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Abstract In this article, we study the asymptotic behaviour of a random motion
in Minkowski spacetime, representing the random evolution of an object (or signal)
traveling at a speed strictly less than the speed of the light, introduced by Dudley in
his article (Ark Mat 6:241–268, 1966). We determine its invariant σ -algebra and give
an explicit description of the Poisson boundary of its differential generator.
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1 Introduction

In his article [14], Dudley determined a class of Markov processes in Minkowski
space R×R

3, representing the random evolution in spacetime of an object (or signal)
traveling at a speed strictly less than the speed of light, and whose law is invariant
under the action of the group of isometries of the space. This group is the group of
affine isometries of the quadratic form

q(ξ) =
(
ξ0
)2 −

((
ξ1
)2 +

(
ξ2
)2 +

(
ξ3
)2
)
,

where (ξ0, . . . , ξ3) are the coordinates of ξ in the canonical basis of R × R
3.

The sample paths {ξs}s�0 of the random motions in R × R
3 are all made on the

same model. {ξs}s�0 is of the form

ξs = ξ0 +
s∫

0

ξ̇r dr, (1.1)
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284 I. Bailleul

for some càdlàg process {ξ̇s}s�0 on the (half-)hyperboloid

H = {ξ ∈ R × R
3 ; q(ξ) = 1, ξ0 > 0}.

So, strictly speaking, Dudley’s Markov processes are not processes in spacetime R
1,3,

but are processes with state space the phase space H×R
1,3, where speed and position

of an object are recorded.
As the restriction of q to any tangent space of the half unit pseudo-sphere H is

negative definite, it endows H with a Riemannian structure of constant curvature
equal to −1. The space H is (a model of) the three-dimensional hyperbolic space.

Dudley considers Markov processes {ξ̇s}s�0 on H with a law invariant under the
action of isometries of H. Roughly speaking, he shows that {ξ̇s}s�0 is a mixture of an
H-Brownian motion and jump processes, with radial jump laws. This is the analogue
in H of a Lévy process in R

3 whose law is invariant under the action of Euclidean
affine isometries.

Apart from in another article of Dudley [15] where the asymptotic direction of the
speed {ξ̇s}s�0 of the process is shown to converge, nothing has been written about this
class of processes.

The preceding family of processes (essentially) contains a unique diffusion: {ξ̇s}s�0
is a Brownian motion on H, and {ξs}s�0 its integral. As the geometrical framework
is that of special relativity, the preceding uniqueness property justifies our calling this
diffusion on H × R

1,3 the relativistic diffusion. Given (ξ̇ , ξ) ∈ H × R
1,d , denote by

Pξ̇ ,ξ the law of the relativistic diffusion started for (ξ̇ , ξ).
The object of this article is to determine the probabilistic information on the

asymptotic behaviour of the relativistic diffusion1 encoded in its invariant σ -algebra
I nv

(
(ξ̇ , ξ)

)
. More precisely:

“Find an I nv
(
(ξ̇ , ξ)

)
-measurable random variable X such that the two σ -algebras

I nv
(
(ξ̇ , ξ)

)
and σ(X) are indistinguishable under any Pξ̇ ,ξ .”

Denote by {ε0, ε1, ε2, ε3} the canonical basis of R × R
3. Any point of ζ̇ ∈ H\{ε0}

can be uniquely written

(ζ̇ 0, . . . , ζ̇ 3) = (
chρ, (shρ)σ

)
,

using polar coordinates (ρ, σ ) ∈ R
+∗ × S

2 of ζ̇ ∈ H. Let us denote by (ρs, σs) the
polar coordinates of the point ξ̇s ∈ H.

Theorem 1 Let (ξ̇ , ξ) ∈ H × R
1,3 be given.

1. The following limits exist Pξ̇ ,ξ -almost surely.

lim
s→+∞σs ≡ σ∞,

lim
s→+∞q(ξs, ε0 + σ∞) ≡ Rσ∞∞ .

(1.2)

1 Encoded in the tail σ -algebra.
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Poisson boundary of a relativistic diffusion 285

Fig. 1 Asymptotic behaviour of a typical trajectory

2. The invariant σ -algebra of the relativistic diffusion coincide Pξ̇ ,ξ -almost surely
with σ(σ∞, Rσ∞∞ ).

The two asymptotic quantities σ∞ and Rσ∞∞ can be interpreted geometrically using
only the spacetime part {ξs}s�0 of the diffusion Fig. 1.

• On the left drawing, each hyperplane corresponds to the set of events of spacetime
with constant time. The trajectory {ξs}s�0 hits each of these hyperplanes at a unique
point. If one parametrizes this point using the polar coordinates defined on the
hyperplane, then the polar angle converges towards σ∞. So, in some sense, σ∞ is
the asymptotic direction in which an immobile observer sees {ξs}s�0 go towards
infinity.

• We can associate to each direction σ ∈ S
2, the hyperplane of tangent vectors to the

cone {q = 0} at point ε0 +σ . Point 1 of theorem 1 asserts the existence of a random
hyperplane

{
ξ ∈ R × R

3 ; q(ξ, ε0 + σ∞) = Rσ∞∞
}
, parallel to the hyperplane

associated to σ∞ ∈ S
2, such that the point ξs goes to infinity as it approaches this

(random) hyperplane.

The main tool of the proof of Theorem 1 is the coupling technique. This technique is
not easily implemented in a non-elliptic framework, where we have fewer driving
Brownian motions than the dimension of the diffusion, and the general problem
remains largely unsolved. Fortunately, the construction of a quasi-coupling will suffice
for our purposes.

The organization of the article is the following. The necessary geometric back-
ground is recalled in Sect. 2. In this framework, one constructs in Sect. 3 the relativistic
diffusion and a related diffusion on the group of affine isometries. The analysis of their
analytical properties is made in Sect. 4, where the method used to prove Theorem 1
is explained. Section 5 is dedicated to this proof. The last section (Sect. 6) ends this
article with a series of remarks.
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286 I. Bailleul

2 Geometric background

Denote by {ε0, ε1, ε2, ε3} the canonical basis of R × R
3, and

(
ξ0, ξ1, ξ2, ξ3

)
the

coordinates of a point ξ ∈ R × R
3 in this basis. The vector space R × R

3 is endowed
with the quadratic form

q(ξ) =
(
ξ0
)2 −

((
ξ1
)2 +

(
ξ2
)2 +

(
ξ3
)2
)
.

To distinguish the usual Euclidean space R
4 from (R × R

3, q), we shall write R
1,3

for this latter space.
In this section we reacll some necessary facts from hyperbolic geometry. We refer

the reader to the book [18] of Helgason for details.

2.1 Isometries of q

The set of affine isometries of R
1,3 is well known. The set of direct linear isometries

is a subgroup SO(1, 3) of GL(R4), with Lie algebra so(1, 3) =
{(

0 c∗
c A

)
; c ∈ R

3,

A ∈ so(3)

}
. Any direct affine isometry ϕ of R

1,3 can be uniquely written

ξ ∈ R
1,3, ϕ(ξ) = g(ξ)+ b,

for an element g ∈ SO(1, 3) and b ∈ R
1,3. Write ϕ = (g, b). The group of direct

affine isometries of R
1,3 is the semi-direct product SO(1, 3)× R

1,3, with product:

(g, b)(g′, b′) = (gg′, b + gb′).

Definition 2 The connected component containing (Id, 0) in the set of affine isome-
tries of R

1,3 is called the Poincaré group, and denoted by G.

Notation We write SO0(1, 3) = exp
(
(so(1, 3)

)
; this is the conected component of

the identity in SO(1, 3). The Poincaré group is equal to SO0(1, 3)× R
1,3.

Definition 3 The unit pseudo-sphere of R
1,3 has two components; we denote by

H = {
ξ ∈ R

1,3 ; q(ξ) = 1, ξ0 > 0
}
,

the component corresponding to positive ξ0.
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Poisson boundary of a relativistic diffusion 287

2.2 Hyperbolic space

Polar coordinates One can write H = {
(chρ, (shρ)σ); ρ � 0, σ ∈ S

2
}
. Apart

from the point ε0 ∈ H, every point of H ⊂ R
1+3 can be uniquely written as

(chρ, (shρ)σ) ∈ R × R
3. The pair (ρ, σ ) is said to be the polar coordinates of

the point
(
ch(ρ), (shρ)σ

) ∈ H.
The q-norm of the velocity of a C1 path γs = (

ch(ρs), (shρs)σs
) ∈ H is

q(γ̇s) = −(ρ̇2
s + (sh2ρs) ||σ̇s ||2Eucl

);

so q induces a Riemannian metric on H, given in (ρ, σ ) coordinates by the (0, 2)-
tensor: dρ2 + (sh2ρ)||dσ ||2Eucl. These coordinates are the Riemannian exponential
coordinates associated with the point ε0 ∈ H. Note their bad behaviour at ε0; they
parametrize H\{ε0}. Given σ ∈ S

2, the path
{
(ρ, σ )

}
ρ∈R

is a geodesic.

Halfspace coordinates Endow the halfspace R
∗+ × R

2 with the Riemannian metric
defined at a point (y, x) ∈ R

∗+ × R
2 by the formula2

X,Y ∈ R × R
2, (X,Y )(y,x) = 〈X,Y 〉Eucl

y2 .

One can check by a direct calculation that

Proposition 4 The restriction to H of the following application is an isometry between
(H, q) and the half-space

(
R

+∗ × R
2, (·, ·).

)
.

(ξ0, ξ1, ξ2, ξ3) ∈ R
1,3 ψ−1


−→
(

1

ξ0 − ξ1 ,
ξ2

ξ0 − ξ1 , . . . ,
ξ3

ξ0 − ξ1

)
∈ R

∗+ × R
2.

(2.1)

Its inverse is given by the formula

(
y, (x1, x2)

) ∈ R
∗+ × R

2 ψ
→
( |x |2 + y2 + 1

2y
,
|x |2 + y2 − 1

2y
,

x1

y
,

x2

y

)
∈ H. (2.2)

where |x | is Euclidean norm of x ∈ R
2.

The image by ψ of the level hypersurface {y = constant} is the intersection of the
hyperplane ξ0 − ξ1 = 1

y with H.

Definition 5 Given a frame g ∈ SO0(1, 3) of spacetime, we define coordinates on
H by setting (y, x) = ψ−1

(
g−1(ξ̇ )

)
. These coordinates are said to be the halfspace

coordinates associated with the frame g.

2 〈X, Y 〉Eucl denotes Euclidean scalar product of X, Y ∈ R
3.
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288 I. Bailleul

2.3 Sphere at infinity, action on this sphere

(i) We see in Definition 3 that SO0(1, 3) is the set of direct isometries of H and that
it acts transitively on it. It also acts transitively on the unit tangent bundle of H:

{
(ξ̇ , V ) ∈ T H ; ξ̇ ∈ H, V ∈ Tξ̇H, q(V ) = −1

}
.

(ii) Adopt polar coordinates on H. As a non-parametrized path, the geodesic{
(ρ, σ )

}
ρ∈R

is the intersection of H with the two-dimensional vector space

〈ε0, σ 〉 ⊂ R
1,3. The intersection of

(
R

∗+
)
ε0 + (

R
∗+
)
σ with the null cone is

the half-line R
∗+ (ε0 + σ). The geodesic

{
(ρ, σ )

}
ρ∈R

is said to have asymptotic

direction σ ∈ S
2. Now, given a geodesic γ , started from ξ̇ , in direction V , we

know from (i) that there exists some isometry g ∈ SO0(1, 3) such that

ξ̇ = g(ε0) and V = g(ε1);

g sends the null half-line R
∗+ (ε0 +ε1) to another null half-line R

∗+ (ε0 +σ). This
line R

∗+ (ε0 +σ) being the intersection of the null cone with
(
R

∗+
)
ξ̇+(R∗+

)
V ⊂

R
1,3, the direction σ ∈ S

2 is uniquely determined by the geodesic γ . One says
that γ has asymptotic direction σ . The set of asymptotic directions is S

2.
(iii) In our framework, H will be seen as a set of velocity vectors. As a translation

does not change the speed of a path, and an isometry g ∈ SO0(1, 3) transforms a
geodesic γ of H to the geodesic g(γ ), we define the action of an affine isometry
(g, b) ∈ G on the set S

2 of asymptotic directions by the formula

(g, b).σ = σ ′, if g
(
R

∗+(ε0 + σ)
) = R

∗+(ε0 + σ ′).

3 Relativistic diffusion

The relativistic diffusion
{
(ξ̇s, ξs)

}
s�0 on H × R

1,3 is defined in Sect. 3.1.2. We shall
see in Sect. 3.2 that this diffusion can be seen as the natural projection of a G-valued
left invariant diffusion whose support is determined in Proposition 8.

3.1 Brownian motion on H and relativistic diffusion

3.1.1 Brownian motion on H and rough asymptotic behaviour

(a) Brownian motion on H Hyperbolic Brownian motion has infinitesimal generator
half the hyperbolic Laplacian. This operator has a simple expression in halfspace
coordinates.

�H = y2(∂2
x1

+ ∂2
x2

+ ∂2
y )− y ∂y . (3.1)
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Poisson boundary of a relativistic diffusion 289

So if wy is a real Brownian motion independent of the two-dimensional Brownian
motion wx , the diffusion solving the equations

dys = ysdwy
s − 1

2
ysds,

dxs = ysdwx
s ,

(3.2)

is a Brownian motion on H.
Notation We write Pξ̇0

the law of Brownian motion started from ξ̇0 ∈ H. We may also

write P(y0,x0) for Pξ̇0
if ξ̇0 has halfspace coordinates (y0, x0) ∈ R

∗+ × R
2.

The process {ys}s�0 is explicit under P(y0,x0):

ys = y0 ew
y
s −s,

xs = x0 +
s∫

0

yr dwx
r .

(3.3)

We see in Eqs. (3.3) that both ys and xs converge; the former to 0 and the latter to
a random point x∞ ∈ R

2. Using polar coordinates (ρs, σs) to describe the evolution
of the point ξ̇s ∈ H, the preceding convergences means that

ρs −→
s→+∞ +∞, and σs −→

s→+∞ σ∞,

for some random σ∞ ∈ S
2.

The invariance of �H under the action of isometries of H(3) gives Brownian motion
an analogous property: for any ξ̇ ∈ H and any isometry ϕ of H, the image by ϕ of a
Brownian motion started from ξ̇ has the same law as a Brownian motion started from
ϕ(ξ̇ ). In particuler, if ϕ(ξ̇ ) = ξ̇ , the process

{
ϕ(ξ̇s)

}
s�0 has under Pξ̇ the same law as

{ξ̇s}s�0. So, if Brownian motion is started from ε0, its asymptotic direction σ∞ ∈ S
2

has a law invariant under the action of SO(3); that is, the law of σ∞ is uniform. It is
not difficult to deduce from this fact the law of x∞ (and σ∞) under any Pξ̇0

.

(b) Rough asympotic behaviour of {ξ̇s}s�0 Let us use halfspace coordinates. Suppose
Brownian motion is started from (y0, x0) ∈ R

∗+ ×R
2. If one looks at the point ξ̇s in the

exponential coordinates (ρ̃, σ̃ ) associated with (y0, x0), we have just seen that the law
of the asymptotic direction σ̃∞ of ξ̇s is the uniform probability on S

2. So, the law of
x∞ is the image of the uniform probablity on S

2 by the function which associates to a
direction V ∈ S

2 the point x∞ ∈ R
2 which is “at the end” of the geodesic started from

(y0, x0) in direction V . It has a good expression if one uses on R
2 polar coordinates

centered at x0, and denoted by (r, α), α ∈ S
1. Denote by dα the uniform probability

on S
1.

P(y0,x0)

(
r(x∞) ∈ r + dr, α(x∞) ∈ α + dα

) = 2y0

y2
0 + r2

1r>0 dr dα.

3 �H is defined in purely metric terms: �H f = div(grad f ).
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290 I. Bailleul

This formula shows that the law of x∞ has a smooth density with respect to Lebesgue
measure dx on R

2, depending smoothly on
(
(y0, x0), x

) ∈ (R∗+ × R
2
)× R

2.
Notation (Density of σ∞) Returning to polar coordinates (ρ, σ ), this implies that the
law of σ∞ has, under any Pξ̇0

, a smooth density hσ (ξ̇0) with respect to the uniform

probability dσ on S
2, with hσ (ξ̇0) depending smoothly on (ξ̇0, σ ) ∈ H × S

2. I is well
known that, for a fixed σ ∈ S

2, hσ (.) is a �H-harmonic function.4

3.1.2 Relativistic diffusion

Definition 6 Let {ξ̇s}s�0 be a Brownian motion on H started from ζ̇0 ∈ H. Let ζ0 ∈
R

1,3. The relativistic diffusion on H × R
1,3, started from (ζ̇0, ζ0), is the process{

(ξ̇s, ξs)
}

s�0 on H × R
1,3 where

ξs = ζ0 +
s∫

0

ξ̇r dr.

Notation We shall denote by Pξ̇0,ξ0
the law of the diffusion started from (ξ̇0, ξ0) ∈

H × R
1,3.

• The infinitesimal generator of the process
{
(ξ̇s, ξs)

}
s�0 is given by the formula

L f (ξ̇ , ξ) =
�H

ξ̇
f

2
+ ∂ξ f (ξ̇ , ξ).ξ̇ ,

where ∂ξ f (ξ̇ , ξ).ξ̇ is the differential of f with respect to ξ , in the direction ξ̇ .

From now on, we write �H for �H

ξ̇
. Note that the functions {hσ (ξ̇ ), σ ∈ S

2} on H

satisfying the relation �Hhσ = 0 also satisfy the relation Lhσ = 0, when considered
as functions of (ξ̇ , ξ) ∈ H × R

1,3.

3.2 Relativistic diffusion as the projection of a Brownian motion on G

(a) A diffusion
{
(gs, ξs

)}
s�0 on G

(i) Following Eells and Elworthy, one usually constructs Brownian motion on a
Riemannian manifold M of dimension n as the projection of a singular diffusion
on the orthonormal frame bundle OM of M. Precisely, there exist canonical horizon-
tal vector fields {Hi }i=1,...,n on OM such that the differential operator

∑n
i=1 H2

i on
OM induces Laplacian �M on M, in the sense that if we denote by π the natural

4 See [22], Chapts. 7 and 9, for a more general statement.
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projection OM → M, we have for all f ∈ C2(M),

(
n∑

i=1

H2
i

)
f ◦ π = (�M f ) ◦ π. (3.4)

Denote by (x, f) a generic element of OM: x ∈ M and f = ( f1, . . . , fn) is an
orthonormal frame of TxM. Given j ∈ {1, . . . , n}, one defines a motion {(x(s), f(s))}
in OM by asking that dx(s)

ds = f j (s), and that f should be transported parallely along
{x(s)}. One defines a vector field Vj on OM using the infinitesimal motion of all the
points according to the preceding dynamics. These vector fields ( j = 1, . . . , n) are
the canonical horizontal vector fields.

(ii) In our situation, H being the half unit pseudo-sphere of R
1,3, a point in OH is

an orthonormal frame of R
1,3. So OH can be identified with the set of orthonormal

bases (g0, g1, g2, g3) of R
1,3, with g0 ∈ H, and the natural projection is g 
→ g0. The

horizontal vector fields Hi are:

Hi (g) = gEi , i = 1, . . . , 3,

where the Ei are the matrices E1 =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, E2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠,

E3 =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠.

These left invariant vector fields give rise to the left invariant differential operator
H2

1 + H2
2 + H2

3 . If g belongs to SO0(1, 3) (that is, if
(
g1, g2, g3

)
is a direct basis of

Tg0H), the diffusion {gs}s�0 on O(1, 3) solution of the following stochastic differential
equation, with initial condition g, remains in SO0(1, 3).

dgs = gs E1 ◦ dw1
s + gs E2 ◦ dw2

s + gs E3 ◦ dw3
s .

Thewi are real independent Brownian motions. By construction, {g0
s }s�0 is a Brownian

motion on H, started from g0.

(iii) So, the natural framework to construct the relativistic diffusion seems to be
SO0(1, 3)× R

1,3, the equations of motion being

dgs = gs Ei ◦ dwi
s,

dξs = g0
s ds.

(3.5)

We use Einstein’s conventions on summations. Set Ẽi = (Ei , 0), for i = 1, . . . , 3,
Ẽ0 = (0, ε0), and define left invariant vector fields Vi , i = 0, . . . , 3, on the group G,
setting

123



292 I. Bailleul

Vi
(
(g, ξ)

) = (g, ξ)Ẽi .

It is elementary to see that (3.5) is equivalent to

d
(
(gs, ξs)

) = Vi
(
(gs, ξs)

) ◦ dwi
s + V0

(
(gs, ξs)

)
ds. (3.6)

The groupG naturally projects to H×R
1,3: (g, ξ) 
→ (g0, ξ); the diffusion {(gs, ξs)}s�0

is the natural lift of the relativistic diffusion to G. Its infinitesimal generator is

L̃ ≡ 1

2

∑
i=1,...,3

V 2
i + V0. (3.7)

The algebraic framework provided by the group G will be useful in Sect. 5.2.2 to
establish the uniform continuity of some functions.

(b) Support of the diffusion
{
(gs, ξs)

}
s�0—Notation—Denote by P(g,ξ) the law of

the diffusion
{
(gs, ξs)

}
s�0 on G, started from (g, ξ).

We determine its suppport using the support theorem, as presented in Theorem 8.2
in [19]. Denote by ‖.‖T the uniform norm on C([0, T ],G).
Theorem 7 (Stroock, Varadhan) If φi , i = 1, . . . , d, are piecewise smooth, continu-
ous controls, and if ϕ

(
t; (g, ξ)) is the solution to the equation

d
(
ϕ(t)

) = Vi
(
ϕ(t)

)
φi

t dt + V0
(
ϕ(t)

)
dt, ϕ(0) = (g, ξ), (3.8)

on G, then one has

∀ T > 0, P(g,ξ)
(‖(gs, ξs)− ϕ

(
s; (g, ξ))‖T < ε | ‖w − φ‖T < δ

) → 1, as δ ↘ 0.
(3.9)

Proposition 8 (Support of the diffusion
{
(gs, ξs)

}
s�0 on G) Let (g0, ξ0) ∈ G, (g, ξ) ∈

G be such that q(ξ − ξ0) > 0, and let V1 × V2 be a product neighbourhood of (g, ξ).
Then

P(g0,ξ0)

⎛
⎝

∞∫

0

1V1×V2

(
(gs, ξs)

)
ds > 0

⎞
⎠ > 0.

� From the support Theorem 7 it is sufficient to find smooth controls φ1, . . . , φd ,
defined on some interval [0, T ], such that the path

{(
g(s), ξ(s)

)}
0�s�T solving the

equation

d
(
g(s), ξ(s)

) = Vi
((

g(s), ξ(s)
))
φi (s)ds + V0

((
g(s), ξ(s)

))
ds, s ∈ [0, T ],

(g(0), ξ(0)) = (
(ε0, . . . , ε3), 0

)
,

satisfies
(
g(T ), ξ(T )

) ∈ V1 × V2.

123



Poisson boundary of a relativistic diffusion 293

(1) First, find a smooth timelike path γ = {ϕ(s)}0�s�T on R
1,3, with ϕ̇(s) = dϕ(s)

ds ∈
H, defined on an unprescribed interval [0, T ], such that
• ϕ(0) = 0, ϕ̇(0) = ε0, ϕ̇(T ) = g0, and
• ϕ(T ) is not far from ξ .
Such a path exists. Parallel transport in H of ε1, ε2, ε3 along

{
ϕ̇(s)

}
s∈[0,T ] defines

a lift {gϕ̇s }s∈[0,T ] of
{
ϕ̇(s)

}
s∈[0,T ] to SO0(1, 3)(� OH). It gives us a unique 3-uple(

ϕ1(s), ϕ2(s), ϕ3(s)
)

of smooth functions defined on [0, T ], and such that

d
(
ϕ̇(s)

) = (gϕ̇s )
iϕi (s) ds.

(2) Now, consider the following equation on G.

d
(
ψ(s)

) =
3∑

i=1

Vi
(
ψ(s)

)
ϕi (s)ds + V0

(
ψ(s)

)
ds, ψ(0) = (ε0, . . . , εd).

Its solution ψ is such that ψ(T ) is of the form

(
(ϕ̇(T ), g1, g2, g3), ϕ(T )

) = (
(g0, g1, g2, g3), ϕ(T )

)
,

where (g1, g2, g3) is an orthonormal basis of Tg0H. This basis need not be near(
g1, g2, g3

)
. The geometry of H allows one to change a little ϕ̇ (i.e. the ϕi ’s) so

that ψ(T ) is near
(

g, ξ
)

.

Proposition 9 [7, p. 641] Let ξ̇ ∈ H be given. One can obtain any orthonormal
basis of Tξ̇H by parallel transport of a fixed orthonormal basis of Tξ̇H along loops

contained in an arbitrarily small neighbourhood of ξ̇ ∈ H.

(3) We take advantage of this fact to add to the path ϕ̇ a small loop at its end, along
which one the parallel transport application maps

(
g1, g2, g3

)
to
(
g1, g2, g3

)
. For

0 < ε < 1, define φ̇ by requiring that
• φ̇s = ϕ̇(1+ε)sT , for s � 1

1+ε , and

• φ̇s describes the loop for 1
1+ε � s � 1.

If ε is small enough, φ(1) remains near ξ . The lift of φ̇ to G provides the required φi .

4 Analytic framework, Poisson boundary of L

The operators L̃−∂s and L−∂s are hypoelliptic (4.1). This smoothing property enables
one to give an analytical counterpart to the probabilistic problem of the determination
of the invariant σ -algebra of

{
(ξ̇s, ξs)

}
s�0: determine the Poisson boundary of its

infinitesimal generator L . Using a variation on a theorem of Bony about some special
class of hypoelliptic differential operators, we first obtain in Theorem 17 a compactness
property of the set of non negative L-harmonic functions. This theorem is needed to
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apply Choquet’s theorem on integral representation in well capped cones. Its use in
Sect. 4.3 to determine the Poisson boundary of L is based on a theorem which will be
proved in Sect. 5.

4.1 Infinitesimal generator

(a) From a semi-group point of view, the diffusions
{
(ξ̇s, ξs)

}
s�0 and

{
(gs, ξs)

}
s�0

on H × R
1,3 and G are characterized by their infinitesimal generators, respectively

L f (ξ̇ , ξ) = �H f (ξ̇ , ξ)

2
+ ∂ξ f (ξ̇ , ξ).ξ̇ , f ∈ C∞

0

(
H × R

1,d
)
,

and

L̃ f̃ = 1

2

∑
i=1,...,3

V 2
i f̃ + V0 f̃ , f̃ ∈ C∞

0 (G).

The two operators are linked: if the function f̃ (g, ξ) depends only on g0 and ξ , then

L̃ f̃ = L f̃ . (4.1)

Notation Let Haar be a (left) Haar measure on G. Write L̃∗ the L
2(Haar) adjoint

of L̃ .
The vector fields Vi being left invariant, we have for any f̃ , g̃ ∈ C∞

0 (G),
∫

f̃
(
V 2

i g̃
)
Haar =

∫ (
V 2

i f̃
)
g̃Haar;

so L̃∗ = 1
2

∑
i=1,...,3 V 2

i − V0. Set

E12 =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞
⎟⎟⎠ , E13 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , E23 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠.

Proposition 10 The differential operators L̃ − ∂s and L̃∗ − ∂s on G × R
∗+ are hypo-

elliptic.

� Write Ẽ pq = (E pq , 0), 1 � p < q � 3, and Ãi = (0, εi ), 1 � i � 3. The
brackets between the Ẽi ’s and Ã0 are given by the following relations

[Ẽi , Ẽ j ] = Ẽi j , [Ẽi , Ã0] = Ãi , [Ẽi , Ãi ] = Ã0.

As the family
{

Ẽi , Ẽ jk, Ã�; i = 1, . . . , 3, 1 � j < k � 3, � = 0, . . . , 3
}

is
a basis of the Lie algebra of G, Hörmander’s theorem ensures the hypoellipticity
of L̃ − ∂s and L̃∗ − ∂s . �
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Definition 11 • Let L ′ be a second order differential operator. A C2 function f sat-
isfying the relation L ′ f = 0 is said to be L ′-harmonic.

• For historical reasons, the set of bounded L ′-harmonic functions is called the Poisson
boundary of L ′.

Notation Denote by
{

P̃s
}

s�0 the semi-group of the process
{
(gs, ξs)

}
s�0 on G, and

{Ps}s�0 that of the process
{
(ξ̇s, ξs)

}
s�0 on H × R

1,3.

(b) From probability to analysis—It follows from the hypoellipticity of L̃ −∂s that for
any bounded Borel function f̃ on G, the function P̃s f̃

(
(g, ξ)

)
is a smooth function

of s and (g, ξ) which is
(
L̃ − ∂s

)
-harmonic. From relation (4.1), Ps f is a smooth

(L − ∂s)-harmonic function on (H × R
1,3)× R

∗+ if f is any bounded Borel function
on H × R

1,3. We can write

P̃s f̃
(
g, ξ

) =
∫

G
f̃ (g′, ξ ′) p̃s

(
(g, ξ), (g′, ξ ′)

)
Haar

(
d(g′, ξ ′)

)
.

Proposition 10 ensures that p̃s
(
(g, ξ), (g′, ξ ′)

)
is a smooth function of

(
s, (g, ξ)

)
and(

s, (g′, ξ ′)
)
, separately. Remark that the left invariance of the vector fields Vi implies

the left invariance of p̃s :

∀ (g, ξ) ∈ G, p̃s
(
(g, ξ)(g, ξ), (g, ξ)(g′, ξ ′)

) = p̃s
(
(g, ξ), (g′, ξ ′)

)
.

So, p̃.(., .) is jointly continuous in
(
s, (g, ξ), (g′, ξ ′)

)
.

Notation (Invariant σ -algebra of {(ξ̇s, ξs)}s�0) Denote by I nv
(
(ξ̇s, ξs)

)
the invariant

σ -algebra of the relativistic diffusion {(ξ̇s, ξs)}s�0.
The following classical proposition states that it is the same problem to determine

I nv
(
(ξ̇s, ξs)

)
or to determine the Poisson boundary of L .

Proposition 12 (Probability/Analysis correspondence)

• For any bounded I nv
(
(ξ̇s, ξs)

)
-measurable random variable X, the formula

(ξ̇ , ξ) ∈ H × R
1,3 
→ Eξ̇ ,ξ [X ] (4.2)

defines an L-harmonic bounded function.

• Conversely, any bounded L-harmonic function on H×R
1,3 is of this form, for some

bounded I nv
(
(ξ̇s, ξs)

)
-measurable random variable X.

� • Given an I nv
(
(ξ̇s, ξs)

)
-measurable bounded random variable X , the mea-

surable bounded function h : (ξ̇ , ξ) ∈ H × R
1,3 
→ Eξ̇ ,ξ [X ], satisfies the

identities

Psh(ξ̇ , ξ) = Eξ̇ ,ξ

[
h(ξ̇s, ξs)

] = Eξ̇ ,ξ

[
Eξ̇s ,ξs

[X ]] = Eξ̇ ,ξ [X ◦ θs]
= Eξ̇ ,ξ [X ] = h(ξ̇ , ξ).

So it follows from point (b) that h is smooth and L-harmonic, since it does not
depend on s.
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• Reciprocally, given a bounded L-harmonic function h, define the
I nv

(
(ξ̇s, ξs)

)
-measurable random variable

X = lim
s→+∞h(ξ̇s, ξs), when it exists, 0 elsewhere.

For (ξ̇0, ξ0) ∈ H × R
1,3, the process

{
h(ξ̇s, ξs)

}
s�0 is, under Pξ̇0,ξ0

, a
bounded martingale, so

h(ξ̇0, ξ0) = Eξ̇0,ξ0
[X ].

�
We are going to describe the Poisson boundary of L . Before explaining in Sect. 4.3

how to proceed, we need a compactness result on the set of non negative L-harmonic
functions.

4.2 Compactness matters

In this paragraph, we shall use a result of Bony to obtain a Harnack compactness
principle for non-negative L̃-harmonic functions; it is stated in Theorem 17. Here is
the result we would like to use.

Theorem 13 (Bony’s Harnack Inequality [8]) Let L ′ =
r∑

i=1

V 2
i + V be a differential

operator on a connected manifold M of dimension n such that the Vi cannot be null
all at the same time. Suppose the Lie algebra L(V1, . . . , Vr ) generated by the Vi has
rank n at every point. Then, for any compact K contained in a chart {xi }, every point
y0 ∈ M and every multi-index p, there exists a constant λ, depending on K , {xi } and
p, such that every nonnegative L ′-harmonic function h satisfies

sup
x∈K

∣∣∣∣
∂ ph(x)

∂x p

∣∣∣∣ � λ h(y0). (4.3)

Before giving its proof, recall Bony demonstrated in [8], Corollary 5.2, the following
fact.

Proposition 14 If the Vi ’s are not null all at the same time and rank
(L(V1, . . . ,

Vr , V )
) = n, everywhere, then there exists a basis of the topology made up of open

sets U for which the Dirichlet problem

for f ∈ C(∂U) find u ∈ C2(U) ∩ C(U) such that L ′u = 0 on U and u|∂U = f

has a unique solution. These open sets are called elementary open sets.

Here is Bony’s proof of Theorem 13.
� Let x0 be a point in K . On the one hand, one knows that given two relatively
compact open neighbourhoods O � O′ of x0, small enough to be in a chart, and
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a multi-index p, there exists a constant c′ such that any L ′-harmonic function h
satisfies the inequality5

sup
x∈O

∣∣∣∣
∂ ph(x)

∂x p

∣∣∣∣ � c′
∫

O′
h(x)dx .

On the other hand, one knows that when we are in an elementary open set U ,
one has

h(y0) � β

∫

U
gU
β (y0, x)h(x)dx,

where gU
β is the Green function of the operator L ′ − β on U with respect to the

measure dx .6 So, if we could suppose y0, O and O′ to be in an elementary open
set U , and gU

β (y0,O′) � c′′ > 0,7 we would have

sup
x∈O

∣∣∣∣
∂ ph(x)

∂x p

∣∣∣∣ � c′

c′′β
h(y0).

The hypothesis on the rank of the Lie algebra is made so as to ensure that the
Strong Minimum Principle holds, and with it the fact that gU

β (., x0) being > 0

somewhere is > 0 everywhere; in particular gU
β (y0, x0) > 0. The continuity of

gU
β (y0, .) gives a neighbourhood O′ of x0 and a positive constant c′′ such that

gU
β (y0,O′) � c′′. The constant c′ is determined as soon as O′, O, p and the

coordinates x are chosen.
To obtain the Harnak inequality not just for y0, O, O′, in an elementary open
set, one uses connectedness of M and compactness of K . �

This argument cannot be applied without any change to our situation, where the oper-
ator L̃ = 1

2

∑d
i=1 V 2

i + V0 on G is such that rank
(L(V1, . . . , Vd)

)
< dim G. Yet, the

rank hypothesis is made just to ensure the positivity of gU
β (y0, x0). We can get this

positivity thanks to the support Theorem 7.
Notation Until the end this paragraph, we denote by e a generic element of G instead
of (g, ξ).

Given piecewise smooth, continuous controls, φi , i = 1, . . . , 3, and e0 ∈ G, the
equation

d
(
ϕ(t)

) = Vi
(
ϕ(t)

)
φi

t dt + V0
(
ϕ(t)

)
dt, ϕ(0) = e0, (4.4)

is the control equation associated with theφi and e0. We denote by ϕ(t; e0) its solution.

5 This is a quantitative version of Hörmander’s theorem on hypoellipticity.
6 The existence of gU

β is proved in [8].
7 gU

β (y0,O′) � c′′ means inf{gU
β (y0, x); x ∈ O′} � c′′.
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Definition 15 • Let U be an open set of G and let e0 ∈ U . A point z is said to be in the
future of e0 in U if there exists controls φi , and some t > 0, such that z = ϕ(t e0),
and if ϕ

([0, t]; e0
) ⊂ U . We shall write ϕ(t; e0) = ϕz(t; e0) to emphasize the fact

that ϕ(t; e0) is associated with z.
• A set S is said to be in the future of e0 in U if each of its points is in the future of

e0 in U . The future of e0 is its future in G.

The future of e0 (in G) is the interior of the support of the Green function of the
diffusion

{
(gs, ξs)

}
s�0, started from e0 = (g0, ξ0). From Proposition 8, it is equal to{

(g, ξ) ∈ G ; q(ξ − ξ0) > 0
}
.

Suppose e0 and O′ are in an elementary open set U and O′ is in the future of e0
in U . If one takes z in O′, the path ϕz(·; e0) spends a positive amount of time in O′.
Choose ε > 0 small enough so that B(z, ε) ⊂ O′, and that the ε-neighbourhood of
ϕz([0, t]; e0) should be included in U . Then the diffusion {es}, started from e0, spends
a positive amount of time in O′ with a positive probability, before leaving U (support
theorem); that is

gU
β (e0,O′) > 0.

The function gU
β (e0, .) being continuous, we can suppose, without loss of generality,

that gU
β (e0,O′) � c′′ > 0.

Now, suppose K is a compact in the interior of the future of e0 in G. Let z0 ∈ K and
ϕz0(.; e0) be a solution of (4.4) such that ϕz0(T ; e0) = z0, for some T > 0. One can
find a finite sequence e0, e1, . . . , es of points of ϕz0

([0, T ]; e0
)
, elementary open sets

Ui , i = 0, . . . , (s−1), open sets O′
i , i = 1, . . . , s, such that {ei } and O′

i+1 are included
in Ui , O′

i+1 is in the future of ei , and ei+1 ∈ O′
i+1. The conclusion of Bony’s Harnack

inequality applies in each Ui . If one takes p = 0 in (4.3), for i = 1, . . . , (s − 1), and
use (4.3) with p for i = s, one obtains the existence of a constant λz0 , and of some
neighbourhood Oz0 of z0, such that the inequality

sup
x∈Oz0

∣∣∣∣
∂ ph(x)

∂x p

∣∣∣∣ � λz0 h(e0),

holds for any nonnegative L̃-harmonic function h. The compactness of K then yields
the following version of Bony’s result.

Theorem 16 (Harnack’s inequality) Let K be a compact subset of G, located in the
future of a point e0 ∈ G, small enough to be in a chart {ei }, and let p be a mutli-index.
There exists a constant λ, depending on K , {ei } and p, such that every nonnegative
L̃-harmonic function h satisfies

sup
e∈K

∣∣∣∣
∂ ph(e)
∂ep

∣∣∣∣ � λ h(e0).

The smallness restriction is not a real one since any compact subset K can be covered
by finitely many charts.
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Harnack inequality and Ascoli’s theorem justify

Theorem 17 (Harnack compactness principle) • Let {hn}n�0 be a sequence of non-
negative L̃-harmonic functions. If there is a point e0 ∈ G such that the sequence{
hn(e0)

}
n�0 is bounded, then {hn}n�0 has a subsequence that C∞-converges uni-

formly and locally on8

{
(g, ξ) ∈ G ; q(ξ − ξ0) > 0

}
.

• An analogue result holds for L-harmonic functions: if there exists a point (ξ̇0, ξ0) ∈
H × R

1,3 such that the sequence
{
hn(ξ̇0, ξ0)

}
n�0 is bounded, then {hn}n�0 has a

subsequence that C∞-converges uniformly and locally on the set

{
(ξ̇ , ξ) ∈ H × R

1,3 ; q(ξ − ξ0) > 0
}
.

4.3 Representation theorem and consequences

(a) Representation theorem Denote by (ρs, σs) the polar coordinates of ξ̇s ∈ H.
Recall the notation hσ (ξ̇ , ξ) for the density of the law of σ∞ under Pξ̇ ,ξ with respect

to the uniform probability dσ on S
2. Section 5 is dedicated to the proof of the following

theorem.

Theorem 18 Given (ξ̇ , ξ) ∈ H × R
1,3,

1. the limits

σ∞ = lim
s→+∞σs, Rσ∞∞ = lim

s→+∞q(ξs, ε0 + σ∞),

exist Pξ̇ ,ξ -almost surely;
2. the law of the pair (σ∞, Rσ∞∞ ) has, under Pξ̇ ,ξ , a density with respect to the product

measure dσd� on S
2 × R of the form

hσ (ξ̇ , ξ)hσ� (ξ̇ , ξ),

for some explicit function hσ� (ξ̇ , ξ) depending smoothly on σ ∈ S
2, � ∈ R and

(ξ̇ , ξ) ∈ H × R
1,3;

3. for any σ ∈ S
2, � ∈ R, the nonnegative function hσ hσ� (.) is a minimal L-harmonic

function.

This theorem provides a decomposition of the constant function 1 as a mean of
L-harmonic minimal functions:

1 =
∫

S2×R

hσ hσ� dσd�. (4.5)

8 “C∞-convergence uniform and local”, means that for any p � 0, all the derivatives of h of order � p
uniformly converge on compacta.
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(b) Poisson boundary of L The preceding formula and Harnack compactness principle
(Theorem 17) are all we need to determine the Poisson boundary of L . This paragraph
is dedicated to the description of this boundary. We follow the classical Martin’s
scheme, as used in the study of heat equation (see for instance Doob [13], Chap. XIX,
or [1], and the references therein).

The following lemma enables us to define a well capped cone adapted to the situa-
tion.

Lemma 19 For n ∈ N, set (ζ̇n, ζn) ≡ (ε0,−nε0) ∈ H × R
1,3. One has

∑
n�0

hσ hσ� (ζ̇n, ζn) < +∞,

for any σ ∈ S
2, � ∈ R.

� Using the explicit expression of hσ hσ� given in (5.23), we read in the formula

hσ hσ� (ζ̇n, ζn) = (�+ n)−3 exp

(
− 2

�+ n

)
,

the convergence of the series. �
Choose a sequence of positive numbers pn such that

∑
n�0 pn = 1 and set ν ≡∑

n�0 pnδ(ζ̇n ,ζn)
. The set of L¹(ν)-integrable functions contains the set of bounded

functions. Write 〈 f, ν〉 ≡ ∫
f dν, and define the following subsets of L-harmonic

functions.

Cν ≡ {h � 0; Lh = 0, 〈h, ν〉 < +∞}, Kν ≡ {h ∈ Cν ; 〈h, ν〉 � 1}, and

K1
ν ≡ {h ∈ Cν ; 〈h, ν〉 = 1}. (4.6)

Cν is a convex cone containing the functions hσ hσ� , and Kν and K1
ν are convex subsets

of Cν . As a consequence of Harnack inequality (Theorem 16), the only function
h ∈ Cν such that 〈h, ν〉 = 0 is the zero function. Endow Cν with the topology of
uniform convergence on compacta.

Proposition 20 Kν is compact.

� The topology being metrisable, we check that any sequence of points of
Kν has a convergent subsequence. Any function h ∈ Kν satisfying the rela-
tion 〈h, ν〉 = ∑

n�0 pnh(ζ̇n, ζn) � 1, one has h(ζ̇n, ζn) � 1
pn

, for any in-
teger. Fix n. The compactness principle (Theorem 17) enables us to extract
from any sequence {h p} of points of Kν a subsequence that uniformly locally
C∞-converges on the set

{
(ξ̇ , ξ) ∈ H × R

1,3 ; q(ξ − ζn) � 0
}
. So, a diago-

nal extraction provides a subsequence uniformly locally converging on the set⋃
n�0

{
(ξ̇ , ξ) ∈ H × R

1,3 ; q(ξ − ζn) � 0
}
. The choice of the un was made so

as to ensure that this set is equal to H × R
1,3. The limit function belongs to Kν

because 0 � 〈 lim h p, ν〉 � lim 〈h p, ν〉 � 1. �
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Proposition 21 Cν is a lattice with respect to its own order.

� This is so because the set of nonnegative L-harmonic functions is itself a
lattice with respect to its own order, and if we have 0 � h′ � h, with h ∈ Cν ,
then h′ ∈ Cν . �

In this context, Choquet’s representation theory9 applies.

Theorem 22 (Choquet’s representation theorem)

1. Any point h of K1
ν can be uniquely written as

h =
∫

h µh(dh),

where µh is a probability measure supported on the set of extremal points of K1
ν .

2. • Associate to each non-null h ∈ Cν , first, the point h
〈h,ν〉 ∈ K1

ν , and then the

probability µ h
〈h,ν〉

on the set of extremal points of K1
ν . The application

h ∈ Cν 
→ µ̃h ≡ 〈h, ν〉µ h
〈h,ν〉

(4.7)

is a lattice isomorphism between Cν and the set of Borel finite measures on K1
ν .10

• In particular, if h � h′, then µ̃h � µ̃h′ ; so µ̃h = Fµ̃h′ , for some Borel function
F such that one has 0 � F � 1, µ̃h′ -almost everywhere.

As one has 0 < 〈hσ hσ� , ν〉 < +∞ for all σ, �, one can rewrite the integral repre-
sentation (4.5) as

1 =
∫

S2×R

hσ hσ�
〈hσ hσ� , ν〉

〈hσ hσ� , ν〉 dσd�,

writing the function 1 as a average of extremal points of K1
ν .

The preceding decomposition is the unique Choquet’s representation of 1 in Kν :

µ̃1 = 〈hσ hσ� , ν〉 dσd�.

As 〈hσ hσ� , ν〉 is a positive continuous function of σ and �,11 any µ̃1-almost sure
equality is a (dσd�)-almost sure equality.
Let f ∈ Cν be any (non null) nonnegative L-harmonic bounded function. Since

• f � ‖ f ‖∞1, we have µ̃ f = Fµ̃‖ f ‖∞1, for some function F on S
2 × R such that

0 � F � 1, (dσd�)-almost everywhere,
• µ̃‖ f ‖∞1 = ‖ f ‖∞µ̃1 = ‖ f ‖∞〈hσ hσ� , ν〉 dσd�,

9 As explained in the books of Choquet [10,11], Phelps [21], or Becker [6].
10 Endowed with its natural lattice structure: if f = dµ

d(µ+µ′) and g = dµ′
d(µ+µ′) , d(µ∧µ′)

d(µ+µ′) = f ∧ g.

11 It does not depend on σ .
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we deduce from Theorem 22 that

f =
∫

hσ hσ�
〈hσ hσ� , ν〉

F(σ, �)‖ f ‖∞〈hσ hσ� , ν〉 dσd�.

One sees in this expression that f is of the form

∫
hσ hσ� F(σ, �) dσd�

for some Borel function F, bounded (dσd�)-almost everywhere.
Conversely, for any ((dσd�)-almost everywhere) bounded Borel function F on

S
2 × R, the function

∫

S2×R

F(σ, �)hσ hσ� (.) dσd� = E.[F(σ∞, Rσ∞∞ )]

is bounded and L-harmonic. This provides a complete description of the Poisson
boundary of L .

Theorem 23 (Poisson boundary of (L ,H×R
1,3) Any bounded L-harmonic function

is of the form

∫

S2×R

F(σ, �)hσ (.)hσ� (.) dσd�,

for some bounded Borel function F on S
2 × R. Conversely, such a formula defines a

bounded L-harmonic function.

The description of the invariant σ -algebra of the diffusion {(ξ̇s, ξs)}s�0 given in
Theorem 1 follows from Proposition 4.2. Indeed, given a bounded I nv

(
(ξ̇s, ξs)

)
-

measurable random variable X , the harmonic function (Proposition 4.2)

(ξ̇ , ξ) ∈ H × R
1,3 
→ Eξ̇ ,ξ [X ]

is of the form

∫

S2×R

hσ (ξ̇ , ξ)hσ� (ξ̇ , ξ)F(σ, �) dσd�,

for some bounded measurable function F on S
2 × R. That is,

Eξ̇ ,ξ [X ] = Eξ̇ ,ξ

[
F(σ∞, Rσ∞∞ )

]
, (ξ̇ , ξ) ∈ H × R

1,3.
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Let (ξ̇0, ξ0) ∈ H × R
1,3 be given. Since the process

{
Eξ̇s ,ξs

[X ]}s�0 is under Pξ̇0,ξ0
a

bounded martingale, it almost surely converges towards X , and towards F(σ∞, Rσ∞∞ );
both quantities are therefore Pξ̇0,ξ0

-almost surely equal.

Corollary 24 (Invariant σ -algebra of the relativistic diffusion) For any (ξ̇0, ξ0) ∈
H × R

1,3, the σ -algebras I nv
(
(ξ̇s, ξs)

)
and σ

(
σ∞, Rσ∞∞

)
coincide up to Pξ̇0,ξ0

-null
sets.

5 Representation formula

This section is dedicated to the proof of Theorem 18. It is organized as follows. We
first define hσ� in Sect. 5.1. To reduce the dimension of the problem, we shall show
that bounded Lhσ hσ� -harmonic functions depend only on two coordinates. It is easier
to show this property first for bounded Lhσ -harmonic functions, and then for Lhσ hσ� -
harmonic functions. This is what we do in Sect. 5.2, using a coupling. Then we shall see
in Sect. 5.3 how another coupling enables one to show that bounded Lhσ hσ� -harmonic
functions are constant.

Recall that {ε0, . . . , ε3} is the canonical basis of R
1,3. Let σ ∈ S

2. Choose a (q-
orthonormal) basis {ε0, . . . , ε3} of R

1,3 such that

ε0 = ε0 and ε1 = σ.

Throughout this section, the direction σ and the basis {ε0, . . . , ε3} are fixed.
Notations • We adopt the notation (ξ0, . . . , ξ3) for the coordinates of a point ξ ∈ R

1,3

in the basis {ε0, . . . , ε3}. Although in the preceding section the same notation was used
for the coordinates of ξ in the canonical basis there will be no confusion since we shall
not use {ε0, . . . , ε3}-linear coordinates in this section. • In the same way, we also write

ψ : (y, (x1, x2)
) ∈ R

∗+ × R
2 
→

( |x |2 + y2 + 1

2y
ε0 + |x |2 + y2 − 1

2y
ε1

+ x1

y
ε2 + x2

y
ε3

)
∈ H.

• In the sequel, we systematically use {ε0, . . . , ε3}-halfspace coordinates (y, x) on H

(see Definition 5).

5.1 hε1 -process

(i) The hyperbolic Laplacian has the same expression (3.1) in {ε0, . . . , ε3}-halfspace
coordinates (y, x) as in {ε0, . . . , ε3}-halfspace coordinates. In these coordinates,
the harmonic function hε1

(
(y, x), ξ

)
is proportional to y2. So,

Lhε1 f = y2

2
(∂2

x + ∂2
y ) f + 3

2
y∂y f + ∂ξ f (ξ̇ , ξ).ξ̇ ;
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Fig. 2 New coordinates on R
1,3

like L , the operator Lhε1 is hypoelliptic. Indeed, suppose Lhε1 f = L(hε1 f )
hε1 is of

class C∞, then L(hε1 f ) is C∞ (since hε1 is C∞), so hε1 f is smooth; since hε1 is
positive and smooth, f is smooth.

(ii) The evolution of the hε1 -process is determined by the following stochastic dif-
ferential system.

dys = ysdwy
s + 3

2
ysds,

dxs = ysdwx
s ,

dξs = ξ̇s ds = ψ
(
(ys, xs)

)
ds.

(5.1)

where wy is a real Brownian motion and wx a two-dimensional Brownian motion
independent of wy .

We get a better insight into the evolution of ξs by changing coordinates in R
1,3.

Take the coordinates associated with the basis

g′ = {−ε1, ε0 + ε1, ε2, ε3}. (5.2)

Notation (new coordinates on R
1,3) Denote by (ξ ′0, ξ ′1, ξ ′2, ξ ′3) the coordinates of a

point ξ ∈ R
1,3 in the basis g′ Fig. 2.

In these coordinates, the equation

dξs = ψ
(
(ys, xs)

)
ds

takes the form

dξ ′0
s = ds

ys
,

dξ ′1
s = |xs |2 + y2

s + 1

2ys
ds,

dξ ′ j
s = x j−1

s

ys
ds, j ∈ {2, 3}.

(5.3)
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Notation of an element of H×R
1,3 From now on, we use g′-linear coordinates on R

1,3,
and {ε0, . . . , ε3}-halfspace coordinates on H. So, a generic point u∈H×R

1,3 is denoted
either u = (ξ̇ , ξ) when no coordinates are needed, or u =((y, x), (ξ ′0, . . . , ξ ′3)

)
.

The process {ys}s�0 has under P
ε1
u an explicit expression:

ys = y ew
y
s +s,

and

ξ ′0
s = ξ ′0 + 1

y

s∫

0

e−wy
r −r dr

converges P
ε1
u -almost surely as s → +∞, towards some random variable Rε1∞. One

has a coordinate free expression of Rε1∞, since

ξ ′0
s = q(ξs, ε0 + ε1),

so that

Rε1∞ = lim
s→+∞q(ξs, ε0 + ε1).

As Lhε1 is hypoelliptic, Proposition 12 says that, given � ∈ R, the function

hε1
��(u) = P

ε1
u

(
Rε1∞ � �

)
,

is smooth and Lhε1 -harmonic. Examining the expression

hε1
��(u) = P

ε1
u

⎛
⎝ξ ′0 + 1

y

+∞∫

0

e−wy
r −r dr � �

⎞
⎠ = P

ε1
u

⎛
⎝

+∞∫

0

e−wy
r −r dr � y

(
�− ξ ′0)

⎞
⎠

one sees that hε1
�� is identically equal to 1 on the half space

{
(ξ̇ , ξ) ∈ H × R

1,3 ; �−
ξ ′0 � 0

}
. Let w be a Brownian motion under some probability P and set

G(t) ≡ P

⎛
⎝

+∞∫

0

e−wr −r dr � t

⎞
⎠ .

Then,
hε1

��(u) = G
(
y(�− ξ ′0)

)
. (5.4)

Since hε1
�� is smooth, G is also smooth; it satisfies the following differential equation on

the open half space
{
(ξ̇ , ξ) ∈ H×R

1,3 ; �−ξ ′0 > 0
}
, reflecting the Lhε1 -harmonicity

of hε1
��.
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(
y(�− ξ ′0)

)2
2

G ′′(y(�− ξ ′0)
)+

(
3
(
y(�− ξ ′0)

)

2
− 1

)
G ′(y(�− ξ ′0)

) = 0;

that is,

G ′′(r)+
(

3

r
− 2

r2

)
G ′(r) = 0. (5.5)

We find

G ′(r) = −C
e−2/r

r3 1r>0, (5.6)

or G(s) = C
∫ +∞

s
e−2/r

r3 dr , for s > 0, where C is such that G(0) = 1; G ≡ 1 on

(−∞, 0]. So, hε1
��(u) = Pu

(
Rε1∞ � �

) = C
∫ +∞

max(y(�−ξ ′0),0)
e−2/r

r3 dr , and the density

of the law of Rε1∞ under P
ε1
u , with respect to Lebesgue measure d� on R, is equal to

hε1
� (u) = y

e
− 2

y(�−ξ ′0)
(
y(�− ξ ′0)

)3 1�>ξ ′0 .12 (5.7)

Each hε1
� being Lhε1 -harmonic, the function hε1 hε1

� is L-harmonic.

To show the minimality of hε1 hε1
� , we shall show that the only bounded Lhε1 h

ε1
� -

harmonic functions are the constants. As announced above, this will be done in two
steps.

1. Using couplings, we shall show that any bounded Lhε1 h
ε1
� -harmonic function

depends only on y and ξ ′0.
2. Another coupling argument will show that they are constant.

To prove point 1 we first show that bounded Lhε1 -harmonic functions depend only
on y and ξ ′0. The next section is dedicated to the proof of this fact, stated in Theorem 38.

5.2 Bounded Lhε1 -harmonic functions

The proof of Theorem 38 will come from the following two results, proved in
Sects. 5.2.1 and 5.2.2, respectively.

1. Let u0 = (
(Y0, x), (Z0, ξ

′�1)
)

and u0 = (
(Y0, x), (Z0, ξ

′�1)
)

be two points in
H × R

1,3, with the same y and ξ ′0 coordinates.13

Theorem 25 (Coupling theorem) Pick an ε > 0. We can couple two hε1-processes,
started from u0 and u0, such that after the coupling time,

12 It is interesting to notice that the preceding lines give a new proof of the fact that the law of Dufresne’s

integral
∫∞

0 ewr −r dr has the same law as 2
γ , where γ is a gamma random variable with parameter 2.

Consult [5] for an explanation of this result, as well as for references on Dufresne’s integral.
13 We note ξ ′�1 for (ξ ′1, ξ ′2, ξ ′3) ∈ R

3.
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• ξ̇
s

= ξ̇s and

• ξ
s

= ξs + C1g′1 + c2g′2 + c3g′3,
where C1 is a (random) constant and c2, c3 are (random) constants such that
|ci | � ε, i ∈ {2, 3}.

2. Recall we can regard the diffusion
{
(ξ̇s, ξs)

}
s�0 on H × R

1,3 as the projection of a

diffusion
{
(gs, ξs)

}
s�0 on the Poincaré group G of affine isometries of R

1,3, with

generator L̃ written in (3.7).

Theorem 26 (Uniform continuity) Bounded L̃hε1 -harmonic functions are right
uniformly continuous.

5.2.1 Coupling

Fix Y0 ∈ R
∗+, Z0 ∈ R and ε > 0. Let u0 = (

(Y0, x), (Z0, ξ
′�1)

)
and u0 =(

(Y0, x), (Z0, ξ
′�1)

)
be two points of H×R

1,3 having the same y and ξ ′0 coordinates.
We shall couple two hε1 -process, started from u0 and u0, respectively.

Let wy be a real Brownian motion, and wx , wx be two R
2-Brownian motions,

defined on some measurable space (�,F). Consider the system

dys = ysdwy
s + 3

2
ysds, d y

s
= y

s
dwy

s + 3

2
y

s
ds,

dxs = ysdwx
s , dxs = y

s
dwx

s ,

dξ ′0
s = ds

ys
, dξ ′0

s
= ds

y
s

,

dξ ′1
s = x2

s + y2
s + 1

2ys
ds, dξ ′1

s
= x2

s + y2
s
+ 1

2y
s

ds,

dξ ′�2
s = xs

ys
ds, dξ ′�2

s
= xs

y
s

ds,

(5.8)

with initial conditions u0 and u0, respectively.
Remarks

1. Since u0 and u0 have the same y-coordinate, and {ys}s�0 and {y
s
}s�0 are driven

by the same Brownian motion wy , we have y
s

= ys , for all s � 0.

2. As ξ ′0
0

= ξ ′0
0 , we also have ξ ′0

s
= ξ ′0

s , for all s � 0.

Define on (�,F) the filtration {Fs}s�0 generated by {us}s�0 and {us}s�0:

Fs = σ
(
(ur , ur ); r � s

)
.

Given independent wy and wx , we construct a Brownian motion wx , and an {Fs}s�0-
stopping time T , such that if one notes Pε1

u0,u0
the law of the solution of system (5.8),

one has Pε1
u0,u0

-almost surely
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• T is finite,
• after time T , ξ̇

s
= ξ̇s , and ξ

s
= ξs + C1g′1 + c2g′2 + c3g′3, where C1 is a (random)

constant and c2, c3 are (random) constants such that |ci | � ε, i ∈ {2, 3}.

Remark that such a construction provides us with two diffusions {us}s�0 and
{us}s�0, with respective laws P

ε1
u0 and P

ε1
u0

.
(a) To make things clearer, we first consider an analogous of system (5.8), where x
and ξ ′�2 one-dimensional. We write ξ ′2 instead of ξ ′�2. The solutions {us}s�0 and
{us}s�0 of the modified system live in

(
R

∗+ × R
)× (R × R

2).
Denote by P

ε1
u0,u0

the law of the pair
{
(us, us)

}
s�0, solution of system (5.8), with

wx independent of wx and wy , and with initial conditions (u0, u0). Set

T = inf
{
s � 0 ; xs = xs ,

∣∣ξ ′2
s

− ξ ′2
s

∣∣ � ε
}
,

with the convention that inf ∅ = +∞. T is an {Fs}s�0-stopping time.

Theorem 27 T is P
ε1
u0,u0

-almost surely finite.

Taking this for granted and settingws = ws , for s � T , the two stochastic differential
equations of (5.8) are identical for s � T ; so after time T , xs = xs and ξ ′2

s
− ξ ′2

s is
constant, with absolute value smaller than or equal to ε.

Proof of Theorem 27 Write zs ≡ xs−xs
ys

. The objective is to show that the R
2-valued

process
{
(zs, ξ

′2 − ξ ′2 + ∫ s
0 zu du)

}
s�0 reaches the set

{
(z, Z) ∈ R

2 ; z = 0 , |Z | � ε
}

in a P
ε1
u0,u0

-almost surely finite time.

Lemma 28 The process {zs}s�0 is a diffusion, which is positive recurrent.

� Use formulas (5.8) and Itô’s formula to get

dzs = (dwx
s − dwx

s )− zsdwy
s − 3

2
zs ds.

The infinitesimal generator of {zs}s�0 is

f 
→ 2 + z2

2
f ′′ − 3

2
z f ′.
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It has a unique invariant probability, which has a density with respect to Lebesgue

measure on R proportional to (2 + z2)− 5
2 .14 �

So we can look at its successive excursions outside {0}, of height � 1. Write

S0 ≡ inf{s � 0; zs = 0}

and

Sn = inf

{
s � Sn−1 ; sup

Sn−1�u�s
|zu | � 1 and zs = 0

}
.

Because of the Strong Markov Property, the excursions {zs}Sn−1�s�Sn , n � 1, are

independent and identical in law. So are the integrals
{∫ Sn

Sn−1
zu du

}
n�1. So, using

the following well known criterion15 it will suffice to show that the random variable∫ S1
S0

zu du is integrable and that the support of its law is non-lattice to prove Theorem
27.

Proposition 29 (Chung, Fuchs) Let µ be a probability on R having a moment of
order 1. Let {Xn}n�1 be a sequence of independent random variables, of law µ. Then
the random walk

{∑n
i=1 Xk

}
n�1 is recurrent in the closed subgroup generated by the

support of µ if, and only if,
∫

xµ(dx) = 0.

We first show that the integrability condition is fulfilled.

Lemma 30 E
ε1
u0,u0

[| ∫ S1
S0

zu du|] < +∞.

� To evaluate this average, we cut the integral into two parts: the first one
corresponds to the integral of z between time S0 and the first time H when
{zs}s�0 hits ±1, the second one is

∫ S1
H zu du. We show that

E
ε1
u0,u0

⎡
⎢⎣

∣∣∣∣∣∣∣

H∫

S0

zu du

∣∣∣∣∣∣∣

⎤
⎥⎦ < +∞, and E

ε1
u0,u0

⎡
⎣
∣∣∣∣∣∣

S1∫

H

zu du

∣∣∣∣∣∣

⎤
⎦ < +∞.

14 We know from differential equations theory that any invariant probability has a smooth density with
respect to Lebesgue measure dz on R. Denote it by m(z). It must satisfy the relation

(
2 + z2

2
m(z)

)′′
= − 3

2

(
zm(z)

)′
.

If we define u(z) = 2+z2

2 m(z), this function satisfies the equation u′′(z) = − 3
2

(
2

2+z2 u(z)
)′

, i.e., up to an

additive constant u′(z) = − 3
2

2
2+z2 u(z). So, u(z) = (2 + z2)−

3
2 , and m(z) is proportional to (2 + z2)−

5
2 .

15 See [12], Theorem 8.3.4, p. 251, for instance.
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• For any x ∈ R, denote by Px the law of {zs}s�0 started from x . Since
|zs | � 1 on [S0, H ],16

E
ε1
u0,u0

⎡
⎢⎣

∣∣∣∣∣∣∣

H∫

S0

zu du

∣∣∣∣∣∣∣

⎤
⎥⎦ � E0[H ] < +∞.

• The second integral
∫ S1

H zu du is handled as follows.
Denote by τ0 ≡ inf{s � 0 ; zs = 0} the hitting time of {0} by {zs}s�0, and by
g0(x, y) the Green function of the process {zs}s�0 killed at time τ0.

E
ε1
u0,u0

⎡
⎣

S1∫

H

zu du

⎤
⎦ = E1

⎡
⎣

τ∫

0

zu du

⎤
⎦ =

+∞∫

0

g0(1, y)y dy.

We can find an explicit formula of the Green function g0(z, y), approximating it
by the Green function g0,b(z, y) of the process {zs} killed at time τ0,b = inf{s >
0; zs ∈ {0, b}}, b > 0. Let ϕ be any nonnegative smooth function on R

∗+, with

compact support. The monotone convergence theorem justifies the equalities
•=

below.

+∞∫

0

g0(z, y)ϕ(y) dy = Ez

⎡
⎣

τ0∫

0

ϕ(zu) du

⎤
⎦ •= lim

b→+∞Ez

⎡
⎣
τ0,b∫

0

ϕ(zu) du

⎤
⎦

•= lim
b→+∞

+∞∫

0

g0,b(z, y)ϕ(y) dy

=
+∞∫

0

lim
b→+∞g0,b(z, y) ϕ(y) dy.

But the function
∫∞

0 g0,b(x, y)ϕ(y) dy is the unique solution of the following
equation.

2 + z2

2
f ′′(z)− d

2
z f ′(z) = −ϕ(z)

f (0+) = 0, f (b−) = 0
(5.9)

This equation can be solved explicitly, since it is a first order equation in f ′.
The set of solutions of the equation

16 The diffusion {zs }s�H is uniformly elliptic and has bounded drift. See [9], Theorem 16.24, p. 359.
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2 + z2

2
u′(z)− 3

2
zu(z) = −ϕ(z)

is found by the method of variation of the parameters. Any solution is of the
form

u(z) = λ(2 + z2)
3
2 + 2 (2 + z2)

3
2

z∫

0

−ϕ(r) dr

(2 + r2)2
, (5.10)

where λ is a real constant.
Using the boundary conditions in (5.9), we find

+∞∫

0

g0,b(z, y)ϕ(y) dy = 2

∫ b
0 (2 + u2)

3
2
∫ u

0
ϕ(r) dr
(2+r2)2

du
∫ b

0 (2 + u2)
3
2 du

z∫

0

(2 + u2)
3
2 du

− 2

z∫

0

(2 + u2)
3
2

u∫

0

ϕ(r) dr

(2 + r2)2
du. (5.11)

As

lim
b→+∞

∫ b
0 (2 + u2)

3
2
∫ u

0 (2 + r2)−2ϕ(r) dr du
∫ b

0 (2 + u2)
3
2 du

=
+∞∫

0

(2 + r2)−2ϕ(r) dr,

we deduce from Eq. (5.11) that

g0(z, y) = 2(2 + y2)−2

z∧y∫

0

(2 + u2)
3
2 du.

We see in this formula that

E
ε1
u0,u0

⎡
⎣

S1∫

H

zu du

⎤
⎦ =

+∞∫

0

g0(1, y)y dy < ∞.

�
As noted above, it remains to prove that the closed group generated by the support of
the law of

∫ S1
S0

zu du is non-lattice to end the proof of Theorem 27.

Lemma 31 The closed group generated by the support of the law of
∫ S1

S0
zu du is

non-lattice.

� We can suppose S0 = 0. Let a > 0 and ϕ : [0, 1] → R be a continuous
function such that
• ϕ(0) = 0, ϕ(1) = −ε < 0,
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• ϕ(t) = 0 only for t = 0 and some t0 near 1,
• max

s∈[0,1]|ϕ(s)| > 1,

• ∫ 1
0 ϕ(r) dr /∈ aZ.

The support Theorem 7 asserts that, for anyη > 0, the event
{

sup
r∈[0,1]

|zr −ϕ(r)| �

η
}

has positive probability. Choose η > 0 small enough so that
• S1 is close to t0,
• max

r∈[0,S1]
|zr | � 1,

• ∫ S1
0 zr dr is near

∫ 1
0 ϕ(r) dr .

Reducing η > 0 if necessary, we have
∣∣∫ S1

0 zr dr − ∫ 1
0 ϕ(r) dr

∣∣ <

dist
(∫ 1

0 ϕ(r) dr, aZ

)
, and

∫ S1
0 zr dr /∈ aZ on a set of positive probability.

�
(b) Coupling in H × R

1,3 Write • x1, x2 the coordinates of x ∈ R
2,

• (wx )1, (wx )2 the coordinates of wx (resp.
(
wx
)i for w), and

• P̂
ε1
u0,u0

the law of the diffusion solving system (5.8), whenwy ,wx , wx are indepen-
dent.

First, use the coupling Theorem 27 to find a P̂
ε1
u0,u0

-almost surely finite {Fs}s�0-
stopping time T1 such that

x1
T1

= x1
T1
, and

∣∣ξ ′2
T1

− ξ ′2
T1

∣∣ � ε.

From that time on, set
(
wx
)1 = (wx )1,

(
wx
)2 remaining independent of (wx )2, (wx )1,

and wy . For s � T1, x1
s = x1

s and
(
ξ ′

s
2 − ξ ′

s
2
)

is constant with an absolute value less

than or equal to ε.
Then look at the processes

{
(y

s
, x2

s , ξ
′3
s
)
}

s�T1
and

{
(ys, x2

s , ξ
′3
s )
}

s�T1
. Thanks to

the strong Markov property, we can use the coupling Theorem 27 to couple the second
coordinate x2

s of xs with x2
s at some time T2(note that y

T1
= yT1 ).

Set
(
wx

s

)2 = (
wx

s

)2, for s � T2. After time T2

• x1
s = x1

s , and x2
s = x2

s ,
• ξ ′

s
3 − ξ ′

s
3 is constant with an absolute value less than or equal to ε.

Thus, we have shown the following theorem.

Theorem 32 (Coupling) Let ε > 0 and u0 = (ξ̇0, ξ0) and u0 = (ξ̇
0
, ξ

0
) be two points

of H × R
1,3 such that ξ̇0 and ξ̇

0
have the same y-coordinate, and ξ ′0

0 = ξ ′0
0
. We can

find

• a filtered probability space
(
�,F , {Fs}s�0,P

ε1
u0,u0

)
,

• paths space adapted random variables {us}s�0 and {us}s�0, on
(
�,F , {Fs}s�0

)
,

• an {Fs}s�0-stopping time T ,

such that
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• the law of {us}s�0 under P
ε1
u0,u0

is P
ε1
u0 , and that of {us}s�0 is P

ε1
u0

,
• after the coupling time T , ξ̇

s
= ξ̇s and ξ

s
= ξs + C1g′

1 + c2g′2 + c3g′3,

where C1 is a (random) constant and c2, c3 (random) constants such that |ci | � ε,
i ∈ {2, 3}.

We need two ingredients to show that bounded Lhε1 -harmonic functions depend
only on y and ξ ′0. The first one is the preceding theorem, the second one is a uniform
continuity property of bounded Lhε1 -harmonic functions.

To get this property, we lift to the group G, where the diffusion
{
(gs, ξs)

}
s�0 defined

in Sect. 3.2 lives. Its generator is denoted by L̃ . A function f defined on H × R
1,3

naturally extends to G setting f
(
(g, ξ)

) = f (gε0, ξ). For smooth functions f on G,
set

L̃hε1 f = L̃(hε1 f )

hε1
.

We establish in paragraph 5.2.2 that bounded L̃hε1 -harmonic functions enjoy a uni-
form continuity property. Being on a non-commutative group, one must differentiate
between right and left uniform continuity. We show in Theorem 36 that any bounded
L̃hε1 -harmonic function h is right uniformly continuous: given ε > 0, there is a
neighbourhood Vε of Id in G such that

∀ e ∈ G,∀ e′ ∈ Vε,
∣∣h(ee′)− h(e)

∣∣ � ε.

Notation We shall write e = (g, ξ) an element of G. Denote by
{

P̃ε1
s (e, de′)

}
s�0 the

transition kernels of the L̃hε1 -diffusion

5.2.2 Uniform continuity

We shall obtain the right uniform continuity of bounded L̃hε1 -harmonic functions from
the following three lemmas.

Recall that we defined in Sect. 2.3, (iii) the action of an element e = (g, ξ) of G
on S

2:

(g, ξ).σ = σ ′, if g
(
R(ε0 + σ)

) = R(ε0 + σ ′).

Lemma 33 Each element e ∈ G can be written e = e ê, with e fixing ε1, and ê in a
compact subset Ĝ of G.

� Let e = (g, ξ) ∈ G. Writing e = (Id, ξ)(g, 0), we can drop (Id, ξ) apart.
Use the halfspace model of H to describe the set of isometries of H. It is well
known that
• any isometry of H can be uniquely written as a product

g = t λ r,
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where t is a translation in a direction of the form (0, τ ) ∈ R
∗+ × R

2, λ is
the isometry (y, x) 
→ (λy, λx) and r is a hyperbolic rotation with center
(1, 0),

• the set of hyperbolic rotations with center (1, 0) is isomorphic to the compact
group SO(3).

Each transform t, λ leaves ε1 fixed, not r . Take e = (tλ, ξ) and ê = (r, 0). �
Notation Given e ∈ G, denote by Le the left translation by e on G: Le(e′) = ee′.

Lemma 34 Let e be an element of G fixing ε1. Then one has

P̃ε1
t ( f ) ◦ Le = P̃ε1

t ( f ◦ Le),

for any compactly supported smooth function f .

� Write e = (tλ, ξ), with t, λ as in the preceding lemma. Recall hε1 is a
multiple of y2. For any ξ̇ ∈ H,

hε1 ◦ Le(ξ̇ ) = hε1
(
e(ξ̇ )

) = hε1
(
t (λ(ξ̇ ))

) = λ2hε1(ξ̇ ). (5.12)

The identity of the lemma is the integrated version of the identity

L̃(hε1 f )

hε1
◦ L̃e = L̃

(
(hε1 f ) ◦ L̃e

)

hε1 ◦ L̃e
= L̃

(
hε1 f ◦ L̃e

)

hε1
. (5.13)

The first equality is a consequence of the left invariance of L̃ by any translation,
the second comes from identity (5.12). Here, f is any smooth function on G
with compact support. We get from (5.13)

P̃ε1
t ( f ) ◦ Le = (

e−t L̃hε1
f
) ◦ Le = e−t L̃hε1 (

f ◦ Le
) = P̃ε1

t ( f ◦ Le).

�
Notation Denote by p̃ ε1

1 (e, e′) the density of the measure P̃ε1
1 (e, de′) with respect to

a Haar measure Haar(de′) on G. It is a continuous function of (e, e′).17

Lemma 34 means that for any e ∈ G, with decomposition e = êe, and any e′ ∈ G,

∀ e, e′ ∈ G, p̃1(e, e′) = p̃1( ê, e−1e′).

Because any bounded L̃hε1 -harmonic function satisfies the relation

h(e) =
∫

h(e′) p̃ ε1
1 (e, e′)Haar(de′),

17 See Sect. 4.1, b).
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we have for any ẽ ∈ G,

∣∣h(e)− h(ẽe )
∣∣ � 2‖h‖∞

∫

G

∣∣ p̃ ε1
1 (e, e′)− p̃ ε1

1 (ẽe, e′)
∣∣Haar(de′). (5.14)

Let e = e ê be the decomposition of e given by Lemma 33, with e and e−1

fixing ε1.

∫

G

∣∣ p̃ ε1
1 (e, e′)− p̃ ε1

1 (ẽe, e′)
∣∣Haar(de′) =

∫

G

∣∣ p̃ ε1
1 (e

−1e, e−1e′)

− p̃ ε1
1 (e

−1e ẽ, e−1e′)∣∣Haar(de′)

=
∫

G

∣∣ p̃ ε1
1 ( ê, a)− p̃ ε1

1 ( ê ẽ, a)
∣∣Haar(da).

(5.15)

Lemma 35 The function

ẽ ∈ G 
→ sup
ê∈Ĝ

∫

G

∣∣ p̃ ε1
1 ( ê, a)− p̃ ε1

1 ( ê ẽ, a)
∣∣Haar(da)

converges to 0 as ẽ → Id.

� Let U be a compact neighbourhood of Id ∈ G, and ε > 0. The family of
probabilities

{
P̃ε1

1 ( ê ẽ, .)
}

ê∈Ĝ, ẽ∈U is tight. Let G be a compact subset of G such

that for any ê ∈ Ĝ, ẽ ∈ U ,

P̃ε1
1 ( ê ẽ,G) � 1 − ε.

Then

∫

G

∣∣ p̃ ε1
1 ( ê, a)− p̃ ε1

1 ( ê ẽ, a)
∣∣Haar(da)�2 ε +

∫

G

∣∣ p̃ ε1
1 ( ê, a)− p̃ ε1

1 ( ê ẽ, a)
∣∣Haar(da).

(5.16)
As ê, ẽ and a are in compact subsets of G and the function p̃ ε1

1 (., .) is continuous,
p̃ ε1

1 ( ê, a) and p̃ ε1
1 ( ê ẽ, a) are bounded by a constant when ê ∈ Ĝ, ẽ ∈ U and

a ∈ G. So, the function

( ê, ẽ) ∈ Ĝ × U 
→
∫

G

∣∣ p̃ ε1
1 ( ê, a)− p̃ ε1

1 ( ê ẽ, a)
∣∣Haar(da)
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Fig. 3 Trace on R
1,3 of a

neigbourhood eV of
e = (g, ξ) ∈ G

is uniformly continuous. Since it is equal to zero on Ĝ ×{0}, we get from (5.16)

lim
ẽ→Id

∫

G

∣∣ p̃ ε1
1 ( ê, a)− p̃ ε1

1 ( ê ẽ, a)
∣∣Haar(da) � 2 ε.

As ε > 0 was chosen arbitrarily, the statement of the lemma follows. �
Inequality (5.14) together with Lemma 35 imply that

Theorem 36 Any bounded L̃hε1 -harmonic function is right uniformly continuous.

From now on the notation e will no longer refer to the decomposition of Lemma 33.

5.2.3 Lhε1 -harmonic bounded functions

The usefulness of Theorem 36 appears in the following lemma, which is illustrated in
Fig. 3. It roughly says that a bounded Lhε1 -harmonic function h(ξ̇ , ξ) does not vary
much if ξ̇ remains near g0 and ξ moves in the pictured “ellipsoid”.

Lemma 37 Let V be a neighbourhood of Id ∈ G.

1. Let e = (g, ξ) ∈ G and (y, x) ∈ R
∗+ × R

2 be the halfspace coordinates of g0.
Identify ξ with 0 on the straight line ξ + Rg′1. The intersection of ξ + Rg′1 with
eV contains an interval ]a(y), b(y)[ with the property that a(y) → −∞ and
b(y) → +∞ as y → +∞.

2. For ξ ∈ R
1,3, identify ξ to 0 in ξ + (

Rg′2 + Rg′3). There exists a constant ε > 0
depending only on V , such that for any e = (g, ξ) ∈ G, the intersection of
ξ + (

Rg′2 + Rg′3) with eV contains the Euclidean ball B(0, ε).

� 1) For any e = (g, ξ) and e = (g, ξ) in G, we have ee = (gg, ξ + gξ).
Let ε > 0 small enough such that V contains a product neighbourhood
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V1×] − ε, ε[4⊂ SO0(1, 3)× R
1,3. We need to examine the set g . ] − ε, ε[4.

g ξ = ξ0g0 + ξ1g1 + ξ2g2 + ξ3g3.

In the basis g′, g0 has coordinates
(

1
y ,

|x |2+y2+1
2y , x

y

)
. As the set g . ]−ε, ε[4∩Rg′1

contains the segment |x |2+y2+1
2y ] − ε, ε[, the statement holds with a(y) =

−ε y2+1
2y and b(y) = ε

y2+1
2y .

2) Let (y, x) be the halfspace coordinates of g0. Any V ∈ T(y,x)
(
R

∗+ × R
2
)
,

with hyperbolic norm equal to 1, is of the form y(u, v) ∈ R × R
2, where

u2 + |v|Eucl = 1. Note that since ψ : R
∗+ × R

2 → H is an isometry, each
gi , i = 1, . . . , 3, is of the form D(y,x)ψ

(
y(u, v)

)
for some (u, v), t follows that

{
ξ1g1 + ξ2g2 + ξ3g3 ; ξ ∈] − ε, ε[3} = D(y,x)ψ

(
y BR3(0, ε)

)
,

where BR3(0, ε) is the open Euclidean ball of R
3 with center 0 and radius ε. In

particular, the vector D(y,x)ψ
(
y(0, v)

)
belongs to

{
ξ1g1 + ξ2g2 + ξ3g3 ; ξ ∈

] − ε, ε[3
}

if v ∈ R
2, |v| � ε. A direct calculation gives the g′-coordinates

of D(y,x)ψ
(
y(0, v)

)
:
(〈x, v〉, 〈xv〉, v). The second point of the lemma is now

straightforward. �
We can now prove that

Theorem 38 Any bounded Lhε1 -harmonic function only depends on y and ξ ′0.

� Let h be a bounded Lhε1 -harmonic function, considered as a L̃hε1 -harmonic
function. Let η > 0 be given. Because of the right uniform continuity of h, there
exists a neighbourhood V of Id ∈ G such that for any ẽ ∈ V ,

∀ e ∈ G, ∣∣h(e)− h(ẽe)
∣∣ � η.

Take two points e0 = (
(g0

0, . . . , g3
0), ξ0

)
and e0 = (

(g0
0
, . . . , g3

0
), ξ

0

)
in G,

with g0
0 and g0

0
(∈ H) having the same y-coordinate, and ξ ′0

0
= ξ ′0

0 . Using the
coupling time constructed in Theorem 32 and the stopping time theorem (h is
bounded), we can write for any s � 0

h(e0)− h(e0) = E
ε1
e0,e0

[
h(eT +s)− h(eT +s)

]
.

The stopping time T was constructed to ensure that

eT +s = (gT +s, ξT +s) =
((
(yT +s, xT +s), g1

T +s, g2
T +s, g3

T +s

)
, ξT +s

)

and

eT +s = (g
T +s

, ξ
T +s

) =
((
(yT +s, xT +s), g1

T +s
, g2

T +s
, g3

T +s

)
, ξT +s

+C1g′1 + c2g′2 + c3g′3),
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for some (g1
T +s, g2

T +s, g3
T +s), and (g1

T +s
, g2

T +s
, g3

T +s
) that need not be equal,

but with |c2|, |c3| � ε. However there exists an isometry ρ of R
3 ⊂ R

1,3 such
that

g
T +s

ρ = gT +s .

Write eT +s ρ = (g
T +s

ρ, ξ
T +s

). Since the function h
((
(y, x), g1, g2, g3

)
, ξ
)

does not depend on g1, g2, g3,

h(eT +s ρ) = h(eT +s).

As {yr }r�0 diverges P
ε1 -almost surely to +∞, we know from Lemma 37 that

for s large enough, yT +s is large enough to ensure that

eT +sρ ∈ eT +sV.

Applying the bounded convergence theorem, it follows that

∣∣h(e0)− h(e0)
∣∣ � E

ε1
e0,e0

[
lim

s→+∞
∣∣h(eT +s)− h(eT +s)

∣∣] � η.

Since η > 0 is arbitrary, the result follows. �

5.2.4 Towards a second conditioning

Notation Given � ∈ R, denote by τ� the translation ξ ∈ R
1,3 
→ ξ + �g′0.

We can see that bounded Lhε1 h
ε1
� -harmonic functions depend only on y and ξ ′0 from

the following observation.

Lemma 39 h is a bounded Lhε1 h
ε1
� -harmonic function iff h◦τ�−�′ is a bounded Lhε1 h

ε1
�′ -

harmonic function.

So, given a bounded Lhε1 h
ε1
� -harmonic function h, and �′ � �,

L
(

hε1 hε1
�′
(
h ◦ τ�−�′

)) = 0.

Thus the function

2n

�∫

�−2−n

hε1
�′ (.)(h ◦ τ�−�′)(.)d�′

is a bounded Lhε1 -harmonic function,18 and so it depends only on y and ξ ′0. Its limit
hε1
� h also depends only on y and ξ ′0; as hε1

� only depends on y and ξ ′0, so does h.

18 It is � 2n ‖h‖∞P
ε1
.

(
Rσ∞∞ ∈ [�− 2−n , �]).
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Corollary 40 Let � ∈ R. Bounded Lhε1 h
ε1
� -harmonic functions only depend on y

and ξ ′0.

Notation Denote by P
ε1,�
u the law of the Lhε1 h

ε1
� -diffusion (or

(
hε1 hε1

�

)
-process), started

from u ∈ H × R
1,3.

Now, to show that bounded Lhε1 h
ε1
� -harmonic functions are constant, we are going

to study the
(
hε1 hε1

�

)
-process. The two-dimensional process

{
(ys, ξ

′0
s )
}

happens to

be a diffusion, under P
ε1,�
u ; this reduces the initial seven-dimensional problem to a

two-dimensional one. We shall show in Propositions 46 and 47 that two independent
trajectories of this process couple naturally; the conclusion will follow.

The constant � ∈ R is fixed in the next section.

5.3 Bounded Lhε1 h
ε1
� -harmonic functions

5.3.1 Preliminary remarks

First, let us see what the hε1
� -transform Lhε1 h

ε1
� of Lhε1 looks like. It is defined on the

open halfspace

{
(ξ̇ , ξ) ∈ H × R

1,3 ; �− ξ ′0 > 0
}
,

For our convenience we shall write

α(ξ) = �− ξ ′0,

or simply α; so the operator Lhε1 h
ε1
� is defined on {α > 0}.

The transform adds a drift19

2
y2

2

∂yhσ�
hσ�

∂y = y2 G ′(yα)+ yαG ′′(yα)
yG ′(yα)

∂y = y

(
−2 + 2

yα

)
∂y,

to Lhε1 . So we have for any f ∈ C∞
0

({α > 0}),

Lhε1 hσ� f = y2

2
(∂2

x + ∂2
y ) f +

(
2

α(ξ)
− y

2

)
∂y f + ∂ξ f (ξ̇ , ξ).ξ̇ .

The evolution of the hε1 hε1
� -process is determined by the following stochastic dif-

ferential system.

dys = ysdwy
s + ys

(
2

α(ξs)ys
− 1

2

)
ds,

dxs = ysdwx
s ,

19 We saw in equation (5.5) that r2

2 G′′(r)+
(

3r
2 − 1

)
G′(r) = 0.
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dξ ′0
s = ds

ys
, (5.17)

dξ ′1
s = |xs |2 + y2

s + 1

2ys
ds,

dξ ′ j
s = x j−1

s

ys
ds, j = 2, . . . , d.

It is defined until its explosion time, defined as the infimum of its exit time from all
compacta and inf{s > 0;α(ξs) = 0}.
Notation We shall write αs ≡ α(ξs) = �− ξ ′0

s .
As explained in the preceding paragraph, we are interested in the behaviour of the

process (y, ξ ′0). Remark that since

ξ ′0
s = �− αs,

we deduce from (5.17) that

dys = ysdwy
s + ys

(
2

αs ys
− 1

2

)
ds,

dαs = −ds

ys
;

so,

Fact 41 The process {(ys, αs)}0�s<S is a diffusion under any P
ε1,�
u , u ∈ H × R

1,3.

Notice that since dαs = − ds
ys
< 0, the process {α}0�s<S decreases.

Lemma 42 We have: d(ysαs) = (ysαs)dw
y
s + (

1 − ysαs
2

)
ds.

� Use Itô’s formula.

d(ysαs) = ys
−ds

ys
+ αs ys dwy

s + αs

(
2

αs
− ys

2

)
ds

= (ysαs)dw
y
s +

(
1 − ysαs

2

)
ds.

�

Corollary 43 • The process {ysαs}0�s<S is a positive recurrent diffusion on R
∗+.

• The
(
hε1 hε1

�

)
-process P

ε1,�
u -almost surely does not explode, for every starting point

u ∈ H × R
1,3.
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The density20 of the invariant probability of the diffusion {ysαs}s�0 is proportional

to t−3e− 2
t .21 The equation governing the evolution of ys is integrable. Set

zs = e−wy
s −2

∫ s
0

dr
yr αr

+s
.

Using the fact that

dzs = −zsdwy
s +

(
3

2
− 2

ysαs

)
zsds,

and that

d〈ys, zs〉 = −ys zs ds,

one finds

d(ys zs) = 0,

that is

ys = y ew
y
s +2

∫ s
0

dr
yr αr

−s
. (5.18)

As we know the invariant probability of the positive recurrent diffusion {ysαs}s�0,
the ergodic theorem gives us an almost sure equivalent of the integral

s∫

0

du

yuαu
=
∫∞

0 t−4e− 2
t dt

∫∞
0 t−3e− 2

t dt
s + o(s)

An integration by parts gives
∫∞

0 t−4e− 2
t dt

∫∞
0 t−3e− 2

t dt
= 1, so that the law of iterated logarithm

and formula (5.18) provide a precise estimate of ys .

Proposition 44 We have almost surely: log(ys) = s + o(s).

As expected,

Lemma 45 {αs}s�0 almost surely decreases to 0 as s → +∞.

� As {αs}s�0 decreases, the event
{{αs}s�0 does not tends to 0

}
can be

decribed as
⋃

n�1

{∀ s � 0, αs � 1
n

}
. But ys diverging to +∞ one has

ysαs → +∞ on the event {∀ s � 0, αs � 1
n }. The diffusion {ysαs}s�0 being

20 With respect to Lebesgue measure on R
∗+.

21 This density m(t) must satisfy the equation
( t2

2 m(t)
)′′ = ((

1 − t
2
)
m(t)

)′. If we set v(t) = t2

2 m(t),

this function must satisfy the equation v′′(t) = ({ 2
t2 − 1

t }v(t))′, i.e., up to an additive constant v′(t) ={
2
t2 − 1

t

}
v(t). This gives v(t) = t−1e− 2

t , and m(t) = t−3e− 2
t , ignoring the constant.
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positive recurrent each event {∀ s � 0, αs � 1
n } need to be of zero probability,

so {αs}s�0 happens to decrease to 0 almost surely. �

To investigate the system, we shall take
(

1
ysαs

, αs

)
as coordinates rather than

(ys, αs). Set bs ≡ 1
ysαs

. We have

d

(
1

ysαs

)
≡ dbs = −bsdwy

s + bs

(
3

2
− bs

)
ds,

dαs = −αsbsds,

(5.19)

or

bs = b0 −
s∫

0

br dwy
r +

s∫

0

br

(
3

2
− br

)
dr

αs = α0 e− ∫ s
0 br dr .

(5.20)

The diffusion b is positive recurrent.

5.3.2 An automatic coupling

In this paragraph,

(a) we show that two independent copies of (b, α), started from different points, meet
with probability 1. So, two independent copies of (y, α) started from different
points meet with probability 1.

(b) This implies that Lhε1 h
ε1
� has no non-constant bounded harmonic functions only

depending on y and α (or y and ξ ′0).

(a) For (b0, α0) ∈ R
∗+ ×R

∗+, denote by P(b0,α0) the law of the diffusion (b, α) started
from (b0, α0), defined on the canonical space � ≡ C(R�0,R2). For ω ∈ � and
R > 0, set

TR(ω) ≡ inf{s > 0; logαs(ω) � −R}.

As logαs = logα0 − ∫ s
0 br dr , and br is continuous, > 0, TR is (almost surely) a

strictly increasing continuous function of R.

Proposition 46 The process {bTR }R�− logα0 is a recurrent diffusion on R
∗+.

� On the one hand,
{− log(αs)

}
s�0 being an additive functional of {bs}s�0, it

is well known that the time transform of b by the inverse of − log(α) remains
a diffusion. On the other hand, since b is positive recurrent, one can invoke the
ergodic theorem and find some constants 0 < c < C < +∞, such that one has
almost surely c s � − logαs � C s, from a random time s0(ω) onwards. So,
for R large enough (� s0

c ),

R

C
� TR � R

c
.
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Fig. 4 Coupling of two
independent trajectories of
(b, α)

Then, the recurrence of {bs}s�0 implies that of {bTR }R�− logα0 . �
Note that the trajectory of (bs, αs) is the same as that of {bTR }R�α0 in (b, R)

coordinates, as is illustrated in Fig. 4 (two trajectories of this process are drawn). It
remains to use the following elementary result to prove point a).

Proposition 47 Let {Px }x∈R
∗+be the family of laws associated with a recurrent diffu-

sion on R
∗+. Let x0 �= x1 ∈ R

∗+ and Px0,x1 be the law of a couple (x, x′) of independent
diffusions, with laws {Px }x∈R

∗+ , started from x0 and x1, respectively. Then, Px0,x1-
almost surely, inf{s > 0; xs = x′s} < +∞.

� Map the state space R
∗+ on R by the scale function to get two independent

recurrent diffusions x and x′ on R, in natural scale. These are independent con-
tinuous local martingales with brackets increasing to +∞ as time goes to +∞.
So the local martingale x − x′, whose bracket

〈x − x′〉 = 〈x〉 + 〈x′〉 → +∞,

has the trajectories of a Brownian motion; in particular, it hits 0 in a finite time.
Since the scale function is injective, x and x′ coincide at that time. �

The preceding two propositions show that two independent copies of (y, α), started
from different points, almost surely meet at a positive finite time.22

(b) Let us see why this fact implies that the infinitesimal generator of (b, α) has no
non-constant bounded harmonic functions.

Let ζ0 �= ζ1 be two points of R
∗+ × R

∗+ and Pζ0 , Pζ1 , be the laws of the diffusion
(b, α) started from ζ0 and ζ1 respectively. Let x and x′, � × � → � be the first and

22 Actually, they meet at arbitrarily large times.
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second projection, respectively. The system

(
�×�,F ⊗ F , {σ((xs, x

′
s); s � t)

}
t�0,Pζ0,ζ1 ≡ Pζ0 ⊗ Pζ1

)

describes the evolution of two independent copies of (b, α), started from ζ0 and ζ1.
Set

T0(ω, ω
′) ≡ inf{s > 0; xs(ω, ω

′) ∈ x′[0,+∞[(ω, ω′)}

and

T1(ω, ω
′) ≡ inf{s > 0; x′s(ω, ω′) ∈ x[0,+∞[(ω, ω′)}.

These random times are not stopping times with respect to theσ -algebra {σ((xs , x
′
s); s �

t)}t�0. Yet, point (a) tells us that they are finite Pζ0,ζ1 -almost surely. As a consequence,
the sets

�1 ≡ {ω′ ∈ � ; T0(ω, ω
′) < +∞, Pζ0(dω)− a.s.}

and

�0 ≡ {ω ∈ � ; T1(ω, ω
′) < +∞, Pζ1(dω

′)− a.s.}

verify

Pζ1(�1) = Pζ0(�0) = 1.

Now, given (ω, ω′) ∈ �0 ×�1, the trajectories of (bs, αs) and (b′
s, α

′
s) in R × R

∗+
are the same as those of bTR and b′

TR
, in (b, R) coordinates, as illustrated in Fig. 4.

Setting

R0 = inf

{
R ; bTR ∈ b′

T[− log(α′
0),∞[

}
,

and

R1 = inf{R ; b′
TR

∈ bT[− log(α0),∞[},

one hase trivially

b′
TR1

= bTR0
;

back to the processes x and x′, it means that one has Pζ0,ζ1 -almost surely

xT0(ω,ω′)(ω, ω
′) = x′T1(ω,ω′)(ω, ω

′).
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Proposition 48 Any bounded function h, harmonic with respect to the infinitesimal
generator of the diffusion (y, α) is constant.

� Let ω′ ∈ �1. The application ω ∈ � 
→ T0(ω, ω
′) is a

{
σ(xs; s �

t)
}

t�0 stopping time, Px0(dω)-almost surely finite, and
{
h(xt (ω, ω

′))
}

t�0 is

a
{{σ(xs ; s � t)}t�0,Px0(dω)

}
bounded martingale. The stopping time theo-

rem applies.

h(ζ0) =
∫

h
(
xT0(ω,ω′)(ω, ω

′)
)
Pζ0(dω);

integrating with respect to Pζ1(dω
′), one gets

h(ζ0) =
∫

h
(
xT0(ω,ω′)(ω, ω

′)
)
Pζ0,ζ1(dω, dω′) (5.21)

In the same way, one can show that

h(ζ1) =
∫

h
(
xT1(ω,ω′)(ω, ω

′)
)
Pζ0,ζ1(dω, dω′). (5.22)

The equation h(ζ0) = h(ζ1) now comes from the fact that xT0(ω,ω′)(ω, ω′) and
xT1(ω,ω′)(ω, ω′) are Pζ0,ζ1(dω, dω′) almost surely equal. �

Since any bounded Lhε1 h
ε1
� -harmonic function depends only on y and ξ ′0, that is

on y and α, any such function is harmonic with respect to the infinitesimal generator
of the diffusion (y, α); so it is constant.

This proves that the L-harmonic functions hε1 hε1
� are minimal.

• Remember we fixed some σ ∈ S
2 in the introduction of Sect. 5, and chose the

basis {ε0, . . . , ε3} of R
1,3 in such a way that

ε0 = ε0, ε1 = σ.

Denote by hσ and hσ� the functions hε1 and hε1
� . As σ ∈ S

2 and � ∈ R were arbitrary,
Proposition 48 justifies point 3 of Theorem 18: “The functions hσ hσ� , σ ∈ S

2, � ∈ R,
are L-harmonic minimal functions”.

Write P
σ
ξ̇ ,ξ

instead of P
ε1

ξ̇ ,ξ
, and

Rσ∞ = lim
s→+∞q(ξs, ε0 + σ)

the P
σ
ξ̇ ,ξ

-almost sure preceding limit.

One obtains a coordinate free expression of the function hσ� , whose formula was
given in (5.7), remarking that if ξ̇ ∈ H has {ε0, . . . , ε3}-halfspace coordinates (y, x),

1

y
= q(ξ̇ , ε0 + ε1) = q(ξ̇ , ε0 + σ),
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and ξ ′0 = q(ξ, ε0 + σ). So,

hσ� (ξ̇ , ξ)=
1

q(ξ̇ , ε0+σ)
(

q(ξ̇ , ε0+σ)
�− q(ξ, ε0+σ)

)3

exp

(
− 2q(ξ̇ , ε0+σ)
�− q(ξ, ε0+σ)

)
1�>q(ξ,ε0+σ)

(5.23)
The following classical decomposition23 asserts that P

σ
ξ̇ ,ξ

is the law of the relativistic

diffusion
{
(ξ̇s, ξs)

}
s�0, conditioned on the event {σ∞ = σ }: for any measurable event

A ⊂ � and any measurable B ⊂ S
2,

Pξ̇ ,ξ (A, σ∞ ∈ B) =
∫

B

P
σ
ξ̇ ,ξ
(A) hσ (ξ̇ , ξ) dσ, (ξ̇ , ξ) ∈ H × R

1,3.

One obtains the Pξ̇ ,ξ -almost sure existence of the limits σ∞ and Rσ∞∞ , and the determi-
nation of the law of the pair (σ∞, Rσ∞∞ ) as a consequence of this identity. Theorem 18
is now entirely proved.

6 Comments

Asymptotic behaviour of the relativistic diffusion From a formal point of view,
the information on the asymptotic behaviour of

{
(ξ̇s, ξs)

}
s�0 is not contained in the

invariant σ -algebra but in the tail σ -algebra

τ
({(ξ̇s, ξs)}

) =
⋂
t>0

σ
(
(ξ̇s, ξs) ; s � t

)
.

The invariant σ -algebra is a subalgebra of τ
({(ξ̇s, ξs)}

)
. These two σ -algebras are

generally distinct (see [20], for instance).
In the same way as the analytic counterpart of the invariantσ -algebra of the diffusion

{(ξ̇s, ξs)}s�0 is the Poisson boundary of L , it is a classical result that the analytical
counterpart of its tail σ -algebra is the Poisson boundary of the operator L + ∂s on(
H×R

1,3
)×R

∗+. Using Harnack inequality (Theorem 16), and Derrienic’s 0 − 2 law
as in [1] (Cor. 3.2, p.32), one can show that any bounded (L + ∂s)-harmonic function
on
(
H × R

1,3
) × R

∗+ does not depend on s; so, is L-harmonic. This means that the
invariant σ -algebra of

{
(ξ̇s, ξs)

}
s�0 and the tail σ -algebra of

{
(ξ̇s, ξs)

}
s�0 coincide,

up to Pξ̇ ,ξ -null sets, under any probability Pξ̇ ,ξ , (ξ̇ , ξ) ∈ H × R
1,3. So, Theorem 1

gives a complete description of the asymptotic behaviour of the relativistic diffusion.24

A geometrical description of the Poisson boundary of L In so far as
{
(ξ̇s, ξs)

}
s�0

is the only diffusion on H × R
1,3 whose law is invariant under the (natural) action of

the affine isometries on H × R
1,3 (leaving H fixed), it is natural to wonder to what

23 See [22], Sect. 7.2, Theorem 2.2.
24 The details of this paragraph can be found in the forthcoming article [4], in the Appendix.
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extent the asymptotic behaviour of the relativistic diffusion reflects the geometry of
Minkowski spacetime. Is the space H × R

1,3 naturally endowed with a boundary
∂
(
H × R

1,3
)

such that

• the trajectories
{
(ξ̇s, ξs)

}
s�0 converge Pξ̇ ,ξ -almost surely towards a point u∞ ∈

∂
(
H × R

1,3
)
,

• the tail σ -algebra of
{
(ξ̇s, ξs)

}
s�0 and σ(u∞) coincide up to Pξ̇ ,ξ -null sets,

whatever (ξ̇ , ξ) ∈ H × R
1,3?

One sees such a situation for instance in the study of Brownian motion on a Cartan-
Hadamard manifold, with a bounded sectional curvature less than or equal to some
constant −ε < 0. Such an n-dimensional manifold V has a natural compactification.

Given a point basis, polar coordinates are well defined on V. One identifies two
paths {γt }t�0 and {γ ′

t }t�0, leaving every compact, and viewed in polar coordinates{
(ρt , σt )

}
t�0,

{
(ρ′

t , σ
′
t )
}

t�0, if the directions σt and σ ′
t of γt and γ ′

t converge to the

same point σ∞ ∈ S
n−1. This equivalence relation enables one to add a boundary ∂V

to V, homeomorphic to S
n−1. A point of ∂V corresponds to σ ∈ S

n−1 if it is in the
same class as the geodesic {(t, σ )}t�0.

Every geodesic happens to converge towards some point of the boundary; so the
added sphere S

n−1 really represents all the possible behaviours of a geodesic at the
infinity. In this context, Brownian motion {ws}s�0 on V also almost surely converges
towards some point σ∞ ∈ S

n−1.25 Anderson proved in [2] that σ(σ∞) and the invariant
σ -algebra of w coincide up to Pw0 -null sets, whatever the initial condition w0 is
(actually, he proves a much stronger result). In that sense, Brownian motion eventually
behaves as a geodesic.

The situation is in some sense analogous in our Lorentzian framework, but the
structure of the boundary is linked to the causal structure of R

1,3.

Definition/Proposition • A C1 path γ : [0,+∞[→ R
1,3 is said to be causal if

q(γ̇s) � 0, for any s � 0.
• The causal past of a point ξ ∈ R

1,3 is the set J−(ξ) = {
ζ ∈ R

1,3 ; q(ξ − ζ ) � 0
}

of points ζ ∈ R
1,3 such that there exists a causal (C1) path γ from ζ to ξ .

Causal paths represent the motion in spacetime of objects moving at a speed less than
or equal to the speed of light. Remarking that

• two points ξ and ξ ′ of R
1,3 are equal if, and only if, they have the same causal past,

• for a causal path {γt }t�0, the sets J−(γt ) increase:

if s � t, J−(γs) ⊂ J−(γt ),

it seems reasonable to define the following equivalence relation.

Definition 49 Two (C1) causal paths {γt }t�0 and {γ ′
t }t�0, leaving every compact, are

said to be equivalent if

⋃
t>0

J−(γt ) =
⋃
t>0

J−(γ ′
t ).

25 See [23], for instance.
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One calls causal boundary the space of equivalent classes of causal paths leaving
every compact. So, one identifies two points at the infinity if they have the same
past. Such a construction in a general Lorentzian setting goes back to Penrose [17].
One can show that the causal boundary of R

1,3 can be identified with a cylinder
S

2 × [−∞,+∞], where one identifies S
2 × {−∞} and S

2 × {+∞} to a single point.
Denote by C this boundary and by p the point S

2 × {+∞}. The set C\{p} can be
naturally identified with the equivalent class of lightlike geodesics under the preceding
equivalence relation 49.26

The following theorem gives a geometrical, intrinsic version of Theorem 1, ana-
logue to what happens in a Riemannian framework, and shows that the relevant geo-
metrical structure is the causal structure of spacetime.

Theorem 50 [3, Sect. 3.1] Let (ξ̇ , ξ) ∈ H × R
1,3.

1. The process {ξs}s�0 converge Pξ̇ ,ξ -almost surely towards some random point ξ∞ ∈
C\{p}. In that sense, {ξs}s�0 eventually behaves as a lightlike geodesic.

2. The invariant σ -algebra of
{
(ξ̇s, ξs)

}
s�0 and σ(ξ∞) coincide up to Pξ̇ ,ξ -null sets.

Conclusion

If the description of the Poisson boundary of L given in Theorem 18 is new, the result
in itself is not new.

Recall L̃ is the infinitesimal generator of the diffusion
{
(gs, ξs)

}
s�0 on G, con-

structed in Sect. 3.2. One deduces from the left invariance of the vector fields gen-
erating this diffusion that the sequence

{
(gn, ξn)

}
n�0 is a right random walk on G.

One can show that the Poisson boundary of L̃ is equal to the Poisson boundary of the
random walk.

The problem of the determination of the Poisson boundary of some random walk on
some locally compact group, with countable basis, was completely solved by Raugi,
in [24], under some moment condition on the jump law of the random walk.27 The
study of

{
(gn, ξn)

}
n�0 falls within this framework. Raugi’s description of its Poisson

boundary involves algebraic decompositions of the group G.
One can check that his description coincides with that of L-harmonic functions,

made in Theorem 18. As a by side, one obtains that each bounded L̃-harmonic function
is an L-harmonic function.28

The relativistic diffusion studied in this article admits a natural extension on
Lorentzian manifolds, introduced by Franchi and Le Jan in their article [16]. The
article contains a deep study of the asymptotic behaviour of the relativistic diffu-
sion in the general Schwarzschild spacetime. Though its Poisson boundary was not
determined, its seems possible that it could be described as the causal boundary of
Schwarzschild’s space. As no algebraic calculus can be done in non-homogeneous

26 More information on the subject in [17]. This simple case is treated in [3], Sect. 3.1.
27 These are difficult results.
28 Details on this paragraph can be found in [4].
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spaces, we hope that the coupling scheme used in this article may help to attack the
problem in the general framework of Lorentzian manifolds.
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