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Abstract For a standard full exponential family on R
d , or its canonically convex

subfamily, the generalized maximum likelihood estimator is an extension of the
mapping that assigns to the mean a ∈ R

d of a sample for which a maximizer ϑ∗
of a corresponding likelihood function exists, the member of the family parameterized
by ϑ∗. This extension assigns to each a ∈ R

d with the likelihood function boun-
ded above, a member of the closure of the family in variation distance. Its detailed
description, complete characterization of domain and range, and additional results
are presented, not imposing any regularity assumptions. In addition to basic convex
analysis tools, the authors’ prior results on convex cores of measures and closures of
exponential families are used.
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1 Introduction

1.1 Let µ be a nonzero Borel measure on R
d whose log-Laplace transform

Λ(ϑ) = Λµ(ϑ) � ln
∫

Rd

e〈ϑ,x〉 µ(dx), ϑ ∈ R
d ,

has the effective domain dom(Λ) = {ϑ : Λ(ϑ) < +∞} nonempty. The full
exponential family E = Eµ, determined by µ and the identity mapping as canoni-
cal statistic, consists of the probability measures (pm’s) Qϑ = Qµ,ϑ , ϑ ∈ dom(Λ),
with µ-densities x �→ e〈ϑ,x〉−Λ(ϑ). Here, ϑ is called canonical parameter. The mapping
ϑ �→ Qϑ may be many-to-one.

Throughout this paper the symbol Ξ denotes a nonempty convex subset of dom(Λ)

and EΞ = Eµ,Ξ denotes the canonically convex exponential family {Qϑ : ϑ ∈ Ξ}. The
full family E is regarded as the family EΞ with Ξ = dom(Λ), even if E = EΞ may
hold also for other choices of Ξ . All results in this paper are stated for general Ξ , full
exponential families are covered as the instance Ξ = dom(Λ). Exponential families
with a canonical statistic different from the identity mapping will not be addressed, but
the results easily extend to those, via reduction by sufficiency to “standard” families
as above.

For a ∈ R
d a maximizer ϑ∗ of the function ϑ �→ 〈ϑ, a〉 − Λ(ϑ) subject to ϑ ∈ Ξ

has a statistical interpretation when a equals the mean of an i.i.d. sample from a
probability measure Qϑ with ϑ ∈ Ξ unknown. Then ϑ∗ is a maximum likelihood
estimate (mle) of the unknown parameter, from this sample. As well known [1], a
sufficient condition for the existence of mle is the equality of a to the mean of Qθ for
some θ ∈ Ξ . Then ϑ∗ = θ maximizes the above function even when ϑ ranges over
the whole dom(Λ), and

[〈ϑ∗, a〉 − Λ(ϑ∗)
] − [〈ϑ, a〉 − Λ(ϑ)

] = D(Qϑ∗ ||Qϑ), ϑ ∈ Ξ.

Here, D denotes Kullback–Leibler information divergence (I-divergence or relative
entropy), defined for any pm’s P and Q by

D(P||Q) �
{∫

ln d P
d Q d P, if P � Q,

+∞, otherwise.

The authors have recently shown [6,5] that for any a ∈ R
d such that

Ψ ∗(a) = Ψ ∗
µ,Ξ (a) � sup

ϑ∈Ξ

[ 〈ϑ, a〉 − Λ(ϑ)
]

(1)
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Generalized maximum likelihood estimates for exponential families 215

is finite, thus a ∈ dom(Ψ ∗), there exists a unique pm R∗(a) with the property

Ψ ∗(a) − [〈ϑ, a〉 − Λ(ϑ)
]

� D(R∗(a)||Qϑ), ϑ ∈ Ξ. (2)

This R∗(a) = R∗
µ,Ξ (a) has been called generalized maximum likelihood estimate

(gmle). In the case of existence of an mle ϑ∗, a direct substitution gives that R∗(a) =
Qϑ∗ , thus ϑ∗ parameterizes the gmle. The inequality (2) implies that for each ϑ ∈ Ξ

satisfying 〈ϑ, a〉 − Λ(ϑ) � Ψ ∗(a) − ε (such ϑ may be called an ε-mle), the pm Qϑ

belongs to an information divergence ball of radius ε centered at R∗(a). The concept of
gmle should be of interest in those cases when no mle exists (not even in the slightly
modified sense discussed in Sect. 3, corresponding to the closure of a projection of the
set Ξ ), but the gmle exists, thus it can serve as a substitute of mle. In these cases, the
gmle does not belong to the exponential family E , see the passage after Theorem 3.2,
although it always belongs to clv (EΞ), the closure of EΞ in variation distance, see
Remark 1.2 below. This means that for gmle to go beyond mle it is necessary that
E be not closed in variation distance, which excludes statistical models of continuous
type. For models of discrete or mixed type, however, it is not uncommon that the log-
likelihood function is bounded but has no maximizer; then gmle provides a remedy
to the nonexistence of mle.

Remark 1.1 The notation points to the fact that Ψ ∗ is the convex conjugate of the
function Ψ equal to Λ on Ξ and to +∞, otherwise. Thus, (2) sharpens the Fenchel
inequality for Ψ , stating that the left-hand side of (2) is nonnegative. Note that if a
full exponential family is considered then Ψ = Λ, Ψ ∗ = Λ∗.

Remark 1.2 For any sequence ϑn in Ξ with 〈ϑn, a〉 − Λ(ϑn) → Ψ ∗(a) < ∞ it
follows from (2) that the sequence Qϑn converges to R∗(a) in reversed information
(rI-) divergence, D(R∗(a)||Qϑn ) → 0, and hence by the Pinsker inequality also in
variation distance. This shows that the gmle R∗(a) is uniquely determined by (2), and
belongs to clv (EΞ). This closure has been recently described in detail [8].

Remark 1.3 The supremum in (1) can be finite also if a is outside the convex
support of µ, denoted by cs(µ), though not for a full family since dom(Λ∗) ⊆ cs(µ)

[1, Theorem 9.1]. Then the maximization has no direct statistical interpretation since
the mean of a sample from a distribution in the family EΞ belongs to cs(µ) with pro-
bability 1. As explained below, it is still useful to consider mle and gmle also when
a /∈ cs(µ), and even when a is outside the affine hull of cs(µ), denoted by aff (µ). In
that case, different parameter sets Ξ can give rise to the same family of pm’s EΞ but
to different gmle’s, see Example 3.5 in Sect. 3. For this reason, the choice of Ξ is left
free in this paper, unlike in [8] where from the possible parameter sets for the family
EΞ a natural one is selected.

1.2 The goal of this paper is to study properties of the gmle in full generality.
This generality is not for its own sake. Indeed, suppose a characterization of R∗(a)

were required only for full families Eµ in minimal representation, that is, such that
both cs(µ) and dom(Λµ) have nonempty interiors. As illustrated in Example 1.4
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216 I. Csiszár, F. Matúš

below, even in that case there may exist a set A that contains the sample mean with
positive probability (for all sample sizes) such that the characterization of R∗(a) for
a ∈ A necessitates the maximization of 〈ϑ, a〉 − Λν(ϑ) subject to ϑ ∈ Ξ where
ν is a restriction of µ, Ξ = dom(Λµ) is a proper subset of dom(Λν) and, more
remarkably, no a ∈ A is contained in aff (ν). Thus, in order to determine gmle’s for
full exponential families in minimal representation in all cases of statistical interest, it
is necessary to consider also non-full families with underlying measure concentrated
on a proper affine subspace of R

d and a not contained in that subspace. We admit
that no such intrinsic need is apparent for going beyond the case when dom(Λ) has
nonempty interior that contains some ϑ ∈ Ξ , which will be called the nondegenerate
case. We do not make that restriction mainly for mathematical completeness. This
does lead to technical problems not present in the nondegenerate case, but these are
not difficult to overcome via the concept of partial mean, see Sect. 2.4. Full generality
is useful also for at least one application, viz. an explicit description of generalized
rI-projections to canonically convex exponential families, even of pm’s that do not
have a mean, as indicated in Sect. 5.

Example 1.4 Let C be the closed convex cone in R
3 given by x1 � 0 and x2

1 �
x2

2 + x2
3 . Let µ be sum of the unit point mass ν at the origin c = (0, 0, 0) and of

the pm concentrated on the boundary ∂C of C with the density 1
2π

e−r dr dφ, r � 0,
0 � φ < 2π , in cylindrical coordinates. The convex support of µ equals C , and for
ϑ = (ϑ1, ϑ2, ϑ3) in the interior of (1, 0, 0) − C

Λ(ϑ) = ln

⎡
⎣1 + 1

2π

2π∫

0

dφ

+∞∫

0

er(ϑ1−1+ϑ2 cos φ+ϑ3 sin φ) dr

⎤
⎦

= ln

[
1 + [

(ϑ1 − 1)2 − ϑ2
2 − ϑ2

3

]− 1
2

]

and Λ(ϑ) = +∞ otherwise. Thus dom(Λ) equals this shifted open cone, see Fig. 1.
Consider the full exponential family Eµ, thus let Ξ = dom(Λ). If a is in the interior

of C , elementary calculations show that the function ϑ �→ 〈ϑ, a〉−Λ(ϑ) has a unique
maximizer ϑ∗ ∈ dom(Λ), the pm Qϑ∗ has the mean a and equals R∗(a).

For a = (a1, a2, a3) ∈ ∂C the function has no maximizer but is bounded above.
In fact, 〈ϑ, a〉 − Λ(ϑ) < 〈ϑ, a〉 � a1 for ϑ ∈ dom(Λ) whence Λ∗(a) � a1 similarly

Fig. 1 Illustrations of Examples 1.4 and 5.5
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Generalized maximum likelihood estimates for exponential families 217

to [6, Example 2]. Actually, Λ∗(a) = a1 by limiting for ϑn = (1 − 1
n , 0, 0) + n2b ∈

dom(Λ), n → ∞, where b ∈ −∂C is nonzero and orthogonal to a. Since Λ∗(a) =
Ψ ∗(a) is finite, the concept of gmle applies, and (2) with R∗(a) replaced by ν rewrites
to

a1 − [〈ϑ, a〉 − Λ(ϑ)
]

� D(ν||Qϑ) = Λ(ϑ), ϑ ∈ Ξ,

which obviously holds. Thus, R∗
µ,Ξ (a) = ν by uniqueness of gmle discussed in

Remark 1.2.
On the other hand, Λν = 0 and the family Eν,Ξ = {ν} is not in minimal

representation. Obviously, Ψ ∗
ν,Ξ (a) equals a1 if a ∈ C and +∞ otherwise. In the

cases a ∈ ∂C , the equalities Ψ ∗
µ,Ξ (a) = Ψ ∗

ν,Ξ (a) and R∗
ν,Ξ (a) = R∗

µ,Ξ (a) hold, and
thus a characterization of R∗(a) is indeed related to the maximization of 〈ϑ, a〉−Λν(ϑ)

subject to ϑ ∈ Ξ , where a /∈ aff (ν) unless a = c. These observations are not par-
ticular to this simple example but rather illustrate general phenomena studied in this
paper.

For an i.i.d. sample of any size from any pm in the family Eµ, the probability is
positive that exactly one element differs from c, thus the sample mean a belongs to
A = ∂C \ {c} with a positive probability. Example 5.5 of Sect. 5 exposes further
illustrations of results of this paper for the full family Eµ.

1.3 The main concepts and notations are introduced in Sect. 2 including tools from
convex geometry. Several auxiliary results are also collected there. Section 3 deals
with the case when a belongs to a certain convex subset of dom(Ψ ∗). As will be
clear later, this set contains the relative interior of dom(Ψ ∗) and is exactly the set of
those a ∈ dom(Ψ ∗) for which R∗(a) belongs to E , see Corollary 4.2. For a in this
subset, the supremum in (1) is actually a maximum, perhaps not subject to ϑ ∈ Ξ

but to ϑ ∈ Ξµ,a where the latter set is the closure of a projection of Ξ such that
the values 〈ϑ, a〉 − Λ(ϑ), ϑ ∈ dom(Λ), are preserved by this projection. While this
section is still of preparatory character, it has also independent interest because results
well known under some regularity conditions [1, Sect. 9.4], are proved here in full
generality. Much of the effort is needed to cover also the case a /∈ aff (µ), disregarded
in previous literature because of no immediate statistical meaning.

In Sect. 4, a pm satisfying (2), thus the gmle from a ∈ dom(Ψ ∗), is constructed
explicitly in Theorem 4.1, in contrast to [6] where R∗(a) was obtained as the limit of a
Cauchy sequence in a complete space. In the case not covered in Sect. 3, a proper face
of the set called convex core of µ is identified by geometric means. For the family Eν,Ξ

determined by the restriction ν of µ to the closure of this face, results of Sect. 3 apply to
obtain R∗

ν,Ξ (a). This equals the desired gmle R∗
µ,Ξ (a). Relying on this construction,

also descriptions of dom(Ψ ∗) are presented in Theorem 4.9.
In Sect. 5, several properties of the gmle mapping R∗ : a �→ R∗(a), defined on

dom(Ψ ∗), are proved. Its range is characterized as a subset of clv (EΞ), Theorem 5.1.
In the nondegenerate case, this subset consists exactly of those pm’s that have a mean.
The inverse of the gmle mapping is also addressed in Theorem 5.1. For each pm P in
the range, the set {a ∈ dom(Ψ ∗) : R∗(a) = P} is shown to be the singleton {m(P)}
consisting of the partial mean m(P) of P or a (not necessarily convex) cone shifted
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218 I. Csiszár, F. Matúš

by m(P). A general result about the continuity of the gmle mapping is presented,
Theorem 5.6, and special situations are discussed where the gmle mapping is bijective
or even a homeomorphism, Remark 5.9. Then, a relationship of the concepts of gmle
and generalized rI-projection is discussed. Finally, the log-convexity of clv (EΞ) and
of the range of R∗ is established, Theorem 5.10, in the sense of [6].

In Sect. 6, an mle in clv (EΞ) is considered. This mle concept extends that in
Sect. 1.1 when a ∈ aff (µ), but is undefined otherwise. It is shown that if this
mle exists then it corresponds to the gmle, but not conversely. In the special case
dom(Λ) = R

d , the gmle and mle coincide, and the results of this paper on gmle’s
cover previous ones on nonexistence of mle’s. Finally, in Appendix the invariance
of the concepts of this paper w.r.t. different parameterizations of a family is trea-
ted. The gmle R∗(a) is shown not to depend on the parametrization when a ∈
aff (µ), though this invariance breaks down in other cases without statistical inter-
pretation.

1.4 Exponential families are covered in depth in the monographs Chentsov [3],
Barndorff-Nielsen [1], Brown [2] and Letac [11]. The standard reference for convexity
is Rockafellar [15].

The ml estimation in canonically convex exponential families is treated in detail
in [1, Sect. 9.4]. Generalizations of mle’s for the case when the supremum in (1) is
not attained, have been considered for exponential families of pm’s concentrated on
finite or countable sets. The former case, in a theoretical sense, is completely settled
in [1, Theorem 9.16], replacing the family by its “completion”; for recent related
works addressing also computational issues in the framework of contingency tables
see [10,13]. The latter case is treated in [2, Chap. 6] via “aggregate families”, under
rather restrictive additional conditions. In general, one natural “completion” is the
closure in variation distance. Some results on mle in that direction, slightly improved
here in Sect. 6, appeared in Csiszár and Matúš [6, Sect. 6]. The closure in variation
distance of any canonically convex exponential family is characterized in Csiszár and
Matúš [8], using the concepts of convex core of a measure introduced in [4], and
of its accessible faces introduced in [8]. The log-convexity of this closure has not
been yet addressed, but its subset consisting of all pm’s to which some sequence
in EΞ converges in rI-divergence (containing all gmle’s) has been shown to be not
necessarily log-convex, Csiszár and Matúš [7].

A description of dom(Ψ ∗), even of dom(Λ∗), has been elusive in general, though a
relationship between them has been known under some conditions [1, p. 159, Eq. (3)].
The strongest previous results on dom(Λ∗) are apparently those in [6, Proposition 1].

The concept of gmle, the main subject of this paper, is introduced in [5,6], motivated
by the study of generalized rI-projections. The nonconstructive existence proof
of gmle given in [6] is extended to infinite dimensional exponential families in [9].
A constructive proof of the existence of gmle is first given in this paper.

One application area of gmle’s seems to be within graphical models of multivariate
statistics, see [12, Chap. 6] where mle’s have been considered for various general
exponential families which reduce by sufficiency to standard ones considered in this
paper. In such general mixed models, nonexistence of mle’s is a rather common
phenomenon, and gmle’s may provide a remedy. In the particular case of log-linear
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Generalized maximum likelihood estimates for exponential families 219

models for multidimensional contingency tables computational strategies under the
nonexistence of mle are discussed in [14].

2 Preliminaries

2.1 Denote for a subset B of R
d its closure by cl(B), affine hull by aff (B), relative

interior by ri(B), which is the interior of B in the topology of aff (B), and denote the
shift of aff (B) containing the origin by lin(B), which is the linear space spanned by
the differences b − c, b, c ∈ B. The orthogonal projector to lin(B) is denoted by πB .
The orthogonal complement of a linear subspace E of R

d is denoted by E⊥.
A face of a convex set C ⊆ R

d is a nonempty convex subset F that contains
ta + (1 − t)b for some a, b in C and 0 < t < 1 only if a and b are in F ; note the
slight deviation from the terminology of [15] where also the empty set is a face.

Lemma 2.1 For convex subsets C and K of R
d and a ∈ C + K , in the family of faces

F of C with a ∈ ri(F) + K the inclusion-largest element exists.

Proof If a is in ri(Fi )+K for faces Fi of C , i = 1, 2, thus a = fi +ki with fi ∈ ri(Fi )

and ki ∈ K , then the element g = 1
2 ( f1 + f2) of C belongs to ri(G) for a unique face

G of C [15, Theorem 18.2]. Since a = g + 1
2 (k1 + k2) it follows from convexity of K

that a ∈ ri(G) + K . The definition of face implies that the segment with endpoints f1
and f2 is contained in G. Hence, both ri(Fi ) intersect G, and thus are contained in G
[15, Theorem 18.1]. This implies that a face in the family with the largest dimension
contains all faces of the family. ��

A subset of R
d is a cone if it contains t x with each of its elements x and t > 0.

For a convex set C ⊆ R
d , its recession cone rec(C) is the set of all y ∈ R

d such that
x + t y ∈ C for all x ∈ C and t � 0. In [15], the notation 0+C is used instead of
rec(C).

Lemma 2.2 If T is a linear mapping and C ⊆ R
d is convex then T rec(C) ⊆ rec(T C).

Proof Given a ∈ T rec(C) and b ∈ T C , write a = T ca, b = T cb where ca ∈
rec(C), cb ∈ C . Then cb + tca ∈ C for t � 0. Applying T , b + ta ∈ T C , and thus
a ∈ rec(T C). ��

The barrier cone bar(Γ ) of a set Γ ⊆ R
d is the set of all x ∈ R

d such that the
mapping ϑ �→ 〈ϑ, x〉 is bounded above on Γ . A vector x ∈ R

d is normal to the set Γ

at θ ∈ R
d if 〈ϑ − θ, x〉 � 0 for all ϑ ∈ Γ . Such a vector obviously belongs to bar(Γ ).

The set of those normal vectors is the normal cone of Γ at θ , denoted by Nθ (Γ ). In
this paper, these terms are used in an extended sense, as the usual requirement θ ∈ Γ

is not imposed.

Lemma 2.3 For any nonempty convex Γ ⊆ R
d ,

rec(Γ ) ⊆ rec(cl(Γ )) = rec(ri(Γ )) = N0(bar(Γ )).
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220 I. Csiszár, F. Matúš

Proof The recession cone of cl(Γ ) contains that of Γ by [15, Theorem 8.3] and equals
that of ri(Γ ) by [15, Corollary 8.3.1]. By [15, Corollary 14.2.1], where the normal cone
at 0 of a cone K is called the polar of K , it holds that rec(cl(Γ )) = N0(bar(cl(Γ ))).
This proves the last equality as bar(cl(Γ )) = bar(Γ ) is obvious by definition. ��

2.2 A face F of a convex set C ⊆ R
d is exposed if either F = C or, for some unit

vector τ , the maximum of 〈τ, x〉 subject to x ∈ C is attained if and only if x ∈ F .
Such τ is said to expose F in C .

The following concepts were introduced in [8] in order to characterize the variation
closure of EΞ . An access sequence to a proper face F of a convex set C ⊆ R

d is an
orthonormal sequence τ1, . . . , τm such that τi ∈ lin(Fi−1) exposes a face Fi of Fi−1
for i = 1, . . . , m, where F0 = C and Fm = F . Such a sequence always exists. In
particular, an access sequence of length m = 1 to a proper face F exists if and only
if F is an exposed face. An access sequence to F is adapted to a convex set Ξ ⊆ R

d

if τi ∈ rec(πFi−1(ri(Ξ))) for 1 � i � m. The access sequence to F = C is empty,
by definition, and it is adapted to any convex Ξ . Note that the notion of adaptedness
depends on Ξ only through ri(Ξ) or πC (Ξ) or πC (ri(Ξ)) = ri(πC (Ξ)). A face F
of C is Ξ -accessible if there exists an access sequence to F which is adapted to Ξ .
More details and examples illustrating these notions can be found in [8].

Lemma 2.4 For intersecting faces F and G of a convex set C, if F is a Ξ -accessible
face of C then F ∩ G is a Ξ -accessible face of G.

Proof The case F ⊇ G is trivial. Otherwise, F �= C and there exists an access
sequence τ1, . . . , τm to the face F of C which is adapted to Ξ . Let C = F0 ⊃ · · · ⊃
Fm = F be the corresponding chain of faces, in particular, τi ∈ rec(πFi−1(ri(Ξ))),
1 � i � m.

The sequence Gi = Fi ∩ G of faces of G decreases from G to F ∩ G and τi

exposes Gi in Gi−1. If Gi−1 contains Gi strictly then τi is not orthogonal to lin(Gi−1)

and the unit vector ϑi in the direction πGi−1(τi ) exposes Gi in Gi−1 as well. This ϑi

belongs to πGi−1(rec(πFi−1(ri(Ξ)))), thus to rec(πGi−1(ri(Ξ))) by Lemma 2.2 and
πGi−1πFi−1 = πGi−1 .

Let i1 < · · · < ik be those indices 1 � i � m for which Gi is a proper face of
Gi−1. For 1 � j � k the face Gi j −1 of G equals Gi j−1 , and hence ϑi j exposes Gi j

in Gi j−1 and belongs to rec(πG ′(ri(Ξ))) where G ′ = Gi j−1 . Thus, ϑ1, . . . , ϑk is an
access sequence to F ∩ G from G, adapted to Ξ . ��
Corollary 2.5 If F and G are intersecting Ξ -accessible faces of a convex set C then
F ∩ G is also a Ξ -accessible face of C.

Proof Since G is Ξ -accessible from C and F ∩ G is Ξ -accessible from G by
Lemma 2.4 it suffices to concatenate their access sequences adapted to Ξ . The conca-
tenation is an access sequence to the face F ∩ G of C , adapted to Ξ . ��

2.3 For a σ -finite Borel measure µ on R
d , its convex support cs(µ) and convex

core cc(µ) are defined as intersections of those convex sets C ⊆ R
d that are µ-full,
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Generalized maximum likelihood estimates for exponential families 221

µ(Rd \ C) = 0, and closed, respectively Borel. The cores have been considered
previously only for finite measures. Since cs(µ) and cc(µ) do not change when µ is
replaced by any equivalent measure, results on finite measures immediately extend to
σ -finite ones (provided that when images of σ -finite measures are considered, these
are postulated to be σ -finite). References are made below to the following assertions.

Fact 2.6 The closure of cc(µ) equals cs(µ) [4, Lemma 1], thus cc(µ) is nonempty if
and only if µ is nonzero.

Fact 2.7 Every face F of cc(µ) equals the convex core of the restriction of µ to cl(F)

[4, Lemma 3], hence this restriction is nonzero.

Fact 2.8 The image of cc(µ) under any affine transformation T equals the convex
core of the image of µ under T [4, Lemma 8], providing that image is σ -finite.

Fact 2.9 A supporting hyperplane H of cs(µ) has positive µ-measure if and only if
F = H ∩ cc(µ) is nonempty, in which case µ(H \ cl(F)) = 0 [8, Lemma 1].

Fact 2.10 If F and G are faces of cc(µ) then cl(F)∩cl(G)\cl(F ∩G) has µ-measure
zero [4, Corollary 4].

On account of Fact 2.6, cc(µ) and cs(µ) have the same relative interior, denoted by
ri(µ). The notations aff (µ), already used in Sect. 1, and lin(µ) are analogous and
selfexplaining.

For a ∈ R
d let Eµ,a denote the subspace of R

d spanned by the set {b − a : b ∈
aff (µ)}, or equivalently by lin(µ) and b − a for any fixed b ∈ aff (µ). Thus, Eµ,a ⊇
lin(µ), with equality if and only if a ∈ aff (µ). Let πµ and πµ,a denote the orthogonal
projectors to lin(µ) and Eµ,a , respectively.

Lemma 2.11 Each ϑ ∈ R
d satisfies 〈ϑ, a〉 − Λ(ϑ) = 〈πµ,a(ϑ), a〉 − Λ(πµ,a(ϑ)).

Proof If x ∈ aff (µ) then x − a ∈ Eµ,a , thus 〈ϑ, x − a〉 = 〈πµ,a(ϑ), x − a〉. Hence,

〈ϑ, a〉 − Λ(ϑ) = − ln
∫

aff (µ)

e〈ϑ,x−a〉 µ(dx)

does not change when ϑ is replaced by πµ,a(ϑ). ��
Recall the standing convention that Ξ denotes a nonempty convex subset of dom(Λ)

and Ψ ∗ = Ψ ∗
µ,Ξ is defined by (1).

Corollary 2.12 Ψ ∗
µ,Ξ (a) = Ψ ∗

µ,πµ,a(Ξ)(a). If Γ ⊆ dom(Λ) and πµ,a(Γ ) = πµ,a(Ξ)

then Ψ ∗
µ,Γ (a) = Ψ ∗

µ,Ξ (a).

The special instance of Lemma 2.11

〈ϑ, b〉 − Λ(ϑ) = 〈πµ(ϑ), b〉 − Λ(πµ(ϑ)), ϑ ∈ R
d , b ∈ aff (µ), (3)

is well-known. Its consequences include the facts that Qϑ with ϑ ∈ dom(Λ) does not
change when ϑ is replaced by πµ(ϑ), and dom(Λ) = πµ(dom(Λ)) + lin(µ)⊥.
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Lemma 2.13 Ψ ∗
µ,ri(Ξ)

(a) = Ψ ∗
µ,Ξ (a) = Ψ ∗

µ,cl(Ξ)∩dom(Λ)
(a).

Proof If θ ∈ cl(Ξ)∩dom(Λ) then some sequence ϑn in ri(Ξ) converges to θ along a
segment. By continuity of Λ along the segment, Ψ ∗

µ,ri(Ξ)
(a) � 〈θ, a〉−Λ(θ). Hence,

Ψ ∗
µ,ri(Ξ)

(a) � Ψ ∗
µ,cl(Ξ)∩dom(Λ)

(a). The remaining inequalities are trivial. ��

2.4 For any pm P on R
d , write

M(P) = {
τ ∈ R

d : x �→ 〈τ, x〉 is P-integrable
}

and define the partial mean m(P) of P as the unique element of the linear space M(P)

that satisfies
∫

Rd

〈τ, x〉 P(dx) = 〈τ,m(P)〉, τ ∈ M(P).

Note that M(P) = R
d if and only if P has a mean, in which case m(P) equals the

mean of P .

Lemma 2.14 For any pm P on R
d , lin(P)⊥ is a subspace of M(P).

Proof If τ ∈ lin(P)⊥ then x �→〈τ, x〉 is constant on aff (P), and thus τ ∈ M(P). ��
Lemma 2.15 The partial mean m(P) of a pm P belongs to ri(P)+M(P)⊥, contained
in aff (P).

Proof Let π denote, in this proof only, the orthogonal projector to M(P), and π P the
image of P under π . Then for ϑ ∈ M(P)

∫

Rd

〈ϑ, x〉 (π P)(dx) =
∫

Rd

〈ϑ, π(x)〉 P(dx) =
∫

Rd

〈ϑ, x〉 P(dx) = 〈ϑ,m(P)〉

while for ϑ ∈ M(P)⊥ clearly

∫

Rd

〈ϑ, x〉 (π P)(dx) = 0 = 〈ϑ,m(P)〉.

Hence, M(π P) = R
d and the mean of π P exists and equals m(P). It follows that

m(P) belongs to the relative interior of cs(π P), and then by Fact 2.6 to

ri(cc(π P)) = ri(πcc(P)) = π(ri(cc(P))).

Here, the interchangeability of cc and the projector holds by Fact 2.8 and that of
relative interior and projectors is obvious. This implies that m(P) is in π(ri(P)), and
thus in ri(P) + M(P)⊥. This is a subset of aff (P) because ri(P) ⊆ aff (P) and
M(P)⊥ ⊆ lin(P), the latter by Lemma 2.14. ��
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The relevance of partial means for exponential families is indicated by the following
simple lemma, particularly by its special instance P = Qθ .

Lemma 2.16 For ϑ and θ in dom(Λ) and a pm P with D(P||Qθ ) < ∞, the necessary
and sufficient condition for D(P||Qϑ) < ∞ is ϑ − θ ∈ M(P). Under that condition

D(P||Qϑ) − D(P||Qθ ) = 〈θ − ϑ,m(P)〉 − Λ(θ) + Λ(ϑ). (4)

Proof The left-hand side of (4) is, by definition, the difference of two integrals. If
one of them is finite, the difference can be written as one integral which is equal to∫ 〈θ − ϑ, x〉 P(dx) − Λ(θ) + Λ(ϑ). This is finite if and only if ϑ − θ ∈ M(P), in
which case it equals the right-hand side of (4). ��
Corollary 2.17 The I-divergence D(P||Qϑ) is finite for each ϑ ∈ Ξ if and only if it
is finite for one ϑ ∈ Ξ and lin(Ξ) ⊆ M(P).

The instance P = Qθ of Lemma 2.16 is that the I-divergence D(Qθ ||Qϑ) is finite
if and only if ϑ − θ belongs to M(Qθ ), in which case

D(Qθ ||Qϑ) = 〈θ − ϑ,m(Qθ )〉 − Λ(θ) + Λ(ϑ). (5)

The corresponding instance of Corollary 2.17 is that if θ ∈ Ξ then lin(Ξ) ⊆ M(Qθ ) is
equivalent to the finiteness of D(Qθ ||Qϑ) for each ϑ ∈ Ξ . To extend this equivalence
to θ beyond Ξ , let

Ξµ = cl(πµ(Ξ)) ∩ dom(Λµ) and Ξ̃µ = Ξµ + lin(µ)⊥,

and observe that Ξ ⊆ Ξ̃µ.

Lemma 2.18 For θ ∈ Ξ̃µ, the inclusion lin(Ξ) ⊆ M(Qθ ) is equivalent to ϑ − θ ∈
M(Qθ ) for each ϑ ∈ Ξ , or to the finiteness of D(Qθ ||Qϑ) for each ϑ ∈ Ξ .

Proof Since clearly lin(Ξµ) = lin(πµ(Ξ)), and M(Qθ ) contains lin(Qθ )
⊥ = lin(µ)⊥

by Lemma 2.14, the condition lin(Ξ) ⊆ M(Qθ ) is equivalent to lin(Ξµ) ⊆ M(Qθ ).
On account of πµ(θ) ∈ Ξµ the latter is, in turn, equivalent to πµ(ϑ)−πµ(θ) ∈ M(Qθ ),
ϑ ∈ Ξ , and using Lemma 2.14 again, to ϑ − θ ∈ M(Qθ ), ϑ ∈ Ξ . The second
equivalence follows from Lemma 2.16 with P = Qθ . ��
Lemma 2.19 If Ξ intersects ri(dom(Λ)) and θ ∈ Ξ̃µ then M(Qθ ) contains lin(Ξ)

if and only if it contains lin(dom(Λ)).

Proof By Lemma 2.18, the second assumption and lin(Ξ) ⊆ M(Qθ ) imply that Ξ is
contained in [θ +M(Qθ )]∩dom(Λ). This set is a face of dom(Λ) due to Lemma 2.21
below. The first assumption implies that this face cannot be proper. Hence, θ +M(Qθ )

contains dom(Λ), and thus the assertion follows. ��
Corollary 2.20 In the nondegenerate case, when Ξ intersects the interior of dom(Λ),
a pm Qθ with θ ∈ Ξ̃µ has a mean if and only if lin(Ξ) ⊆ M(Qθ ).
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The instance Ξ = {θ} of this corollary covers the well-known fact that the pm Qθ

indexed by an interior point θ of dom(Λ) has a mean.

Lemma 2.21 If θ ∈ dom(Λ) then [θ + M(Qθ )] ∩ dom(Λ) is a face of dom(Λ).

Proof For ϑ, τ ∈ dom(Λ) and 0 < t < 1

t
∫

Rd

〈ϑ − θ, x〉 Qθ (dx) + (1 − t)
∫

Rd

〈τ − θ, x〉 Qθ (dx)

=
∫

Rd

〈tϑ + (1 − t)τ − θ, x〉 Qθ (dx)

where each integral is finite or −∞ by [8, Lemma 4]. If Γ = [θ +M(Qθ )]∩dom(Λ)

contains tϑ + (1 − t)τ then the integral on the right is finite, and hence all integrals
are finite. Thus, ϑ, τ ∈ Γ , and Γ is a face. ��

2.5 The subdifferential at θ ∈ R
d of a convex function f on R

d is the set ∂ f (θ)

consisting of those x ∈ R
d that satisfy f (ϑ) � f (θ) + 〈ϑ − θ, x〉 for all ϑ ∈ R

d

or, equivalently, f ∗(x) = 〈θ, x〉 − f (θ), where f ∗ is the convex conjugate of f .
Subdifferentials appear in this paper only when comparing results with previous ones.
In the following lemma, Ψ denotes the function defined in Remark 1.1 that equals Λ

on the convex nonempty subset Ξ of dom(Λ) and +∞ elsewhere.

Lemma 2.22 If Ξ intersects ri(dom(Λ)) then dom(Ψ ∗) = dom(Λ∗) + bar(Ξ) and

∂Ψ (θ) =
{

∂Λ(θ) + Nθ (Ξ), θ ∈ Ξ,

∅, otherwise.

Remark 2.23 Analogous results appear in [1, Sect. 9.4], see (3) and (4) there, under
the assumption that Ξ and dom(Λ) have nonempty interiors. Later, the first equality
will be shown to hold for any convex nonempty Ξ ⊂ dom(Λ), see Remark 4.10 in
Sect. 4.

Proof The function Ψ is the sum of Λ and the indicator function δ(·|Ξ) of Ξ , equal to 0
on Ξ and +∞ elsewhere. As Ξ is contained in dom(Λ) but not in its relative boundary
dom(Λ) \ ri(dom(Λ)), the relative interior of Ξ is contained in that of dom(Λ) [15,
Corollary 6.5.2]. Then, the first equality follows from [15, Theorem 16.4] using that
dom(δ∗(·|Ξ)) equals bar(Ξ), and the second one from [15, Theorem 23.8] since the
subdifferential of δ(·|Ξ) at θ equals Nθ (Ξ) if θ ∈ Ξ and ∅ otherwise. ��

3 The gmle when a ∈ ri(µ) + bar(Ξ)

3.1 Given a nonempty convex set Ξ contained in dom(Λ) and a ∈ R
d , let

Ξµ,a = cl(πµ,a(Ξ)) ∩ dom(Λ) and Ξ̃µ,a = Ξµ,a + E⊥
µ,a,
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see Sect. 2.3 for notation. These are convex subsets of dom(Λ), and Ξ ⊆ Ξ̃µ,a . Then

Ψ ∗
µ,Ξ (a) = Ψ ∗

µ,Ξµ,a
(a) = Ψ ∗

µ,Ξ̃µ,a
(a) (6)

where the first equality follows from Corollary 2.12 and Lemma 2.13, and the second
one from Corollary 2.12 applied to Ξ̃µ,a in the role of Ξ . If a ∈ aff (µ) then Ξµ,a

is equal to Ξµ = cl(πµ(Ξ)) ∩ dom(Λ) and Ξ̃µ,a to Ξ̃µ, see Sect. 2.4, while always
πµ(Ξµ,a) ⊆ Ξµ, and hence Ξ̃µ,a ⊆ Ξ̃µ. In the sequel, notations introduced in Sect. 2
are used without reference.

The following theorem admits to define a mapping that assigns to each element a
of ri(µ) + bar(Ξ) the parameter θ∗(a) = θ∗

µ,Ξ (a) equal to the unique maximizer of
the function ϑ �→ 〈ϑ, a〉 − Λ(ϑ) subject to ϑ ∈ Ξµ,a . Necessity of the assumption
a ∈ ri(µ) + bar(Ξ) for the existence of such a maximizer is shown in Theorem 3.2.

Theorem 3.1 If a ∈ ri(µ)+bar(Ξ) then Ψ ∗(a) is finite and a unique θ ∈ Ξµ,a exists
such that Ψ ∗(a) = 〈θ, a〉 − Λ(θ).

Proof If a belongs to ri(µ) + bar(Ξ) then a − b ∈ bar(Ξ) for some b ∈ ri(µ), thus

〈ϑ, a − b〉 � r, ϑ ∈ Ξ, (7)

for some r ∈ R. By (3) and [8, Lemma 9] applied to this b, for some s > 0 and t ∈ R

〈ϑ, b〉 − Λ(ϑ) = 〈πµ(ϑ), b〉 − Λ(πµ(ϑ)) � t − s ||πµ(ϑ)||, ϑ ∈ R
d . (8)

Note that though Lemma 9 of [8] is formulated only for finite measures, its proof holds
verbatim also for σ -finite measures µ with dom(Λµ) nonempty. Combining (7) and
(8),

〈ϑ, a〉 − Λ(ϑ) − r � 〈ϑ, b〉 − Λ(ϑ) � t − s ||πµ(ϑ)||, ϑ ∈ Ξ, (9)

whence Ψ ∗(a) � t + r .
Consider a sequence ϑn in Ξ with 〈ϑn, a〉−Λ(ϑn) converging to the finite number

Ψ ∗(a). By (8) and (7)

〈ϑn, a〉 − Λ(ϑn) − t � 〈ϑn, a − b〉 � r.

Thus the sequence 〈ϑn, a − b〉 is bounded, and by (9) the sequence πµ(ϑn) is
bounded, too. As lin(µ) and b − a span Eµ,a , it follows that the sequence πµ,a(ϑn)

is bounded. Hence, going to a subsequence if necessary, πµ,a(ϑn) converges to some
θ ∈ cl(πµ,a(Ξ)). By Lemma 2.11, 〈πµ,a(ϑn), a〉−Λ(πµ,a(ϑn)) converges to Ψ ∗(a).
Then, Ψ ∗(a) � 〈θ, a〉 − Λ(θ) by semicontinuity of Λ. In particular, θ ∈ dom(Λ),
thus θ ∈ Ξµ,a . The opposite inequality follows from (6).

To prove uniqueness, it suffices to show that θ, τ ∈ Ξµ,a and

Ψ ∗(a) = 〈θ, a〉 − Λ(θ) = 〈τ, a〉 − Λ(τ)
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imply θ = τ . By (6), both θ and τ maximize the function ϑ �→ 〈ϑ, a〉 − Λ(ϑ) over
Ξµ,a , and hence Λ is not strictly convex on the segment connecting θ and τ . It follows
from (3) and the strict convexity of Λ on lin(µ) that πµ(θ) and πµ(τ) coincide. This
and (3) imply that if b ∈ aff (µ) then 〈θ, b〉 − Λ(θ) equals 〈τ, b〉 − Λ(τ), and hence
〈θ, a − b〉 = 〈τ, a − b〉. Since θ, τ ∈ Ξµ,a ⊆ Eµ,a , it follows that θ = τ . ��
Theorem 3.2 For any a ∈ R

d and θ ∈ Ξ̃µ,a the following statements are equivalent.

(i) Ψ ∗(a) = 〈θ, a〉 − Λ(θ).
(ii) lin(Ξ) ⊆ M(Qθ ) and a − m(Qθ ) belongs to Nθ (Ξ).

(iii) a ∈ ri(µ) + bar(Ξ) and θ∗(a) = πµ,a(θ).
(iv) 〈θ, a〉 − Λ(θ) � 〈ϑ, a〉 − Λ(ϑ) + D(Qθ ||Qϑ) for all ϑ ∈ Ξ .

By Theorem 3.2, in case a ∈ ri(µ) + bar(Ξ) the gmle R∗(a) exists and equals
Qθ∗(a). Indeed, θ = θ∗(a) satisfies (iii), then (i) and (iv) combine to the gmle in-
equality (2) with R∗(a) replaced by Qθ∗(a), and then R∗(a) = Qθ∗(a) by uniqueness
of gmle, discussed in Remark 1.2. This result is complemented in Sect. 4, where
Corollary 4.2 shows that if a /∈ ri(µ) + bar(Ξ) and the gmle R∗(a) exists then
R∗(a) /∈ E .

Note that in the nondegenerate case, the inclusion in (ii) holds if and only if Qθ

has a mean, due to Corollary 2.20 and Ξ̃µ,a ⊆ Ξ̃µ. If, in addition, θ is in the interior
of Ξ then the normal cone Nθ (Ξ) is the singleton {0}, and the condition (ii) requires
the mean of Qθ to equal a.

Proof (i)⇒(ii): On account of [8, Lemma 4], if θ ∈ dom(Λ) and τ is a unit vector
such that θ + tτ ∈ dom(Λ) for some t > 0 then

∫ 〈τ, x〉 Qθ (dx) exists, either finite or
−∞, and is equal to the one-sided directional derivative of Λ at θ in the direction τ .
The assumption (i) and (6) imply 〈θ, a〉 − Λ(θ) � 〈ϑ, a〉 − Λ(ϑ) for all ϑ ∈ Ξ̃µ,a .
Hence, the derivative of the function ϑ �→ 〈ϑ, a〉−Λ(ϑ) at θ in any direction pointing
from θ to some ϑ ∈ Ξ̃µ,a is not positive. It follows that for all ϑ ∈ Ξ̃µ,a , the integral∫ 〈ϑ − θ, x〉 Qθ (dx) is finite, thus ϑ − θ ∈ M(Qθ ), and

0 � 〈ϑ − θ, a〉 −
∫

Rd 〈ϑ − θ, x〉 Qθ (dx) = 〈ϑ − θ, a − m(Qθ )〉.

This means that lin(Ξ̃µ,a) is contained in M(Qθ ) and a − m(Qθ ) is normal to Ξ̃µ,a

at θ . Since Ξ ⊆ Ξ̃µ,a the validity of (ii) follows.
(i), (ii)⇒(iii): If a−m(Qθ ) belongs to Nθ (Ξ) ⊆ bar(Ξ) then a ∈ m(Qθ )+bar(Ξ).

The assumption lin(Ξ) ⊆ M(Qθ ) implies, using Lemma 2.14, that M(Qθ )
⊥ ⊆

lin(Ξ)⊥ ⊆ bar(Ξ). By this and ri(Qθ ) = ri(µ), Lemma 2.15 gives that m(Qθ ) ∈
ri(µ) + bar(Ξ). As bar(Ξ) is a convex cone, a ∈ ri(µ) + bar(Ξ) follows. Then
θ∗(a) = πµ,a(θ) is a consequence of (i) and Lemma 2.11, due to the uniqueness
assertion of Theorem 3.1.

(iii)⇒(i): By the definition of θ∗(a), (iii) implies that the equality in (i) holds for
πµ,a(θ) in the role of θ . Then, by Lemma 2.11, it holds also for θ .

(ii)⇔(iv): Due to θ ∈ Ξ̃µ,a ⊆ Ξ̃µ and Lemma 2.18, the inclusion in (ii) is equivalent
to the finiteness of D(Qθ ||Qϑ) for each ϑ ∈ Ξ . Then the second condition in (ii), thus
0 � 〈ϑ − θ, a − m(Qθ )〉, ϑ ∈ Ξ , is equivalent to (iv) on account of (5).
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(iv)⇒(i): This obtains by taking supremum over ϑ ∈ Ξ in (iv), where the
I-divergence is nonnegative, and by (6). ��

3.2 Theorem 3.2 makes it possible to describe the range of the mapping θ∗, based
on the observation that the necessary and sufficient conditions for a ∈ ri(µ)+bar(Ξ)

and θ∗(a) = θ are

θ ∈ Ξµ,a, lin(µ) ⊆ M(Qθ ) and a − m(Qθ ) ∈ Nθ (Ξ). (10)

Let

ΞM
µ = {θ ∈ Ξµ : lin(Ξ) ⊆ M(Qθ )},

let E denote the family of linear subspaces E of R
d that contain lin(µ) as a subspace

of codimension 1, and for E ∈ E denote

Ξ
M,∩
E ={θ ∈ cl(πE (Ξ))∩dom(Λ) : lin(Ξ)⊆M(Qθ ) and Nθ (Ξ) ∩ [E \ lin(µ)] �=∅}.

Lemma 3.3 The range θ∗(ri(µ) + bar(Ξ)) of θ∗ is equal to ΞM
µ ∪ ⋃

E∈E [ΞM,∩
E \

lin(µ)]. For θ in this range, {a ∈ ri(µ)+bar(Ξ) : θ∗(a) = θ} equals m(Qθ )+Kµ(θ)

where

Kµ(θ) = Nθ (Ξ) ∩
{

lin(µ) ∪ ⋃ {E ∈ E : θ ∈ Ξ
M,∩
E }, θ ∈ ΞM

µ ,

E \ lin(µ), θ ∈ Ξ
M,∩
E \ lin(µ), E ∈ E .

Proof By Theorem 3.2, θ ∈ R
d is in the range if and only if (10) holds for this θ

and some a ∈ R
d . Since m(Qθ ) ∈ aff (µ) by Lemma 2.15, the conditions (10) and

a ∈ aff (µ) are equivalent to the conditions

θ ∈ ΞM
µ and a − m(Qθ ) ∈ Nθ (Ξ) ∩ lin(µ), (11)

using that a ∈ aff (µ) implies Ξµ,a = Ξµ, while (10) and a /∈ aff (µ) are equivalent
to

θ ∈ Ξ
M,∩
E and a − m(Qθ ) ∈ Nθ (Ξ) ∩ [E \ lin(µ)], (12)

where E = Eµ,a . Hence, the range is contained in Γ = ΞM
µ ∪ ⋃

E∈E Ξ
M,∩
E .

If θ ∈ ΞM
µ then the conditions (11) are trivially met by a = m(Qθ ), and if θ ∈ Ξ

M,∩
E

for some E ∈ E then there exists a ∈ R
d satisfying the conditions (12), by the

definition of Ξ
M,∩
E . Hence, the range contains Γ . The proof of the first assertion

of the lemma is completed by noting that Ξ
M,∩
E \ ΞM

µ is equal to Ξ
M,∩
E \ lin(µ), due to

the obvious inclusions

Ξ
M,∩
E ∩ lin(µ) ⊆ πµ(Ξ

M,∩
E ) ⊆ ΞM

µ .

It remains to show that for θ in the range of θ∗ just determined, the set of those
a ∈ R

d that satisfy either (11), or (12) for some E ∈ E , is equal to m(Qθ ) + Kµ(θ).
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If θ ∈ ΞM
µ then the set of all a ∈ R

d satisfying (11) is equal to m(Qθ ) + [Nθ (Ξ) ∩
lin(µ)], and the set of all a ∈ R

d satisfying (12) for some E ∈ E has a similar
form, with lin(µ) replaced by the union of E \ lin(µ) over those linear spaces E ∈ E
for which θ ∈ Ξ

M,∩
E . This establishes the second assertion for the case θ ∈ ΞM

µ . If
θ is in the range but not in ΞM

µ then it belongs to one of the mutually disjoint sets
Ξ

M,∩
E \ lin(µ), E ∈ E . Then no a ∈ R

d satisfies (11), while (12) is satisfied by exactly
those a that belong to m(Qθ ) + Kµ(θ) with Kµ(θ) equal to Nθ (Ξ) ∩ [E \ lin(µ)]. ��
Corollary 3.4 The range of the mapping a �→ Qθ∗(a) defined on ri(µ) + bar(Ξ)

coincides with the family {Qτ : τ ∈ ΞM
µ }. If τ ∈ ΞM

µ then the set {a ∈ ri(µ) +
bar(Ξ) : Qθ∗(a) = Qτ } equals m(Qτ ) + K ∗

µ(τ) where

K ∗
µ(τ) =

⋃ {
Kµ(θ) : θ ∈ θ∗(ri(µ) + bar(Ξ)) and πµ(θ) = τ

}
.

Proof Since Qθ∗(a) = Qπµθ∗(a), the first assertion follows by projecting the range
of θ∗, using that πµ(Ξ

M,∩
E ) ⊆ ΞM

µ . The second assertion follows directly from
Lemma 3.3. ��
It is easy to see that the sets Kµ(θ) and K ∗

µ(τ) are cones, both contained in bar(Ξ).

Example 3.5 Let µ be the measure on R
2 equal to the sum of the point masses at (1, 0)

and (−1, 0). Then aff (µ) = lin(µ) is the horizontal axis, Λ(ϑ) = ln(eϑ1 + e−ϑ1) is
finite for all ϑ = (ϑ1, ϑ2) ∈ R

2, and Qϑ has the mean m(Qϑ) = (tanh(ϑ1), 0).
(i) Let Ξ = {ϑ : ϑ1 > 0, ϑ1ϑ2 � 1}, see Fig. 2. If a = (a1, a2) ∈ R

2 then Ξµ,a

equals Ξ if a2 �= 0 and the halfaxis Ξµ = {(ϑ1, 0) : ϑ1 � 0}, otherwise. Further,
ri(µ) + bar(Ξ) consists of all a with a1 < 1, a2 � 0. It is strictly contained in its
closure equal to dom(Ψ ∗), and strictly contains its interior. Each a ∈ ri(µ) + bar(Ξ)

with a2 < 0 can be represented as a = (tanh(t) − r,−r t2) with t, r > 0, and then
for θ = (t, t−1) ∈ Ξµ,a the vector a − m(Qθ ) = −r(1, t2) is normal to Ξ at θ ,
thus θ∗(a) = θ by Theorem 3.2. If a = (a1, 0), 0 < a1 < 1, then a = m(Qθ ) for
θ = (t, 0) ∈ Ξµ with suitable t > 0, and (ii) of Theorem 3.2 trivially holds, thus
θ∗(a) = θ . Finally, if a′ = (a1, 0), a1 � 0, then θ ′ = (0, 0) with m(Qθ ′) = (0, 0)

satisfies (ii) of Theorem 3.2, hence θ∗(a′) = θ ′. Note that while θ ′ is in Ξµ,a′ = Ξµ,
it is not equal to the projection of any ϑ ∈ Ξ , even though Ξ is a closed set.

(ii) Let Ξ = {ϑ : |ϑ2| < ϑ1}, see Fig. 3. Then Ξµ,a equals cl(Ξ) if a2 �= 0 and
Ξµ, the halfaxis as in (i), otherwise. Further, ri(µ) + bar(Ξ) consists of all a ∈ R

2

,

,

Fig. 2 Illustration of Example 3.5 (i)
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Fig. 3 Illustration of Example 3.5 (ii)

satisfying a1 + |a2| < 1. This is an open set, and dom(Ψ ∗) equals its closure. If
a1 + |a2| � 0 then for θ ′ = (0, 0) the vector a − m(Qθ ′) = a is normal to Ξ at θ ′,
hence θ∗(a) = θ ′. If 0 < a1 + |a2| < 1 then a can be represented by some t, r > 0
as (tanh(t), 0) or (tanh(t) − r, r) or (tanh(t) − r,−r) according to a2 is 0, positive or
negative, respectively. Then, for θ equal to (t, 0), (t, t) or (t,−t) the vector a−m(Qθ )

is equal to (0, 0), (−r, r) or (−r,−r), respectively. In all cases the vector is normal
to Ξ at θ , and hence θ∗(a) = θ . It follows from Theorem 3.2 that the range of θ∗
is union of the three halflines Ξµ, {(r, r) : r > 0} and {(r,−r) : r > 0}, see also
Lemma 3.3. It follows also that the set {a : Qθ∗(a) = Qτ } is the sum of m(Qτ ) and
the cone K ∗

µ(τ) equal to the union of {(0, 0)} with the two halflines {(−r, r) : r > 0}
and {(−r,−r) : r > 0}, see also Corollary 3.4. The range of θ∗ and K ∗

µ(τ) are not
convex.

Note that while the canonically convex family EΞ is the same in (i) and (ii), the
sets ri(µ) + bar(Ξ) where θ∗ = θ∗

µ,Ξ is defined are different. Even for a in their
intersection, not only θ∗(a) but also the pm Qθ∗(a) does depend on the choice of the
parameter set Ξ in general.

3.3 In the final part of this section, the above results are discussed and related to
previous ones in the special cases Ξ = dom(Λ) and Ξ ⊆ lin(µ), sharing the feature
that the set Ξµ,a in the definition of θ∗(a) does not depend on a. These cases cover
those treated in the literature, where lin(µ) = R

d is assumed except for a few occasions
addressing full families.

Consider first Ξ = dom(Λ), the case of a full family. Then the set ri(µ) + bar(Ξ)

on which the mapping θ∗ is defined is equal to ri(µ). This follows from

bar(dom(Λ)) ⊆ rec(dom(Λ∗)) ⊆ rec(ri(dom(Λ∗))) and ri(dom(Λ∗)) = ri(µ)

(13)
where the first inclusion holds by [1, Theorem 5.19], the second one by Lemma 2.3, and
for the last equality see for example [6, Proposition 1]. Further, Ξµ,a = dom(Λ) ∩
lin(µ) for each a ∈ ri(µ), thus the mapping θ∗ ranges in this intersection. Using
that Ξ̃µ,a = Ξ = dom(Λ) for each a ∈ R

d , Theorem 3.2 yields the result of [1,
Theorem 9.30] that an mle ϑ∗, attaining the maximum of 〈ϑ, a〉 − Λ(ϑ) subject
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to ϑ ∈ R
d , exists if and only if a belongs to ri(µ). By the equivalence (i)⇔(iii),

θ∗(a) + lin(µ)⊥ is the set of all such mle’s. It also follows from Theorem 3.2 that the
conditions

lin(dom(Λ)) ⊆ M(Qθ ) and a − m(Qθ ) ∈ Nθ (dom(Λ)) (14)

are necessary and sufficient for a ∈ R
d and θ ∈ dom(Λ) to satisfy Λ∗(a) = 〈θ, a〉 −

Λ(θ). Hence, each θ in the range of θ∗ satisfies the inclusion in (14). Considering
a = m(Qθ ), it follows that the range of θ∗ consists of all θ ∈ dom(Λ) ∩ lin(µ) that
satisfy the inclusion in (14), in which case θ∗(m(Qθ )) = θ .

In terms of subdifferentials, recalled in Sect. 2.5,

∂Λ(θ) =
{

m(Qθ ) + Nθ (dom(Λ)), if θ ∈ dom(Λ) and lin(dom(Λ)) ⊆ M(Qθ ),

∅, otherwise,
(15)

and the inverse of θ∗ is the restriction of the mapping θ �→ ∂Λ(θ) to dom(Λ)∩ lin(µ)

in the sense

{
a ∈ ri(µ) : θ∗(a) = θ

} = ∂Λ(θ), θ ∈ dom(Λ) ∩ lin(µ).

When dom(Λ) has nonempty interior, or equivalently lin(dom(Λ)) = R
d , other

well-known results follow. The range of θ∗ consists of those θ ∈ dom(Λ) ∩ lin(µ)

for which Qθ has a mean. The subdifferential ∂Λ(θ) is nonempty if and only if
θ ∈ dom(Λ) and Qθ has a mean. If θ is an interior point of dom(Λ) then ∂Λ(θ) =
{m(Qθ )}, due to Nθ (dom(Λ)) = {0}, and thus Λ is differentiable at θ with its gradient
equal to the mean of Qθ , existing by Corollary 2.20. Since the sets ∂Λ(θ) with θ ∈
dom(Λ)∩ lin(µ) are disjoint and cover ri(µ), each a ∈ ri(µ) is the mean of some pm
in Eµ if and only if the family Eµ is steep, in the sense that no Qϑ ∈ E with ϑ on the
boundary of dom(Λ) has a mean.

Consider next the case Ξ ⊆ lin(µ). Then, Ξµ,a = Ξµ = cl(Ξ)∩dom(Λ) for each
a ∈ R

d , and

Ξ
M,∩
E = {

θ ∈ ΞM
µ : Nθ (Ξ) ∩ [E \ lin(µ)] �= ∅}

, E ∈ E .

It follows, as a special case of Lemma 3.3, that the range of θ∗ is equal to ΞM
µ , and for

θ ∈ ΞM
µ the set of all a ∈ ri(µ)+bar(Ξ) with θ∗(a) = θ is equal to m(Qθ )+Nθ (Ξ).

In accordance to previous notations, let Ψ respectively ΨΞµ denote the function
equal to Λ on the set Ξ respectively Ξµ, and to +∞ elsewhere. Then, for a ∈ ri(µ)+
bar(Ξ), a maximizer of ϑ �→ 〈ϑ, a〉−Λ(ϑ) over Ξ is a parameter θ ∈ R

d satisfying
Ψ ∗(a) = 〈θ, a〉 − Ψ (θ), while θ∗(a) = θ is equivalent to Ψ ∗(a) = 〈θ, a〉 − ΨΞµ(θ).
These conditions are, in turn, equivalent to a ∈ ∂Ψ (θ) respectively a ∈ ∂ΨΞµ(θ), see
Sect. 2.5. In particular, the subdifferentials coincide if θ ∈ Ξ while ∂Ψ (θ) is empty
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otherwise. By the special case of Lemma 3.3 mentioned above,

∂ΨΞµ(θ) =
{

m(Qθ ) + Nθ (Ξ), θ ∈ ΞM
µ ,

∅, otherwise,
(16)

which implies a similar representation of ∂Ψ (θ), with ΞM
µ replaced by the set ΞM

of those θ ∈ Ξ that satisfy lin(Ξ) ⊆ M(Qθ ). In the nondegenerate case, when Ξ

intersects the interior of dom(Λ), the last inclusion is equivalent to existence of the
mean of the pm Qθ by Corollary 2.20.

The above considerations have also the following consequences. The set ri(µ) +
bar(Ξ) partitions into the nonempty subdifferentials ∂ΨΞµ(θ) = m(Qθ ) + Nθ (Ξ),
θ ∈ ΞM

µ , where in the nondegenerate case the last condition means that the pm Qθ

parameterized by θ ∈ Ξµ has a mean. Further, an mle exists if and only if a belongs
to the subdifferential ∂Ψ (θ) at some θ ∈ Ξ which extends and strengthens the first
assertion of [1, Theorem 9.18]. Finally, the condition a ∈ ∂ΨΞµ(θ) is equivalent to
θ ∈ ∂Ψ ∗

Ξµ
(a) by [15, Theorem 23.5], and Ψ ∗ is equal to Ψ ∗

Ξµ
by Lemma 2.13. As

θ = θ∗(a) is uniquely determined by a ∈ ri(µ) + bar(Ξ), this implies that Ψ ∗ is
differentiable on ri(µ) + bar(Ξ), with the gradient ∇Ψ ∗(a) = θ∗(a). This extends
the third assertion of [1, Theorem 9.18] where lin(µ) = R

d and Ξ with nonempty
interior are assumed.

In the nondegenerate case, and more generally when Ξ intersects ri(dom(Λ)), the
above representations of ∂ΨΞµ(θ) and ∂Ψ (θ) follow also directly from (15). To see
this, recall that in that case for θ ∈ Ξ Lemma 2.22 gives that ∂Ψ (θ) = ∂Λ(θ)+Nθ (Ξ),
and Lemma 2.19 gives that the inclusion in (15) holds if and only if lin(Ξ) ⊆ M(Qθ )

thus θ ∈ ΞM .

4 The gmle in general

By Fact 2.7, the restriction of µ to the closure of a face F of cc(µ) is a nonzero
measure whose convex core is equal to F . For this restriction ν = µcl(F), with
ri(ν), aff (ν), lin(ν) equal to ri(F), aff (F), lin(F), in the sequel the convenient
notations ΛF , QF,ϑ , Ψ ∗

F,Ξ , θ∗
F,Ξ , etc. are used instead of Λν , Qν,ϑ , Ψ ∗

ν,Ξ , θ∗
ν,Ξ , etc.

When a ∈ cc(µ) + bar(Ξ), among the faces G of cc(µ) satisfying a ∈ ri(G) +
bar(Ξ) there exists the inclusion-largest one, by Lemma 2.1. This face is denoted by
G∗(a) = G∗

µ,Ξ (a).

Theorem 4.1 If a ∈ dom(Ψ ∗) then a ∈ cc(µ) + bar(Ξ), the face G = G∗(a) of
cc(µ) is Ξ -accessible, Ψ ∗

G,Ξ (a) is equal to Ψ ∗(a) = Ψ ∗
µ,Ξ (a), and with θ = θ∗

G,Ξ (a)

Ψ ∗(a) − [〈ϑ, a〉 − Λ(ϑ)
]

� D(QG,θ ||Qϑ), ϑ ∈ Ξ. (17)

This proves the existence of gmle by explicitly identifying it. Indeed, comparison of
(2) and (17) gives, referring to Remark 1.2 for uniqueness, that QG,θ = R∗(a).

Corollary 4.2 The gmle R∗
µ,Ξ (a) belongs to E = Eµ if and only if a ∈ ri(µ) +

bar(Ξ).
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In particular, for a full exponential family E it follows that R∗(a) ∈ E if and only if
a ∈ ri(µ), or equivalently, if and only if an mle exists, see the passage containing
Eq. (13) in Sect. 3.3.

Remark 4.3 The inequality (17) holds even for ϑ ∈ Ξ̃µ,a . In fact, by Lemma 2.11, the
bracket and the pm Qϑ do not change when ϑ ∈ Ξ is replaced by πµ,a(ϑ), thus (17)
holds for ϑ in πµ,a(Ξ). By limiting along segments, continuity of Λ along segments
and lower semicontituity of I-divergence, (17) holds for ϑ in Ξµ,a and, in turn, for
ϑ ∈ Ξ̃µ,a by Lemma 2.11. A further immediate extension of (17) is

Ψ ∗(a) − [〈ϑ, a〉 − ΛF (ϑ)
]

� D(QG,θ ||QF,ϑ ), ϑ ∈ Ξ̃F,a, (18)

where F is any face of cc(µ) containing G = G∗(a). Indeed, the obvious identity

D(P||QF,ϑ ) − ΛF (ϑ) = D(P||Qϑ) − Λ(ϑ),

valid for any face F of cc(µ), pm P � µcl(F), and ϑ ∈ dom(Λ), implies with
P = QG,θ that for faces F ⊇ G of cc(µ), (18) with ϑ ∈ Ξ is equivalent to (17).
Then, the extension to ϑ ∈ Ξ̃F,a follows by limiting as above.

Theorem 4.1 will be proved via induction on the dimension of aff (µ). Five lemmas
are sent forth, the first three of elementary geometric content.

Lemma 4.4 If B ⊆ aff (µ) then a ∈ B + bar(Ξ) is equivalent to a ∈ B +
bar(πµ,a(Ξ)).

Proof If x ∈ Eµ,a then 〈ϑ, x〉 = 〈πµ,a(ϑ), x〉 for all ϑ ∈ R
d , hence x ∈ bar(Ξ)

takes place if an only if x ∈ bar(πµ,a(Ξ)). Applying this to x = a − b with b ∈ B,
when x ∈ Eµ,a due to B ⊆ aff (µ), the assertion follows. ��
Lemma 4.5 For a nonempty convex set C and cone K containing 0, a halfspace
H� = {x : 〈θ, x − a〉 � 0} with θ �= 0 contains C + K if and only if C ⊆ H� and
θ ∈ N0(K ).

Proof If C + K ⊆ H� then C ⊆ H� as 0 ∈ K . In addition, for any c from the
nonempty set C , the inequality 〈θ, c + y − a〉 � 0 holds for all y ∈ K . Since K is a
cone, it follows that 〈θ, y〉 � 0, y ∈ K , and thus θ ∈ N0(K ). The converse implication
is obvious. ��
Lemma 4.6 For C, K and H� as in Lemma 4.5, if C + K ⊆ H� and ri(C) + K
intersects the boundary hyperplane H of H� then C ⊆ H.

Proof Suppose some x ∈ ri(C) + K , say x = c + y where c ∈ ri(C) and y ∈ K ,
belongs to H , thus 〈θ, c + y − a〉 = 0. By Lemma 4.5, C ⊆ H� and θ ∈ N0(K ), thus
〈θ, c − a〉 � 0 and 〈θ, y〉 � 0. Hence 〈θ, c − a〉 = 0, that is, H contains c ∈ ri(C).
This and C ⊆ H� imply the assertion. ��
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Lemma 4.7 If a ∈ dom(Ψ ∗
µ,Γ ) for a convex subset Γ of dom(Λ), and cs(µ) is

contained in a halfspace H� = {x : 〈θ, x − a〉 � 0} with a nonzero θ ∈ rec(ri(Γ )),
then the boundary hyperplane H of H� intersects cc(µ) in a face F of cc(µ) such
that Ψ ∗

µ,Γ (a) = Ψ ∗
F,Γ (a).

Proof If ϑ ∈ ri(Γ ) and t � 0 then ϑ + tθ ∈ ri(Γ ) due to θ ∈ rec(ri(Γ )), thus

Ψ ∗
µ,Γ (a) � 〈ϑ + tθ, a〉 − Λ(ϑ + tθ) = − ln

∫

Rd

e〈ϑ,x−a〉+t〈θ,x−a〉 µ(dx).

Since H� contains cs(µ), it has full µ-measure. The integrand is bounded on H� by
e〈ϑ,x−a〉 which is µ-integrable due to ϑ ∈ Γ ⊆ dom(Λ). By dominated convergence,
the integral converges to

∫
H e〈ϑ,x−a〉 µ(dx) when t → ∞. It follows that

Ψ ∗
µ,Γ (a) � − ln

∫

H

e〈ϑ,x−a〉 µ(dx), ϑ ∈ ri(Γ ),

and as Ψ ∗
µ,Γ (a) is finite by assumption, this implies µ(H) > 0. Hence, H is a sup-

porting hyperplane of cs(µ). By Fact 2.9, F = H ∩ cc(µ) is a face of cc(µ) and
µ(H \ cl(F)) = 0. Therefore, the above inequality rewrites to

Ψ ∗
µ,Γ (a) � − ln

∫

cl(F)

e〈ϑ,x−a〉 µ(dx) = 〈ϑ, a〉 − ΛF (ϑ), ϑ ∈ ri(Γ ).

This and Lemma 2.13 imply that Ψ ∗
µ,Γ (a) � Ψ ∗

F,ri(Γ )
(a) = Ψ ∗

F,Γ (a), while Λ � ΛF

implies that Ψ ∗
µ,Γ (a) � Ψ ∗

F,Γ (a). ��
Lemma 4.8 If a belongs todom(Ψ ∗

µ,Ξ )but not to ri(µ)+bar(Ξ) then some unit vector
τ ∈ rec(πµ(ri(Ξ))) exposes a proper face F of cc(µ) such that Ψ ∗

µ,Ξ (a) = Ψ ∗
F,Ξ (a)

and F contains each face G of cc(µ) with a ∈ ri(G) + bar(Ξ).

Proof Let Γ denote the convex subset πµ,a(Ξ) of dom(Λ). By Corollary 2.12,
Ψ ∗

µ,Ξ (a) equals Ψ ∗
µ,Γ (a). This and Lemma 4.4 with B = ri(µ) imply that the

assumptions equivalently mean that a is in dom(Ψ ∗
µ,Γ ) but not in ri(µ) + bar(Γ ).

On account of the latter, there exists a halfspace H� = {x ∈ R
d : 〈θ, x − a〉 � 0}

with nonzero θ that contains ri(µ) + bar(Γ ). By Lemma 4.5 with C = ri(µ) and
K = bar(Γ ), the halfspace H� contains ri(µ) and hence also cs(µ), and θ belongs
to N0(bar(Γ )) that by Lemma 2.3 is equal to rec(ri(Γ )). Then, Lemma 4.7 implies
that the intersection of cc(µ) with the boundary hyperplane H of H� is a face F of
cc(µ), and Ψ ∗

µ,Γ (a) = Ψ ∗
F,Γ (a).

As Γ is a subset of Eµ,a , the linear span of {x − a : x ∈ ri(µ)}, so is also the
recession cone rec(ri(Γ )), thus the nonzero vector θ contained in that cone satisfies
〈θ, x − a〉 �= 0 for some x ∈ ri(µ). The latter implies 〈θ, x − y〉 �= 0 for all y ∈ H ,
in particular, for y in F = H ∩ cc(µ) �= ∅. Thus θ is not orthogonal to lin(µ). Using
that cc(µ) ⊆ H� , it follows that F is a proper face of cc(µ), exposed by a unit vector
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proportional to θ , and hence also by the unit vector τ proportional to πµ(θ). This
vector satisfies

τ ∈ πµ(rec(ri(Γ ))) ⊆ rec(πµ(ri(Γ ))) = rec(πµ(ri(Ξ))),

where the inclusion holds by Lemma 2.2 and the equality by obvious interchange of
projections and relative interiors.

The equality Ψ ∗
µ,Ξ (a) = Ψ ∗

F,Ξ (a) is a consequence of the two equalities in the first
passage of the proof and of Ψ ∗

F,Γ (a) = Ψ ∗
F,Ξ (a), obtained from Corollary 2.12 with

µcl(F) in the role of µ.
For the last assertion, consider a face G of cc(µ) with a ∈ ri(G) + bar(Ξ),

equivalent to a ∈ ri(G) + bar(Γ ) by Lemma 4.4 with B = ri(G). Since G + bar(Γ )

is contained in cc(µ)+bar(Γ ) ⊆ H� and ri(G)+bar(Γ ) contains a ∈ H , Lemma 4.6
with C = G and K = bar(Γ ) implies G ⊆ H . This proves that G is a subset of F .

��
Proof of Theorem 4.1 If a ∈ ri(µ)+bar(Ξ) then obviously a ∈ cc(µ)+bar(Ξ) and
the face G∗

µ,Ξ (a) coincides with cc(µ) and is Ξ -accessible. Since a and θ∗
µ,Ξ (a) = θ

satisfy (iii) of Theorem 3.2 they also satisfy (i) and (iv) which immediately rewrites
to

Ψ ∗(a) − [〈ϑ, a〉 − Λ(ϑ)
]

� D(Qθ ||Qϑ), ϑ ∈ Ξ,

proving (17). In particular, the assertion of Theorem 4.1 holds when the dimension
of aff (µ) is zero, since then dom(Ψ ∗

µ,Ξ ) trivially equals ri(µ) + bar(Ξ). Induction
argument on the dimension is applied, assuming validity of the assertion for any
measure ν with aff (ν) of smaller dimension than aff (µ).

In the induction step, it suffices to consider the case when a is in dom(Ψ ∗) but not
in ri(µ) + bar(Ξ). Then Lemma 4.8 implies existence of a proper face F of cc(µ)

exposed by some unit vector τ ∈ rec(πµ(ri(Ξ))) such that Ψ ∗(a) = Ψ ∗
µ,Ξ (a) is equal

to Ψ ∗
F,Ξ (a). In particular, a belongs to dom(Ψ ∗

F,Ξ ), thus the induction hypothesis

applies to ν = µcl(F). Hence, a ∈ F + bar(Ξ), the largest face G of F satisfying
a ∈ ri(G) + bar(Ξ) is Ξ -accessible, Ψ ∗

F,Ξ (a) = Ψ ∗
G,Ξ (a), and with θ = θ∗

G,Ξ (a)

Ψ ∗
F,Ξ (a) − [〈ϑ, a〉 − ΛF (ϑ)

]
� D(QG,θ ||QF,ϑ ), ϑ ∈ Ξ.

As a belongs to F + bar(Ξ) it belongs cc(µ) + bar(Ξ), proving the first assertion.
Then, the face G∗(a) of cc(µ) is well defined. By the last assertion of Lemma 4.8, this
face is contained in F whence its maximality implies G∗(a) = G. The Ξ -accessibility
of G from cc(µ) is a consequence of that of G from F and τ ∈ rec(πµ(ri(Ξ))), proving
the second assertion. The equality Ψ ∗

G,Ξ (a) = Ψ ∗(a) follows by combining two above
equalities of the same type. Finally, since Ψ ∗

F,Ξ (a) = Ψ ∗(a), the last display means
that (18) holds for ϑ ∈ Ξ . As shown in Remark 4.3, this is equivalent to (17). ��
Theorem 4.9 dom(Ψ ∗) = cc(µ) + bar(Ξ) = ⋃

ri(G) + bar(Ξ) where the union
runs over the Ξ -accessible faces G of cc(µ).
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Proof The union is obviously contained in cc(µ)+bar(Ξ) and contains dom(Ψ ∗) by
Theorem 4.1. Thus, it suffices to prove that cc(µ) + bar(Ξ) is a subset of dom(Ψ ∗).
This follows from the inclusions cc(µ) ⊆ dom(Ψ ∗) and bar(Ξ) ⊆ rec(dom(Ψ ∗)).
The former holds since cc(µ) ⊆ dom(Λ∗) [6, Proposition 1(i)] and the latter is a
consequence of Ξ = dom(Ψ ), see Remark 1.1, and bar(dom(Ψ )) ⊆ rec(dom(Ψ ∗))
[1, Theorem 5.19]. ��
Remark 4.10 In the special case of a full exponential family, Theorem 4.9 implies that
dom(Λ∗) is equal to cc(µ) + bar(dom(Λ)). Once this special case is known, the first
equality of Theorem 4.9 is equivalent to dom(Ψ ∗) = dom(Λ∗) + bar(Ξ), due to the
obvious inclusion bar(dom(Λ)) ⊆ bar(Ξ). In particular, the latter equality does not
require the condition under which it has been proven in Lemma 2.22, let alone the
condition under which it has been known previously, see Remark 2.23.

Proposition 4.11 A set A ⊆ R
d is equal to dom(Λ∗

µ) for some nonzero Borel mea-

sure µ with dom(Λµ) �= ∅ if and only if A = C + K where C ⊆ R
d is a nonempty

convex set with at most countably many faces and K is a nonempty closed convex cone
contained in rec(cl(C)).

For example, closed balls cannot be written in this form if d � 2.

Proof For a measure µ with the above property the cone K = bar(dom(Λµ))

is a subset of rec(dom(Λ∗
µ)) by (13) which is contained in rec(cl(dom(Λ∗

µ))) by
Lemma 2.3. Here, cl(dom(Λ∗

µ)) equals cs(µ) by [6, Proposition 1] which is the clo-
sure of C = cc(µ) by Fact 2.6. Hence, K ⊆ rec(cl(C)). By [4, Theorem 1], C has at
most a countable number of faces. Theorem 4.9 gives the equality dom(Λ∗

µ) = C + K
and one implication follows.

In the opposite direction, assuming nonempty C and K have the above properties, an
inspection of the proof of [4, Theorem 1] shows that there exists a Borel pm ν such that
cc(ν) = C and dom(Λν) = R

d . If K = {0} then, by Theorem 4.9, dom(Λ∗
µ) = C+K

where µ = ν. Otherwise, a sequence of unit vectors bn ∈ rec(cl(C)) exists such that K
is the inclusion-smallest closed convex cone containing them. Let a ∈ ri(C) and νn be
the pm sitting on the halfline {a + tbn : t � 0} with a density dt

(t+1)2 . Then dom(Λνn )

is the halfspace given by {ϑ ∈ R
d : 〈ϑ, bn〉 � 0}. Let µ equal to ν + ∑

2−nνn .
Then, dom(Λµ) equals the intersection of the halfspaces and, in turn, bar(dom(Λµ))

is the cone K by [15, Sect. 14]. Since the halflines are contained in ri(ν), using that
rec(cl(C)) = rec(ri(C)) by Lemma 2.3, the convex core of µ is C . Theorem 4.9
implies that again dom(Λ∗

µ) = C + K . ��

5 Properties of gmle

5.1 Recall that notations involving the underlying measure in an index are conve-
niently shortened when that measure is the restriction of µ to the closure of a face
of cc(µ), replacing the restriction by the face. For example, ΞG is a shorthand for
Ξµcl(G) , thus denotes cl(πG(Ξ)) ∩ dom(ΛG), the set ΞM

G consists of those θ ∈ ΞG

that satisfy the inclusion lin(Ξ) ⊆ M(QG,θ ), and K ∗
G(τ ) is given as in Corollary 3.4

with µ replaced by µcl(G).
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By [8, Theorem 2], the variation closure clv (EΞ) of any canonically convex
exponential family EΞ = {Qϑ : ϑ ∈ Ξ} is equal to the union of the families EG,ΞG

over all Ξ -accessible faces G of cc(µ). While there Ξ ⊆ lin(µ) is assumed, the result
holds with general Ξ ⊆ dom(Λ) since the set ΞG depends on Ξ only through πµ(Ξ).

Theorem 5.1 The range of the gmle mapping R∗ is equal to the set of pm’s P ∈
clv (EΞ) with lin(Ξ) ⊆ M(P), thus the union of the families EG,ΞM

G
over all Ξ -

accessible faces G of cc(µ). For P = QG,τ in this range, where G is a Ξ -accessible
face of cc(µ) and τ ∈ ΞM

G ,

{
a : R∗(a) = P

} = [
m(P) + K ∗

G(τ )
] ∖⋃ [

ri(F) + bar(Ξ)
]
,

where the union is over those Ξ -accessible faces F of cc(µ) that properly contain G.
This set is a shifted cone with the apex m(P).

As a consequence, dom(Ψ ∗) partitions into shifted cones with apices m(P), per-
haps reducing to singletons {m(P)}, extending the result of Corollary 3.4 about such
partitioning of the subset ri(µ) + bar(Ξ) of dom(Ψ ∗).

Corollary 5.2 In the nondegenerate case, the range of the gmle mapping consists of
those pm’s from clv (EΞ) that have means.

Proof If Ξ intersects the interior of dom(Λ) then it intersects also the interior of
dom(ΛG) for each Ξ -accessible face G of cc(µ). Corollary 2.20 applied to restrictions
of µ implies the equivalence of the inclusion lin(Ξ) ⊆ M(P) to the existence of the
mean of P , and thus the assertion follows from Theorem 5.1. ��

The proof of Theorem 5.1 is preceded by two lemmas.

Lemma 5.3 If G is a proper Ξ -accessible face of cc(µ) and a pm P is concentrated
on aff (G) then m(P) �∈ ri(µ) + bar(Ξ).

Proof By the first assumption, some unit vector θ ∈ rec(πµ(ri(Ξ))) exposes a proper
face F of cc(µ) such that G ⊆ F . Let H� denote the halfspace {x : 〈θ, x − a〉 � 0}
that contains cc(µ) and whose boundary hyperplane H intersects cc(µ) in F . By
Lemma 2.15, m(P) ∈ aff (P), where aff (P) ⊆ aff (G) due to the second assumption.
Hence, m(P) belongs to aff (F), and thus to H . On the other hand, let C = cc(µ) and
K = bar(πµ(Ξ)). By Lemma 2.3, rec(ri(πµ(Ξ))) equals N0(K ), whence θ belongs
to N0(K ). This and C ⊆ H� imply C + K ⊆ H� on account of Lemma 4.5. Since
C �⊆ H , it follows from Lemma 4.6 that ri(C) + K does not intersect H . Therefore,
m(P) �∈ ri(µ) + bar(πµ(Ξ)). The proof is completed applying Lemma 4.4 to B =
ri(µ) and a = m(P), as πµ and πµ,a are identical projections due to a ∈ aff (µ). ��
Lemma 5.4 If P ∈ clv (EΞ) satisfies lin(Ξ) ⊆ M(P) then m(P) belongs to ri(P) +
bar(Ξ), this set is contained in dom(Ψ ∗), and R∗(m(P)) = P.

Proof If P ∈ clv (EΞ) then P = QG,θ for a Ξ -accessible face G of cc(µ) and some
θ ∈ ΞG . The latter and the assumption lin(Ξ) ⊆ M(QG,θ ) mean that θ belongs to ΞM

G .
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Lemma 3.3 implies that the set {a ∈ ri(G) + bar(Ξ) : θ∗
G,Ξ (a) = θ} contains m(P).

Since ri(P) = ri(G), this proves that m(P) belongs to ri(P) + bar(Ξ), a subset of
dom(Ψ ∗) due to Theorem 4.9. In addition, R∗(m(P)) = P follows from Theorem 4.1
if it is shown that a = m(P) satisfies G∗(a) = G, or equivalently that if a face F
of cc(µ) properly contains G then a /∈ ri(F) + bar(Ξ). Lemma 2.4 implies that
the Ξ -accessible face G of cc(µ) is a Ξ -accessible face also of F , and the assertion
follows from Lemma 5.3 applied to ν = µcl(F) instead of µ, since P is concentrated
on cl(F) ⊆ aff (F) and ri(ν) = ri(F). ��
Proof of Theorem 5.1 If P = R∗(a) for some a ∈ dom(Ψ ∗) then P ∈ clv (EΞ) by
Remark 1.2. On account of (2), the I-divergence D(P||Qϑ) is finite for ϑ ∈ Ξ , thus
Corollary 2.17 implies lin(Ξ) ⊆ M(P). This and Lemma 5.4 prove the first assertion,
equivalent to the second one due to the representation of clv (EΞ) cited above.

For P = QG,τ withΞ -accessible G and τ ∈ ΞM
G , an element a ofdom(Ψ ∗) satisfies

R∗(a) = P if and only if G∗(a) = G and Qθ∗
G,Ξ (a) = P , by Theorem 4.1. The first

condition means, by the definition of G∗(a), that a belongs to ri(G)+bar(Ξ) but not
to the union of ri(F) + bar(Ξ) for the Ξ -accessible faces F of cc(µ) containing G
properly. The second condition is equivalent to a ∈ m(P) + K ∗

G(τ ), by Corollary 3.4
applied to µcl(G) in the role of µ. Since m(P) belongs to ri(P)+bar(Ξ) by Lemma 5.4,
and K ∗

G(τ ) is contained in bar(Ξ), ri(G) + bar(Ξ) contains m(P) + K ∗
G(τ ), and the

claimed representation of the set {a : R∗(a) = P} follows.
This set contains m(P) by Lemma 5.4, hence for the last assertion it suffices to

prove that if a is in the intersection of m(P) + K ∗
G(τ ) and ri(F) + bar(Ξ) for a

Ξ -accessible face F ⊃ G of cc(µ) then bt = m(P) + t[a − m(P)] belongs to that
intersection for all t > 0. Obviously, bt ∈ m(P) + K ∗

G(τ ) since K ∗
G(τ ) is a cone.

Writing a = c + d with some c ∈ ri(F) and d ∈ bar(Ξ), for 0 < r < min{t, 1}

bt = [
rc + (1 − r)m(P)

] + rd + (t − r)(a − m(P)).

Since m(P) ∈ ri(P) + bar(Ξ) ⊆ F + bar(Ξ), the above bracket belongs to ri(F) +
bar(Ξ). This, d ∈ bar(Ξ) and a − m(P) ∈ K ∗

G(τ ) ⊆ bar(Ξ) imply bt ∈ ri(F) +
bar(Ξ). ��
Example 5.5 Let us consider the situation of Example 1.4 with its notations. There, it
was shown by elementary means that for P = ν the set {a : R∗(a) = P} equals ∂C ,
which is a nonconvex cone. This equality can be simply derived also from Theorem 4.1.
In fact, the convex core of µ consists of the origin c and the interior of C [4, Example 1].
Its only proper face is G = {c}. Any a ∈ ∂C belongs to dom(Λ∗) = C and since it
is not in ri(µ) + bar(Ξ) = ri(µ) it follows that G∗(a) = G. Theorem 4.1 implies
R∗(a) = P . But {a : R∗(a) = P} is contained in ∂C by Corollary 4.2.

For an illustration, the equality {a : R∗(a) = P} = ∂C is now derived directly from
Theorem 5.1. The point mass P = ν belongs to the range of R∗ because P = QG,τ

for τ = (0, 0, 0) where the face G of cc(µ) is Ξ -accessible and τ ∈ ΞM
G , which is a

singleton. By Theorem 5.1,

{
a : R∗(a) = P

} = [
c + K ∗

G(τ )
]∖[

ri(C) + bar(Ξ)
] = K ∗

G(τ )\ri(C)
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and it suffices to show that K ∗
G(τ ) = C . To this end, observe that the mapping θ∗

G,Ξ

is defined on ri(G) + bar(Ξ) = C . Obviously, θ∗
G,Ξ (c) = τ . For b ∈ C \ G,

ΞG,b = cl(πG,b(Ξ)) is the orthogonal projection of (1, 0, 0) − C to EG,b, the line
that passes through b and c, and it is easy to see directly from the definition of θ∗

G,Ξ

that θ∗
G,Ξ (b) is the projection of (1, 0, 0) to this line. Therefore, the range of θ∗

G,Ξ

is the union of {τ } with a closed halfsphere centered at ( 1
2 , 0, 0), see Fig. 1. This

follows also from the first assertion of Lemma 3.3, noting that Ξ
M,∩
E is nonempty

only for those lines E that intersect C in a halfline and equals the intersection of E
with the halfsphere. By Corollary 3.4, K ∗

G(τ ) is the union of KG(θ) over θ in the
range θ∗

G,Ξ (C). By Lemma 3.3, KG(θ) = G for θ = τ , and for θ in the halfsphere,
KG(θ) = Nθ (Ξ)∩[E \G] = E ∩[C \G] where E is the line through τ and θ . Hence,
K ∗

G(τ ) = C indeed.

5.2 The following result establishes continuity of the gmle mapping when its
domain dom(Ψ ∗) is endowed with the topology that corresponds to the Euclidean
topology of the graph of the function Ψ ∗, and its range is endowed with the topology
of variation distance.

Theorem 5.6 If a convergent sequence an and its limit a are in dom(Ψ ∗), the conver-
gence of Ψ ∗(an) to Ψ ∗(a) implies that R∗(an) converges to R∗(a) in variation dis-
tance, and also in reversed I-divergence.

Proof Let ε > 0. Since Ψ ∗(a) is finite there exist ϑ ∈ Ξ such that

ε2

18
> Ψ ∗(a) − [〈ϑ, a〉 − Λ(ϑ)

]
.

This and the hypotheses on the convergence imply

2ε2

9
>

ε2

6
+ Ψ ∗(a) − [〈ϑ, a〉 − Λ(ϑ)

]
> Ψ ∗(an) − [〈ϑ, an〉 − Λ(ϑ)

]
,

the right inequality holding for sufficiently large n. From these inequalities and (2)
it follows by the Pinsker inequality 2D(P||Q) � |P − Q|2, where |P − Q| denotes
the variation distance of pm’s P, Q, that ε

3 > |R∗(a) − Qϑ | and 2ε
3 > |R∗(an) −

Qϑ |. Thus, the variation distance between R∗(a) and R∗(an) is eventually below ε,
proving that R∗(an) converges to R∗(a) in variation distance. The rI-convergence,
D(R∗(a)||R∗(an)) → 0, is a consequence of the following lemma. ��
Lemma 5.7 If a variation convergent sequence of pm’s Pn and its limit P belong to
the range of R∗ then D(P||Pn) → 0.

Proof By Theorem 5.1, Pn = QFn ,ϑn and P = QF,ϑ for faces Fn and F of cc(µ),
with ϑn ∈ cl(πFn (Ξ)) and ϑ ∈ cl(πF (Ξ)). The convergence in variation and [8,
Theorem 4] imply that Fn ⊇ F eventually, QF,ϑn converges to P in variation,
and Pn(cl(F)) → 1. If Fn ⊇ F holds then πF (ϑn) belongs to πF (cl(πFn (Ξ))) ⊆
cl(πF (Ξ)). Therefore, πF (ϑn) − ϑ is in lin(πF (Ξ)) which is a subset of
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lin(Ξ) + lin(F)⊥. Here, lin(Ξ) ⊆ M(P) by Theorem 5.1, and lin(F)⊥ ⊆ M(P)

by Lemma 2.14. Hence, πF (ϑn) − ϑ ∈ M(P). It follows that D(P||QF,ϑn ) is even-
tually finite. By [8, Theorem 3(i)], applied to the sequence QF,ϑn converging in
variation, D(P||QF,ϑn ) → 0. This I-divergence equals D(P||Pn) + ln Pn(cl(F)),
and the assertion follows since Pn(cl(F)) → 1. ��
Example 5.8 Let µ be sum of the point mass ν at a = (0, 0) and the Lebesgue measure
on the segment with endpoints (0, 1) and (1, 1). Then

Λ(ϑ) = ln
[

1 + eϑ2 · eϑ1 − 1

ϑ1

]
, ϑ = (ϑ1, ϑ2) ∈ R

2,

and Qϑ has the mean

eϑ2 ·
[

1 + eϑ2 · eϑ1 − 1

ϑ1

]−1
(

ϑ1eϑ1 − eϑ1 + 1

ϑ2
1

,
eϑ1 − 1

ϑ1

)
.

The pm’s Qθn , θn = (−n en, n), in the full exponential family Eµ, are the gmle’s
R∗(an) for an = m(Qθn ), and R∗(a) = ν. Then an → a and D(R∗(a)||R∗(an)) =
Λ(θn) → 0, while Λ∗(θn) converges to 1, different from Λ∗(a) = 0. This shows that
the converse of the implication in Theorem 5.6 fails even for a full exponential family
with bounded support.

Remark 5.9 If E = Eµ is a full exponential family such that dom(Λ) = R
d then

clv (E) is equal to the union of the full families EG over all faces G of cc(µ), called the
extension ext(E) of E [6]. As all pm’s in this extension have a mean, by Theorem 5.1
the range of the gmle mapping is equal to ext(E) in this case. The barrier cone of
Ξ = dom(Λ) = R

d is the singleton {0}, thus G∗(a) in Theorem 4.1 equals the
unique face G of cc(µ) with a ∈ ri(G). By Theorems 4.9 and 5.1, dom(Λ∗) = cc(µ)

and the mapping R∗ : cc(µ) → ext(E) is bijective. It assigns to each a ∈ cc(µ) the
unique pm in ext(E) whose mean is equal to a. Note that in the considered case the
gmle can always be identified with a true mle when ext(E) rather than E is taken
as the model family, see [6, Corollary 12], or the next section. Under the additional
assumptions that the set cc(µ) is bounded and locally simplicial, the stronger result
holds that the gmle mapping is a homeomorphism between cc(µ) and ext(E), when
the latter is endowed with the topology of variation distance. Indeed, boundedness of
cc(µ) implies continuity of the inverse mapping that assigns to P ∈ ext(E) its mean,
the locally simplicial property implies continuity of the function Λ∗ on dom(Λ∗) =
cc(µ), by [15, Theorem 10.2], and then the mapping a �→ R∗(a) is continuous by
Theorem 5.6. In the special instance when µ is concentrated on a finite set, the convex
hull of this set and ext(E) have been known to be homeomorphic under an mle with
the model family ext(E) [1, Theorem 9.15] and the uniqueness of mle in ext(E) in
terms of means appeared in [1, Theorem 9.16].

5.3 The concept of gmle is related to that of generalized rI-projection [6]. A
set of pm’s is log-convex [6] if it contains the log-convex combinations of pairs of
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nonsingular pm’s in the set. Here, the log-convex combinations Pt Q1−t , 0 < t < 1,
of pm’s P and Q with µ-densities p and q have the µ-densities pt q1−t/

∫
pt q1−t dµ.

According to [6, Theorem 1], if a set S of pm’s is log-convex and P is any pm such
that D(P||S) � inf Q∈S D(P||Q) is finite, there exists a unique pm Q∗ that satisfies

D(P||Q) � D(P||S) + D(Q∗||Q), Q ∈ S. (19)

This pm Q∗ has been called the generalized rI-projection of P to S, because
(19) implies variation convergence to Q∗ of any sequence of pm’s Qn ∈ S with
D(P||Qn) → D(P||S).

The canonically convex exponential families are obviously log-convex, thus the
mentioned result applies to S = EΞ . In that case, as observed in [6], the generalized
rI-projection Q∗ of P is equal to the gmle R∗(a) = R∗

µ,Ξ (a) if the pm P has a mean

and the mean equals a. More generally, for any pm P on R
d with D(P||EΞ) finite,

Lemma 2.16 implies that the nonempty set Γ of all ϑ ∈ Ξ with finite D(P||Qϑ) is
convex, and for ϑ ∈ Γ the equality

D(P||Qϑ) − D(P||EΓ ) = Ψ ∗
Γ (m(P)) − [ 〈ϑ,m(P)〉 − Λ(ϑ)

]

follows from (4) by taking supremum over θ ∈ Γ . In particular, Ψ ∗
Γ (m(P)) is finite,

and (19) for S = EΞ is equivalent to

Ψ ∗
Γ (m(P)) − [ 〈ϑ,m(P)〉 − Λ(ϑ)

]
� D(Q∗||Qϑ), ϑ ∈ ΞP .

Comparing this with (2), Q∗ equals the gmle R∗
µ,Γ (m(P)) by Remark 1.2. Thus, a

generalized rI-projection to a canonically convex exponential family is always equal
to a gmle and can be explicitly described via Theorem 4.1.

The extension ext(E) of an exponential family E is always log-convex [6,
Theorem 2]. On the other hand, the rI-closure of E , the set of all pm’s to which
some sequence in E converges in reversed I-divergence, need not be log-convex [7].

Theorem 5.10 clv (EΞ) and the range of the gmle mapping are log-convex.

Proof Consider two pm’s QF,ϑ and QG,θ in clv (E) where F, G are Ξ -accessible
faces of cc(µ), ϑ ∈ ΞF and θ ∈ ΞG . If these pm’s are not mutually singular then
the µ-measure of cl(F) ∩ cl(G) is positive, and then F ∩ G �= ∅ by Fact 2.10. By
Corollary 2.5, F ∩ G is a Ξ -accessible face of cc(µ).

Since the µ-densities of the two pm’s are proportional to e〈ϑ,x〉 on cl(F), respecti-
vely to e〈θ,x〉 on cl(G), and 0 elsewhere, the µ-density of their log-convex combina-
tion is proportional to e〈tϑ+(1−t)θ,x〉 on cl(F) ∩ cl(G) and 0 elsewhere. By Fact 2.10,
the log-convex combination is equal to QF∩G,tϑ+(1−t)θ . This pm does not change if
tϑ+(1−t)θ is replaced by its projection to lin(F ∩ G). The projector πF∩G maps ϑ

into

πF∩G(cl(πF (Ξ)) ∩ dom(ΛF )) ⊆ cl(πF∩G(Ξ)) ∩ dom(ΛF∩G) = ΞF∩G .
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Analogously, also πF∩G(θ) is in ΞF∩G , and thus so is πF∩G(tϑ +(1− t)θ) due to
convexity of this set. It follows that the log-convex combinations of QF,ϑ and QG,θ

belong to the subfamily EF∩G,ΞF∩G of clv (EΞ).
On account of Theorem 5.1, for the log-convexity of the range it suffices to prove

that if lin(Ξ) is contained in M(P) and M(Q) for two nonsingular pm’s P and Q then
it is contained also in M(Pt Q1−t ), 0 < t < 1. This holds because for µ-densities
p, q and f � 0

t
∫

f p dµ + (1 − t)
∫

f q dµ �
∫

f pt q1−t dµ

which implies that if f is P- and Q-integrable then it is Pt Q1−t -integrable as well.
��

6 mle in the variation closure

For a ∈ R
d define Φ(a) = Φµ,Ξ (a) by

Φ(a) = sup { �a(F, ϑ) : F is a Ξ -accessible face of cc(µ) and ϑ ∈ ΞF } (20)

where �a(F, ϑ) equals 〈ϑ, a〉 − ΛF (ϑ) if a ∈ aff (F) and −∞ elsewhere. Note that
the pairs (F, ϑ) considered here parameterize bijectively the pm’s in the variation
closure of EΞ . Equivalently,

Φ(a) = sup { Ψ ∗
F,Ξ (a) : F is a Ξ -accessible face of cc(µ) with a ∈ aff (F) }, (21)

because if a ∈ aff (F), thus ΞF,a = ΞF , then Ψ ∗
F,Ξ (a) = Ψ ∗

F,ΞF
(a) by Lemma 2.13

and Corollary 2.12.
If Φ(a) is finite and the supremum in (20) is actually a maximum, a maximizing

pair (F∗, ϑ∗) has a statistical interpretation whenever a equals the mean of an i.i.d.
sample from an unknown pm QF,ϑ in clv (EΞ): (F∗, ϑ∗) is an mle from the sample of
the unknown parameter (F, ϑ). The implicit understanding behind this interpretation
is that the µ-density of QF,ϑ is equal to e〈ϑ,x〉−ΛF (ϑ) on aff (F) and 0 elsewhere.
This understanding, though not the same as in previous sections, is legitimate as
densities can differ on a set of µ-measure 0, and Fact 2.9 implies by a simple induction
that aff (F) \ cl(F) has µ-measure 0. An mle in the present sense can exist only if
a ∈ aff (µ), for otherwise Φ(a) = −∞.

Theorem 6.1 For a ∈ aff (µ) the equality Φ(a) = Ψ ∗(a) holds, and the supremum
in (20) is a maximum if and only if a belongs to the intersection of dom(Ψ ∗) and
aff (G) for G = G∗(a). In this case, (G, θ∗

G,Ξ (a)) is the unique maximizer in (20).

Interpreting a as the mean of an i.i.d. sample from an unknown pm QF,ϑ in clv (EΞ)

as above, Theorem 6.1 gives a necessary and sufficient condition for the existence of
an mle of the unknown parameter (F, ϑ) from this sample. If the condition holds then
the mle is unique, equals (G, θ∗

G,Ξ (a)) with G = G∗(a), and thus parameterizes the
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gmle R∗(a), see Theorem 4.1. In case of a full exponential family E with dom(Λ) =
R

d , each a in dom(Λ∗) = cc(µ) meets that necessary and sufficient condition and
therefore the gmle for the family E can be identified with the mle in clv (E) = ext(E),
see Remark 5.9.

The proof of Theorem 6.1 is preceded by three lemmas that complement Theo-
rem 4.1 and give more insight into Φ(a) expressed through (21).

Lemma 6.2 If a ∈ ri(µ) + bar(Ξ) and F is a proper face of cc(µ) then Ψ ∗(a) <

Ψ ∗
F,Ξ (a).

Proof The first assumption implies by Theorem 3.1 that Ψ ∗(a) = 〈θ, a〉 − Λ(θ) for
θ = θ∗(a) in Ξµ,a = cl(πµ,a(Ξ)) ∩ dom(Λ). This and the second assumption give
that Ψ ∗(a) is less than 〈θ, a〉 − ΛF (θ), and thus less than Ψ ∗

F,Ξµ,a
(a). The proof is

completed by observing that Ψ ∗
F,Ξµ,a

(a), Ψ ∗
F,πµ,a(Ξ)(a) and Ψ ∗

F,Ξ (a) are equal, by

Lemma 2.13 and Corollary 2.12, applied to µcl(F) in the role of µ. ��
Lemma 6.3 For a ∈ dom(Ψ ∗) and a face F of cc(µ), Ψ ∗(a) = Ψ ∗

F,Ξ (a) if and only
if F contains G∗(a).

Proof If F contains G = G∗(a), then Ψ ∗
F,Ξ (a) is between Ψ ∗(a) and Ψ ∗

G,Ξ (a) which
coincide by Theorem 4.1. If F �⊇ G then only the case a ∈ F + bar(Ξ) is of interest,
for otherwise Ψ ∗

F,Ξ (a) is infinite by Theorem 4.9 while Ψ ∗(a) is finite by the first
assumption. Then, by Lemma 2.1, the largest face G ′ of F with a ∈ ri(G ′) + bar(Ξ)

is well defined, and it is contained in G = G∗(a) by the definition of the latter. Thus,
G ′ is a subset of G ∩ F , and therefore a proper face of G. By Lemma 6.2 applied to
µcl(G) rather than µ, Ψ ∗

G,Ξ (a) < Ψ ∗
G ′,Ξ (a). By Theorem 4.1, Ψ ∗

G,Ξ (a) = Ψ ∗(a) and
Ψ ∗

G ′,Ξ (a) = Ψ ∗
F,Ξ (a), thus Ψ ∗(a) < Ψ ∗

F,Ξ (a). ��
Lemma 6.4 If F is a Ξ -accessible face of cc(µ) and a ∈ aff (F) then Ψ ∗

F,Ξ (a) =
Ψ ∗(a).

Proof As always Ψ ∗
F,Ξ (a) � Ψ ∗(a), it may be assumed that a ∈ dom(Ψ ∗). Then,

induction argument is applied on the dimension of aff (µ). The assertion is trivial in
the case F = cc(µ), in particular, it holds if the dimension is zero.

If the Ξ -accessible face F of cc(µ) is proper, there exists a nonempty access
sequence to F adapted to Ξ . Then, its first element θ belongs to rec(πµ(ri(Ξ))) and
exposes a proper face G of cc(µ) that contains F as its Ξ -accessible face. It suffices
to show that Ψ ∗(a) = Ψ ∗

µ,Ξ (a) is equal to Ψ ∗
G,Ξ (a), for then the induction hypothesis

applies to µcl(G), yielding Ψ ∗
G,Ξ (a) = Ψ ∗

F,Ξ (a), and the assertion follows.
To this end, observe that Lemma 4.7 can be applied to a, Γ = πµ(Ξ) and θ . In

fact, a ∈ aff (F) implies a ∈ aff (µ), thus πµ,a(Ξ) = Γ , hence Ψ ∗
µ,Ξ (a) = Ψ ∗

µ,Γ (a)

by Corollary 2.12. Thus, a ∈ dom(Ψ ∗) implies a ∈ dom(Ψ ∗
µ,Γ ). Since θ exposes G,

and a belongs to aff (F) ⊆ aff (G), the halfspace H� = {x ∈ R
d : 〈θ, x − a〉 � 0}

contains cs(µ). The hypothesis θ ∈ rec(ri(Γ )) is satisfied since πµ commutes with
relative interiors. Hence, Lemma 4.7 gives the equality Ψ ∗

µ,Γ (a) = Ψ ∗
G,Γ (a). Here,

the left-hand side equals Ψ ∗
µ,Ξ (a) as observed above and, similarly, the right-hand side

equals Ψ ∗
G,Ξ (a), on account of a ∈ aff (G) and the second assertion of Corollary 2.12

applied to µcl(F) in the role of µ. ��
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Proof of Theorem 6.1 The first assertion immediately follows from Lemma 6.4 and
(21). If a ∈ dom(Ψ ∗) then Ψ ∗(a) = Ψ ∗

G,Ξ (a) by Theorem 4.1, where G = G∗(a).
If additionally a ∈ aff (G) then ΞG,a = ΞG thus the maximizer θ∗

G,Ξ (a) of 〈θ, a〉 −
ΛG(θ) subject to θ ∈ ΞG,a belongs to ΞG . Then, (G, θ∗

G,Ξ (a)) is a maximizer
in (20).

If (F∗, ϑ∗) attains the maximum in (20) then a ∈ aff (F∗), ϑ∗ ∈ ΞF∗ and, using
the first assertion, 〈ϑ∗, a〉 − ΛF∗(ϑ∗) = Ψ ∗(a). Thus, a belongs to dom(Ψ ∗). As
Ψ ∗(a) = Ψ ∗

F∗,Ξ (a) by Lemma 6.4, and a ∈ aff (F∗) implies ΞF∗ = ΞF∗,a , it follows
by Theorem 3.2 that ϑ∗ = θ∗

F∗,Ξ (a) and a ∈ ri(F∗) + bar(Ξ). The latter implies by
the definition of G = G∗(a) that F∗ ⊆ G. This and Lemma 6.3 prove that F∗ = G.
Finally, (F∗, ϑ∗) is equal to (G, θ∗

G,Ξ (a)), proving also a ∈ aff (G) and uniqueness
of the maximizer. ��

7 Appendix

Some concepts of this paper depend on the chosen parametrization of the underlying
exponential families, but many are actually invariant. This is discussed in detail here.
Let µ and ν be nonzero, σ -finite Borel measures on R

d whose log-Laplace transforms
have nonempty effective domains, and let Ξ ⊆ dom(Λµ) and Γ ⊆ dom(Λν) be
nonempty and convex sets.

Lemma 7.1 If Qµ,ξ coincides with Qν,η for some ξ ∈ dom(Λµ) and η ∈ dom(Λν)

then for τ = η − ξ and t = Λν(η) − Λµ(ξ)

(i) Λµ(ϑ) + t = Λν(ϑ + τ), ϑ ∈ R
d ,

(ii) dom(Λν) = dom(Λµ) + τ ,
(iii) Qµ,ϑ = Qν,ϑ+τ , ϑ ∈ dom(Λµ),
(iv) Λ∗

µ(a) = Λ∗
ν(a) − [ 〈τ, a〉 − t ], a ∈ R

d .

Proof By assumption,

dµ

dν
(x) = d Qν,η

dν
(x)

/ d Qµ,ξ

dµ
(x) = e〈η,x〉−Λν(η)−[〈ξ,x〉−Λµ(ξ)] = e〈τ,x〉−t ,

and then, for ϑ ∈ R
d

Λµ(ϑ) = ln
∫

Rd

e〈ϑ,x〉 µ(dx) = ln
∫

Rd

e〈ϑ,x〉 e〈τ,x〉−t ν(dx) = Λν(ϑ + τ) − t,

thus (i) and (ii) hold. For ϑ ∈ dom(Λµ)

ln
d Qµ,ϑ

dν
(x) = ln

d Qµ,ϑ

dµ
(x) + ln

dµ

dν
(x) = 〈ϑ, x〉 − Λµ(ϑ) + 〈τ, x〉 − t

which by (i) equals 〈ϑ + τ , x〉 − Λν(ϑ + τ). Hence, (iii) follows. To see (iv), write
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Λ∗
µ(a) = sup

ϑ∈Rd

[ 〈ϑ, a〉 − (Λν(ϑ + τ) − t)
]

= sup
ϑ∈Rd

[ 〈ϑ + τ , a〉 − Λν(ϑ + τ)
] − 〈τ, a〉 + t

using (i). ��
If the families Eµ,Ξ and Eν,Γ intersect then Eµ and Eν intersect, and then Eµ = Eν

by (ii) and (iii). In addition, Qµ,ϑ = Qν,ϑ+τ holds for all ϑ ∈ dom(Λµ) with a unique
τ in lin(µ) = lin(ν). This τ is denoted in the sequel by τ ∗

µ,ν .
Recall that the mapping θ∗

µ,dom(Λµ)
is defined on ri(µ) that equals ri(dom(Λ∗

µ)),
see (13).

Proposition 7.2 Suppose Eµ = Eν .

(i) For a ∈ R
d , there exists θ ∈ dom(Λµ) satisfying Λ∗

µ(a) = 〈θ, a〉 − Λµ(θ) if
and only if ϑ ∈ dom(Λν) exists such that Λ∗

ν(a) = 〈ϑ, a〉 − Λν(ϑ), in which
case Qµ,θ = Qν,ϑ .

(ii) If a ∈ ri(µ) = ri(ν), θ = θ∗
µ,dom(Λµ)

(a) and ϑ = θ∗
ν,dom(Λν)

(a) then ϑ =
θ + τ ∗

µ,ν and Qµ,θ = Qν,ϑ .
(iii) dom(Λ∗

µ) = dom(Λ∗
ν), and for any a in this set the gmle’s R∗

µ,dom(Λµ)
(a) and

R∗
ν,dom(Λν)

(a) coincide.

Proof The assumption implies that Qµ,ξ = Qν,η for some ξ ∈ dom(Λµ) and η ∈
dom(Λν). These parameters are chosen to have τ = η − ξ equal to τ ∗

µ,ν .

(i) By Lemma 7.1 (i) and (iv), the equality Λ∗
µ(a) = 〈θ, a〉 − Λµ(θ) rewrites to

Λ∗
ν(a) = 〈θ + τ , a〉−Λν(θ + τ), which means that θ satisfies the first equality

if and only if ϑ = θ + τ satisfies the second one. Here, θ ∈ dom(Λµ) if and
only if ϑ ∈ dom(Λν) by Lemma 7.1 (ii). Then (iii) of this lemma implies the
equality of the pm’s.

(ii) As argued in Sect. 3.3, Λ∗
µ(a) = 〈θ, a〉 − Λµ(θ) holds for the unique element

θ = θ∗
µ,dom(Λµ)

(a) of dom(Λµ) ∩ lin(µ). This, τ ∈ lin(µ) and the arguments
of the proof of (i) imply the assertions.

(iii) By Theorem 4.9, dom(Λ∗
µ) equals cc(µ) + bar(dom(Λµ)). The first assertion

follows since cc(µ) = cc(ν) and the barrier cones coincide on account of
Lemma 7.1 (ii). The second one is a special case of Proposition 7.4 (iii) with
Ξ = dom(Λµ) and Γ = dom(Λν) since dom(Λ∗

µ) ⊆ aff (µ).

��
Lemma 7.3 Under the assumption and notations of Lemma 7.1,

(v) τ + Ξ ⊆ dom(Λν),
(vi) Eµ,Ξ = Eν,τ+Ξ ,

(vii) Ψ ∗
µ,Ξ (a) = Ψ ∗

ν,τ+Ξ(a) − [ 〈τ, a〉 − t ], a ∈ R
d ,

(viii) dom(Ψ ∗
µ,Ξ ) = dom(Ψ ∗

ν,τ+Ξ),
(ix) R∗

µ,Ξ (a) = R∗
ν,τ+Ξ(a), a ∈ dom(Ψ ∗

µ,Ξ ).
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Proof All references here are to Lemma 7.1. Obviously, (v) follows from (ii), and
then, (vi) from (iii). A proof of (vii) is a simple variation of that of (iv) and is omitted.
Clearly, (viii) follows from (vii). Finally, combining (vii), (i) and (iii), (2) rewrites to

Ψ ∗
ν,τ+Ξ(a) + Λν(ϑ + τ) − 〈ϑ + τ , a〉 � D(R∗

µ,Ξ (a)||Qν,ϑ+τ ), ϑ ∈ Ξ, (22)

where a ∈ dom(Ψ ∗
µ,Ξ ) = dom(Ψ ∗

ν,τ+Ξ) by (viii). The uniqueness of gmle applied
to ν and τ + Ξ establishes (ix), see Remark 1.2. ��

The assertions of Proposition 7.2 extend to general canonically convex exponential
families only under the additional assumption that a belongs to aff (µ) = aff (ν), see
also Example 3.5.

Proposition 7.4 Suppose Eµ,Ξ = Eν,Γ and a ∈ aff (µ).

(i) There exists θ ∈ Ξ satisfying Ψ ∗
µ,Ξ (a) = 〈θ, a〉 − Λµ(θ) if and only if ϑ ∈ Γ

exists such that Ψ ∗
ν,Γ (a) = 〈ϑ, a〉 − Λµ(ϑ), in which case Qµ,θ = Qν,ϑ .

(ii) The conditions a ∈ ri(µ)+bar(Ξ) and a ∈ ri(ν)+bar(Γ ) are equivalent, and
imply ϑ = θ + τ ∗

µ,ν and Qµ,θ = Qν,ϑ where θ = θ∗
µ,Ξ (a) and ϑ = θ∗

ν,Γ (a).
(iii) The conditions a ∈ dom(Ψ ∗

Ξ) and a ∈ dom(Ψ ∗
ν ) are equivalent, and imply that

R∗
µ,Ξ (a) and R∗

ν,Γ (a) coincide.

Proof By the first assumption, lin(µ) = lin(ν) and Qµ,ξ = Qν,η for some ξ ∈
dom(Λµ) and η ∈ dom(Λν) with η − ξ equal to τ = τ ∗

µ,ν .

(i) By Lemma 7.3 (vi), Eµ,Ξ = Eν,τ+Ξ , and thus the first assumption implies
that and πν(τ + Ξ) = πν(Γ ). Then, Ψ ∗

µ,Ξ (a) = 〈θ, a〉 − Λµ(θ) holds with
some θ ∈ Ξ if and only if Ψ ∗

ν,τ+Ξ(a) = 〈θ + τ , a〉 − Λµ(θ + τ), on account
of Lemma 7.3 (vii) and Lemma 7.1 (i). By Corollary 2.12 and a ∈ aff (ν),
this is equivalent to Ψ ∗

ν,πν(τ+Ξ)(a) = 〈θ + τ , a〉 − Λµ(θ + τ) and, in turn, to
Ψ ∗

ν,Γ (a) = 〈ϑ, a〉 − Λµ(ϑ) with some ϑ ∈ Γ satisfying πν(θ + τ) = πν(ϑ).
Hence, πν(θ) = πν(ϑ)−τ ∗

µ,ν , and the equality of pm’s follows from Lemma 7.1
(iii).

(ii) By a ∈ aff (µ) and Lemma 4.4, a belongs to ri(µ) + bar(Ξ) if and only if it
belongs to ri(µ) + bar(πµ(Ξ)). Since ri(µ) = ri(ν) and the barrier cones of
πµ(Ξ) and πν(Γ ) coincide on account of πν(τ+Ξ) = πν(Γ ), the first assertion
obtains by applying again Lemma 4.4 with µ replaced by ν and a ∈ aff (ν).
The second assertion is a consequence of πν(θ) = πν(ϑ) − τ ∗

µ,ν , obtained in
(i) above, and the uniqueness of θ and ϑ in lin(µ), by Theorem 3.1.

(iii) The first assertion can be proved analogously to the first assertion of (ii) above,
by Theorem 4.9 and cc(µ) = cc(ν). For the equality of gmle’s, rewrite (22) to

Ψ ∗
ν,Γ (a) + Λν(ϑ) − 〈ϑ, a〉 � D(R∗

µ,Ξ (a)||Qν,ϑ ), ϑ ∈ Γ,

using Corollary 2.12, πν(τ + Ξ) = πν(Γ ) and a ∈ aff (ν), and recall the
uniqueness of gmle.

��
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