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Abstract Under the condition that the Bakry–Emery Ricci curvature is bounded
from below, we prove a probabilistic representation formula of the Riesz transforms
associated with a symmetric diffusion operator on a complete Riemannian manifold.
Using the Burkholder sharp L p-inequality for martingale transforms, we obtain an
explicit and dimension-free upper bound of the L p-norm of the Riesz transforms on
such complete Riemannian manifolds for all 1 < p < ∞. In the Euclidean and the
Gaussian cases, our upper bound is asymptotically sharp when p → 1 and when
p → ∞.
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1 Introduction

The purpose of this paper is to use martingale transforms to obtain an explicit and
dimension-free upper bound for the L p-norm of the Riesz transforms on complete
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248 X.-D. Li

Riemannian manifolds with suitable curvature bound conditions. Before going to
describe problems and results on Riemannian manifolds, we would like to review
some historical backgrounds and recall some known results on Euclidean spaces.

In 1927, Riesz [50] proved that the Hilbert transform on the real line, defined by
the principal value of the singular integral

H f (x) = 1

2π

∫

R

f (y)

x − y
dy,

or formally

H = d

dx

(
− d2

dx2

)−1/2

,

is bounded in L p(R, dx) for all p > 1. This result has been considered as one of the
most important discoveries in analysis of the last century. To extend it from R to R

n ,
Calderon and Zygmund [15] developed the theory of singular integrals, in which one
of the most basic examples is the Riesz transforms on R

n , defined by the principal
value of the singular integrals

R j f (x) = �((n + 1)/2)

π
n+1

2

∫

Rn

f (y)
x j − y j

|x − y|n+1 dy, j = 1, . . . , n,

or formally

R j = ∂

∂x j
(−�)−1/2, j = 1, . . . , n,

where � = ∑n
j=1

∂2

∂x2
j

is the Laplace operator on R
n . The vector Riesz transform on

R
n is defined by

R0(�) := (R1, . . . , Rn) = ∇(−�)−1/2,

where ∇ is the gradient operator on R
n . It is well known (see Stein [55]) that the Riesz

transforms R j are weak (1, 1) and are bounded in L p(Rn, dx) for all p > 1. To see the
significant applications of the Riesz transforms in elliptic and parabolic PDEs, SDEs
and in the study of Navier–Stokes equations, we refer the reader to [24,36,37,56].

In recent years, there has been considerable interest in finding the exact value or
obtaining a good estimate of the L p-norm of the Riesz transforms. One of the moti-
vations for such study can be seen in Donaldson and Sullivan [22] and in Iwaniec and
Martin [29,30], where it has been pointed out that the knowledge of the exact value
or a good estimate of the L p-norm of the Riesz transforms on R

n will lead important
applications in the study of quasi-conformal mappings and related nonlinear geometric
PDEs as well as in the L p-Hodge decomposition theory.
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In 1972, Pichorides [46] proved that the L p-norm of the Hilbert transform is given
by

‖H‖p,p = cot

(
π

2p∗

)
, ∀ p > 1.

Here and throughout of this paper, we denote

p∗ = max

{
p,

p

p − 1

}
.

In [30], Iwaniec and Martin proved that the L p-norm of the Riesz transforms R j is
given by

‖R j‖p,p = cot

(
π

2p∗

)
, j = 1, . . . , n. (1)

In [14], Bañuelos and Wang gave an alternative proof of (1) by using the Gundy–
Varopoulos probabilistic representation formula of the Riesz transforms and the Burk-
holder sharp L p-inequality for martingale transforms. Moreover, Bañuelos and Wang
[14] proved that for all p > 1 the L p-norm of the vector Riesz transform

R0(�) = (R1, . . . , Rn) = ∇(−�)−1/2

has an explicit and dimension-free upper bound

‖R0(�)‖p,p ≤ 2(p∗ − 1). (2)

Similar problems have been studied for the Riesz transforms associated with the
Ornstein–Uhlenbeck operators which plays a fundamental role in the Malliavin cal-
culus on the Wiener space (see [41]). Let L be the Ornstein–Uhlenbeck operator on
the n-dimensional Gaussian space (Rn, γn) or on the infinite dimensional Wiener
space (W (Rn), µ), where γn is the standard Gaussian measure on R

n , i.e., dγn(x) =
(2π)−n/2e− ‖x‖2

2 dx , and µ is the standard Wiener measure (i.e., the law of standard
Brownian motion on R

n) on the Wiener space W (Rn) = C([0, 1], R
n). More pre-

cisely, the Orsntein–Uhlenbeck operator on (Rn, γn) can be given by

L =
n∑

j=1

∂2

∂x2
j

− x j
∂

∂x j
, (3)

and the Ornstein–Uhlenbeck operator on the Wiener space (W (Rn), µ) can be for-
mally given by the similar formula by taking n = ∞ in (3). In [44], Meyer introduced
a family of Riesz transforms associated with the Ornstein–Uhlenbeck operator L by

Ra(L) = ∇(a − L)−1/2,
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250 X.-D. Li

where a is a non-negative constant, ∇ is the gradient operator on R
n or the Malliavin

gradient operator on the Wiener space W (Rn), and proved that for all p > 1 and
all a ≥ 0 the Riesz transforms Ra(L) are bounded in L p with respect to the Gauss-
ian measure γn or the Wiener measure µ. In [47], Pisier gave an alternative proof of
Meyer’s result by using the L p-boundedness of the Hilbert transform and proved that
for all p > 1, the L p-norm of the Riesz transform R0(L) := ∇(−L)−1/2 associated
with the Ornstein–Uhlenbeck operator L satisfies

‖R0(L)−1/2‖p,p ≤ K p, (4)

where

K p = O(p) as p → ∞, and K p = O((p − 1)−3/2) as p → 1.

By extending the Gundy–Varopoulos formula of the Riesz transforms to Sn and using
the Burkholder sharp L p-inequality for martingale transforms, Arcozzi [2] proved
that the Riesz transform R0(�Sn ) := ∇(−�Sn )−1/2 on the n-dimensional unit sphere
Sn = {x ∈ R

n+1 : ‖x‖ = 1} satisfies

‖R0(�Sn )‖p,p ≤ 2(p∗ − 1), ∀ p > 1, (5)

where �Sn denotes the Laplace–Beltrami operator on Sn . Taking the Poincaré limit
from Sn(

√
n) to the infinite dimensional Wiener space W (Rn) and using (5), Arcozzi

[2] obtained that

‖R0(L)‖p,p ≤ 2(p∗ − 1), ∀ p > 1. (6)

We now turn to the study of the Riesz transforms on complete Riemannian mani-
folds. Since Stein [54] introduced in 1970 the Riesz transforms on compact Lie
groups and initiated the approach of using the Littlewood–Paley inequalities to prove
the L p-boundedness of the Riesz transforms, many people have tried to establish
the L p-boundedness of the Riesz transforms on various geometric objects. In 1983,
Strichartz [53] introduced the notion of the Riesz transforms on complete non-compact
Riemannian manifolds and raised the problem whether one can establish the L p-
boundedness of the Riesz transforms on a class of complete non-compact Riemannian
manifolds. Since then, some geometric and analytic conditions on complete non-
compact Riemannian manifolds have been found out for an affirmative answer to
Strichartz’s problem. For these, we refer the reader to Strichartz [53] for non-compact
symmetric Riemannian manifolds of rank one, to Lohoué [38] for Cartan–Hadamard
manifolds on which the Riemannian curvature and its first and second derivatives are
bounded, to Bakry [4–7] for complete Riemannian manifolds on which the Ricci cur-
vature or the so-called Bakry–Emery Ricci curvature is bounded from below, to Chen
[16] and Li [32] for the weak (1, 1)-property of the Riesz transform on complete Rie-
mannian manifolds with non-negative Ricci curvature, to Coulhon and Duong [18,19]
and Auscher et al. [1] for complete Riemannian manifolds satisfying the doubling vol-
ume property, the Faber–Krahn inequalities and some additional heat kernel regularity
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Martingale transforms and L p-norm estimates of Riesz transforms 251

conditions, and to the author [34,33] for complete Riemannian manifolds on which
the negative part of Ricci curvature satisfies some gaugeability conditions.

Let (M, g) be a complete Riemannian manifold, n = dimM , � the non-positive
Laplace–Beltrami operator, ∇ the gradient operator, and ν the Riemannian volume
measure on (M, g), i.e., dν(x) = √

det g(x)dx . Let µ be a weighted volume measure
on M defined by dµ(x) = e−φ(x)dν(x), where φ ∈ C2(M). Then for all f, g ∈
C∞

0 (M), we have

∫

M

(∇ f,∇g)dµ = −
∫

M

f Lgdµ = −
∫

M

gL f dµ,

where L is the weighted Laplacian with respect to µ on M and can be given by

L = � − ∇φ · ∇.

Following Bakry and Emery [8], see also Bakry [5,7], the Ricci curvature associated
with L is defined by

Ric(L) := Ric + ∇2φ.

Here ∇2φ denotes the Hessian of φ with respect to the Levi–Civita connection on
(M, g). According to [39,33], we call Ric(L) the Bakry–Emery Ricci curvature of L
(or µ) on (M, g).

Suppose that there exists a non-negative constant a such that

Ric(L) ≥ −a.

Using a martingale approach to the Littlewood–Paley inequalities, Bakry [5] proved
that for any p > 1, there exists a universal constant C p which is independent of n =
dimM and a, such that for all f ∈ C∞

0 (M),

‖Ra(L) f ‖L p(µ) ≤ C p‖ f ‖L p(µ), (7)

where

Ra(L) := ∇(a − L)−1/2 (8)

is the Riesz transform associated with the symmetric diffusion operator L and the
constant a. Equivalently, for all p > 1, the L p-norm of the Riesz transform Ra(L)

with respect to the measure µ, i.e.,

‖Ra(L)‖p,p := sup
f �=0

‖Ra(L) f ‖L p(µ)

‖ f ‖L p(µ)

,
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has a dimension-free upper bound which depends only on p

‖Ra(L)‖p,p ≤ C p.

The dimension-free phenomenon for the upper bound of the L p-norm of the Riesz

transforms is a very interesting property. Taking M = R
n and φ(x) = ‖x‖2

2 + n
2 log 2π ,

we see that µ = γn , and L = � − x · ∇ is the Ornstein–Uhlenbeck operator on
the Gaussian space (Rn, γn). In this case, it is well known that Ric(L) = I d. By
Bakry [4,5], the L p-norm of the Riesz transform R0(L) associated with the Ornstein–
Uhlenbeck operator L on the Gaussian space (Rn, γn) is bounded from above by
a universal constant which is dimension-free. This leads one to recapture Meyer’s
result on the L p-boundedness of the Riesz transform associated with the Ornstein–
Uhlenbeck operator on the infinite dimensional Wiener space.

It is natural to ask the problem what is the explicit p-dependence of the L p-norm
of the Riesz transforms on complete Riemannian manifolds with suitable curvature
bound conditions. In particular, it is very interesting to study the following problem
suggested by Le Jan in a private discussion in July 2001.

Problem 1.1 What is the asymptotic behavior (when p → 1 and when p → ∞,
respectively) of the L p-norm of the Riesz transform ‖R0(L)‖p,p (respectively,
‖Ra(L)‖p,p) under the curvature condition Ric(L) ≥ 0 (respectively, Ric(L) ≥ −a
for a constant a > 0)?

To help the reader to see the importance of the sharp estimate of the L p-norm of
the Riesz transforms, let us mention three applications.

(1) For symmetric diffusion operators on complete Riemannian manifolds with a
positive lower bound of the Bakry–Emery Ricci curvature, we can prove the following
L p-Poincaré inequality (see Sect. 5):

Theorem 1.2 Let (M, g) be a complete Riemannian manifold, φ ∈ C2(M). Suppose
that there exists a constant ρ > 0 such that

Ric(L) = Ric + ∇2φ ≥ ρ.

Then for all p > 1 and for all f ∈ W 1,p(M, µ) := { f ∈ L p(µ) : |∇ f | ∈ L p(µ)},
we have

‖ f − µ( f )‖p ≤ ‖R0(L)‖q,q√
ρ

‖∇ f ‖p, (9)

where q = p
p−1 , µ( f ) = ∫M f dµ, and L = � − ∇φ · ∇.

Note that, on any complete Riemannian manifold, integration by parts yields
‖R0(L)‖2,2 = 1. For symmetric diffusion operators with a positive lower bound of the
Bakry–Emery Ricci curvature, Theorem 1.2 is a natural extension of the well known
Bakry–Emery criterion (see [8]) for the L2-Poincaré inequality to the L p-Poincaré
inequality for all p > 1.
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(2) The sharp estimate of the L p-norm of the Riesz transform Ra(L) = ∇(a −
L)−1/2 will lead the following inequalities with optimal constants (see Sect. 5):

Theorem 1.3 Let p > 1. Suppose that the Riesz transform Ra(L) = ∇(a − L)−1/2

is bounded in L p(M, µ). Then for all f ∈ W 1,p(M, µ) we have

‖Ra(L)‖−1
p,p‖∇ f ‖p ≤ ‖√a − L f ‖p ≤ √

a‖ f ‖p + ‖Ra(L)‖q,q‖∇ f ‖p, (10)

where q = p
p−1 , and W 1,p(M, µ) := { f ∈ L p(µ) : |∇ f | ∈ L p(µ)}. In the case

where a = 0, we require that f ∈ (KerL)⊥.

(3) Similarly to the case where M = R
n , see [22,29,30,36,37], we believe that

an explicit and good estimate of the L p-norm of the Riesz transforms on Riemannian
manifolds will lead some important applications in the study of quasi-conformal map-
pings and related geometric nonlinear PDEs as well as in the study of Navier–Stokes
equations on Riemannian manifolds with suitable curvature bound conditions.

We are now in a position to state the main result of this paper.

Theorem 1.4 Let (M, g) be a complete Riemannian manifold with a Riemannian
metric g. Let φ ∈ C2(M), L = � − ∇φ · ∇, and µ(dx) = e−φ(x)

√
detg(x)dx.

(1) Suppose that

Ric(L) = Ric + ∇2φ ≥ 0.

Then for any p > 1, we have

‖R0(L)‖p,p ≤ 2(p∗ − 1). (11)

(2) Suppose that there exists a constant a > 0 such that

Ric(L) = Ric + ∇2φ ≥ −a.

Then for any p > 1, we have

‖Ra(L)‖p,p ≤ 2(p∗ − 1)(1 + 4‖T1||p), (12)

where

T1 := inf{t > 0 : ‖Bt‖ = 1}

is the first hitting time of the standard 3-dimensional Brownian motion Bt to the
unit sphere S2 = {x ∈ R

3 : ‖x‖ = 1}.
Theorem 1.4 provides us with an explicit and dimension-free upper bound of the

L p-norm for the Riesz transforms associated with symmetric diffusion operators on
complete Riemannian manifolds whose Bakry–Emery Ricci curvature is bounded
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254 X.-D. Li

from below. In particular, the following corollary extends Bañuelos and Wang’s upper
bound (2) to the Riesz transform R0(�) = ∇(−�)−1/2 associated with the Laplace–
Beltrami operator on any complete Riemannian manifold with non-negative Ricci
curvature.

Corollary 1.5 Let M be a complete Riemannian manifold with non-negative Ric-
ci curvature. Then for any p > 1, the L p-norm of the Riesz transform R0(�) =
∇(−�)−1/2 with respect to the volume measure ν satisfies

‖R0(�)‖p,p ≤ 2(p∗ − 1).

Due to the dimension-free phenomenon of the L p-norm upper bound estimate of
the Riesz transforms, Theorem 1.4 allows us to extend Arcozzi’s estimate (6), which
holds for Meyer’s Riesz transforms associated with the Ornstein–Uhlenbeck operator
on the classical Wiener space, to the Riesz transforms associated with a generalized
Ornstein–Uhlenbeck operator on an infinite dimensional abstract Wiener space. More
precisely, we have the following result.

Corollary 1.6 Let H be a real separable Hilbert space which is densely embedded in
a real separable Banach space W , A : H → H be a self-adjoint positive linear opera-
tor, µ be the Gaussian measure on W with the covariance A. Let L = �− Ax ·∇ be the
generalized Ornstein–Uhlenbeck operator on the abstract Wiener space (W, H, µ) in
the sense of Gross. Then Ric(L) = A, and for any p > 1, the L p-norm of the Riesz
transform R0(L) = ∇(−L)−1/2 satisfies

‖R0(L)‖p,p ≤ 2(p∗ − 1).

Theorem 1.4 together with Corollaries 1.5 and 1.6 give us some partial answers to
Le Jan’s problem concerning the asymptotically sharp upper bound of the Riesz trans-
forms associated with symmetric diffusion operators on complete Riemannian mani-
folds with suitable curvature bound conditions. Using the known results in [30,14,2]
and in Larsson-Cohn [31], we will see in Sect. 6 that at least in the Euclidean case and
in the Gaussian case, the upper bound of the form O(p∗ − 1) for the L p-norm of the
Riesz transforms ∇(−�)−1/2 and ∇(−L)−1/2 (where L is the Ornstein–Uhlenbeck
operator) is asymptotically sharp when p → 1 and when p → ∞. In general, we
would like to pose the following conjecture.

Conjecture 1.7 Let M be a complete Riemannian manifold, φ ∈ C2(M). Suppose
that Ric(L) = Ric + ∇2φ ≥ 0. Then there exists a constant c > 0 such that for all
p > 1, we have

c(p∗ − 1)(1 + o(1)) ≤ ‖∇(−L)−1/2‖p,p ≤ 2(p∗ − 1). (13)

In particular, on any complete Riemannian manifold M with non-negative Ricci cur-
vature, for all p > 1, we have

c(p∗ − 1)(1 + o(1)) ≤ ‖∇(−�)−1/2‖p,p ≤ 2(p∗ − 1). (14)
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To prove Theorem 5.2, we develop a probabilistic approach using martingale
transforms in the study of the Riesz transforms and related problems on complete
Riemannian manifolds. This probabilistic approach is quite different from the well
known martingale approach to the Littlewood–Paley inequalities initiated by Meyer
[42–44] and developed by Bakry [4–7] among others (cf. [57,58,51,34]). We will
first prove a probabilistic representation formula for the Riesz transforms on complete
Riemannian manifolds (see Theorem 3.2 below) and then use the Burkholder sharp
L p-inequality for martingale subordination. We have been inspired by the earlier work
due to Gundy and Varopoulos [27], Gundy and Silverstein [28], Gundy [25,26], Song
[52], Bañuelos and Wang [14], and Arcozzi [2] for the probabilistic representation
formulas and the L p-norm estimates of the Riesz transforms on R

n , Sn and on Wiener
spaces. To save the length of this section which has already been very long, we will
review the work of [27,28,25,26,52,14,2] in Sect. 3. We would like to point out that,
when we deal with the Riesz transforms on complete Riemannian manifolds, we do
need some new ideas and some new arguments. In [35], we will extend this approach
to obtain an explicit and dimension-free upper bound for the Riesz transforms asso-
ciated with the Hodge Laplacian and the Witten Laplacian on k-forms on a complete
Riemannian manifold with suitable curvature conditions.

This paper is organized as follows. In Sect. 2 we recall the probabilistic represen-
tation formulas of the heat semigroups and the Poisson semigroups generated by the
Witten Laplacian on one-forms. In Sect. 3 we prove the probabilistic representation
formula for the Riesz transforms associated with symmetric diffusion operators on
complete Riemannian manifolds with suitable curvature bound conditions. In Sect. 4
we prove Theorem 1.4. In Sect. 5, we prove Theorems 1.2 and 1.3. In Sect. 6, we give
some remarks and use the results in [30,14,2,31] to give some new examples which
support Conjecture 1.7.

2 Heat semigroups and Poisson semigroups on one-forms

In this section, we recall the probabilistic representation formulas for the heat semi-
group and the Poisson semigroup generated by the Witten Laplacian on one-forms.
The results in this section have been well known in the literature.

2.1 Probabilistic representation of heat semigroup on one-forms

Let dk : 	k(T ∗M) → 	k+1(T ∗M) be the exterior differential operator acting on
differential k-forms on M . Standard argument using integration by parts formula
shows that the L2(µ)-adjoint of dk , denoted by d∗

k,φ : 	k+1(T ∗M) → 	k(T ∗M), is
given by

d∗
k,φ = d∗ + i∇φ,

where i∇φ denotes the inner multiplication by ∇φ on 	k+1.
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256 X.-D. Li

We now define the Witten Laplacian on k-forms as follows:

�k,φ := dk−1d∗
k−1,φ + d∗

k,φdk .

Denote �φ := �1,φ . Then the following commutation formula holds

d(−L) f = �φd f, ∀ f ∈ C∞(M).

Note that L = � − ∇φ · ∇ is a non-positive operator in L2(µ), while �φ is non-
negative.

Let ∇ be the Levi–Civita connection on M . Let

�φ = Tr∇2 − ∇∇φ

be the weighted Laplace–Beltrami operator acting on one-forms. Then we have the
generalized Bochner–Weitzenböck formula

�φ = −�φ + Ric(L), (15)

Let Xt be the L-diffusion process starting at X0 = x on M . Let Mt ∈ End(Tx M,

TXt M) be the solution of the following covariant ordinary differential equation

∇
∂t

(Mtv) = −Ric(L)(Xt )(Mtv), ∀ v ∈ Tx M, (16)

with the initial condition M0 = I dTx M . Here ∇
∂t denotes the Levi–Civita covariant

derivative operator along {Xt , t ≥ 0}. Then, using the generalized Bochner–Weit-
zenböck formula (15) and the Feynman–Kac formula, we have the following prob-
abilistic representation formula for the heat semigroup e−t�φ on one-forms: for all
ω ∈ C∞

0 (M,	1(T ∗M)),

e−t�φω(x) = Ex
[
M∗

t ω(Xt )
]
, ∀ x ∈ M, t ≥ 0. (17)

This kind of probabilistic representation formulas for the heat semigroup on one-forms
goes back to Malliavin [40] (in the case where φ ≡ 0) and has been systematically
developed by Elworthy et al. [23].

2.2 Probabilistic representation of Poisson semigroups on one-forms

Using the Bochner subordination formula, the Poisson semigroup e−t
√

a−L on func-

tions and the Poisson semigroup e−t
√

a+�φ on one-forms can be defined as follows:
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for all f ∈ C∞
0 (M), ω ∈ C∞

0 (M,	1(T ∗M)), and for all (x, t) ∈ M × R
+,

e−t
√

a−L f (x) = 1√
π

∞∫

0

e− t2
4u (a−L) f (x)e−uu−1/2du,

e−t
√

a+�φω(x) = 1√
π

∞∫

0

e− t2
4u (a+�φ)ω(x)e−uu−1/2du.

We can also give a probabilistic representation formula for the Poisson semigroup

e−t
√

a−L and the Poisson semigroup e−t
√

a+�φ . To this end, let Bt be the standard
Brownian motion on R starting from B0 = y > 0. Define

τy = inf{t > 0 : Bt = 0}.

Then it is well known that for all λ > 0, we have

Ey
[
e−λτy

] = e−y
√

λ.

By this and the spectral decomposition, we have the following probabilistic represen-
tation formula for the Poisson semigroup on functions

e−y
√

a−L f (x) = Ey

[
e−(a−L)τy f (x)

]
= Ey

[
e−aτy Ex [ f (Xτy )]

]
.

That is

e−y
√

a−L f (x) = E(x,y)

[
e−aτy f (Xτy )

]
.

Similarly, we have the following probabilistic representation formula for the Poisson

semigroup e−y
√

a+�φ on one-forms: for all ω ∈ C∞
0 (M,	1(T ∗M)),

e−y
√

a+�φω(x) = Ey

[
e−(a+�φ)τy ω(x)

]
= Ey

[
e−aτy Ex [M∗

τy
ω(Xτy )]

]
.

That is

e−y
√

a+�φω(x) = E(x,y)

[
e−aτy M∗

τy
ω(Xτy )

]
.

3 Probabilistic representation of Riesz transforms

In the literature, the first probabilistic representation formula of the Riesz transform is
due to Gundy and Varopoulos [27]. In [28], Gundy and Silverstein gave an alternative
proof of the Gundy–Varopoulos representation formula using time reversal argument.
See also Gundy [26], Bass [9] and Dellacherie et al. [20]. We now follow Gundy [26]
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to explain the Gundy-Varopoulos representation formula for the Riesz transforms on
R

n . Let Xt be the Brownian motion on R
n starting from the Lebesgue measure dx .

Let Bt be a 1D Brownian motion starting from y > 0 with E[B2
t ] = 2t . That is, the

generator of Bt is d2

dy2 instead of 1
2

d2

dy2 . Set

τ = inf{t > 0 : Bt = 0}.

Let f be a suitable nice function defined on R
n , Q( f )(x, y) = e−y

√−� f (x) be the
Poisson integral of f , i.e., the harmonic extension of f on R

n × R
+. In [26], Gundy

proved that

1

2
f (x) = lim

y→∞ Ey

⎡
⎣

τ∫

0

∂

∂y
Q( f )(Xs, Bs)d Bs

∣∣∣∣∣∣ Xτ = x

⎤
⎦ . (18)

Replacing f by R j f = ∂
∂x j

(−�)−1/2 f and using ∂
∂y Q(R j f ) = −√−�Q(R j f ) =

− ∂
∂x j

Q( f ), the above Gundy formula implies

−1

2
R j f (x) = lim

y→∞ Ey

⎡
⎣

τ∫

0

∂

∂x j
Q( f )(Xs, Bs)d Bs

∣∣∣∣∣∣ Xτ = x

⎤
⎦ .

Let A j = (aik) be the (n + 1) × (n + 1) matrix with aik = 0 unless i = n + 1 and
k = j , and a(n+1) j = 1. Then we get the Gundy–Varopoulos formula

− 1

2
R j f (x) = lim

y→∞ Ey

⎡
⎣

τ∫

0

A j∇Q( f )(Xs, Bs)(d Xs, d Bs)

∣∣∣∣∣∣ Xτ = x

⎤
⎦ . (19)

In the literature, (Xt , Bt ) is called the background radiation on R
n × R

+, and an
expression like

∫ t
0 A∇Q( f )(Xs, Bs)d(Xs, d Bs) is called the martingale transform

of the martingale
∫ t

0 ∇Q( f )(Xs, Bs)(d Xs, d Bs) by the matrix A. Thus, the Gundy–
Varopoulos formula (19) represents the Riesz transform R j f as the terminal condi-
tional expectation of a martingale transform with respect to the background radiation
on R

n × R
+. Based on (19) and the Burkholder sharp L p-inequality for martingale

transforms, Bañuelos and Wang [14] proved that ‖R0(�)‖p,p ≤ 2(p∗ − 1) for all
p > 1.

In [25,26], Gundy obtained a similar probabilistic representation formula for the
Riesz transforms associated with the Ornstein–Uhlenbeck operator on finite dimen-
sional Gaussian space and the infinite dimensional Wiener space. Using this repre-
sentation formula and the Burkholder inequality for stochastic integrals, Gundy [26]
gave a new proof of the L p-boundedness of Meyer’s Riesz transforms on the Wiener
space.
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Using the technique of grossissement de filtration, Song [52] extended Gundy’s
formula (18) to a wide class of real separable Banach spaces E equipped with a
so-called C-semigroup. Moreover, Song [52] proved that the gradient of a nice scalar
function f on such a Banach space E can be represented as the terminal conditional
expectation of a martingale transform of the Poisson integral of f composed with
the space-time Brownian motion on E × R (See Lemma 5 in [52]). This will cer-
tainly imply a probabilistic representation formula for the Riesz transforms associated
with the generator of the C-semigroups on Banach spaces. For technical reasons, we
will not recall Song’s formula in details (for which we need to introduce some new
definitions and new notation).

In [2], Arcozzi extended the Gundy–Varopoulos representation formula for the
Riesz transforms on R

n to the Riesz transforms on compact Lie groups and to the
Riesz transforms on Sn . Using a similar approach as in [14], it was proved in [2]
that ‖R0(�Sn )‖p,p ≤ 2(p∗ − 1). Taking the Poincaré limit, Arcozzi obtained that
the Riesz transform R0(L) associated with the Ornstein–Uhlenbeck operator on the
Wiener space satisfies ‖R0(L)‖p,p ≤ 2(p∗ − 1) for all p > 1.

Inspired by the earlier work due to Gundy and Varopoulos [27], Gundy and Sil-
verstein [28], Gundy [25,26], Song [52] and Arcozzi [2], and using some new ideas
and new arguments in the setting of complete Riemannian manifolds, we will prove a
probabilistic representation formula for the Riesz transforms associated with a sym-
metric diffusion operator on a complete Riemannian manifold. To state our main result
of this section (Theorem 3.2), we need some notations and some preliminary results.

3.1 Background radiation processes

Let M be a complete Riemannian manifold, L = � − ∇φ · ∇ be the weighted
Laplacian with respect to the weighted volume measure dµ(x) = e−φ(x)dν(x) on M .
Suppose that there exists a non-negative constant a such that

Ric(L) = Ric + ∇2φ ≥ −a.

By [3], see also [33], it is well known that the heat semigroup generated by L is
conservative.

Let Xt be the diffusion process on M whose infinitesimal generator is L and whose
initial measure is µ. By Itô’s theory for diffusion processes on Riemannian manifolds,
we have

d Xt = Ut dWt − ∇φ(Xt )dt,

where Wt is the Brownian motion on R
n , Ut ∈ End(Tx M, TXt M) denotes the sto-

chastic parallel transport along {Xs, 0 ≤ s ≤ t}.
Let Bt be a 1D Brownian motion starting from y > 0 with E[B2

t ] = 2t . That is,

the generator of Bt is d2

dy2 instead of 1
2

d2

dy2 . Set

τ = inf{t > 0 : Bt = 0}.
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Following Meyer [43], Gundy and Varopoulos [27] and Gundy [25,26], we intro-
duce the so-called background radiation process Zt := (Xt , Bt ) on M × R

+. In
fact, {Zt , t ∈ [0, τ ]} is a diffusion process on M × R

+ whose infinitesimal generator
is L + d2

dy2 and whose initial distribution is µ ⊗ δy supported on the hypersurface
M × {y} at time t = 0. The process {Zt , t ∈ [0, τ ]} terminates at time t = τ upon
hitting the boundary M × {0}. Let P(x,y) be the probability law of Zt = (Xt , Bt )

starting at (x, y) ∈ M × R
+. We define the measures {Py, y > 0} on the path space

C([0,∞), M × R) as

Py(Zt ∈ B) =
∫

Rn

P(x,y)(Zt ∈ B)dµ(x), (20)

for all Borel sets B ⊂ M × R
+. Let Ey be the expectation corresponding to Py .

The following result is essentially due to Meyer [43]. See also Bañuelos and
Lindeman [13].

Proposition 3.1 Suppose that there exists a non-negative constant a such that

Ric(L) = Ric + ∇2φ ≥ −a.

Then, for all non-negative measurable functions f on M, we have

Ey[ f (Xτ )] =
∫

M

f (x)dµ(x). (21)

Moreover, for all non-negative measurable functions F or for all measurable F such
that F(x, η)η ∈ L1(λ(dx) ⊗ dη), we have

Ey

⎡
⎣

τ∫

0

F(Zt )dt

⎤
⎦ = 2

∞∫

0

∫

M

F(x, η)(y ∧ η)dµ(x)dη. (22)

Proof Let ντ (dt) = P(0,y)(τ = t)dt be the law of τ given by (23). Let pt (x, y) be
the heat kernel of the heat semigroup generated by L . Using the independence of Xt

and Bt , and by the Fubini theorem, we have

Ey[ f (Xτ )] =
∫

M

∫

M

∞∫

0

f (z)pt (x, z)dµ(z)dµ(x)dν(t)

=
∫

M

f (z)

∞∫

0

∫

M

pt (x, z)dµ(x)dντ (t)dµ(z).
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Since the heat semigroup generated by L is conservative, we have
∫

M pt (x, z)dµ(x) =
1 for all x ∈ M and all t > 0. Hence

Ey[ f (Xτ )] =
∫

M

∞∫

0

f (z)dντ (t)dµ(z) =
∫

M

f (x)dµ(x).

This proves (21). To prove (22), let us first consider the case F(x, y) = f (x)g(y),
where f ∈ Cb(M) and g ∈ Cb(R

+). Since Xt and Bt are independent and τ depends
only on Bt ,

E(x,y)

⎡
⎣

τ∫

0

F(Zs)ds

⎤
⎦ = E(x,y)

⎡
⎣
∫

R+

t∫

0

f (Xs)g(Bs)dsdντ (t)

⎤
⎦

= Ey

⎡
⎣
∫

R+

t∫

0

Ex f (Xs)g(Bs)dsdντ (t)

⎤
⎦

= Ey

⎡
⎣
∫

R+

t∫

0

Ps f (x)g(Bs)dsdντ (t)

⎤
⎦ .

Integrating in x with respect to µ on M , and using the Fubini formula, we have

Ey

⎡
⎣

τ∫

0

F(Zs)ds

⎤
⎦ =

∫

M

E(x,y)

⎡
⎣
∫

R+

t∫

0

f (Xs)g(Bs)dsdντ (t)

⎤
⎦ dµ(x)

=
∫

M

Ey

⎡
⎣
∫

R+

t∫

0

Ps f (x)g(Bs)dsdντ (t)

⎤
⎦ dµ(x)

= Ey

⎡
⎣
∫

R+

t∫

0

⎛
⎝
∫

M

Ps f (x)dµ(x)

⎞
⎠ g(Bs)dsdντ (t)

⎤
⎦ .

As Ps is symmetric with respect to µ, we have

∫

M

Ps f (x)dµ(x) =
∫

M

f (x)dµ(x).
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This yields that

Ey

⎡
⎣

τ∫

0

F(Zs)ds

⎤
⎦ =

∫

M

f (x)dµ(x)Ey

⎡
⎣
∫

R+

t∫

0

g(Bs)dsdντ (t)

⎤
⎦

=
∫

M

f (x)dµ(x)Ey

⎡
⎣

τ∫

0

g(Bs)ds

⎤
⎦ .

Let GR+(y, ξ) be the Green function of d2

dy2 on R
+. Then

Ey

⎡
⎣

τ∫

0

g(Bs)ds

⎤
⎦ =

∫

R+
g(ξ)GR+(y, ξ)dξ.

Therefore

Ey

⎡
⎣

τ∫

0

F(Zs)ds

⎤
⎦ =

∫

M

f (x)dµ(x)

∫

R+
g(ξ)GR+(y, ξ)dξ.

Notice that

GR+(y, ξ) = 2(y ∧ ξ).

Hence

Ey

⎡
⎣

τ∫

0

F(Zs)ds

⎤
⎦ = 2

∞∫

0

∫

M

f (x)dxg(ξ)(y ∧ ξ)dξ.

This proves that (22) holds for F(x, y) = f (x)g(y). Using the monotone class theo-
rem, one can prove that (22) holds in the general case where F is a bounded measurable
function on M × R

+ or when F(x, η)η ∈ L1(λ(dx) ⊗ dη). ��

3.2 Killed Brownian motion on the half line

In p. 185 of [43], Meyer described the duality between the killed Brownian motion
on the half line R+ = [0,∞] and the 3D Bessel processes as follows: D’une manière
intuitive, on peut donc dire que le retourné du processus de Bessel issu de λ0 est le
“mouvement brownien venant de l’infini et tué en 0”. Here, λ0 = λ(dx) ⊗ δ0 denotes
the Lebesgue measure on the hyperplane R

n × {0}. That is to say, the time reversal
process of Brownian motion on [0,∞] starting from infinity and killed at 0 is the 3D
Bessel process starting from 0. See also Sect. 31 Chap. III (p. 301) in Rogers and
Williams [48].
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More precisely, let Bt be the 1D Brownian motion starting at y ∈ R
+, τy = inf{t >

0 : Bt = 0}, and set

B̃t = Bτy−t , t ∈ [0, τy].

Let

L y = sup{t > 0 : B̃t = y}

be the last exit time of {B̃t } from y. Then, it is well known, see [43,20,48,49], that L y

has the same law as τy , i.e.,

P
(
L y ∈ dz

) = P
(
τy ∈ dz

) = y√
2π

z−3/2e−y2/2zdz. (23)

Moreover, {B̃t , t ∈ [0, L y]} is the conditional 3D Bessel process starting at 0 and with
terminal value y conditioning at L y , i.e., B̃L y = y. Note that lim

y→∞ τy = lim
y→∞ L y = ∞.

This leads us to identify B̃t = Bτy−t with the standard 3D Bessel process starting
from 0 when taking the initial position of Brownian motion at infinity, i.e., when
B0 = y → ∞.

3.3 The representation formula of Riesz transform

We are now in a position to state the main result of this section.

Theorem 3.2 Let (M, g) be a complete Riemannian manifold, φ ∈ C2(M). Suppose
that for some non-negative constant a ∈ R

+,

Ric(L) := Ric + ∇2φ ≥ −a.

Then, for any f ∈C∞
0 (M) (when a =0 and µ(M)<∞, we require that

∫
M f dµ=0),

we have

−1

2
Ra(L) f (x) = lim

y→+∞ Ey

⎡
⎣

τ∫

0

ea(s−τ)Mτ M−1
s d Qa( f )(Xs, Bs)d Bs | Xτ = x

⎤
⎦ ,

(24)
where Qa( f )(x, y) = e−y

√
a−L f (x), Xt denotes the L-diffusion process on M with

initial distribution µ, Bt denotes the Brownian motion on R starting from y > 0 with
E[B2

t ] = 2t , τ = inf{t > 0 : Bt = 0}, Mt ∈ End(T ∗
X0

M, T ∗
Xt

M) is the solution to
the following covariant differential equation

∇
∂t

(Mtv) = −Ric(L)(Xt )(Mtv), ∀ v ∈ T ∗
X0

M, (25)
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with the initial condition M0 = I dTX0 M , where ∇
∂t := Ut

∂
∂t U−1

t denotes the covariant
ordinary derivative with respect to the Levi–Civita connection on M along the trajec-
tory of the L-diffusion process Xt , Ut ∈ End(T ∗

X0
M, T ∗

Xt
M) is the stochastic parallel

transport along {Xs, 0 ≤ s ≤ t}.
We will prove Theorem 3.2 in Subsect. 3.4. Below we give some examples.

Example 3.3 Taking M = R
n and φ = 0 in Theorem 3.2, we have Mt = I d for all

t ≥ 0. Hence

− 1

2
∇(−�)−1/2 f (x) = lim

y→∞ Ey

⎡
⎣

τ∫

0

∇u(Xs, Bs)d Bs | Xτ = x

⎤
⎦ . (26)

Since ∇(−�)−1/2 = (R1, . . . , Rn), where R j = ∂
∂x j

(−�)−1/2, formula (26) allows
us to recapture the Gundy–Varopoulos probabilistic representation formula (19) for
the Riesz transforms R j = ∂

∂x j
(−�)−1/2.

Example 3.4 Taking M = R
n and φ(x) = ‖x‖2

2 + n
2 log(2π) in Theorem 3.2, we have

µ = γn and Mt = e−t I d for all t ≥ 0. This gives us the Gundy probabilistic rep-
resentation formula for the Riesz transform associated with the Ornstein–Uhlenbeck
operator L = � − x · ∇ on (Rn, γn) (see Gundy [25,26] and Song [52]):

−1

2
∇(a−L)−1/2 f (x) = lim

y→∞ Ey

⎡
⎣

τ∫

0

e(a+1)(s−τ)∇e−Bs
√

a−L f (Xs)d Bs | Xτ = x

⎤
⎦ .

In particular

−1

2
∇(−L)−1/2 f (x) = lim

y→∞ Ey

⎡
⎣

τ∫

0

e(s−τ)∇e−Bs
√−L f (Xs)d Bs | Xτ = x

⎤
⎦ .

Note that the dimension n = dimR
n does not play any role in the above formulas.

Hence, these formulas also hold for Meyer’s Riesz transforms associated with the
Ornstein–Uhlenbeck operator on the infinite dimensional Wiener space.

Example 3.5 Let M be a complete Riemannian manifold, φ ∈ C2(M). Suppose that
there exists a constant k ∈ R such that

Ric(L) = Ric + ∇2φ = −k.

Then Mt = ekt I d. Hence, for all a ≥ k ∨ 0, we have

−1

2
∇(a−L)−1/2 f (x) = lim

y→∞ Ey

⎡
⎣

τ∫

0

e(a−k)(s−τ)∇e−Bs
√

a−L f (Xs)d Bs | Xτ = x

⎤
⎦ .
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Example 3.6 Taking M = Sn = {x ∈ R
n+1 : ‖x‖ = 1} with the standard Riemannian

metric, we have Ric = n − 1. Hence

−1

2
∇(a − �Sn )−1/2 f (x)

= lim
y→∞ Ey

⎡
⎣

τ∫

0

e(a+n−1)(s−τ)∇e−Bs
√

a−�Sn f (Xs)d Bs | Xτ = x

⎤
⎦ .

This recaptures the probabilistic representation formula of the Riesz transform on Sn ,
see Arcozzi [2]. Moreover, taking M = Sn(

√
n − 1) = {x ∈ R

n+1 : ‖x‖ = √
n − 1}

with the standard Riemannian metric, we have Ric = 1. Hence

−1

2
∇(a − �Sn(

√
n−1)

−1/2 f (x)

= lim
y→∞ Ey

⎡
⎣

τ∫

0

e(a+1)(s−τ)∇e−Bs
√

a−�Sn (
√

n−1) f (Xs)d Bs | Xτ = x

⎤
⎦ .

Taking the Poincaré limit, the above formula leads us to recapture Gundy’s prob-
abilistic representation formula for Meyer’s Riesz transforms associated with the
Ornstein–Uhlenbeck operator L on the Wiener space

−1

2
∇(a − L)−1/2 f (x)

= lim
y→∞ Ey

⎡
⎣

τ∫

0

e(a+1)(s−τ)∇e−Bs
√

a−L f (Xs)d Bs | Xτ = x

⎤
⎦ ,

where Xt denotes the Ornstein–Uhlenbeck process on the Wiener space W (Rn) =
C([0, 1], R

n).

3.4 A probabilistic representation formula on one-forms

In this subsection we prove a probabilistic representation formula on one-forms which
will be used in the proof of Theorem 3.2.

Lemma 3.7 Let η ∈ C∞
0 (M,	1(T ∗M)), and ηa(x, y) := e−y

√
a+�φη(x). Then

η(Xτ ) = eaτ M∗,−1
τ ηa(X0, B0)

+
τ∫

0

ea(τ−s)M∗,−1
τ M∗

s

(
∇,

∂

∂y

)
ηa(Xs, Bs)(UsdWs, d Bs).
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Proof By the covariant Itô formula on Riemannian manifolds, cf. [23,45], and using
(25), we have

∇
∂t

(e−at M∗
t ηa(Xt , Bt ))

= −e−at M∗
t (a + Ric(L)(Xt )) ηa(Xt , Bt )

+e−at M∗
t

(
∇,

∂

∂y

)
ηa(Xt , Bt )(d Xt , d Bt )

+e−at M∗
t ∇2ηa(Xt , Bt )〈d Xt , d Xt 〉 + e−at M∗

t
∂2

∂y2 ηa(Xt , Bt )dt

= −e−at M∗
t

(
a + Ric(L)(Xt ) + ∇∇φ(Xt )

)
ηa(Xt , Bt )dt

+e−at M∗
t

(
∇,

∂

∂y

)
ηa(Xt , Bt )(Ut dWt , d Bt )

+e−at M∗
t

(
� + ∂2

∂y2

)
ηa(Xt , Bt )dt

= e−at M∗
t

(
∇,

∂

∂y

)
ηa(Xt , Bt )(Ut dWt , d Bt ),

where in the last step we have used the generalized Bochner–Weitzenböck formula

�φ = −� + ∇∇φ + Ric(L).

and

∂2

∂y2 ωa(x, y) = (a + �φ)ω(x, y).

Hence

∇
∂t

(e−at M∗
t ηa(Xt , Bt )) = e−at M∗

t

(
∇,

∂

∂y

)
ηa(Xt , Yt )(Ut dWt , dYt ).

Integrating from t = 0 to t = τ , we complete the proof of Lemma 3.7. ��
The following probabilistic representation formula on one-forms is a natural exten-

sion of Gundy’s formula (18) and Song’s formula (Lemma 5 in [52]) mentioned in the
beginning of this section.

Theorem 3.8 Let ω ∈ C∞
0 (M,	1(T ∗M)), and ωa(x, y) := e−y

√
a+�φω(x). Then

1

2
ω(x) = lim

y→+∞ Ey

⎡
⎣

τ∫

0

ea(s−τ)Mτ M−1
s

∂

∂y
ωa(Xs, Bs)d Bs | Xτ = x

⎤
⎦ . (27)
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Proof Let Zt = (Xt , Bt ), η ∈ C∞
0 (M,	1(T ∗M)). By Lemma 3.7, we have

∫

M

⎛
⎝Ey

⎡
⎣

τ∫

0

ea(s−τ)Mτ M−1
s

∂

∂y
ωa(Zs)d Bs | Xτ = x

⎤
⎦ , η(x)

⎞
⎠ dµ(x)

= Ey

⎡
⎣
⎛
⎝

τ∫

0

ea(s−τ)Mτ M−1
s

∂

∂y
ωa(Zs)d Bs, η(Xτ )

⎞
⎠
⎤
⎦

= I1(y) + I2(y),

where

I1(y) = Ey

⎡
⎣
⎛
⎝

τ∫

0

ea(s−τ)Mτ M−1
s

∂

∂y
ωa(Zs)d Bs, eaτ M∗,−1

τ ηa(Z0)

⎞
⎠
⎤
⎦ ,

I2(y) = Ey

⎡
⎣
⎛
⎝

τ∫

0

ea(s−τ)Mτ M−1
s

∂

∂y
ωa(Zs)d Bs,

τ∫

0

ea(τ−s)M∗,−1
τ M∗

s (∇, ∂y)ηa(Zs)(UsdWs, d Bs)

⎞
⎠
⎤
⎦ .

By the martingale property of the Itô stochastic integral
∫ t

0 eas M−1
s

∂
∂y ωa(Zs)d Bs , we

have

I1(y) = Ey

⎡
⎣
⎛
⎝E

⎡
⎣

τ∫

0

eas M−1
s

∂

∂y
ωa(Zs)d Bs

∣∣∣∣∣∣ Z0

⎤
⎦ , ηa(Z0)

⎞
⎠
⎤
⎦ = 0.

On the other hand, using the Itô L2-isometry identity, we have

I2(y) = Ey

⎡
⎣
⎛
⎝

τ∫

0

ea(s−τ)Mτ M−1
s

∂

∂y
ωa(Zs)d Bs,

τ∫

0

ea(τ−s)M∗,−1
τ M∗

s (∇, ∂y)ηa(Zs)(UsdWs, d Bs)

⎞
⎠
⎤
⎦

= Ey

⎡
⎣

τ∫

0

(
ea(s−τ)Mτ M−1

s
∂

∂y
ωa(Zs), ea(τ−s)M∗,−1

τ M∗
s

∂

∂y
ηa(Zs)

)
ds

⎤
⎦

= Ey

⎡
⎣

τ∫

0

(
∂

∂y
ωa(Zs),

∂

∂y
ηa(Zs)

)
ds

⎤
⎦ .
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The Green function of the background radiation process is given by 2(y ∧ z). Thus

Ey

⎡
⎣

τ∫

0

(
∂

∂y
ωa(Zs),

∂

∂y
ηa(Zs)

)
ds

⎤
⎦

= 2
∫

M

∞∫

0

(y ∧ z)

(
∂

∂z
ωa(x, z),

∂

∂z
ηa(x, z)

)
dzdµ(x).

Using the spectral decomposition, we can prove the Littlewood–Paley identity

lim
y→∞

∫

M

∞∫

0

(y ∧ z)

(
∂

∂z
ωa(x, z),

∂

∂z
ηa(x, z)

)
dzdµ(x) = 1

4

∫

M

(ω(x), η(x))dµ(x).

Therefore

〈ω, η〉L2(µ)

= 2 lim
y→∞

∫

M

⎛
⎝Ey

⎡
⎣

τ∫

0

ea(s−τ)Mτ M−1
s

∂

∂y
ωa(Zs) · d Bs | Xτ = x

⎤
⎦ , η(x)

⎞
⎠ dµ(x).

The proof of Theorem 3.8 is completed. ��

3.5 Proof of Theorem 3.2

We now prove Theorem 3.2. Using the commutation formula d(−L) = �φd, we have

∂

∂y
e−y

√
a+�φ (d(a − L)−1/2 f ) = −(a + �φ)1/2e−y

√
a+�φ (d(a − L)−1/2 f )

= −d(a − L)1/2e−t
√

a−L(a − L)−1/2 f

= −de−t
√

a−L f = −d Qa( f )(·, t).

Applying Theorem 3.8 to ω = d(a − L)−1/2 f , we obtain

−1

2
Ra(L) f (x) = lim

y→∞ Ey

⎡
⎣

τ∫

0

ea(s−τ)Mτ M−1
s d Qa( f )(Xs, Bs)d Bs | Xτ = x

⎤
⎦ .

The proof of Theorem 3.2 is completed. ��
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4 Proof of Theorem 1.4

We are now in a position to give a probabilistic proof of Theorem 1.4. The proof is
inspired by the ones of Bañuelos and Wang [14] and Arcozzi [2] for the L p-norm esti-
mates of the Riesz transforms on R

n and on Sn . We have also benefited from Gundy
[26] and Donati-Martin and Yor [21]. It would be very interesting if one can find an
analytic proof of Theorem 1.4.

For all 1 < p < ∞, the conditional expectation E[· | Xτ = x] is contractive in L p.
Thus

‖Ra(L) f ‖p
p

= 2p
∫

M

∣∣∣∣∣∣Ey

⎡
⎣

τ∫

0

ea(s−τ)Mτ M−1
s d Qa( f )(Xs, Bs)d Bs | Xτ = x

⎤
⎦
∣∣∣∣∣∣

p

dµ(x)

≤ 2p
∫

M

Ey

⎡
⎣
∣∣∣∣∣∣

τ∫

0

ea(s−τ)Mτ M−1
s d Qa( f )(Xs, Bs)d Bs

∣∣∣∣∣∣
p

| Xτ = x

⎤
⎦ dµ(x)

= 2p Ey

⎡
⎣
∣∣∣∣∣∣

τ∫

0

ea(s−τ)Mτ M−1
s d Qa( f )(Xs, Bs)d Bs

∣∣∣∣∣∣
p⎤
⎦ .

Let

I :=
τ∫

0

ea(s−τ)Mτ M−1
s d Qa( f )(Xs, Bs)d Bs .

Let e1, . . . , en be a normal orthonormal basis at TXs M such that ∇ei e j (Xs) = 0 for
all i, j = 1, . . . , n. Let e∗

1, . . . , e∗
n be the dual basis of e1, . . . , en . Then

d Qa( f )(Xs, Bs) =
n∑

j=1

∇e j Qa( f )(Xs, Bs)e
∗
j .

Let ẽi = UτU−1
s ei , and ẽ∗

i = UτU−1
s e∗

i . Then ẽ1, . . . , ẽn is a normal orthonormal
basis at TXτ M , and its dual basis is ẽ∗

1, . . . , ẽ∗
n . Let (Ai j ) be the matrix representa-

tion of A = Mτ M−1
s ∈ End(TXs M, TXτ M) in the orthonormal basis e1, . . . , en and

ẽ1, . . . , ẽn . We have

I =
τ∫

0

ea(s−τ)
n∑

j=1

∇e j Qa( f )(Xs, Bs)Mτ M−1
s e∗

j d Bs

=
τ∫

0

ea(s−τ)
n∑

i, j=1

∇e j Qa( f )(Xs, Bs)Ai j ẽ
∗
i d Bs .
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Note that, at the point Xs , we have

n∑
i, j=1

∇e j Qa( f )(Xs, Bs)Ai j ẽ
∗
i d Bs

=
n∑

i=1

ẽ∗
i

⎛
⎜⎜⎜⎜⎝

0 · · · 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
Ai1 · · · Ai j · · · Ain 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

∇e1 Qa( f )

· · ·
∇e j Qa( f )

· · ·
∇en Qa( f )

∂y Qa( f )

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

UsdW 1
s

· · ·
UsdW j

s
· · ·

UsdW n
s

d Bs

⎞
⎟⎟⎟⎟⎟⎟⎠

=
n∑

i=1

ẽ∗
i Ai (∇, ∂y)Qa( f )(Xs, Bs) · (UsdWs, d Bs),

where Ai denotes the (n+1)×(n+1)-matrix between ẽ∗
i and (∇Qa( f ), ∂y Qa( f )) in

the first equality. Therefore, the Itô stochastic integral I can be rewritten as a martingale
transform with respect to the space-time Brownian motion

I =
τ∫

0

ea(s−τ)
n∑

i=1

ẽ∗
i Ai (∇, ∂y)Qa( f )(Xs, Bs) · (UsdWs, d Bs).

By Burkholder’s sharp L p-inequality for martingale transforms [10–12], see also
Bañuelos and Wang [14], we have

‖Ra(L) f ‖p ≤ 2(p∗ − 1) sup
s∈[0,τ ]

ea(s−τ)

∥∥∥∥∥
n∑

i=1

ẽ∗
i Ai

∥∥∥∥∥
sp

×
∥∥∥∥∥∥

τ∫

0

(∇, ∂y)Qa( f )(Xs, Bs) · (UsdWs, d Bs)

∥∥∥∥∥∥
p

, (28)

where
∥∥∑n

i=1 ẽ∗
i Ai
∥∥

sp denotes the spectral norm of
∑n

i=1 ẽ∗
i Ai ∈ End(TXs M, TXτ M),

which is defined by

∥∥∥∥∥
n∑

i=1

ẽ∗
i Ai

∥∥∥∥∥
2

sp

:= sup
v∈TXs M,v �=0

∑n
i=1
∑n

j=1 |Ai jv j |2∑n
j=1 |v j |2 ,

where v = ∑n
j=1 v j e j . By the matrix representation formula of A = Mτ M−1

s in the
orthonormal basis e1, . . . , en and ẽ1, . . . , ẽn , we can easily verify that

∥∥∥∥∥
n∑

i=1

ẽ∗
i Ai

∥∥∥∥∥
sp

= sup
v∈TXs M,‖v‖=1

‖Mτ M−1
s v‖ = ‖Mτ M−1

s ‖,

123



Martingale transforms and L p-norm estimates of Riesz transforms 271

where ‖Mτ M−1
s ‖ is the operator norm of Mτ M−1

s ∈ End(TXs M, TXτ M). Now, by
(25), under the condition Ric(L) = Ric + Hess φ ≥ −a, for all v ∈ TXs M , we have

d

ds
‖Mτ M−1

s v‖2 = Ric(L)(Mτ M−1
s v, Mτ M−1

s v) ≥ −a‖Mτ M−1
s v‖2.

Moreover, at time s = τ , we have Mτ M−1
τ = I d. The Gronwall inequality yields

‖Mτ M−1
s v‖2 ≤ ea(τ−s)‖v‖2, ∀s ∈ [0, τ ].

Hence

sup
s∈[0,τ ]

ea(s−τ)

∥∥∥∥∥
n∑

i=1

ẽ∗
i Ai

∥∥∥∥∥
sp

≤ 1. (29)

On the other hand, Qa f (x, y) = e−y
√

a−L f (x) satisfies the Poisson equation

(∂2/∂y2 + L)Qa f = aQa f.

By Itô’s formula, we have

τ∫

0

(∇, ∂y)Qa( f )(Xs, Bs) · (UsdWs, d Bs)

= Qa( f )(Xτ , Bτ ) − Qa( f )(X0, B0) − a

τ∫

0

Qa f (Xs, Bs)ds

= f (Xτ ) − Qa( f )(x, y) − a

τ∫

0

Qa f (Xs, Bs)ds.

Notice that, for f ∈ C∞
0 (M) (with the additional condition µ( f ) = 0 if µ(M) < +∞

and a = 0),

Qa( f )(x,+∞) = lim
y→+∞ e−y

√
a−L f (x) = 0.
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Combining this with (28) and (29), we obtain

‖Ra(L) f ‖p ≤ 2(p∗ − 1)

⎛
⎝E

∣∣∣∣∣∣ f (Xτ ) − a

τ∫

0

Qa f (Xs, Bs)ds

∣∣∣∣∣∣
p⎞
⎠

1/p

≤ 2(p∗ − 1)

⎛
⎜⎝‖ f (Xτ )‖p + a

∥∥∥∥∥∥
τ∫

0

Qa f (Xs, Bs)ds

∥∥∥∥∥∥
p

⎞
⎟⎠

= 2(p∗ − 1)

⎛
⎜⎝‖ f ‖p + a

∥∥∥∥∥∥
τ∫

0

Qa f (Xs, Bs)ds

∥∥∥∥∥∥
p

⎞
⎟⎠ .

Similar to Gundy [26] (p. 41), by the independence of B and X , and using Minkowski’s
inequality, we have

∥∥∥∥∥∥
τ∫

0

Qa f (Xs, Bs)ds

∥∥∥∥∥∥
p

p

= EB

⎡
⎣EX

⎛
⎝
∣∣∣∣∣∣

τ∫

0

Qa( f )(Xs, Bs)ds

∣∣∣∣∣∣
p∣∣∣∣∣∣ B

⎞
⎠
⎤
⎦

≤ EB

⎡
⎣
⎧⎨
⎩

∞∫

0

(
EX
[ |Qa( f )(Xs, Bs)|p

∣∣ B
]) 1

p ds

⎫⎬
⎭

p⎤
⎦

≤ EB

⎡
⎣
⎛
⎝

∞∫

0

e−Bs
√

ads

⎞
⎠

p⎤
⎦ ‖ f ‖p

p,

where in the last step we have used the fact that for all 1 < p < ∞ and all f ∈ L p(µ),

‖Qa( f )(·, y)‖p ≤ e−y
√

a‖ f ‖p

which can be easily proved by using the Bochner subordination and the
L p-contractivity of et L . Hence

‖Ra(L) f ‖p ≤ 2(p∗ − 1)

⎛
⎜⎝1 + a

∥∥∥∥∥∥
∞∫

0

e−Bs
√

ads

∥∥∥∥∥∥
p

⎞
⎟⎠ ‖ f ‖p.

Thus, when Ric(L) ≥ 0, we have proved that

‖R0(L) f ‖p ≤ 2(p∗ − 1)‖ f ‖p.

Now suppose that Ric(L) ≥ −a, where a > 0. Let B̃s = Bτy−s be the time reversal
process of Bs . By [43,20,48,49], see Sect. 3.2, when y → ∞, we have τy → ∞ and
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we can regard B̃s as the 3D Bessel process starting from 0. Hence, for a standard 1D
Brownian motion βs , we have

d B̃s = dβs + ds

B̃s
.

This yields

d(
√

a B̃s) = dβas + d(as)√
a B̃s

.

Therefore

√
a B̃s = B̃as in law.

That is to say, when Ric(L) ≥ −a with a > 0, we have proved that

‖Ra(L) f ‖p ≤ 2(p∗ − 1)

⎛
⎜⎝1 +

∥∥∥∥∥∥
∞∫

0

e−B̃s ds

∥∥∥∥∥∥
p

⎞
⎟⎠ ‖ f ‖p.

Let

ξ :=
∞∫

0

e−ys ds,

where ys = B̃s is the 3D Bessel process starting at y0 = 0. By Donati-Martin and Yor
(see Table 1 in [21], p. 1052), if we let T1 be the first hitting time of ys at 1, i.e.,

T1 := inf{s > 0 : ys = 1}.

then T1 has the same law with the random variable

θ :=
∞∫

0

e−2ys ds.

Now 2ys = y4s in law. Hence

θ =
∞∫

0

e−2ys ds =
∞∫

0

e−y4s ds = 1

4

∞∫

0

e−ys ds = ξ

4
in law.

That is to say, ξ = 4T1 in law. The proof of Theorem 1.4 is completed. ��
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5 Two applications

In this section we give two applications of the main results of this paper. In Sect. 5.1
we prove the L p-Poincaré inequality for a symmetric diffusion operator on a complete
Riemannian manifold on which the Bakry–Emery Ricci curvature is bounded below
by a strictly positive constant. In Sect. 5.2 we prove the inequalities of equivalence of
Sobolev norms with optimal constants. We would like to emphasis that the results of
this section remain valid for any estimate of the Riesz transforms.

5.1 The L p-Poincaré inequality

It is well known that if M is a compact Riemannian manifold then the following
Poincaré inequality holds: for any p ∈ [1, n), there exists a constant C p such that for
all f ∈ C1(M),

‖ f − f ‖p ≤ C p‖∇ f ‖p, (30)

where f := 1
Vol(M)

∫
M f (x)dν(x). In this subsection we study the problem of the

explicit dependence of the constant C p on p and on the bound of the Ricci curvature.
The answer to this problem is the following result.

Theorem 5.1 Let (M, g) be a compact Riemannian manifold, ν be the normalized
volume measure. Suppose that there exists a positive constant ρ > 0 such that

Ric ≥ ρ.

Then for any p > 1 and for all f ∈ W 1,p(M, ν) we have

‖ f − ν( f )‖p ≤ ‖R0(�)‖q,q√
ρ

‖∇ f ‖p,

where q = p
p−1 , ν( f ) := ∫

M f (x)dν(x), and W 1,p(M, ν) := { f ∈ L p(ν) : |∇ f | ∈
L p(ν)}.

Theorem 5.1 is a special case of the following general result.

Theorem 5.2 Let (M, g) be a complete Riemannian manifold, µ(dx) = e−φ(x)dν(x)

be a probability measure. Suppose that φ ∈ C2(M) and there exists a positive constant
ρ > 0 such that

Ric(L) = Ric + ∇2φ ≥ ρ.

Then for any p > 1 and for all f ∈ W 1,p(M, µ) we have

‖ f − µ( f )‖p ≤ ‖R0(L)‖q,q√
ρ

‖∇ f ‖p,

where q = p
p−1 , µ( f ) := ∫M f (x)dµ(x), and W 1,p(M, µ) := { f ∈ L p(µ) : |∇ f | ∈

L p(µ)}.
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For symmetric diffusion operators with a positive lower bound of the Bakry–Emery
Ricci curvature, Theorem 5.2 is a natural extension of the well known Bakry–Emery
criterion for the L2-Poincaré inequality (see [8]) to the L p-Poincaré inequality for all
p > 1. To prove Theorem 5.2, we need the some preliminary results.

Lemma 5.3 (cf. [40,4,5,23]) Under the same conditions as in Theorem 5.2, for any
ω ∈ C1

0(M,	1(T ∗M)), we have

∣∣∣e−t�φω(x)

∣∣∣ ≤ e−ρt et L |ω(x)|, ∀ t ≥ 0, x ∈ M.

Proposition 5.4 Under the same conditions as in Theorem 5.2, for any p > 1 and
any ω ∈ C1

0(M,	1(T ∗M)), we have

∥∥∥�−1/2
φ ω

∥∥∥
p

≤ ‖ω‖p√
ρ

,

Proof By the Bochner subordination we have

�−1/2
φ ω = π−1/2

∞∫

0

e−t�φω
dt√

t
.

The Minkowski inequality and Lemma 5.3 imply

‖�−1/2
φ ω‖p = π−1/2

∥∥∥∥∥∥
∞∫

0

e−t�φω
dt√

t

∥∥∥∥∥∥
p

≤ π−1/2

∞∫

0

∥∥∥et�φω

∥∥∥
p

dt√
t

≤ π−1/2

∞∫

0

e−ρt‖ω‖p
dt√

t

= ‖ω‖p√
ρ

.

��

Proof of Theorem 5.2 Replacing f by f − µ( f ) and by the density argument, we
need only prove Theorem 5.2 for all f ∈ C1

0(M) satisfying µ( f ) = 0. In this case,
we have

f = R0(L)∗�−1/2
φ d f, (31)
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where R0(L)∗ denotes the L2(µ)-adjoint of R0(L). To see (31), using −L = d∗
φd and

d(−L) = �φd, we have

R0(L)∗�−1/2
φ d f =

(
d(−L)−1/2

)∗
d(−L)−1/2 f

= (−L)−1/2d∗
φd(−L)−1/2 f

= (−L)−1/2(−L)(−L)−1/2 f

= f.

By (31), Proposition 5.4, and using

‖R0(L)∗‖p,p = ‖R0(L)‖q,q ,

we obtain

‖ f ‖p =
∥∥∥R0(L)∗�−1/2

φ d f
∥∥∥

p

≤ ‖R0(L)∗‖p,p‖�−/2
φ ‖p,p‖d f ‖p

≤ ‖R0(L)‖q,q√
ρ

‖∇ f ‖p.

This completes the proof of Theorem 5.2. ��

5.2 Equivalence of Sobolev norms

As another application of Theorem 1.4, we have the following equivalence of Sobolev
norms on M . Notice that the constants appeared here are optimal and dimension-free.

Theorem 5.5 Under the same conditions as in Theorem 1.4, for all p > 1, we have

‖∇(a − L)−1/2‖−1
p,p‖∇ f ‖p ≤ ‖√a − L f ‖p

≤ √
a‖ f ‖p + ‖∇(a − L)−1/2‖q,q‖∇ f ‖p, (32)

where q = p
p−1 . In the case where a = 0, we require that f ∈ (KerL)⊥.

Proof We only consider the case a > 0. By the L p-boundedness of the Riesz transform
∇(a − L)−1/2, we have

‖∇(a − L)−1/2 f ‖p ≤ ‖∇(a − L)−1/2‖p,p‖ f ‖p.

This implies the left hand side inequality in (32). Below we prove the right side one.
By Hölder’s inequality, we have

‖ f ‖p = sup
‖g‖q=1

∫

M

〈 f, g〉dµ.
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For all f, g ∈ C∞
0 (M), integration by parts yields

∫

M

〈 f, g〉dµ =
∫

M

〈(a − L)−1/2(a + d∗
φd)(a − L)−1/2g, f 〉dµ

= a
∫

M

(a − L)−1/2g(a − L)−1/2 f dµ

+
∫

M

〈d(a − L)−1/2g, d(a − L)−1/2 f 〉dµ

≤ a‖(a − L)−1/2g‖q‖(a − L)−1/2 f ‖p

+‖d(a − L)−1/2‖q,q‖g‖q‖d(a − L)−1/2 f ‖p.

Using the Bochner subordination formula and the Lq -contractivity of the heat semi-
group Pt = et L , we have

‖(a − L)−1/2g‖q ≤ ‖g‖q√
a

, ∀ q > 1.

Thus

‖ f ‖p ≤ √
a‖(a − L)−1/2 f ‖p + ‖d(a − L)−1/2‖q,q‖d(a − L)−1/2 f ‖p.

This yields

‖√a − L f ‖p ≤ √
a‖ f ‖p + ‖d(a − L)−1/2‖q,q‖d f ‖p.

The proof of Theorem 5.5 is completed. ��

6 Remarks and conjecture

In this section we give some remarks and pose a conjecture.

Remark 6.1 On any complete Riemannian manifold, using integration by parts, we
have ‖R0(�)‖2,2 = ‖R0(L)‖2,2 = 1, and for all a > 0, ‖Ra(�)‖2,2 ≤ 1 and
‖Ra(L)‖2,2 ≤ 1. Hence, even if M is a complete Riemannian manifold with non-
negative Ricci curvature, or if L is a symmetric diffusion operator on a complete
Riemannian manifold whose Bakry–Emery Ricci curvature Ric(L) is non-negative,
the upper bound 2(p∗ −1) for the L p-norm of the Riesz transforms R0(�) and R0(L)

is not the best. In the case where M = R
n and p > 2, Iwaniec and Martin [30] proved

that

‖R0(�Rn )‖p,p ≤ √
π cot

(
π

2p

)
.
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This estimate is slightly better than Bañuelos and Wang’s upper bound 2∗(p − 1)

when p → ∞. Let us remind that it is still an open problem to find the exact value of
‖R0(�)‖p,p even in the case where (M, µ) = (Rn, dx) or (M, µ) = (Sn, ν) when
n ≥ 2 and p �= 2.

Remark 6.2 In [31], Larsson-Cohn proved that, for the Riesz transform associated
with the Ornstein–Uhlenbeck operator on the Gaussian space (Rn, γn) or on the infi-
nite dimensional Wiener space (W (Rn), µ), when p → 1,

2

π

1

p − 1
(1 + o(1)) ≤ ‖R0(L)‖p,p ≤ 2

p − 1
,

and when p → ∞,

1

π
p(1 + o(1)) ≤ ‖R0(L)‖p,p ≤

√
2e

π
p(1 + o(1)).

From these and by Iwaniec and Martin [30], Bañuelos and Wang [14] and Arcozzi
[2], we see that at least in the case where (M, µ) = (Rn, dx), (M, µ) = (Rn, γn), or
(M, µ) = (Sn, ν), and in the case where L is the Ornstein–Uhlenbeck operator on the
Wiener space, the upper bound of the form O(p∗ − 1) for the L p-norm of the Riesz
transforms R0(�) or R0(L) is asymptotically sharp when p → 1 and when p → ∞.

In fact, in the case where M = R
n , for all p > 1, we have ‖R0(�Rn )‖p,p ≥

‖R j‖p,p = cot( π
2p∗ ). Moreover, ‖R0(�Rn )‖p,p ≤ 2

p−1 for all 1 < p < 2, and

‖R0(�Rn )‖p,p ≤ √
π cot( π

2p ) for all p > 2. Therefore, when p → 1, we have

2

π

1

p − 1
(1 + o(1)) ≤ ‖R0(�Rn )‖p,p ≤ 2

p − 1
,

and when p → ∞,

2

π
p(1 + o(1)) ≤ ‖R0(�Rn )‖p,p ≤ 2√

π
p(1 + o(1)).

In the case where M = Sn , from Arcozzi [2], we have

cot

(
π

2p∗

)
≤ ‖R0(�Sn )‖p,p ≤ 2(p∗ − 1).

This also implies that, when p → 1 and when p → ∞,

2

π
(p∗ − 1)(1 + o(1)) ≤ ‖R0(�Sn )‖p,p ≤ 2(p∗ − 1).

Stimulated by the results in [30,14,2,31], we would like to pose the following
conjecture.
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Conjecture 6.3 Let M be a complete Riemannian manifold, φ ∈ C2(M). Suppose
that Ric(L) = Ric + ∇2φ ≥ 0. Then there exists a constant c > 0 such that for all
p > 1, we have

c(p∗ − 1)(1 + o(1)) ≤ ‖∇(−L)−1/2‖p,p ≤ 2(p∗ − 1). (33)

In particular, on any complete Riemannian manifold M with non-negative Ricci
curvature, for all p > 1, we have

c(p∗ − 1)(1 + o(1)) ≤ ‖∇(−�)−1/2‖p,p ≤ 2(p∗ − 1). (34)

In the case where M is a universal covering of a compact Riemannian manifold
with non-negative Ricci curvature, the Cheeger–Gromoll splitting theorem says that
M is isometric to the Riemannian product manifold R

k × N with the product metric
ds2

M = ds2
Rk + ds2

N , k ≥ 1, where N is an (n − k)-dimensional compact Riemann-
ian manifold with non-negative Ricci curvature. In this case, we can prove that the
L p-norm of the Riesz transform ∇(−�M )−1/2 satisfies (34). Furthermore, assuming
that M is a complete Riemannian manifold with non-negative Ricci curvature and
contains a line, then the Cheeger–Gromoll splitting theorem says that M is isomet-
ric to the Riemannian product manifold R

k × N with product metric, where N is
an (n − k)-dimensional complete Riemannian manifold which does not contain any

line. Let φ(x, y) = φ1(x) + φ2(y), where φ1(x) = 0, or φ1(x) = ‖x‖2

2 + n
2 log(2π),

φ2 ∈ C2(N ), (x, y) ∈ M = R
k × N . Suppose that RicN + ∇2φ2 ≥ ρ for some

constant ρ > 0, or more generally RicN + ∇2φ2 ≥ 0 and µ2(N ) < ∞, where
dµ2(y) = e−φ2(y)νN (dy). Then we can prove that the L p-norm of the Riesz trans-
form ∇(−L)−1/2 satisfies (33). Similarly, if M is isometric to the Riemannian product
Sk × N , k ≥ 1, and φ(x, y) = φ1(x) + φ2(y), where φ1(x) = 0, RicN + ∇2φ2 ≥ 0
and µ2(N ) < ∞, the above conjecture is true. Due to the limit of the space of the
paper, we leave the proofs of these results to the reader.

Finally, let us mention that it is well known that the Riesz transforms are not
bounded in L p for p = 1,∞. In the case where M is a complete Riemannian mani-
fold with non-negative Ricci curvature, it has been proved that the Riesz transform
∇(−�M )−1/2 is weak (1, 1) and is bounded from H1 to L1, see [16,32,6,17,18].
However, it is still an open problem whether the weak (1, 1)-norm and the H1–L1

norm of the Riesz transform ∇(−�M )−1/2 are independent of n = dim M (even in the
case where M = R

n). Moreover, it is also a long time open problem whether Meyer’s
Riesz transform on the Wiener space is weak (1, 1) and is bounded from H1 to L1.
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