wellner
[30] together with the Hahn-Jordan decomposition of f − f (−∞+) in VM into the
difference of two non-decreasing functions fP and fN that are zero at −∞ and such
that fP (+∞−)+ fN (+∞−) ≤ M , see Sect. 3.5 in Folland [9]. ��

Using the lemma above, one can prove the following theorem, where we recall the
spaces W t

1(R) from before Lemma 3. [Also note that conditions for (7) to hold were
already given in Proposition 1.]

Theorem 8 Let Condition 1 hold with p0 ∈ W t
1(R) for some t > 2. Let K ∈ BV(R)

be a kernel of order t and let hn > 0 be such that nh4
n → ∞ and nh2t

n → 0 as n tends
to infinity. Let F be a translation invariant, uniformly bounded and L1(R, λ)-bounded
P-pregaussian class of functions satisfying Condition (7). Then,

√
n(Pn ∗ Khn − P) ��∞(F) G,
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where G is the P-Brownian bridge indexed by F .

Proof The proof consists in checking the hypotheses of Theorem 3. Condition (b)
in Theorem 3 holds by assumption. Also, the bias condition (8) holds because, by
Lemma 3, √

n sup
f ∈F

|E( f ∗ Khn (X)− f (X))| = O(n1/2ht
n) = o(1)

is satisfied. Note further that F ⊆ L1(|µn|) for each n because F is uniformly
bounded. Also, by (6), ‖ f ∗ µn‖∞ ≤ ‖ f ‖∞‖K‖1,λ and we can take Mn = M =
sup f ∈F ‖ f ‖∞‖K‖1,λ, which gives condition a) in Theorem 3 with Mn independent
of n. Now we prove Condition (c). It is easy to see that, for all f ∈ F , ‖ f ∗µn‖T V ≤
sup f ∈F ‖ f ‖1,λ‖K‖T V /hn := D/hn . Therefore, we have F̃n = { f ∗µn : f ∈ F} ⊂
VD/hn , and Lemma 6 gives that there exists a constant B < ∞ such that for every
probability measure Q on R and ε ≤ M ,

log N (F̃n, L2(Q), ε) ≤ B

εhn
= Hn

(
M

ε

)

where Hn(x) = x
M Bhn

. Since CHn = 2/3 for all n, inequality (22) above then gives

E∗
∥
∥
∥
∥
∥

1√
n

n∑

i=1

εi f (Xi )

∥
∥
∥
∥
∥
(F̃n)

′
1/n−1/4

≤ L max

[
2

3

√
2

Bn1/4hn
,

8

9Bn1/4hn

]

→ 0

if n1/4hn → ∞, which is Condition (c) in Theorem 3. Finally, we check Condition
(d) in Theorem 3, for Mn = M . By the first remark after Theorem 3, there exists λ(ε)
such that H(F̃, L2(P), ε) ≤ λ(ε)/ε2, λ(ε)/ε2 → ∞ and λ(ε) → 0 as ε → 0. In
particular, M ≤ 1/5

√
λ(1/n1/4) is eventually satisfied, thus completing the proof of

condition (d). ��
We see that—if no special knowledge is available about the pregaussian class—

rather restrictive conditions have to be imposed on the true density p0 in order to
obtain the CLT. This is the price to be paid for the fact that closeness of the smoothed
empirical measure to Pn cannot be used to prove the CLT. However, we will show in the
next sections that one can improve on the above result for many concrete pregaussian
classes of functions that are not Donsker.

Remark 9 If instead of (a) and invariance by translations in the above theorem, one
imposes E f j (X + y) → E f j (X) as y → 0 for j = 1, 2, (19), and

∫

R

( f − g)2(x)dx ≤ C E(( f − g)2(X)) (45)

for some 0 < C < ∞ and for all f, g ∈ F ∪ {0}, then the bandwidth condition
nh4

n → ∞ can be weakened to nh2
n → ∞, which is in the spirit of the Radulović

and Wegkamp [21] result. However, it seems that Conditions (19) and (45) can only
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be verified if p0 is bounded from above and below on the support of F (as they do in
their Theorem 2.2), so this result is restricted to compact support of p0 and F . Since
one simultaneously needs that p0 is at least absolutely continuous on the whole real
line (note that Radulović and Wegkamp [21] forget to require this in the statement of
their Theorem 2.2), the additional restriction that the support of F is a proper subset
of the support of p0 seems to be required.

4.2.1 The Besov class U1
1∞

We now treat the class of functions U 1
1∞ given by

U 1
1∞ =

{

[ f ]λ ∈ L1(R, λ) : ‖ f ‖1,λ

+ sup
0 �=z∈R

|z|−1
(∫

R

∣
∣
∣
∣ f (x + z)+ f (x − z)− 2 f (x)

∣
∣
∣
∣dx

)

≤ 1

}

. (46)

[It can be shown that U 1
1∞ is a bounded subset of the Besov space B1

1∞(R) defined in
Definition 3 below, see Remark 11ii. Note that any Lebesgue-integrable function of
bounded variation is contained in cU 1

1∞ for some c > 0, see Lemma 8 below.]
We wish to show that Pn ∗Khn does satisfy a UCLT over U 1

1∞, whereas Pn does not.
First note that U 1

1∞ does not consist of functions, so we have to give a rule that selects
elements out of each equivalence class [ f ]λ ∈ U 1

1∞. Choosing all functions f ∈ [ f ]λ
with [ f ]λ ∈ U 1

1∞ would not give a fair comparison between Pn ∗ Khn and Pn : On the
one hand, the absolutely continuous measure Pn ∗ Khn is constant on each [ f ]λ. On the
other hand, the set [ f ]λ contains any modification of f at a set of Lebesgue-measure
zero, so { f : [ f ]λ ∈ U 1

1∞} is by far too large to be Donsker. But the following result
is meaningful. We recall the shorthand notation 〈x〉 = (1 + |x |2)1/2, and note that the
condition

‖p0 〈x〉‖∞ = sup
x∈R

|p0(x) 〈x〉| < ∞

in the following proposition is satisfied, e.g., by any bounded eventually monotone
density p0.

Proposition 5 Let U be be any set constructed by selection of one arbitrary represen-
tative out of every [ f ]λ ∈ U 1

1∞, where U 1
1∞ is given in (46), and assume that the law P

possesses a Lebesgue density p0 satisfying ‖p0 〈x〉‖∞ < ∞. Then U is P-pregaussian
but not P-Donsker.

Proof Follows immediately as a special case of Theorems 5 and 7 in Nickl [17], upon
noting that we used a different but equivalent definition of Besov spaces, see Remark
11ii below. ��

The proof of Theorem 7 in Nickl [17] in fact implies that U1
1∞ is not even

P-Glivenko-Cantelli for the laws considered in the above theorem. Consequently,
the empirical measure will be an inconsistent estimator for P in �∞(U1

1∞). We now
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show that smoothed empirical measures—in particular kernel density estimators with
classical bandwidths and kernels as in Definition 2—satisfy the CLT not only in �∞(U)
for any U as in the above proposition, but even in �∞(U1

1∞) where U1
1∞ consists of all

functions contained in the equivalence classes from U 1
1∞. Clearly, if any selection of

representatives of U 1
1∞ is P-pregaussian, and if P is absolutely continuous, then also

U1
1∞ is P-pregaussian, where G is constant on all elements of any given equivalence

class.

Theorem 9 Let Condition 1 hold and suppose that p0 satisfies ‖p0 〈x〉‖∞ < ∞. Set
t = 0 in what follows or assume, in addition, that p0 ∈ Ct (R) for some real t > 0.
Let U1

1∞ = { f : [ f ]λ ∈ U 1
1∞}. Let K ∈ BV(R) be a kernel of order r = t + 1 − k

for some k, 0 < k < t + 1. If hn > 0 is such that ht+1−k
n n1/2 →n→∞ 0 as well as

hnnα →n→∞ ∞ for some α > 0, then

√
n(Pn ∗ Khn − P) ��∞(U1

1∞)
G,

where G is the P-Brownian bridge indexed by U1
1∞.

Proof By (53) below, U1
1∞ is, for every ε > 0, a subset of the set U1−ε

11 , which
allows us to apply Theorem 10 below with s = 1 − ε. The bandwidth condition
hnn(2s−1)/[8s(1−s)] →n→∞ ∞ from Theorem 10 then simplifies to hnnα →n→∞ ∞
for some positive α by straightforward calculations. ��

Next to some conditions on the kernel, the only price that one has to pay here for
the fact that U1

1∞ is not Donsker but only pregaussian (for p0 as in the theorem) is that
hn is not allowed to decay exponentially fast. In particular, the choice hn � n−1/(2t+1)

is admissible if the kernel is of order r > t +1/2, so the theorem implies that classical
kernel density estimators can possess Bickel and Ritov’s [3] ‘plug-in property’ for
pregaussian classes of functions that are not Donsker. We refer to after Theorem 10
below for more discussion.

4.2.2 L1-Hölder classes

For 0 < s < 1 and f ∈ L1(R, λ), define the functional

‖ f ‖∗
s,1,1 := ‖ f ‖1,λ +

∫

R

|z|−s−1
∫

R

| f (x + z)− f (x)| dxdz. (47)

For s = 1 and f ∈ L1(R, λ) define

‖ f ‖∗
1,1,1 = ‖ f ‖1,λ +

∫

R

|z|−2
∫

R

| f (x + z)+ f (x − z)− 2 f (x)| dxdz. (48)
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For general s, let {s} be the largest integer strictly smaller than s > 0, and define for
f ∈ L1(R, λ), the (semi)norm

‖ f ‖∗
s,1,1 =

∑

0≤α≤{s}

∥
∥Dα

w f
∥
∥

1,λ +
∥
∥
∥D{s}

w f
∥
∥
∥

∗
s−{s},1,1 , (49)

where Dα
w denotes the weak differential operator, see Sect. 3.3.2 above. For s > 0,

this norm is an equivalent norm on the Besov space Bs
11(R) defined in Definition 3

below, see Remark 11ii.
Let now U s

11 = {[ f ]λ ∈ L1(R, λ) : ‖ f ‖∗
s,1,1 ≤ 1}. The following results were

proved in Nickl and Pötscher [20] and Nickl [17], where we recall 〈x〉 = (1+|x |2)1/2
and where we note that in case s ≥ 1, each [ f ]λ ∈ U s

11 contains a bounded continuous
function.

Proposition 6 (a) Let s ≥ 1 and let U s
11 = { f ∈ C(R) ∩ L1(R, λ) : ‖ f ‖∗

s,1,1 ≤ 1}.
Then U s

11 is a uniform Donsker class.
(b) Let 1/2 < s < 1 and assume that the law P has a Lebesgue density p0 satis-

fying ‖p0 〈x〉‖∞ < ∞. Let U be any set constructed by selection of one arbi-
trary representative out of every [ f ]λ ∈ U s

1,1. Then U is P-pregaussian but not
P-Donsker.

Proof Part (a) follows immediately from Theorem 2 in Nickl and Pötscher [20] and
Part (b) follows from Theorems 5 and 7 in Nickl [17] upon noting that we used a
different but equivalent definition of Besov spaces, see Remark 11)ii below. ��

We now apply Theorem 3 to these classes.

Theorem 10 Let Condition 1 hold, and suppose that p0 is a bounded function—in
which case we set t = 0 in what follows—or assume that p0 ∈ Ct (R) for some real
t > 0. Let U s

11 be as in Proposition 6a if s ≥ 1 and set U s
11 = { f : [ f ]λ ∈ U s

11} in case
s < 1. Let K ∈ BV(R) be a kernel of order r = t +s−k for some k, 0 < k < t +s. Let
hn > 0 be such that ht+s−k

n n1/2 →n→∞ 0. Assume further that one of the following
conditions holds

(a) s ≥ 1, or
(b) 1/2 < s < 1, p0 satisfies ‖p0 〈x〉‖∞ < ∞, and hnn(2s−1)/8s(1−s) →n→∞ ∞.

Then we have √
n(Pn ∗ Khn − P) ��∞(U s

11)
G,

where G is the P-Brownian bridge indexed by U s
11.

Proof The proof is given in the next section. ��
Remark 10 (i) Since the classes U s

11 are not P-Donsker but only P-pregaussian for
s < 1, one needs additional conditions in Part (b) of the above theorem. First,
one needs ‖p0 〈x〉‖∞ < ∞ to ensure that U s

11 is P-pregaussian (cf. Proposition
6). More importantly, one needs the additional bandwidth condition

hnn(2s−1)/8s(1−s) →n→∞ ∞ (50)
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(in addition to the bias-related condition ht+s−k
n n1/2 →n→∞ 0). This additional

condition prevents too fast rates of convergence of hn to zero, since otherwise
Pn ∗ Khn would be too close to the empirical measure Pn which behaves badly
in �∞ (F) for classes F that are not Donsker. Note that the classes U s

11 with
s < 1 are not in any Lp(R, λ) for p larger than p = 1/(1 − s), and, for any
x ∈ R, the set U s

11 contains functions with a pole at x . So it is not surprising that
relatively stringent conditions have to be imposed on hn so that Pn ∗ Khn stays
away from the discrete measure Pn . In contrast, if s = 1, then U1

11 is uniformly
bounded (and also uniformly Donsker) and one needs no additional conditions.
The case U1

1∞ considered in Theorem 9 above lies exactly between the uniform
Donsker case and the classes treated in Theorem 10b. [Note that, although U1

1∞
also contains unbounded functions, it has ‘good integrability’ in the sense that
it is contained in every Lp(R, λ), p < ∞.]

(ii) In the proof of Theorem 10 we shall apply Theorem 3 even under Condition
(a), where s ≥ 1. Clearly, in case s ≥ 1, one could also apply Theorem 2 since
then U s

11 are uniform Donsker classes (in view of Proposition 6). It is interesting
to note that application of Theorem 2 in this case would give exactly the same
results. Similarly, Theorems 5 to 7 could have been proved by using Theorem 3.
In this sense our Theorem 3 is sharp.

5 Remaining proofs

In this section, we provide the proof of Theorem 10 as well as the promised generali-
zation of Lemma 5. We will also establish some relations between Besov spaces, the
space of finite signed measures, and functions of bounded variation that were used in
the proof of Proposition 4 and will also be needed to prove Theorem 10.

5.1 Some definitions

We start by reviewing some facts on tempered distributions. Let S(Rd) denote the
Schwartz space of rapidly decreasing infinitely differentiable complex-valued func-
tions and let S ′(Rd) denote the (dual) space of complex tempered distributions on
R

d . We shall restrict attention to real-valued tempered distributions T (i.e., T = T̄ ,

where T̄ is defined via T̄ (φ) = T (φ̄) for φ ∈ S(R)), but we shall view real-valued
distributions as elements of S ′(Rd). Let now F denote the Fourier transform acting
on S(Rd), i.e., for φ ∈ S(Rd),

Fϕ(u) = (2π)−d/2
∫

R

e−i xuϕ(x)dx,

with inverse F−1φ(u) = Fφ(−u). The operator F (as well as F−1) is a bijection of
S(Rd) and extends—by duality—to a continuous bijection of S ′(Rd) (again denoted
by F and F−1), and this extension coincides with the usual Fourier–Plancherel trans-
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form when restricted to L2(Rd , λ). [See, e.g., Theorems III.4.2 and III.4.3.4 in Mal-
liavin [15] or p. 295 in Folland [9].]

We will use the Fourier-analytical definition of Besov spaces, see Triebel [26, 2.3.1]
or Chap. 6 in Bergh and Löfström [2]. There exists ψ ∈ S(Rd) such that supp ψ ⊆
{x : 1/2 ≤ |x | ≤ 2}, ψ(x) > 0 if 2−1 < |x | < 2 as well as

∑∞
k=−∞ ψ(2−k x) = 1 for

every x �= 0, see, e.g., Lemma 6.1.7 in Bergh and Löfström [2]. Define the functions
ϕk = ψ(2−k x) for k > 0 and ϕ0(x) = 1 − ∑∞

k=1 ϕk(x). Then the functions {ϕk}∞k=0
form a dyadic partition (resolution) of unity as in Definition 2.3.1/1 in Triebel [26].
Note that F−1(ϕk FT ) is an entire analytic function on R

d for any T ∈ S ′(Rd) and
any k by the Paley–Wiener–Schwartz theorem (e.g., Theorem 1.2.1/2 in Triebel [26]).

Definition 3 Let −∞ < s < ∞, 1 ≤ p ≤ ∞, and 1 ≤ q ≤ ∞. For T ∈ S ′(Rd)

define

‖T ‖s,p,q :=
( ∞∑

k=0

2ksq
∥
∥
∥F−1(ϕk FT )

∥
∥
∥

q

p,λ

)1/q

(51)

(usual modification if q = ∞). The (real) Besov spaces are defined as

Bs
pq(R

d) := {T ∈ S ′(R) : T = T̄ , ‖T ‖s,p,q < ∞}.

Bs
pq(R

d) is a Banach space of distributions. The definition is independent of the
choice of ψ (in fact, any system {ϕk}∞k=0 as in Definition 2.3.1/1 in Triebel [26]
may be used) and any ψ gives rise to an equivalent norm on Bs

pq(R
d), cf. Triebel [26,

Sect. 2.3.2]. We should recall that the more classical definition of Besov spaces in terms
of L p-Hölder conditions coincides with the one just given (Triebel [26, Sect. 2.5.7]).

Remark 11 We summarize here some properties of Besov spaces, which can be found,
e.g., in Sects. 2.3.2, 2.5.7, 2.5.12, 2.7 of Triebel [26].

(i) We say that a normed vector space X is continuously embedded in Y , or X ↪→ Y ,
if X ⊆ Y (containment possibly in the sense of a linear map, e.g., f → [ f ]λ, or
[ f ]λ → f̃ with f̃ ∈ [ f ]λ) and ‖x‖Y ≤ C ‖x‖X for all x ∈ X and some constant C
independent of x . For 1 ≤ p ≤ ∞, the following continuous embeddings

B0
p1(R

d) ↪→ L p(Rd , λ) ↪→ B0
p∞(Rd) (52)

hold. Also
Bs1

pq1
(Rd) ↪→ Bs2

pq2
(Rd) (53)

for s1 > s2 and q1, q2 arbitrary, as well as

Bs1
p1q(R

d) ↪→ Bs2
p2q(R

d) (54)

for p1 ≤ p2 and s1 − 1/p1 ≥ s2 − 1/p2. Finally, for 0 ≤ s < ∞

Bs∞1(R
d) ↪→ Cs(Rd) ↪→ Bs∞∞(Rd), (55)

where the second imbedding in the last display is an identity if s is not an integer.
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(ii) From the above it follows that in case s > 0 or s = 0 and q = 1, the space
Bs

pq(R
d) consists of elements of L p(Rd , λ). In particular, one can define the seminor-

med vector spaces Bs
pq(R

d) = { f ∈ Lp(Rd , λ) : [ f ]λ ∈ Bs
pq(R

d)}, which coincide
with Bs

pq(R
d) if one takes the usual quotient modulo equality almost everywhere. Fur-

thermore, for s > 0, the seminorms ‖·‖∗
s,1,1 introduced in (47), (48) and (49) above

are equivalent seminorms on Bs
11(R) (in fact, the norms characterize the Besov space

in the sense that finiteness of ‖T ‖∗
s,1,1 implies containment in Bs

11(R) for arbitrary
T ∈ S ′(R)). Similarly so for the seminorm occurring in (24) in the case of Bs

2∞(R),
and the seminorm occurring in (46) in the case of B1

1∞(R).

5.2 Relationships of Besov spaces to M(Rd) and BV(Rd)

On the one hand, by (52), we know that the space of finite signed measures M(Rd)

contains B0
11(R

d). On the other hand, we have the following result.

Lemma 7 Let µ ∈ M(Rd). Then µ, interpreted as a tempered distribution, belongs
to B0

1∞(Rd) and the inequality ‖µ‖0,1,∞ ≤ C ‖µ‖ is satisfied for some constant C
independent of µ.

Proof Note that B0
1∞(Rd) is the dual space of the Banach space B

0
∞1(R

d), where

B
0
∞1(R

d) is the completion of S(Rd)∩{ f : R
d →R} in the norm ‖·‖0,∞,1 (see Triebel

[26], Remark 2 on page 180). Since ‖·‖∞ ≤ C ‖·‖0,∞,1 holds on S(Rd) (see expres-
sion (13) on p.131 in Triebel [26]), and since the completion of S(Rd)∩{ f :Rd →R}
in ‖·‖∞ is C0(R

d) (elementary proof), it follows that the continuous embedding

B
0
∞1(R

d) ↪→ C0(R
d) holds, which in turn, by duality, implies the continuous embed-

ding M(Rd) = C0(R
d)′ ↪→ (B

0
∞1(R

d))′ = B0
1∞(Rd). ��

The following lemma relates the spaces BV(R) (defined before (23)) and BV(Rd)

(defined in Sect. 3.3.2) to Besov spaces. We note in advance that a result similar to
Part (a) of the following lemma could be proved in higher dimensions, but we do not
need it in the present paper.

Lemma 8 (a) If [ f ]λ ∈ B1
11(R), then [ f ]λ contains a (unique) continuous function

g ∈ BV(R) and the inequality ‖g‖T V ≤ D ‖ f ‖1,1,1 holds for some constant D
independent of f .

(b) If f ∈ BV(Rd)∩L1(Rd , λ), then [ f ]λ ∈ B1
1∞(Rd) and the inequality ‖ f ‖1,1,∞ ≤

D(‖ f ‖1,λ + ‖ f ‖BV ) holds for some constant D independent of f .

Proof The embedding in Part (a) is known and is proved, e.g., in the second paragraph
of the proof of Theorem 2 in Nickl and Pötscher [20]. We believe the second part to
be known also, but have no reference for it. To prove it, observe the following: We
know that f ∈ BV(Rd) implies Dα

w f ∈ M(Rd) for every α with |α| = 1, hence by
(52) and Lemma 7 we have

∑

0≤|α|≤1

∥
∥Dα

w f
∥
∥

0,1,∞ ≤ C[‖ f ‖1,λ + ‖ f ‖BV ]
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for some finite constant C . But
∑

0≤|α|≤1

∥
∥Dα

w(·)
∥
∥

0,1,∞ is an equivalent norm that

characterizes the Besov space B1
1∞(Rd), see the proof of Theorem 2.3.8 in Triebel

[26]. ��

5.3 A generalization of Lemma 5

We first need some auxiliary lemmas, which will also be used in the proof of Theorem
10.

Lemma 9 Consider T and S in S ′(Rd) such that FT ∈ Lp(Rd , λ) and F S ∈
Lq(Rd , λ) where 1/p +1/q ≥ 1. Then the multiplication T S is defined as an element
of S ′(Rd) and

F(T S) = √
2π(FT ∗ F S) (56)

holds true (in S ′(Rd)). The same holds if F is replaced by F−1.

Proof This follows from Theorem 7.6 on p.123 as well as from the proposition on
p.128 in Richards and Youn [22]. ��

For f ∈ S ′(Rd), the expression F−1(ψF f ) always makes sense if ψ is infinitely
differentiable and slowly increasing, since thenψF f ∈ S ′(Rd), see p.246 in Schwartz
[25], and then also F−1(ψF f ) ∈ S ′(Rd). Let 〈u〉α = (1 + |u|2)α/2, which is slowly
increasing for every α ∈ R.

Lemma 10 Let α, r ∈ R and let 1 ≤ p, q ≤ ∞. The linear mapping f �−→
F−1(〈u〉α F f ) is a norm-continuous isomorphism from Br

pq(R
d) to Br−α

pq (Rd), and
∥
∥F−1(〈u〉α F(·))∥∥r−α,p,q is an equivalent norm on Br

pq(R
d).

Proof Theorem 2.3.8 in Triebel [26]. ��
Lemma 11 Let f ∈ Lp(Rd , λ) and r ∈ R, and let ϕk be defined as before Definition
3. Then ∥

∥
∥F−1(ϕk 〈u〉r F f )

∥
∥
∥

p,λ
≤ C2rk

∥
∥
∥F−1(ϕk F f )

∥
∥
∥

p,λ

for k ≥ 0.

Proof See Lemma 6.2.1/1,3 in Bergh and Löfström [2] (with the only difference that
we have applied F−1 F to the expression in the norm of the r.h.s in their lemma, and
noting that their ϕk equals our F−1ϕk). ��

The following lemma parallels and generalizes the ‘debiasing’ Lemma 5. Recall
that by Lemma 4 an efficient treatment of the bias term requires bounds on the Hölder
norm of f̄ ∗ p0, which follow from bounds on the Besov norm ‖p0 ∗ f ‖s+t,∞,∞ by
Remark 11i.

Lemma 12 Let 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1 and let s, t ≥ 0 be such
that s + t > 0. Let p0 ∈ Bt

p∞(Rd) ∩ Lp(Rd , λ) for some t ≥ 0, and let U ⊆
Bs

q∞(Rd) ∩ Lq(Rd , λ) such that sup f ∈U ‖ f ‖s,q,∞ < ∞. Then p0 ∗ f ∈ C(Rd) for
every f ∈ U and sup f ∈U ‖p0 ∗ f ‖s+t,∞,∞ < ∞.

123



Uniform central limit theorems for kernel density estimators 381

Proof Note that p0 ∗ f ∈ C(Rd) by (6). We start with

‖p0 ∗ f ‖s+t,∞,∞ ≤ c
∥
∥
∥F−1(〈u〉s+t Fp0 F f )

∥
∥
∥

0,∞,∞
= c sup

k≥0

∥
∥
∥F−1(ϕk 〈u〉s+t Fp0 F f )

∥
∥
∥∞,λ

≤ c′ sup
k≥0

∥
∥
∥F−1(ϕ2

k 〈u〉s+t Fp0 F f )
∥
∥
∥∞,λ

= c′′ sup
k≥0

∥
∥
∥F−1(ϕk 〈u〉s F f ) ∗ F−1(ϕk 〈u〉t Fp0)

∥
∥
∥∞,λ

≤ c′′ sup
k≥0

[∥
∥
∥F−1(ϕk 〈u〉s F f )

∥
∥
∥

q,λ

∥
∥
∥F−1(ϕk 〈u〉t Fp0)

∥
∥
∥

p,λ

]

≤ c′′′ sup
k≥0

[

2ks
∥
∥
∥F−1(ϕk F f )

∥
∥
∥

q,λ
2kt

∥
∥
∥F−1(ϕk Fp0)

∥
∥
∥

p,λ

]

≤ c′′′ ‖ f ‖s,q,∞ ‖p0‖t,p,∞ (57)

where the constant c′′′ does not depend on f . The first inequality follows from Lemma
10. The identity in the second line is just the definition of the seminorm (51). The
inequality in the third line follows from the observation that if ϕk is replaced by ϕ2

k
in (51) then one obtains an equivalent norm for Bs∞∞ if s > 0. [This follows directly
from Theorem 2.3.2, p. 172, Triebel [27] since both systems {ϕk} and {ϕ2

k } satisfy
the conditions of this theorem.] For the equality in the fourth line, we apply Lemma
9 with T = ϕk 〈u〉s F f and S = ϕk 〈u〉t Fp0. To do this, we have to verify the
conditions of the lemma by showing that F−1T ∈ Lq(Rd , λ), F−1S ∈ Lp(Rd , λ) as
well as that T, S ∈ S ′(Rd). For T we have the following: Clearly, T ∈ S ′(Rd) since,
F f ∈ S ′(Rd) and sinceϕk 〈u〉s ∈ S(Rd) (noting thatϕk 〈u〉s is infinitely differentiable
and compactly supported). Then Lemma 9 and (6) imply

F−1T = F−1(ϕk 〈u〉s F f ) = √
2πF−1(ϕk 〈u〉s) ∗ F−1 F f ∈ Lq(Rd , λ)

since f ∈ Lq(Rd , λ) and since ϕk 〈u〉s ∈ S(Rd) implies F−1ϕk 〈u〉s ∈ S(Rd) ⊆
L1(Rd , λ). The same arguments with q replaced by p also show that S ∈ S ′(Rd) and
F−1S ∈ Lp(Rd , λ) The inequality in the fifth line follows from (5). The inequality in
the sixth line follows from Lemma 11. The last inequality follows from the definition
of the Besov norm. ��

For instance, this lemma implies the following fact (using equivalent characteri-
zations of Besov spaces). If p and q are conjugate, 0 < s, t ≤ 1, s + t non-integer,
and

| f (x + h)− f (x)| ≤ g1(x)|h|s, |p0(x + h)− p0(x)| ≤ g2(x)|h|t , |h|≤1, x ∈R,

with f, g1 ∈ Lp(R, λ) and p0, g2 ∈ Lq(R, λ), then f ∗ p0 ∈ Cs+t (R). If s + t ∈ N,
one still has the same conclusion with s + t replaced by s + t − δ for any δ > 0.
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5.4 Proof of Theorem 10

The proof of Theorem 10 is based on verifying the conditions of Theorem 3. First, we
need the following proposition.

Proposition 7 Let dµn(y) = h−1
n K (h−1

n y)dy where K ∈ BV(R) is a kernel of order
t ≥ 0 and where hn > 0 satisfies hn →n→∞ 0. Let 0 < s < ∞ and let U s

11 be given
as in Theorem 10. Define Gs

n = {
g ∗ µn : g ∈ U s

11

}
.

(a) Let 0 < s < 1. If dP = p0dλ with ‖p0 〈x〉‖∞ < ∞ is satisfied, then we have

H(Gs
n, L2(P), ε) ≤ Dε−1/s (58)

for some 0 < D < ∞ independent of n.
Let further

Cn =
{

hs−1
n if s < 1

const. if s ≥ 1
.

Then we have
(b) supg∈U s

11
‖g ∗ µn‖∞ ≤ D′Cn for some 0 < D′ < ∞ independent of n as well as

(c)

sup
Q∈P(R)

H(Gs
n, L2(Q), ε) ≤ sup

Q∈P(R)
H[](Gs

n, L2(Q), ε) ≤ D′′Cn

ε

where P(R) denotes the set of all p.m.’s on R and where 0 < D′′ < ∞ is
independent of n.

Proof Throughout the proof, we use the fact that the set U s
11 is a bounded subset of

the Besov space Bs
11(R), see Remark 11ii.

Part (a) Expression (5) on p.127 in Triebel [26] gives the convolution inequality

‖ f ∗ g‖s,1,q ≤ c ‖ f ‖0,1,∞ ‖g‖s,1,q

for f ∈ B0
1∞(R) and g ∈ Bs

1q(R). But this immediately implies ‖µ ∗ g‖s,1,q ≤
cC ‖µ‖ ‖g‖s,1,q for any µ ∈ M(R) by Lemma 7 above. So supn supg∈U s

11
‖µn∗

g‖s,1,1 < ∞ follows from supn ‖µn‖ < ∞. But bounded subsets U of Bs
11(R)

with 0 < s < 1 satisfy the entropy bound H(U , L2(P), ε) ≤ K ε−1/s for some
0 < K < ∞, see the proof of Theorem 5 in Nickl [17].

Parts (b), (c) Recall the notation 〈u〉r as shorthand for (1 + |u|2)r/2. As the main
step, we bound the quantity ‖g ∗ µn‖1,1,1. We will verify the following relations:
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‖g ∗ µn‖1,1,1 = √
2π

∞∑

k=0

2k
∥
∥
∥F−1(ϕk FgFµn)

∥
∥
∥

1,λ

= √
2π

∞∑

k=0

2k
∥
∥
∥F−1(ϕk Fg 〈u〉s−1 〈u〉1−s Fµn)

∥
∥
∥

1,λ

= 2π
∞∑

k=0

2k
∥
∥
∥F−1(ϕk Fg 〈u〉s−1) ∗ F−1(〈u〉1−s Fµn)

∥
∥
∥

1,λ

≤ π

∥
∥
∥F−1(〈u〉1−s Fµn)

∥
∥
∥

1,λ
·

∞∑

k=0

2k
∥
∥
∥F−1(ϕk Fg 〈u〉s−1)

∥
∥
∥

1,λ

:= π An · B(g) (59)

The first equality follows from Definition 3 and the second equality is trivial. The last
inequality follows immediately from (6), so it remains to show that the third equality
holds true: We accomplish this by using Lemma 9 above with T = ϕk Fg 〈u〉s−1,
S = 〈u〉1−s Fµn and p = q = 1. To do this, we have to verify the conditions of the
lemma by showing that F−1T, F−1S ∈ L1(R, λ) as well as that T, S ∈ S ′(R). The
facts that T ∈ S ′(R) and that F−1T ∈ L1(R, λ) follow by similar arguments as in
the proof of Lemma 12 above. That S ∈ S ′(R) follows from Fµn ∈ S ′(R) and since
〈u〉1−s is slowly increasing. To show F−1S ∈ L1(R, λ) we have

Khn ∈ L1(R, λ) ∩ BV(R) ⊆ B1
1∞(R)

by assumption and Lemma 8. But this implies that

F−1(〈u〉1−s Fµn) ∈ Bs
1∞(R) ⊆ L1(R, λ) (60)

by using Lemma 10, (53) and (52) above. This completes the verification of (59).
We now treat the expressions An and B(g) in (59). We first bound B(g). Using

Lemma 11 and g ∈ L1(R, λ) we have

B(g) =
∞∑

k=0

2k
∥
∥
∥F−1(ϕk 〈k〉s−1 Fg)

∥
∥
∥

1,λ
≤ C

∞∑

k=0

2k2k(s−1)
∥
∥
∥F−1(ϕk Fg)

∥
∥
∥

1,λ

= C ‖g‖s,1,1 ≤ C ′

for some 0 < C ′ < ∞ independent of g.
To bound An , consider first the case s = 1: Then

sup
n

An = sup
n

∥
∥
∥F−1(〈u〉1−s Fµn)

∥
∥
∥

1,λ
= sup

n
‖µn‖ < ∞
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holds, which also gives the case s > 1 (by Lemma 10, (53) and (52)). So let 0 < s < 1.
Then

An ≤ C
∥
∥
∥F−1(〈u〉1−s Fµn)

∥
∥
∥

0,1,1
≤ C ′ ∥∥Khn

∥
∥

1−s,1,1 ≤ C ′′ ∥∥Khn

∥
∥∗

1−s,1,1

by (52), Lemma 10 and the fact the the norm ‖·‖∗
1−s,1,1 from (47) is an equivalent

norm, see Remark 11)ii. Using the definition of ‖·‖∗
1−s,1,1, we now bound the last

expression in the above display. Observe that

∫

R

⎛

⎝|z|s−2
∫

R

∣
∣Khn (x + z)− Khn (x)

∣
∣ dx

⎞

⎠ dz

= h−1
n

∫

R

⎛

⎝|z|s−2
∫

R

|K ((x + z)/hn)− K (x/hn)| dx

⎞

⎠ dz

= hs−2
n

∫

R

⎛

⎝|t |s−2
∫

R

|K ((x/hn)+ t)− K (x/hn)| dx

⎞

⎠ dt

= hs−1
n

∫

R

⎛

⎝|t |s−2
∫

R

|K (u + t)− K (u)| du

⎞

⎠ dt.

For |t | ≥ ξ > 0, the r.h.s. is bounded by Chs−1
n since K ∈ L1(R, λ). For small |t |,

since K ∈ BV(R), we have from (26), (27) and Fubini

hs−1
n

∫

|t |≤ξ
|t |s−2

∫

R

|K (u + t)− K (u)| dudt = hs−1
n

∫

|t |≤ξ
|t |s−2

∫

R

∣
∣
∣
∣
∣
∣

u+t∫

u

dνK

∣
∣
∣
∣
∣
∣
dudt

≤ hs−1
n ‖K‖T V

∫

|t |≤ξ
|t |s−1 dt < ∞.

Since also supn

∥
∥Khn

∥
∥

1,λ = supn ‖K‖1,λ < ∞, we obtain that An ≤ dhs−1
n holds for

some constant d independent of n.
Summarizing this shows

‖g ∗ µn‖1,1,1 ≤
{

K ′hs−1
n if s < 1

const. if s ≥ 1,
(61)

where the constants on the r.h.s do not depend on g or n. Since g∗µn is continuous (see
before (6)), we have from Part (a) of Lemma 8 that ‖g ∗ µn‖T V ≤ K ′′ ‖g ∗ µn‖1,1,1
and by (54) and (55) we also have ‖g ∗ µn‖∞ ≤ K ′′′ ‖g ∗ µn‖1,1,1 which give Part
(b) of the proposition directly and Part (c) by Lemma 6. ��
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Proof (Theorem 10): Since U s
11 is P-pregaussian (by Theorem 6 and an obvious

remark as before Theorem 9) and closed under translations, we can apply Theorem 3.
Note that U s

11 ⊆ L1(|µn|) for every n since Khn is bounded and since U s
11 ⊆ L1(R, λ).

Also
‖P f ‖U s

11
= sup

f ∈U s
11

|P f | ≤ sup
f ∈U s

11

‖ f ‖1,λ ‖p0‖∞ < ∞.

We now proceed to verify Conditions (a) to (d) as well as the bias condition (8) from
Theorem 3 in order to prove Theorem 10.

Condition (a) By Part (b) of Proposition 7, we have that Mn can be chosen such
that Mn = D′Cn .

Condition (b) is satisfied by Proposition 1c, since U s
11 is bounded in Bs−1/2

2∞ (R)

(by (54) and (53)), where s − 1/2 > 0.
Condition (c) Recall Gs

n := { f ∗ Khn : f ∈ U s
11}. Using the inequality (21) we

have

∥
∥
∥
∥
∥

1√
n

n∑

i=1

εi f (Xi )

∥
∥
∥
∥
∥
(Gs

n)
′
1/n1/4

≤ L

n−1/4∫

0

√
1 ∨ log N[](Gs

n, L2(P), ε) dε

+ L
√

nMn I (Mn >
√

nan) := I + I I (62)

for some constant 0 < L < ∞. We show that both I and I I tend to zero under the
conditions of the theorem. For I we have

n−1/4∫

0

√
1 ∨ log N[](Gs

n, L2(P), ε) dε ≤
n−1/4∫

0

√
1 ∨ ε−1 D′′Cn dε ≤ L ′C1/2

n n−1/8

where L ′ is a fixed constant and where Cn is given in Part (c) of Proposition 7 above.
If s ≥ 1 then C1/2

n is constant and the integral above converges to zero. For s < 1 the
integral converges to zero if the condition

hs−1
n n−1/4 →n→∞ 0 (63)

holds. Since hs−1
n n(1−2s)/8s →n→∞ 0 by the assumptions of the theorem, (63) follows.

We now bound II by showing that the indicator I (Mn >
√

nan) equals zero eventually.
Here recall from (21) that

an = n−1/4/

√
1 + 2 log N[](Gs

n, L2(P), 2−1n−1/4)

≥ n−1/4/
√

1 + D′′Cnn−1/4

where Cn is given in Part (c) of Proposition 7. If s ≥ 1, both Cn and the envelope
Mn = M are constant and the result follows immediately since

√
nan � n1/4(1 +
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n−1/4)−1/2 →n→∞ ∞ so I (M >
√

nan) equals zero eventually. If s < 1, the
condition Mn ≤ √

nan is implied by

D′hs−1
n ≤ n1/4/

√
1 + D′′Cnn−1/4,

which, by definition of Cn , is equivalent to

D′n−1/4hs−1
n

√

1 + D′′hs−1
n n−1/4 ≤ 1. (64)

But this inequality is implied by (63) above. This completes verification of convergence
to zero in (62).

Condition (d) Note that this condition is automatically satisfied in case s ≥ 1
since then U s

11 is uniform Donsker and hence uniform pregaussian by Proposition 6
as well as uniformly bounded (by (54) and (55)), so Mn = const. and λ(ε) exists
by Sudakov’s inequality (e.g., Ledoux and Talagrand [14, p. 81]). If 0 < s < 1, we
have by Part (a) of Proposition 7 that H(ε,Gs

n, ‖·‖2,P) ≤ Dε−1/s holds. Hence we
can choose λ(ε) in (d) equal to

λ(ε) = Dε2−(1/s) = Dε(2s−1)/s →ε→0 0,

since s > 1/2, and obviously λ(ε)ε−2 →ε→0 ∞. Consequently, Condition (12) in
Part (d) becomes

hs−1
n ≤ c/

√
λ(n−1/4) = c′n(2s−1)/8s, (65)

for some constants 0 < c, c′ < ∞. Since hs−1
n n(1−2s)/8s →n→∞ 0 by assumption of

the theorem, this inequality is satisfied for n large enough.
Bias Condition (8). We have p0 ∈ Ct (R) ⊆ Bt∞∞(R) (see (55)). Also, U s

11
is a bounded subset of Bs

11(R) ⊂ Bs
1∞(R), cf. Remark 11 above. Consequently we

conclude from Lemma 12 (with p = ∞ and q = 1) that sup f ∈U s
11

‖p0 ∗ f ‖s+t−δ,∞ <

∞ holds for every δ > 0, so in particular for δ = k. Now we apply Lemma 4 and the
fact that f ∈ U s

11 implies f̄ ∈ U s
11 to obtain from the same Taylor series arguments as

in the proof of Theorem 6 above that

sup
f ∈U s

11

√
n
∣
∣E( f ∗ Khn (X)− f (X))

∣
∣ = O(

√
nhs+t−k

n ) = o(1),

which completes the proof. ��
Acknowledgements The authors would like to thank V. Losert, W. R. Madych and H. Triebel for helpful
comments on subjects related to this article.

References

1. Alexander, K.S.: Central limit theorems for stochastic processes under random entropy conditions. Pro-
bab. Theory Relat. Fields 75, 351–378 (1987)

2. Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)

123



Uniform central limit theorems for kernel density estimators 387

3. Bickel, J.P., Ritov, Y.: Nonparametric estimators which can be ‘plugged-in’. Ann. Statist. 31, 1033–1053
(2003)

4. de la Peña, V., Giné, E.: Decoupling. From Dependence to Independence. Springer, New York (1999)
5. Devroye, L., Györfi, L.: Nonparametric Density Estimation. The L1 View. Wiley, New York (1985)
6. Dudley, R.M.: Sample functions of the Gaussian process. Ann. Probab. 1, 66–103 (1973)
7. Dudley, R.M.: An extended Wichura theorem, definition of Donsker class, and weighted empirical

distributions. Lecture Notes in Mathematics, vol. 1153, pp. 141–178. Springer, New York (1985)
8. Dudley, R.M.: Uniform Central Limit Theorems. Cambridge University Press, Cambridge, England

(1999)
9. Folland, G.B.: Real Analysis. Wiley, New York (1999)

10. Giné, E., Koltchinskii, V.: Concentration inequalities and asymptotic results for ratio type empirical
processes. Ann. Probab. 34, 1143–1216 (2006)

11. Giné, E., Zinn, J.: Some limit theorems for empirical processes. Ann. Probab. 12, 929–989 (1984)
12. Giné, E., Zinn, J.: Empirical processes indexed by Lipschitz functions. Ann. Probab. 14, 1329–

1338 (1986)
13. Giné, E., Zinn, J.: Gaussian characterization of uniform Donsker classes. Ann. Probab. 19, 758–

782 (1991)
14. Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Springer, Berlin (1991)
15. Malliavin, P.: Integration and Probability. Springer, New York (1995)
16. Marcus, D.J.: Relationships between Donsker classes and Sobolev spaces. Z. Wahrsch. Verw. Gebiete

69, 323–330 (1985)
17. Nickl, R.: Empirical and Gaussian processes on Besov classes. In: Giné, E., Koltchinskii, V., Li, W.,

Zinn, J. (eds.): High dimensional probability IV, IMS Lecture Notes, vol. 51, pp. 185–195 (2006a)
18. Nickl, R.: Uniform central limit theorems for density estimators. preprint (2006b)
19. Nickl, R.: Donsker-type theorems for nonparametric maximum likelihood estimators. Probab. Theory

Relat. Fields 138, 411–449 (2007)
20. Nickl, R., Pötscher, B.M.: Bracketing metric entropy rates and empirical central limit theorems for

function classes of Besov- and Sobolev-type. J. Theoret. Probab. 20, 177–199 (2007)
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