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Abstract Let T be a rooted Galton–Watson tree with offspring distribution {pk}
that has p0 = 0, mean m = ∑ kpk > 1 and exponential tails. Consider the λ-biased
random walk {Xn}n≥0 on T ; this is the nearest neighbor random walk which, when
at a vertex v with dv offspring, moves closer to the root with probability λ/(λ + dv),
and moves to each of the offspring with probability 1/(λ + dv). It is known that this
walk has an a.s. constant speed v = limn |Xn|/n (where |Xn| is the distance of Xn

from the root), with v > 0 for 0 < λ < m and v = 0 for λ ≥ m. For all λ ≤ m, we
prove a quenched CLT for |Xn| − nv. (For λ > m the walk is positive recurrent, and
there is no CLT.) The most interesting case by far is λ = m, where the CLT has the
following form: for almost every T , the ratio |X[nt]|/√n converges in law as n → ∞
to a deterministic multiple of the absolute value of a Brownian motion. Our approach
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to this case is based on an explicit description of an invariant measure for the walk
from the point of view of the particle (previously, such a measure was explicitly known
only for λ = 1) and the construction of appropriate harmonic coordinates.

Mathematics Subject classification (2000) Primary: 60K37 · 60F05; Secondary:
60J80 · 82C41

1 Introduction and statement of results

Let T be a rooted Galton–Watson tree with offspring distribution {pk}. That is, the
numbers of offspring dv of vertices v ∈ T are i.i.d. random variables, with P(dv =
k) = pk . Throughout this paper, we assume that p0 = 0, and that m := ∑ kpk > 1.
In particular, T is almost surely an infinite tree. For technical reasons, we also assume
the existence of exponential moments, that is the existence of some β > 1 such that∑

βk pk < ∞. We let |v| stand for the distance of a vertex v from the root of T , and
let o denote the root of T .

We are interested in λ-biased random walks on the tree T . These are Markov chains
{Xn}n≥0 with X0 = o and transition probabilities

PT (Xn+1 = w|Xn = v) =
{

λ/(λ + dv), if v is an offspring of w,

1/(λ + dv), if w is an offspring of v.

Let GW denote the law of Galton–Watson trees. Lyons [14] showed that

• If λ > m, then for GW-almost every T , the random walk {Xn} is positive recurrent.
• if λ = m, then for GW-almost every T , the random walk {Xn} is null recurrent.
• if λ < m, then for GW-almost every T , the random walk {Xn} is transient.

In the latter case, λ < m, it was later shown in [17,18] that |Xn|/n → v > 0 almost
surely, with a deterministic v = v(λ) (an explicit expression for v is known only for
λ = 1).

Our interest in this paper is mainly in the critical case λ = m. Then, |Xn|/n
converges to 0 almost surely. Our main result is the following.

Theorem 1 Assume λ = m. Then, there exists a deterministic constant σ 2 > 0 such
that for GW-almost every T , the processes {|X�nt�|/

√
σ 2n}t≥0 converges in law to the

absolute value of a standard Brownian motion.

(An expression for σ appears in (11) below.) Theorem 1 is proved in Sect. 6 by coupling
λ-biased walks on GW trees to λ-biased walks on auxiliary trees, which have a marked
ray emanating from the root. The ergodic theory of walks on such trees turns out (in
the special case of λ = m) to be particularly nice. We develop this model and state the
Central Limit Theorem (CLT) for it, Theorem 2, in Sect. 2. The proof of Theorem 2,
which is based on constructing appropriate martingales and controlling the associated
corrector, is developed in Sects. 3, 4 and 5.

We conclude by noting that when λ > m, the biased random walk is positive
recurrent, and no CLT limit is possible. On the other hand, [18] proved that when λ < m
and the walk is transient, there exists a sequence of stationary regeneration times.
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A central limit theorem for biased random walks on Galton–Watson trees 597

Fig. 1 Tree, Ray and horocycle
distance

Analyzing these regeneration times, one deduces a quenched invariance principle
with a proper deterministic centering, see Theorem 3 in Sect. 7 for the statement. We
note in passing that this improves the annealed invariance principle derived in [21] for
λ = 1.

2 A CLT for trees with a marked ray

We consider infinite trees T with one (semi)-infinite directed path, denoted Ray,
starting from a distinguished vertex, called the root and denoted o. For vertices v,w ∈
T , we let d(v,w) denote the length of the (unique) geodesic connecting v and w (we
consider the geodesic as containing both v and w, and its length as the number of
vertices in it minus one). A vertex w is an offspring of a vertex v if d(v,w) = 1 and
either d(w,Ray) > d(v,Ray) or v,w ∈ Ray and d(v, o) > d(w, o). In particular,
the root is an offspring of its unique neighbor on Ray. For any vertex v ∈ T , we let
dv denote the number of offspring of v.

For v a vertex in T , let Rv ∈ Ray denote the intersection of the geodesic connecting
v to Raywith Ray, that is d(v, Rv) = d(v,Ray). For v1, v2 ∈ T , let h(v1, v2) denote
the horocycle distance between v1 and v2 (possibly negative), which is defined as the
unique function h(v1, v2) which equals to d(x, v2) − d(x, v1) for all vertices x such
that both v1 and v2 are descendants of x . (A vertex w ∈ T is a descendant of v if the
geodesic connecting w to v contains an offspring of v.) We also write h(v) = h(o, v);
The quantity h(v), which may be either positive or negative, is the level to which v

belongs, see Fig. 1. Let Dn(v) denote the descendants of v in T at distance n from v.
Explicitly,

Dn(v) = {w ∈ T : d(w, v) = h(w) − h(v) = n}. (1)

We let Zn(v) = |Dn(v)| be the number of descendants of v at level h(v)+n. Then, whe-
never the subtree rooted at v possesses a GW distribution, it holds that {Zn(v)/mn}n≥1
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forms a martingale and converges a.s., as n → ∞, to a random variable denoted
Wv . Moreover, Wv has exponential tails, and there are good bounds on the rate of
convergence, see [1].

Motivated by [16], we next describe a measure on the collection of trees with
marked rays, which we denote by IGW, for Inflated Galton–Watson. Fix a vertex
o (the root) and a semi-infinite ray, denoted Ray, emanating from it. Each vertex
v ∈ Raywith v 	= o is assigned independently a size-biased number of offspring, that
is PIGW(dv = k) = kpk/m, one of which is identified with the descendant of v on
Ray. To each offspring of v 	= o not on Ray, and to o, one attaches an independent
Galton–Watson tree of offspring distribution {pk}k≥1. The resulting random tree T is
distributed according to IGW. An alternative characterization of IGW is obtained as
follows, see [16] for a similar construction.

Lemma 1 Consider the measure Qn on rooted trees with root r , obtained from GW
by size-biasing with respect to |Dn(r)| (that is, d Qn/dGW = |Dn(r)|/mn). Choose a
vertex o ∈ Dn(r) uniformly, creating a (finite) ray from o to the root of the original
tree, and extend the ray from r to obtain an infinite ray, creating thus a random rooted
tree with marked ray emanating from the new root o. Call IGWn the distribution thus
obtained. Then, IGW is the weak limit of IGWn.

Sometimes, we also need to consider trees where the root has no ancestors. Often,
these will be distributed according to the Galton–Watson measureGW. There is however
another important measure that we will use, described in [16], namely the size-biased
measure ĜW corresponding to GW. It is defined formally by dĜW/dGW = Wo. An
alternative construction of ĜW is by sampling, size-biased, a particular trunk.

We let {Xn} denote the λ-biased random walk on the tree T , where λ = m. Expli-
citly, given a tree T , Xn is a Markov process with X0 = o and transition probabilities

PT (Xn+1 = u|Xn = v) =
⎧
⎨

⎩

λ/(λ + dv), if 1 = d(u, v) = h(u, v)

1/(λ + dv), if 1 = d(u, v) = h(v, u)

0, else.

That is, the walker moves with probability λ/(λ + dv) toward the ancestor of v and
with probability 1/(λ + dv) toward any of the offspring of v. We recall that the model
of λ-biased random walk on a rooted tree is reversible, and possesses an electric
network interpretation, where the conductance between v ∈ Dn(o) and an offspring
w ∈ Dn+1(o) of v is λ−n (see e.g. [15] for this representation, and [11] for general
background on reversible random walks interpreted in electric networks terms). With
a slight abuse of notation, we let Pv

T denote the law, conditional on the given tree T
and X0 = v, on the path {Xn}. We refer to this law as the quenched law. Our main
result for the IGW trees is the following.

Theorem 2 Under IGW, the horocycle distance satisfies a quenched invariance prin-
ciple. That is, for some deterministic σ 2 > 0 (see (11) below for the value of σ ), for
IGW-a.e. T , the processes {h(X�nt�)/

√
σ 2n}t≥0 converge in distribution to a standard

Brownian motion.
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A central limit theorem for biased random walks on Galton–Watson trees 599

3 Martingales, stationary measures, and proof of Theorem 2

The proof of Theorem 2 takes the bulk of this paper. We describe here the main steps.

• In a first step, we construct in this section a martingale Mt , whose increments consist
of the normalized population size WXt+1 when h(Xt+1) − h(Xt ) = 1 and −WXt

otherwise. (Thus, the increments of the martingale depend on the “environment as
seen from the particle”). This martingale provides “harmonic coordinates” for the
random walk, in the spirit of [13] and, more recently, [5,22].

• In the next step, we prove an invariance principle for the martingale Mt . This
involves proving a law of large numbers for the associated quadratic variation. It
is at this step that it turns out that IGW is not so convenient to work with, since
the environment viewed from the point of view of the particle is not stationary
under IGW. We thus construct a small modification of IGW, called IGWR, which
is a reversing measure for the environment viewed from the point of view of the
particle, and is absolutely continuous with respect to IGW (see Lemma 2). This
step uses crucially that λ = m. Equipped with the measure IGWR, it is then easy
to prove an invariance principle for Mt , see Corollary 1.

• In the final step, we introduce the corrector Zt , which is the difference between
a constant multiple 1/η of the harmonic coordinates Mt and the position of the
random walk, Xt . As in [5], we seek to show that the corrector is small, see
Proposition 1. The proof of Proposition 1 is postponed to Sect. 4, and is based on
estimating the time spent by the random walk at any given level.

In the sequel (except in Sect. 6), we often use the letters s, t to denote time, reserving
the letter n to denote distances on the tree T . Set M0 = 0 and, if Xt = v for a vertex
v with parent u and offspring Y1, . . . , Ydv , set

Mt+1 − Mt =
{−Wv, Xt+1 = u

WY j , Xt+1 = Y j .

Quenched (i.e., given the realization of the tree), Mt is a martingale with respect
to the natural filtration Ft = σ(X1, . . . , Xt ), as can be seen by using the relation
Wv = ∑dv

j=1 WY j /m. Also, for v ∈ T , let gv denote the geodesic connecting v with
Ray (which by definition contains both v and Rv), and set

Sv =
{∑

u∈gv,u 	=o Wu, if Rv = o,
∑

u∈gv,u 	=Rv
Wu −∑u∈Ray,0≥h(u)>h(Rv)

Wu, if Rv 	= o.

Then, Mt = SXt .
Set

η = EGWW 2
o (= EĜWWo), Zt = Mt/η − h(Xt ). (2)

Fix

α = 1/3, ε0 < 1/100, δ ∈ (1/2 + α + 4ε0, 1 − 4ε0). (3)
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(The reason for the particular choice of constants here will become clearer in the
course of the proof.) For any integer t , let τt denote an integer valued random variable,
independent of T and {Xs}s≥0, uniformly chosen in [t, t + �tδ�]. We prove in Sect. 4
the following estimate, which shows that Mt/η is close to h(Xt ). The variable τt is
introduced here for technical reasons as a smoothing device, that allows us to consider
occupation measures instead of pointwise in time estimates on probabilities.

Proposition 1 With the above notation, for any ε < ε0,

lim
t→∞ Po

T (|Zτt | ≥ ε
√

t) = 0, IGW-a.s. (4)

Further,

lim
t→∞ Po

T

(

sup
r,s≤t,|r−s|<tδ

|h(Xr ) − h(Xs)| > t1/2−ε

)

= 0, IGW-a.s. (5)

The interest in the martingale Mt is that we can prove for it a full invariance principle.
Toward this end, one needs to verify that the normalized quadratic variation process

Vt = 1

t

t∑

i=1

Eo
T
(
(Mi+1 − Mi )

2|Fi

)
(6)

converges IGW-a.s. Note that if Xi = v with offspring Y1, . . . , Ydv then

Eo
T
[
(Mi+1 − Mi )

2|Fi

]
= m

m + dv

W 2
v + 1

m + dv

dv∑

j=1

W 2
Y j

(7)

= 1

m + dv

dv∑

j=1

W 2
Y j

+ 1

m(m + dv)

⎛

⎝
dv∑

j=1

WY j

⎞

⎠

2

=: µ2
v.

It turns out that to ensure the convergence of Vt , it is useful to introduce a new
measure on trees, denoted IGWR (for Inflated Galton–Watson Reversing), which is
absolutely continuous with respect to the measureIGW, and such that the “environment
viewed from the point of view of the particle” becomes stationary under that measure,
see Lemma 2 below. The measure IGWR is similar to IGW, except at the root. The
root o has an infinite path v j of ancestors, which all possess an independent number
of offspring which is size-biased, that is

P(dv j = k) = kpk/m, for all j, k > 0.

The number of offspring at the root itself is independent of the variables just mentioned,
and possesses a distribution which is the average of the original and the size biased
laws, that is:

P(do = k) = (m + k)pk/(2m), for all k > 0.
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A central limit theorem for biased random walks on Galton–Watson trees 601

Fig. 2 The finite tree TF

All other vertices have the original offspring law. All these offspring variables are
independent. In other words, dIGWR/dIGW = (m + do)/2m. Consequently, we can
use the statements “IGW-a.s.” and “IGWR-a.s.” interchangeably.

For v a neighbor of o, let θvT denote the tree which is obtained by shifting the
location of the root to v and adding or erasing one edge from Ray in the only way
that leaves an infinite ray emanating from the new root. We also write, for an arbitrary
vertex w ∈ T with geodesic gw = (v1, v2, . . . , v|w|−1, w) connecting o to w, the shift
θwT = θw ◦ θv|w|−1 ◦ · · · θv1T . Finally, we set Tt = θ Xt T . It is evident that Tt is a
Markov process, with the location of the random walk being frozen at the root, and we
write PT (·) for its transition density, that is PT (A) = PT (T1 ∈ A). What is maybe
surprising at first is that IGWR is reversing for this Markov process. That is, we have.

Lemma 2 The Markov process Tt with initial measure IGWR is stationary and
reversible.

Proof of Lemma 2 Suppose that T0 is picked from IGWR, and T1 is obtained from it
by doing one step (starting with X0 = o) of the critically biased walk on T0, then
moving the root to X1 and adjusting Ray accordingly. We must show that the ordered
pair (T0, T1) has the same law as (T1, T0).

Let TF be finite tree of depth 
 rooted at ρ, and let u, v be adjacent internal nodes
of TF , at distance k and k + 1, respectively, from ρ (see Fig. 2).

Let A(TF , u) be the cylinder set of infinite labeled rooted trees T in the support of
IGWR which locally truncate to TF rooted at u, that is, the connected component of
the root of T among levels between −k and 
− k in T is identical to TF once the root
of T is identified with u, and Ray in T goes through the vertex identified with ρ in
T . Let {w : ρ ≤ w < u} denote the set of vertices on the path from ρ (inclusive) to u
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602 Y. Peres, O. Zeitouni

(exclusive) in TF . Then

PIGWR[A(TF , u)] = PGW(TF )
∏

{w:ρ≤w<u}

[dw

m
· 1

dw

]m + du

2m
, (8)

where the factors dw/m and (m + du)/(2m) come from the density of the IGWR
offspring distributions with respect to the GW offspring distribution, and the factors
1/dw comes from the uniformity in the choice of Ray. Thus

PIGWR[A(TF , u)] = PGW(TF )m−k−1(m + du)/2, (9)

and similarly

PIGWR[A(TF , v)] = PGW(TF )m−k−2(m + dv)/2. (10)

Since the transition probabilities for the critically biased random walk are p(u, v) =
1/(m + du) and p(v, u) = m/(m + dv), we infer from (9) and (10) that

PIGWR[A(TF , u)]p(u, v) = PIGWR[A(TF , v)]p(v, u)

as required. ��
With Vt as in (6), η as in (2) and µo as in (7), the following corollary is of crucial

importance.

Corollary 1

Vt → EIGWRµ2
0 =: σ 2η2, IGWR-a.s., (11)

and σ 2 = 1/η.

Proof of Corollary 1 That IGWR is absolutely continuous with respect to IGW is
obvious from the construction. By Lemma 2, IGWR is invariant and reversible under
the Markov dynamics induced by the process Tt . Thus, (11) holds as soon as one
checks that µ0 ∈ L2(IGWR), which is equivalent to checking that with vi denoting
the offspring of o, it holds that (

∑do
i=1 Wvi )

2 ∈ L1(IGWR). This in turn is implied by
EGW (W 2

o ) < ∞, which holds by, e.g., [2, Chap. I, Sect. 13] or [1, Theorem 4].
To prove that σ 2 = 1/η, note that because dIGWR/dIGW = (m + do)/2m, we get

that

EIGWR(µ2
o) = EIGW

(
m + do

2m
µ2

o

)

(12)

= EGW

(
EGWW 2

o

2
+ do

2m
EGWW 2

o

)

= η,

where we used that EIGWdo = EGWdo = m and EIGWW 2
o = EGWW 2

o = η. ��
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Proof of Theorem 2 In what follows, we consider a fixed T , with the understanding
that the statements hold true for IGW almost every such tree. Due to (11) and the
invariance principle for the Martingale Mt , see [6, Theorem 14.1], it holds that for
IGWR almost every T , {M�nt�/

√
η2σ 2n}t≥0 converges in distribution, as n → ∞, to a

standard Brownian motion. Further, by [6, Theorem 14.4], so does {Mτnt /
√

η2σ 2n}t≥0.
By (4), it then follows that the finite dimensional distributions of the process {Y n

t }t≥0 =
{h(Xτnt )/

√
σ 2n}t≥0 converge, as n → ∞, to those of a standard Brownian motion.

On the other hand, due to (5), the sequence of processes {Y n
t }t≥0 is tight, and hence

converges in distribution to standard Brownian motion. Applying again [6, Theorem
14.4], we conclude that the sequence of processes {h(X�nt�)/

√
σ 2n}t≥0 converges in

distribution to a standard Brownian motion, as claimed. ��

4 Proof of (4)

For any tree with root o, we write Dn for Dn(o), c.f. (1). Recall that EĜWWo = η. For
ε > 0, let Aε

n = Aε
n(T ) = {v ∈ Dn : |n−1Sv − η| > ε}, noting that for GW or ĜW

trees, Sv =∑u∈go,u 	=o Wu . We postpone for a moment the proof of the following.

Lemma 3 For any ε > 0 there exists a deterministic ν = ν(ε) > 0 such that

lim sup
n→∞

1

n
log PĜW

(
1

n
log

|Aε
n|

|Dn| > −ν

)

≤ −ν/2, (13)

and

lim sup
n→∞

1

n
log PGW

(
1

n
log

|Aε
n|

|Dn| > −ν

)

≤ −ν/2. (14)

Turning our attention to trees governed by the measure IGW, for any vertex w ∈ T
we set

SRayw =
∑

v∈T \Ray:v is on the geodesic connecting w and Ray
Wv.

Let Bε
n (T ) = {w ∈ T : d(w,Ray) = n, |n−1SRayw − η| > ε}, and set, with α = 1/3

as in (3),

Qt (T ) = {w ∈ T : d(w,Ray) ≤ tα}. (15)

The following proposition will be proved in Sect. 5.

Proposition 2

lim sup
t→∞

Po
T (Xτt ∈ Qt (T )) = 0, IGW-a.s. (16)
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We can now prove the following.

Lemma 4 With the preceding notation, it holds that for any ε > 0,

lim
t→∞ Po

T (Xτt ∈ ∪m Bε
m(T )) = 0, IGW-a.s.

Proof of Lemma 4 By (16),

at := Po
T (Xτt ∈ Qt (T )) →t→∞ 0, IGW-a.s. (17)

Letting γ ε
m = min(t : Xt ∈ Bε

m(T )), we have (using t + �tδ� ≤ 2t),

Po
T (Xτt ∈ ∪m Bε

m(T )) ≤ at +
2t∑


=tα
Po

T (γ ε

 ≤ 2t). (18)

Consider the excursions of {Xi } down the GW trees whose starting points are offspring
of a vertex in Ray, where an excursion is counted between visits to such a starting
point. The event {γ ε


 ≤ 2t} implies that of the first 2t such excursions, there is at least
one excursion that reaches level 
 − 1 below the corresponding starting point, at a
vertex v with |
−1Sv − η| > ε. Therefore, with τo = min{t > 0 : Xt = o}, for 
 large
so that {x > 0 : |
−1x − η| > ε} ⊂ {x > 0 : |(
 − 1)−1x − η| > ε/2},

Po
IGW

(
γ ε

 ≤ 2t

) ≤ 2t Po
GW

(
γ̄

ε/2

−1 ≤ 2t ∧ τo

)
, (19)

where we set for a GW rooted tree, γ̄
ε/2

 = min{i > 0 : Xi ∈ Aε/2


 )}. But, for a GW

rooted tree, the conductance C(o ↔ Aε/2

 ) from the root to the vertices in Aε/2


 is at

most λ−
|Aε/2

 |. Note that with Zn := |Dn|m−n it holds that EGW(Zn) = 1 and

EGW(Z2
n+1) = EGW (Z2

n) + EGW(d2
o − do)

λ2 (EGW(Zn))2

and hence EGW(Z2

 ) ≤ c
 for some deterministic constant c. Therefore,

Po
GW

(
γ̄

ε/2

−1 ≤ τo

)
≤ EGW

(
C
(

o ↔ Aε/2

−1

))
≤ EGW

(
λ−
+1|Aε/2


−1|
)

= EGW

(

Z
−1
|Aε/2


−1|
|D
−1|

)

≤ [EGW (Z2

−1)]1/2

⎡

⎣EGW

⎛

⎝

( |Aε/2

−1|

|D
−1|

)2
⎞

⎠

⎤

⎦

1/2

≤ e−ν(ε/2)
/4.
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for 
 large, where Lemma 3 was used in the last inequality. Combined with (19), we
conclude that

2t∑


=tα
Po
IGW(γ ε


 ≤ 2t) ≤ e−ν(ε/2)tα/8.

By Markov’s inequality and the Borel–Cantelli lemma, this implies that

lim sup
t→∞

eν(ε/2)tα/16
2t∑


=tα
Po

T (γ ε

 ≤ 2t) = 0, IGW-a.s.

Substituting in (18) and using (17), one concludes the proof of Lemma 4. ��
Proof of Lemma 3 Recall the construction of the measures ĜW and ĜW∗, see [16,
P. 1128]. Note that ĜW∗ is a measure on rooted trees with a marked ray emanating
from the root. We let v∗

n denote the marked vertex at distance n from the root.
By [16, (2.1),(2.2)], and denoting by Tn the first n generations of the tree T , it holds

that

ĜW∗(v∗
n ∈ Aε

n) = EĜW

⎛

⎝ 1

|Dn|
∑

v∈Dn

PĜW(v ∈ Aε
n|Tn)

⎞

⎠ .

We show below that there exists δ1 = δ1(ε) > 0 such that

ĜW∗(v∗
n ∈ Aε

n) ≤ e−2δ1n . (20)

We assume that (20) has been proved, and complete the proof of the lemma. By
Markov’s inequality, (20) implies that

PĜW

(

EĜW

( |Aε
n|

|Dn| | Tn

)

≥ e−δ1n
)

= PĜW

⎛

⎝ 1

|Dn|
∑

v∈Dn

PĜW(v ∈ Aε
n | Tn) ≥ e−δ1n

⎞

⎠ ≤ e−2δ1n

e−δ1n
= e−δ1n . (21)

We thus get

PĜW

( |Aε
n|

|Dn| > e−δ1n/2
)

= EĜW

(

PĜW

( |Aε
n|

|Dn| > e−δ1n/2 | Tn

))

≤ EĜW

(

EĜW

( |Aε
n|

|Dn| | Tn

)

eδ1n/2
)

≤ e−δ1n/2 + eδ1n/2 PĜW

(

EĜW

( |Aε
n|

|Dn| | Tn

)

≥ e−δ1n
)

≤ 2e−δ1n/2,
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where Markov’s inequality was used in the first inequality and (21) in the last. This
proves (13). While (14) could be proved directly, one notes that, with r > 1 such that
p1mr−1 < 1,

PGW

(
1

n
log

|Aε
n|

|Dn| > −ν

)

= EĜW

(

W −1
o 1 1

n log |Aε
n |

|Dn | >−ν

)

≤ (EĜWW −r
o )1/r

(

PĜW

(
1

n
log

|Aε
n|

|Dn| > −ν

))1−1/r

,

where Hölder’s inequality with exponent r > 1 was used. Since EĜWW −r
o =

EGW (W −(r−1)
o ) < ∞ by [19, Theorem 1], (14) follows from (13).

It remains to prove (20). We use the following: since

(EĜWeξWo)2 ≤ EGW(W 2
o )EGWe2ξWo < ∞

for some ξ > 0, where the last inequality is due to [1], it follows that there exists a
ξ > 0 such that

EĜW∗eξWo = EĜWeξWo < ∞. (22)

For a marked vertex v∗
k , we let Z̃

v∗
k

n denote the size of the subset of vertices in Dn(v
∗
k )

whose ancestral line does not contain v∗
k+1, and we define W̃k as the a.s. limit (as

n → ∞) of Z̃
v∗

k
n /mn , which exists by the standard martingale argument. Note that by

construction, for k < n, with Wk = Wv∗
k
,

Wk = W̃k + W̃k+1

m
+ · · · + W̃n−1

mn−k−1 + Wn

mn−k
. (23)

Therefore,

Sv∗
n

=
n−1∑

k=1

W̃kCk + WnCn,

where Ck = 1+1/m + (1/m)2 +· · ·+ (1/m)k−1. Due to (22), we have the existence
of a δ2 > 0 such that

PĜW∗(|WnCn| > εn/4) ≤ PĜW(|Wo| > (1 − 1/m)εn/4) ≤ e−δ2n . (24)

Also,

PĜW∗(
n−1∑

k=0

W̃k[C∞ − Ck] > εn/4) = PĜW∗(
n−1∑

k=0

W̃k

mk+1(1 − 1/m)
> εn/4)

≤ n PĜW(W̃o > cε,mn) ≤ e−δ2n, (25)
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for some constant cε,m , where the fact that W̃o is stochastically dominated by Wo and
(22) were used in the second inequality. On the other hand,

η = EĜW∗ Wk = EĜW[C∞W̃0],

where the first equality follows from the construction of ĜW and the definition of η,
and the second from (23). The random variables W̃k are i.i.d. by construction under
ĜW∗. Therefore, using (24) and (25),

PĜW∗

(∣
∣
∣
∣
Sv∗

n

n
− η

∣
∣
∣
∣ > ε

)

≤ 2e−δ2n + PĜW∗

(
1

n

n−1∑

k=0

[C∞W̃k − η] >
ε

2

)

.

Standard large deviations (applied to the sum of i.i.d. random variables W̃k that possess
exponential moments) together with (22) now yield (20) and complete the proof of
Lemma 3. ��

Continuing with the proof of Proposition 1, let vn denote the vertex on Ray with
h(vn) = −n. By the same construction as in the course of the proof of Lemma 3, it
holds that

Svn /n →n→∞ −η, IGW-a.s. (26)

Let Rt = RXτt
. Note that SXτt

= SRt + SRayXτt
. Thus, with Zτt = SXτt

/η − h(Xτt )

and h(Rt ) = 0 if h(Xτt ) ≥ 0, it follows that

|Zτt | ≤ |SRt /η + |h(Rt )|| + |SRayXτt
/η − h(Rt , Xτt )|.

Note that since the random walk restricted toRay is transient, h(Rt ) →t→∞ −∞, and
hence by (26), SRt /η|h(Rt )| → −1. Therefore, for any positive ε1, for all large t , using
that τt ≤ 2t , it follows that |SRt /η+|h(Rt )|| ≤ ε1 sups≤2t |Ms |. Similarly, for any ε1 <

ε, on the event Xτt 	∈ ∪m Bε1
m (T ), it holds that for large t , |SRayXτt

/η − h(Rt , Xτt )| ≤
ε1 sups≤2t |Ms | for all t large. Thus, for such ε1, |Zτt | ≤ 2ε1 sups≤2t |Ms | for all t
large. From Lemma 4,

lim sup
t→∞

Po
T (Xτt ∈ ∪m Bε1

m (T ) = 0. (27)

But, since the normalized increasing process Vt is IGWR-a.s. bounded, standard Mar-
tingale inequalities imply that

lim
ε1→0

lim sup
t→∞

Po
T (sup

s≤t
|Mt | > ε

√
t/2ε1) = 0.

It follows that
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lim
t→∞ Po

T (|Zτt | ≥ ε
√

t) = 0,

as claimed. ��

5 Auxiliary computations and proof of Proposition 1

We begin by an a priori annealed estimate on the displacement of the random walk in
a GW tree.

Lemma 5 For any u, t ≥ 1, it holds that

Po
GW(|Xi | ≥ u for some i ≤ t) ≤ 4te−u2/2t . (28)

Proof of Lemma 5 Throughout, we write |v| = d(v, o). Let Tu denote the truncation
of the tree T at level u, and let T ∗ denote the graph obtained from Tu by adding an
extra vertex (denoted o∗) and connecting it to all vertices in Du . Let X∗

s denote the
random walk on T ∗, with

PT (X∗
i+1 = w|X∗

i = v) =
⎧
⎨

⎩

PT (Xi+1 = w|Xi = v), if v 	∈ Du,

1/2, if v ∈ Du and d(v,w) = 1,

1/|Du |, if v = o∗ and d(v,w) = 1.

Then,

Po
GW(|Xi | ≥ u for some i ≤ t) = Po

GW(|X∗
i | = u for some i ≤ t)

≤
t∑

i=1

Po
GW(|X∗

i | = u) ≤ 2
t+1∑

i=1

Po
GW(|X∗

i | = o∗). (29)

By the Carne–Varopoulos bound, see [9,24], [15, Theorem 12.1],

Po
T (|X∗

i | = o∗) ≤ 2
√

λ−u |Du |/doe−u2/2i .

Hence, since EGW|Du | = λu ,

2
t+1∑

i=1

Po
GW(|X∗

i | = o∗) ≤ 4te−u2/2t .

Combining the last estimate with (29), we get (28). ��
We get the following.

Corollary 2 It holds that

Po
IGWR(|h(Xi )| ≥ u for some i ≤ t) ≤ 8t3e−(u−1)2/2t . (30)
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and

Po
IGW(|h(Xi )| ≥ u for some i ≤ t) ≤ 16t3e−(u−1)2/2t . (31)

Proof of Corollary 2 We begin by estimating Po
IGWR(h(Xi ) ≥ u). Note that, decom-

posing according to the last visit to the level 0,

Po
IGWR(h(Xi ) ≥ u)

≤ Po
IGWR(∃ j < i : h(Xi ) − h(X j ) ≥ u, h(Xt ) − h(X j ) > 0 ∀t ∈ { j + 1, . . . , i})

≤
i−1∑

j=0

Po
IGWR(h(Xi ) − h(X j ) ≥ u, h(Xt ) − h(X j ) > 0 ∀t ∈ { j + 1, . . . , i}).

Using the stationarity of IGWR, we thus get

Po
IGWR(h(Xi ) ≥ u)

≤
i−1∑

j=0

Po
IGWR(h(Xi− j ) ≥ u, h(Xs) > 0 ∀s ∈ {1, . . . , i − j}),

≤ i max
r≤i

Po
IGWR(h(Xr ) ≥ u, h(Xs) > 0 ∀s ∈ {1, . . . , r}). (32)

On the other hand, for r, u > 1,

Po
IGWR(h(Xr ) ≥ u, h(Xs) > 0 ∀s ∈ {1, . . . , r}) ≤ Po

GW(h(Xr ) ≥ u − 1), (33)

because reaching level u before time r and before returning to the root or visiting Ray
requires reaching level u from one of the offspring of the root before returning to the
root. Substituting in (32) we get

Po
IGWR(h(Xi ) ≥ u) ≤ i max

r≤i
Po
GW(h(Xr ) ≥ u − 1) ≤ 4i2e−(u−1)2/2i , (34)

where (28) was used in the last inequality. It follows from the above that

Po
IGWR(h(Xi ) ≥ u for some i ≤ t) ≤ 4t3e−(u−1)2/2t . (35)

Recall the process Ts = θ Xs T , which is reversible under PIGWR, and note that
h(Xi ) − h(X0) is a measurable function, say H , of {T j }0≤ j≤i (we use here that for
IGWR-almost every T , and vertices v,w ∈ T , one has θvT 	= θwT . Further, with
T̂ j := Ti− j , it holds that H({T̂ j }0≤ j≤i ) = −H({T j }0≤ j≤i ). Therefore,

Po
IGWR(h(Xi ) ≤ −u) = Po

IGWR(h(Xi ) ≥ u).

Applying (34), one concludes that

Po
IGWR(h(Xi ) ≤ −u for some i ≤ t) ≤ 4t3e−(u−1)2/2t . (36)
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Together with (35), the proof of (30) is complete. To see (31), note that IGW is abso-
lutely continuous with respect to IGWR, with Radon–Nikodym derivative uniformly
bounded by 2. ��

We can now give the

Proof of (5) and of Proposition 1 The increments h(Xi+1) − h(Xi ) are stationary
under Po

IGWR. Therefore, by (30), for any ε and r, s ≤ t with |r − s| ≤ tδ ,

Po
IGWR(|h(Xr ) − h(Xs)| > t1/2−ε) = Po

IGWR(|h(Xr−s)| > t1/2−ε) ≤ 8t3e−t1−δ−2ε

.

Therefore, by Markov’s inequality, for all t large,

PIGWR
(

Po
T
(
|h(Xr−s)| > t1/2−ε

)
≥ t−2e−t1−δ−ε

)
≤ e−t1−δ−ε

.

Consequently,

PIGWR

(

Po
T

(

sup
r,s≤t,|r−s|<tδ

|h(Xr ) − h(Xs)| > t1/2−ε

)

≥ e−t1−δ−ε

)

≤ e−t1−δ−ε

.

It follows that

lim sup
t→∞

Po
T
(
supr,s≤t,|r−s|<tδ |h(Xr ) − h(Xs)| > t1/2−ε

)

e−t1−δ−ε
≤ 1, IGWR-a.s., (37)

completing the proof of (5) since the measures IGWR and IGW are mutually absolutely
continuous.
With (4) and (5) proved, we have completed the proof of Proposition 1. ��

We continue with some useful estimate. We begin by controlling the expected
number of visits to Dn during one excursion from the root of a GW tree. We recall that
To = min{n ≥ 1 : Xn = o}.
Lemma 6 Let No(n) = ∑To

i=1 1Xi ∈Dn . There exists a constant C independent of n
such that

Eo
GW (No(n)|do) ≤ do and Eo

ĜW(No(n)|do) ≤ Cdo. (38)

Further,

lim
n→∞ Eo

T (No(n)) = Wo < ∞, GW-a.s. (39)

Proof of Lemma 6 We begin by conditioning on the tree T . For any v ∈ T , let �v

denote the number of visits to v before To. Then, due to the recurrence of the random
walk, π(v) = Eo(�v) is a stationary measure for the random walk, with π(o) = 1
(see, e.g., [3]). Hence, by the uniqueness of such stationary measures for recurrent
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chains, it follows that π(v) = m−|v|. Therefore, Eo
T (No(n)) = |Dn|m−n , and thus

Eo
GW (No(n)|do) = do/m, and

lim
n→∞ Eo

T (No(n)) = Wo < ∞, GW-a.s.

Finally,

Eo
ĜW(No(n)|do) ≤ do

m
EĜW(|Dn−1|)m−(n−1)

= do

m
EGW(|Dn−1|2)m−2(n−1) ≤ do

m
EGWW 2

o .

��
We return to IGW trees. Recall that Qt (T ) = {w ∈ T : d(w,Ray) ≤ tα), and set

Nt (α) =∑t
i=1 1Xi ∈Qt (T ).

Lemma 7 For each ε > 0 it holds that for all t large enough,

Eo
IGW(Nt (α)) ≤ t1/2+α+ε . (40)

Proof of Lemma 7 Let Ut = min{h(Xi ) : i ≤ t} and tε = �t1/2+ε/4�. By (31), for t
large,

Po
IGW(Ut ≤ −tε) ≤ 16t3e−tε/2/3. (41)

Let ξi = min{s : h(Xs) = −i}. It follows from (41) that for all t large,

Eo
IGW(Nt (α)) ≤ 1 + Eo

IGW(Nt (α); Ut > −tε)

≤ 1 + Eo
IGW(Nt (α); ξtε ≥ t). (42)

For all k ≥ 0, let vk be the unique vertex on Ray satisfying h(vk) = −k, and set
dk = dvk . We next claim that there exists a constant C1 = C1(ε) independent of t
such that, with

ϒt,ε := { max
k∈[0,tε ]

dk ≤ C1(log tε)},

it holds that

PIGW(ϒc
t,ε) ≤ 1

t
. (43)

Indeed, with β ′ = 1 + (β − 1)/2 > 1,

PIGW(ϒc
t,ε) ≤ tε PIGW(d0 > C1 log tε)

≤ tε
m

∞∑

j=C1 log tε

j p j ≤ tε(β ′)−C1 log tε

m

∞∑

j=1

j p j (β
′) j , (44)
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from which (43) follows if C1 is large enough since
∑

β j p j < ∞ by assumption.
Combined with the fact that Nt (α) ≤ t and (42), we conclude that for such C1,

Eo
IGW(Nt (α)) ≤ 2 + Eo

IGW(Nt (α); ξtε ≥ t;ϒt,ε). (45)

For the next step, let θ0 = 0 and, for 
 ≥ 1, let θ
 denote the 
-th visit to Ray, that
is θ
 = min{t > θ
−1 : Xt ∈ Ray}. Let H
 = Xθ


denote the skeleton of Xi on Ray.
Note that h
 = h(H
) is a (biased) random walk in random environment with holding
times; that is,

P(h
+1 = j |h
 = k) =
⎧
⎨

⎩

λ/(λ + dk), j = k − 1,

1/(λ + dk), j = k + 1,

(dk − 1)/(λ + dk), j = k.

(46)

Let h∗

 denote the homogeneous Markov chain on Z with h∗

0 = 0 and transitions as
in (46) corresponding to a homogeneous environment with dk = C1 log tε , and set
ηi = min{
 : h
 = −i} and η∗

i = min{
 : h∗

 = −i}. The chain h∗


 possesses the same
drift as the chain h
, and on the event ϒt,ε , its holding times dominate those of the
latter chain. Therefore,

1ϒt,ε Po
T (ηtε > m) ≤ P(η∗

tε > m).

Further, setting θ̄0 = 0 and, for j ≥ 1, using θ̄ j = min{i > θ̄ j−1 : h∗
i 	= h∗̄

θ j−1
} to

denote the successive jump time of the walk h∗
i , one can write

η∗
i =

∑

j :θ̄ j <η∗
i

G j

where the G j are independent geometric random variables with parameter (λ+1)/(λ+
C1 log tε) that represent the holding times. Therefore, for any constants C2, C3 inde-
pendent of ε and t ,

P(η∗
tε > C2tε(log tε)

2) ≤ P(θ̄C3tε < η∗
tε ) + P

⎛

⎝
C3tε∑

j=1

G j > C2tε(log tε)
2

⎞

⎠ .

The event {θ̄C3tε < η∗
tε } has the same probability as the event that a biased nearest

neighbor random walk on Z started at 0, with probability λ/(λ+1) to increase at each
step, does not hit tε by time C3tε . Because λ > 1, choosing C3 = C3(ε) large, this
probability can be made exponentially small in tε , and in particular bounded above by
1/t for t large. Fix such a C3. Now,

P

⎛

⎝
C3tε∑

j=1

G j > C2tε(log tε)
2

⎞

⎠ ≤ C3tε P(G1 > C2(log tε)
2/C3).
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By choosing C2 = C2(ε) large, one can make this last term smaller than 1/t . Therefore,
with such a choice of C2 and C3, and writing ϒ̂t,ε = ϒt,ε ∩ {ηtε < C2tε(log tε)2}, we
obtain from (45) that for all t large,

Eo
IGW(Nt (α)) ≤ 4 + Eo

IGW(Nt (α); ξtε ≥ t; ϒ̂t,ε). (47)

On the event ϒt,ε , all excursions {X
, 
 = ηi−1, . . . , ηi − 1} away from Ray that
start at v ∈ Ray with h(v) > −tε are excursions into GW -trees where the degree of
the root is bounded by C1(log tε) − 1. Therefore,

Eo
IGW

⎛

⎝
ηi∑


=ηi−1

1X
∈Qt (T );ϒt,ε, h(Xηi−1) > −tε

⎞

⎠

≤ max
d≤C1(log tε )−1

Eo
ĜW

( To∑


=0

1h(X
)≤tα |do = d

)

= max
d≤C1(log tε )−1

⎛

⎝
tα∑

j=0

Eo
ĜW(No( j)|do = d)

⎞

⎠ . (48)

Therefore, for all t large,

Eo
IGW(Nt (α); ξtε ≥ t; ϒ̂t,ε))

≤ Eo
IGW

⎛

⎝
C2tε (log tε )2
∑

i=1

1{h(Xηi−1 )>−tε}
ηi∑


=ηi−1

1X
∈Qt (T );ϒt,ε

⎞

⎠

≤ C2tε(log tε)
2 max

d≤C1(log tε )−1

⎛

⎝
tα∑

j=0

Eo
ĜW(No( j)|do = d)

⎞

⎠

≤ t1/2+α+ε/2, (49)

where the second inequality uses (48), and (38) was used in the last inequality. Com-
bined with (47), this completes the proof of Lemma 7. ��

Corollary 3 For each ε > 0 there exists a t1 = t1(T , ε) < ∞ such that for all t ≥ t1,

Eo
T Nt (α) ≤ t1/2+α+2ε, IGW-a.s. (50)

Proof of Corollary 3 From Lemma 7 and Markov’s inequality we have

PIGW
(

Eo
T Nt (α) > cε t1/2+α+3ε/2

)
≤ t−ε/2.
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Therefore, with tk = 2k , it follows from Borel–Cantelli that there exists an k1 =
k1(T , ε) such that for k > k1,

Eo
T Ntk (α) ≤ cε t1/2+α+3ε/2

k , IGW-a.s.

But for tk < t < tk+1 one has that Nt (α) ≤ Ntk+1(α). The claim follows. ��
Proof of Proposition 2 Note that the number of visits of Xi to Qt (T ) between time
i = t and i = t + �tδ� is bounded by Nt+�tδ�(α). Therefore,

Po
T (Xτt ∈ Qt (T )) = 1

tδ

t+�tδ�∑

i=t

Po
T (Xi ∈ Qt (T )) ≤ 1

tδ
Eo

T (Nt+�tδ�(α)).

Applying Corollary 3 with our choice of ε0, see (3), it follows that for all t > t1(T , ε0),
for IGW-almost every T ,

Po
T (Xτt ∈ Qt (T )) ≤ (t + �tδ�)1/2+α+3ε0

tδ
≤ 1

tε0
.

��

6 From IGW to GW: Proof of Theorem 1

Our proof of Theorem 1 is based on constructing a shifted coupling between the
random walk {Xn} on a GW tree and a random walk {Yn} on an IGW tree. We begin by
introducing notation. For a tree (finite or infinite, rooted or not) T , we let LT denote
the collection of leaves of T , that is of vertices of degree 1 in T other than the root.
We set T o = T \ LT . For two trees T1, T2 with roots (finite or infinite) and a vertex
v ∈ LT 1, we let T1 ◦v T2 denote the tree obtained by gluing the root of T2 at the vertex
v. Note that if T1 has an infinite ray emanating from the root, and T2 is a finite rooted
tree, then T1 ◦v T2 is a rooted tree with a marked infinite ray emanating from the root.

Given a GW tree T and a path {Xn} on the tree, we construct a family of finite trees
Ti and of finite paths {ui

n} on Ti as follows. Set τ0 = 0, η0 = 0, and let U0 denote the
rooted tree consisting of the root o and its offspring. For i ≥ 1, let

τi = min{n > ηi−1 : Xn ∈ LU i−1}, (Excursion start)

ηi = min{n > τi : Xn ∈ Uo
i−1}, (Excursion end)

vi = Xτi , (Excursion start location). (51)

We then set

Vi = {v ∈ T : Xn = v for some n ∈ [τi , ηi )},

define V i = Vi ∪ {v ∈ T : v is an offspring of some w ∈ Vi } and let Ti denote the
rooted subtree of T with vertices in V i and root vi . We also define the path {ui

n}ηi −τi −1
n=0
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by ui
n = Xn+τi , noting that ui

n is a path in Ti . Finally, we set

Ui = Ui−1 ◦vi Ti . (52)

Note that Ui is a tree rooted at o since vi ∈ LU i−1. Further, by the GW-almost sure
recurrence of the biased random walk on T , it holds that T = limi Ui .

Next, we construct an IGW tree T̂ with root o and an infinite ray, denoted Ray,
emanating from the root, and a (λ-biased) random walk {Yn} on T̂ , as follows. First,
we choose a vertex denoted o and a semi-infinite directed path Ray emanating from
it. Next, we let each vertex v ∈ Ray have dv offspring, where P(dv = k) = kpk/m,
and the {dv}v∈Ray are independent. For each vertex v ∈ Ray, v 	= o, we identify
one of its offspring with the vertex w ∈ Ray that satisfies d(w, o) = d(v, o) − 1, and
write Û0 for the resulting tree with root o and marked ray Ray.

Set next τ̂0 = η̂0 = 0. We start a λ-biased random walk Yn on Û0 with Y0 = o, and
define

τ̂1 = min{n > 0 : Yn ∈ LÛ0}.

Let v̂1 = Yτ̂1 . We now set Û1 = Û0◦v̂1T1 and η̂1 = τ̂1+η1−τ1, and for τ̂1 ≤ n ≤ η̂1−1,
set Yn = ui

n−τ̂1
. Finally, with ŵ1 the ancestor of v̂1, we set Yη̂1 = ŵ1.

The rest of the construction proceeds similarly. For i > 1, start a λ-biased random
walk {Yn}n≥η̂i−1 on Ûi−1 with Yη̂i−1 = ŵi−1 and define

τ̂i = min{n > η̂i−1 : Yn ∈ LÛi−1}, (Excursion start),

v̂i = Yτ̂i , (Excursion start location), (53)

η̂i = τ̂i + ηi − τi , (Excursion end),

Ûi = Ûi−1 ◦v̂i Ti , (Extended tree),

Yn = Xn−τ̂i , n ∈ [τ̂i , η̂i ) (Random walk path during excursion),

Yη̂i = ŵi = ancestor of v̂i .

Finally, with Û = limi Ûi , define the tree T̂ by attaching to each vertex of LÛ an
independent Galton–Watson tree, thus obtaining an infinite tree with root o and infinite
ray emanating from it (see Fig. 3). The construction leads immediately to the following.

Lemma 8 (a) The tree T̂ with root o and marked ray Ray is distributed according
to IGW.

(b) Conditioned on T̂ , the law of {Yn} is the law of a λ-biased random walk on T̂ .

Let Rn = h(Yn) − minn
i=1 h(Yi ) ≥ 0. Due to Theorem 2, for IGW-almost all T̂ , the

process R�nt�/
√

n converges to a Brownian motion reflected at its running minimum,
which possesses the same law as the absolute value of a Brownian motion, see e.g.
[12, Theorem 6.17]. Our efforts are therefore directed toward estimating the relation
between the processes {Xn} and {Rn}. Toward this end, let In = max{i : τi ≤ n} and
În = max{i : τ̂i ≤ n} measure the number of excursions started by the walks {Xn}
and {Yn} before time n, and set �n =∑In

i=1(τi − ηi−1), and �̂n =∑ În
i=1(τ̂i − η̂i−1).
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(a)

(b)

Fig. 3 The coupling between the GW and IGW walks. x marks the location of the walker

Set also Bn = maxs<t≤n:Ys∈Ray,Yt ∈Ray(h(Yt ) − h(Ys)) (Bn measures the maximal
amount the random walk {Yn} backtracks, that is moves against the drift, along Ray
before time n). Next set, recalling (15),

�α
n =

In∑

i=1

∑

t∈[ηi−1,τi )

1|Xt |≤nα ,

�̂α
n =

În∑

i=1

∑

t∈[η̂i−1,τ̂i )

1Yt ∈Qnα (T̂ ). (54)

Clearly, �α
n ≤ �n and �̂α

n ≤ �̂n . We however can say more.

Lemma 9 Let An = {�α
n = �n} and Ân = {�̂α

n = �̂n}. Then,

lim
n→∞ Po

T (Ac
n) = 0, GW-a.s., (55)

and

lim
n→∞ Po

T ( Ân
c
) = 0, IGW-a.s. (56)
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A central limit theorem for biased random walks on Galton–Watson trees 617

Further,

lim sup
|�n|

n
= 0, GW-a.s., (57)

and

lim sup
|�̂n|

n
= 0, IGW-a.s., (58)

Finally,

lim sup
Bn√

n
= 0, IGW-a.s. (59)

We postpone for the moment the proof of Lemma 9. Note that on the event An ∩ Ân ,
one has

min
s:|s−n|≤�n+�̂n

| |Xn| − Rs | ≤ 2nα + Bn . (60)

(To see that, note that the position |Xn| consists of sums of excursions {ui· }, up to an
error coming from the parts of the path not contained in these excursions, all contained
in a distance at most nα from the root. Similarly, for some s with |s − n| ≤ �n + �̃n ,
Rs consists of the sum of the same excursions, up to an error coming from the parts
of the path not contained in these excursions, which sum up to a total distance of at
most nα from Ray in addition to the amount Bn of backtracking along Ray.)

In view of Lemma 9, the convergence in distribution (for IGW-almost every T̂ ) of
R�nt�/

√
n to reflected Brownian motion, together with (60), complete the proof of

Theorem 1.

Proof of Lemma 9 Consider a rooted tree T distributed according toGW, and a random
walk path {Xt }t≥0 with X0 = o on it. We introduce some notation. For k ≥ 1,
let ak = ∑k

j=1 τ j , bk = ∑k−1
j=1 η j , and Jk = [ak − bk + k, ak+1 − bk+1 + k]

(the length of Jk is the time spent by the walk between the k-th and the k + 1-th
excursions). For s ∈ Jk , we define t (s) = ηk + s − (ak − bk + k). Finally, we set
X̃0 = 0, X̃1 = Xτ1 = X1, and X̃s = Xt (s) (note that the process X̃s travels on vertices
“off the coupled excursions”). Note that even conditioned on T , the nearest neighbor
process {X̃s}s≥0 on T is neither Markovian nor progressively measurable with respect
to its natural filtration. To somewhat address this issue, we define the filtration Gs =
σ(Xi , i ≤ t (s)), and note that conditioned on T , {X̃s}s≥0 is progressively measurable
with respect to the filtration Gs .

The statement (55) will follow as soon as we prove the statement

lim
n→∞ Po

T

(

max
s∈∪In

k=1 Jk

|X̃s | ≥ nα

)

= 0, GW-a.s. (61)
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618 Y. Peres, O. Zeitouni

The proof of (61) will be carried out in several steps. The first step allows us to control
the event that the time spent by the process Xt inside excursions is short. The proof is
routine and postponed.

Lemma 10 For all ε > 0,

lim
n→∞ Po

T (

n1/2+ε
∑

i=1

(ηi − τi ) < n) = 0, GW-a.s. (62)

Further, with

T̃n = min{t : WXt > (log n)2},

it holds that

lim
n→∞ n Po

T (T̃n ≤ n) = 0, GW-a.s. (63)

Our next step involves “coarsening” the process {X̃s} by stopping it at random times
{�i } in such a way that if the stopped process has increased its distance from the root
between two consecutive stopping times, with high probability one of the intervals Jk

has been covered. More precisely, define �0 = 0, and for i ≥ 1,

�i = min{s > �i−1 : ∣∣|X̃s | − |X̃�i−1 |
∣
∣ = �(log n)3/2�}.

We emphasize that the �i depend on n, although this dependence is suppressed in the
notation. The following lemma, whose proof is again routine and postponed, explains
why this coarsening is useful.

Lemma 11 With the notation above,

lim
n→∞ Po

T (for some k ≤ In , �i−1,�i ∈ Jk, |X̃�i | > |X̃�i−1 |) = 0, GW-a.s.

(64)

We have now prepared all needed preliminary steps. Fix ε > 0. Note first that due to
(13) and the Borel–Cantelli lemma, for all n large, |Aε

nα | ≤ |Dnα |e−ν(ε)nα
, GW-a.s. On

the other hand, since EGW|Dnα | = mnα
, Markov’s inequality and the Borel–Cantelli

lemma imply that for all n large, |Dnα | ≤ mnα
eν(ε)nα/2,GW-a.s. Combining these facts,

it holds that for all n large,

|Aε
nα | ≤ mnα

e−ν(ε)nα/2, GW-a.s. (65)

For any vertex v ∈ Dnα , by considering the trace of the random walk on the path
connecting o and v it follows that

Po
T (Xt = v for some t ≤ n) ≤ 1 − (1 − λ−nα

)n ≤ nλ−nα

, GW-a.s.
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Using this and (65) in the first inequality, and (63) in the second, we get

lim sup
n→∞

Po
T ( max

s∈∪In
k=1 Jk

|X̃s | ≥ nα)

≤ lim sup
n→∞

Po
T (∃s ∈ ∪In

k=1 Jk : |X̃s | = nα, SX̃s
≥ ηnα/2)

≤ lim sup
n→∞

Po
T (∃s ∈ ∪In

k=1 Jk : |X̃s | = nα, SX̃s
≥ ηnα/2, t (s) ≤ T̃n). (66)

We next note that by construction,

|{i ∈ {1, . . . , 
} : |X̃�i | > |X̃�i−1 |}| ≥ 
/2.

Hence, with PT probability approaching 1 as n goes to infinity, t (�2n1/2+ε ) > n
because of (62) and Lemma 11. From this and (66), we conclude that

lim sup
n→∞

Po
T

(

max
s∈∪In

k=1 Jk

|X̃s | ≥ nα

)

≤ lim sup
n→∞

2n1/2+ε
∑

i=1

Po
T
(
|X̃�i | ≥ nα − (log n)2, SX̃�i

≥ ηnα/2 − (log n)4,

T̃n > t (�i )
)
.

On the event T̃n > t (�i ) it holds that |SX̃�i
− SX̃�i−1

| ≤ (log n)4 . Therefore,

decomposing according to return times of X̃�i to the root,

lim sup
n→∞

Po
T

(

max
s∈∪In

k=1 Jk

|X̃s | ≥ nα

)

≤ lim sup
n→∞

2n1/2+ε
∑

i=0

2n1/2+ε
∑

j=i+1

Po
T
(
|X̃� j | ≥ nα − (log n)2, X̃�i = o,

SX̃� j
≥ ηnα/2 − (log n)4,

|X̃�k | > 0 and |SX̃�k
− SX̃�k−1

| ≤ (log n)4 for i < k ≤ j
)

=: lim sup
n→∞

2n1/2+ε
∑

i=0

2n1/2+ε
∑

j=i+1

Pi, j,n . (67)

Fixing i , set for t ≥ 1, M̃t = SX̃�i+t
. Introduce the random time

Kn = min{t > 1 : Xs = o for some s ∈ [t (�i+1), t (�i+t )]
or |M̃t − M̃t−1| ≥ (log n)4},
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and the filtration G̃t = G�i+t . The crucial observation is that {M̃t∧Kn − M̃1} is a
supermartingale for the filtration G̃t , with increments bounded in absolute value by
(log n)4 for all t < Kn , and bounded below by −(log n)4 even for t = Kn (it fails
to be a martingale due to the “defects” at the boundary of each of the intervals Jk , at
which times r the conditional expectation of the increment SX̃r+1

− SX̃r
is negative).

Let M̃ ′
t = M̃t if t < Kn or t = Kn but M̃t < M̃t−1 + (log n)4, and M̃ ′

t = M̃Kn−1
otherwise. That is, M̃ ′

t − M̃1 is a truncated version of the supermartingale M̃t∧Kn − M̃1.
It follows that for some non-negative process at , {M̃ ′

t − M̃1 + at } is a martingale with
increments bounded for all t ≤ Kn by 2(log n)4. Therefore, by Azuma’s inequality
[4], for j ≤ n1/2+ε , and all n large,

Pi, j,n ≤ Po
T

(

max
1≤k≤2n1/2+ε

[M̃ ′
k − M̃1] ≥ ηnα/3

)

≤ e−n2α/n1+3ε

.

Since this estimate did not depend on i or j , together with (67), this completes the
proof of (61), and hence of (55). The proofs of (56) and (59) are similar and omitted.

We next turn to the proof of (58). Recall that from Lemma 7, for any ε > 0, and
all n > n0(ε),

Po
IGW(Nn(α) ≥ n1/2+α+2ε) ≤ n−ε .

Therefore, noting the monotonicity of Nn(α) in n, an application of the Borel–Cantelli
lemma (to the sequence nk = 2k) shows that

Nn(α)

n1/2+α+3ε
→n→∞ 0, IGW-a.s.

Since ε can be chosen such that 1/2 + α + 3ε < 1, c.f. (3), and �̂α
n ≤ Nn(α), (58)

follows.
We finally turn to the proof of (57). In what follows, we let Ci = Ci (T ) denote

constants that may depend on T (but not on n). Let Tε(n) = min{t : |Xt | = n1/2+ε}.
By Lemma 5,

Po
GW(Tε(n) ≤ n) ≤ 4ne−n2ε/2.

In particular, by the Borel–Cantelli lemma, for GW-almost every T ,

Po
T (Tε(n) ≤ n) ≤ C4(T )e−nε

. (68)

Let Co,
 denote the conductance between the root and D
. That is, define a unit flow
f on T as a collection of non-negative numbers fv,w, with v ∈ T and w ∈ T an
offspring of v, such that Kirchoff’s current law hold: 1 = ∑

w∈D1
fo,w and fv,w =
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∑
w′:w′ is an offspring of w fw,w′ . Then,

C−1
o,
 = inf

f : f is a unit flow


−1∑

i=0

∑

v∈Di

∑

w:w is an offspring of v

f 2
v,wλi .

By [20, Theorem 2.2], for GW-almost every T there exists a constant C5(T ) and a unit
flow f such that

∑

v∈Di

∑

w:w is an offspring of v

f 2
v,w ≤ C5(T )λ−i .

It follows that

C−1
o,
 ≤ C5(T )
. (69)

On the other hand, by standard theory, see [15, Exercise 2.47], for a given tree T , with
Lo( j) denoting the number of visits to the root before time j ,

Eo
T Lo(Tε(n)) = doC−1

o,n1/2+ε .

Hence, Eo
T Lo(Tε(n)) ≤ doC5(T )n1/2+ε . By Lemma 6, we also have that

Eo
T (No(
)) ≤ C6(T ), for any 
. Thus, using N̄n(α) =∑n

t=1 1{|Xt |≤nα},

Eo
T (N̄n(α); Tε(n) ≥ n) ≤ Eo

T Lo(Tε(n))Eo
T

(
nα
∑


=0

No(
)

)

≤ doC5(T )C6(T )n1/2+ε+α.

It follows from this that

Eo
T (N̄n(α)) ≤ n Po

T (Tε(n) ≤ n) + doC5(T )C6(T )n1/2+ε+α.

Using (68) and the fact that N̄n(α) ≥ �α
n , together with (55), completes the proof of

(57), and hence of Lemma 9. ��
Proof of Lemma 10 We note first that under the annealed measure GW, the random
times (ηi − τi ), which denote the length of the excursions, are i.i.d., and for all x ,

Po
GW(ηi − τi ≥ x) ≥ 1

λ + 1
Po
GW(To ≥ x),

where To = min{t ≥ 1 : Xt = o} denotes the first return time of Xt to o.
Throughout, the constants Ci (T ), that depend only on the tree T , are as in the proof

above. Let xt = t1/2+ε/2 and set Tz = min{t : |Xt | = z}. Then,

Po
T (To ≥ t) ≥ Po

T (Txt < To)Po
T (Txt ≥ t |Txt < To). (70)
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Note however that Po
T (Txt < To) is bounded by the effective conductance between

the root and Dxt , which by (69) is bounded below by C5(T )x−1
t . In particular,

Po
T (Txt < To) ≥ C5(T )

xt
(71)

On the other hand, using (71) and the Carne–Varopoulos bound (see [15, Theorem
12.1], [9,24]) in the second inequality,

Po
T (Txt < t |Txt < To) ≤ Po

T (Txt < t)

Po
T (Txt < To)

≤ C7(T )xt e
−t2ε

(72)

It follows that for all t large,

Po
T (Txt ≥ t |Txt < To) > 1/2,

implying with (70) and (71) that for all t large,

Po
T (To ≥ t) ≥ C5(T )

2t1/2+ε/2 . (73)

It follows that for some deterministic constant C and all t large,

Po
GW(To ≥ t) ≥ C

t1/2+ε/2 . (74)

Hence,

Po
GW(

n1/2+ε
∑

i=1

(ηi − τi ) < n) ≤
(

1 − Po
GW(To ≥ n)

λ + 1

)n1/2+ε

≤
(

1 − C

n1/2+ε/2

)n1/2+ε

≤ e−Cnε/2
.

An application of the Borel–Cantelli lemma yields (62).
To see (63), note that by time n the walker explored at most n distinct sites. We say

that t is a fresh time if Xs 	= Xt for all s < t . Then,

Po
GW(WXt ≥ (log n)2, t is a fresh time) ≤ Po

GW(Wo ≥ (log n)2) ≤ e−c(log n)2
,

by the tail estimates on Wo, see [1]. Therefore,
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Po
GW(WXt ≥ (log n)2, for some t ≤ n)

≤
n∑

t=0

Po
GW(WXt ≥ (log n)2, t is a fresh time) ≤ (n + 1)e−c(log n)2

,

from which (63) follows by an application of the Borel–Cantelli lemma. ��
Proof of Lemma 11 Let Gn denote the event inside the probability in the left hand side
of (64). The event Gn implies the existence of times t0 < t1 < t2 ≤ n and vertices
u, v such that Xt0 = u = Xt2 , Xt1 = v, and |v| = |u| − �(log n)3/2�. Thus, using the
Markov property,

Po
T (Gn) ≤ |{(t0, t1) : t0 < t1 ≤ n}| max

u,v∈T :
|v|=|u|−�(log n)3/2�

Pv(Xt = u for some t ≤ n).

Noting that for each fixed u, v as above, the last probability is dominated by the
probability of a λ-biased (toward 0) random walk on Z+ reflected at 0 to hit location
�(log n)3/2� before time n, we get

Po
T (Gn) ≤ n2e−c(log n)3/2

,

for some c > 0, which implies (64). ��

7 The transient case

Recall that when λ < m, it holds that |Xn|/n →n→∞ v > 0, GW-a.s., for some
non-random v = v(λ) (see [18]). Our goal in this section is to prove the following:

Theorem 3 Assume λ < m and p0 = 0,
∑

k βk pk < ∞ for some β > 1. Then, there
exists a deterministic constant σ 2 > 0 such that for GW-almost every T , the processes
{(|X�nt�| − ntv)/

√
σ 2n}t≥0 converges in law to standard Brownian motion.

Before bringing the proof of Theorem 3, we need to derive an annealed invariance
principle, see Corollary 4 below. The proof of the latter proceeds via the study of
regeneration times, which are defined as follows: we set

τ1 := inf{t : |Xt | > |Xs | for all s < t, and |Xu | ≥ |Xt | for all u ≥ t},

and, for i ≥ 1,

τi+1 := inf{t > τi : |Xt | > |Xs | for all s < t, and |Xu | ≥ |Xt | for all u ≥ t}.

We recall (see [18]) that under the assumptions of the theorem, there exists
GW-a.s. an infinite sequence of regeneration times {τi }i≥1, and the sequence {(|Xτi+1 |−
|Xτi |), (τi+1 − τi )}i≥1 is i.i.d. under the GW measure, and the variables |Xτ2 | − |Xτ1 |
and |Xτ1 | possess exponential moments (see [10, Lemma 4.2] for the last fact). A key
to the proof of an annealed invariance principle is the following
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624 Y. Peres, O. Zeitouni

Proposition 3 When λ < m, it holds that EGW ((τ2 − τ1)
k) < ∞ for all integer k.

Proof of Proposition 3 By coupling with a biased (away from 0) simple random walk
on Z+, the claim is trivial if λ < 1. The case λ = 1 is covered in [21, Theorem 2]. We
thus consider in the sequel only λ ∈ (1, m). Let To = inf{t > 0 : Xt = o} denote the
first return time to the root and Tn = min{t > 0 : |Xt | = n} denote the hitting time
of level n. Let o′ ∈ D1 be an arbitrary offspring of the root. By [10, (4.25)], the law
of τ2 − τ1 under GW is identical to the law of τ1 for the walk started at v, under the
measure GWv(·|To = ∞). Therefore,

Eo
GW((τ2 − τ1)

k) = Eo′
GW(τ k

1 |To = ∞) = Eo′
GW(τ k

1 ; To = ∞)

Po
GW(To = ∞)

where in the last equality we used that Po
GW(To = ∞) = Po′

GW(To = ∞). Thus, with
c denoting a deterministic constant whose value may change from line to line,

Eo
GW((τ2 − τ1)

k) ≤ c
∞∑

n=1

Eo′
GW(τ k

1 ; |Xτ1 | = n, To = ∞)

= c
∞∑

n=1

Eo′
GW(T k

n ; |Xτ1 | = n, To = ∞)

≤ c
∞∑

n=1

Eo′
GW(T 2k

n ; To = ∞)1/2 Po′
GW(|Xτ1 | = n)1/2

≤ c
∞∑

n=1

e−n/c Eo
GW(T 2k

n ; To = ∞)1/2,

where the last inequality is due to the above mentioned exponential moments on |Xτ1 |.
Therefore,

Eo
GW((τ2 − τ1)

k) ≤ c
∞∑

n=1

e−n/cn10k

⎛

⎝
∞∑

j=0

( j + 1)2k Po
GW(Tn > jn10 ; To = ∞)

⎞

⎠

1/2

.

(75)

We proceed by estimating the latter probability. For j ≥ 1, let

A1, j,n = {there exists a t ≤ jn10 such that dXt ≥ (log jn10)2}.

Note that by the assumption
∑

βk pk < ∞ for some β > 1, there exists a constant c
such that for all j and all n large,

Po
GW(A1, j,n) ≤ e−c(log( jn10))2 ≤ e−c(log n10)2−c(log j)2

, (76)
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We next recall that t is a fresh time for the random walk if Xs 	= Xt for all s < t . Let
N j,n := |{t ≤ jn10 : t is a fresh time}| (i.e., N j,n is the number of distinct vertices
visited by the walk up to time jn10). Set

A2, j,n = {N j,n <

√

jn10} ∩ {To = ∞}.

Note that on the event A2, j,n ∩ Ac
1, j,n there is a time t ≤ jn10 and a vertex v with

dv ≤ (log( jn10))2 such that Xt = v and v is subsequently visited
√

jn10 times with
no visit at the root. Considering the trace of the walk on the ray connecting v and o,
and conditioning on Xt = v, the last event has a probability bounded uniformly (in

t, v) by (1 − c/(log( jn10))2)
√

jn10
, since λ > 1. Hence, for all n large, using (76),

Po
GW(A2, j,n) ≤ e−c(log( jn10))2 + jn10

(

1 − c

(log( jn10))2

)√
jn10

≤ e−c(log n10)2−c(log j)2 + jn10e−( jn10)1/4
. (77)

The event Ac
2, j,n ∩{To = ∞} entails the existence of at least j1/2n3 fresh times which

are at distance at least n2 from each other. Letting t1 = min{t > 0 : t is a fresh time}
and

ti = min{t > ti−1 + n2 : t is a fresh time},

we observe that if |Xti | < n then P
Xti
GW(Tn < n2|Fti ) > c > 0 (since from each fresh

time, the walk has under the GW measure a strictly positive probability to escape with
positive speed without backtracking to the fresh point). Thus,

Po
GW(Tn > jn10, To = ∞,Ac

2, j,n) ≤ (1 − c) j1/2n3
. (78)

Combining (77) and (78), we conclude that

∞∑

j=0

( j + 1)2k Po
GW(Tn > jn10, To = ∞) ≤ c.

Substituting in (75), the lemma follows. ��
A standard consequence of Proposition 3 and the regeneration structure (see e.g.

[23, Theorem 4.1], [25, Theorem 3.5.24]) is the following:

Corollary 4 There exists a constant σ 2 such that, under the annealed measureGW, the
process {(|X�nt�| − nvt)/

√
σ 2n}t≥0 converges in distribution to a Brownian motion.

Proof of Theorem 3 Our argument is based on the technique introduced by Bolthausen
and Sznitman [7], as developed in [8]. Let Bn

t = Bn
t (|X |·) = (|X�nt�| − ntv)/

√
n,
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and let B
n
t (|X |·) denote the polygonal interpolation of (k/n) → Bn

k/n . Consider the
space CT of continuous functions on [0, T ], endowed with the distance dT (u, u′) =
supt≤T |u(t)−u′(t)|∧1. By [7, Lemma 4.1], Theorem 3 will follow from Corollary 4
once we show that for all bounded by 1 Lipschitz function F on CT with Lipschitz
constant 1, and b ∈ (1, 2],

∑

k

varGW
(

Eo
T [F(B�bk�)]

)
< ∞. (79)

In the sequel, fix b and F as above. For the same tree T , let X1· and X2· be inde-

pendent λ-biased random walks on T , and set B[i, k]t = B
�bk�
t (|Xi |·) and B[i, k, s]t =

B
�bk�
t (|Xi |·+s − |Xi |s), i = 1, 2. Set

τ i,k = min{t > �bk/4� : t is a regeneration time for Xi }
A1

k : = {{X1
s , s ≤ τ 1,k} ∩ X2

τ 2,k = ∅}, A2
k := {{X2

s , s ≤ τ 2,k} ∩ X1
τ 1,k = ∅},

Ak = A1
k ∩ A2

k,

Bi
k : = {τ i,k ≤ bk/3}.

Note that on the event A1
k , the paths {X1

s , s ≥ τ 1,k} and {X2
s , s ≥ τ 2,k} can intersect

only if X2
τ 2,k is a descendant of X1

τ 1,k . Applying the same reasoning for the symmetric

event A2
k , we conclude that on the event Ak , these two paths do not intersect.

By construction, for any path X · on T , the path B
�bk�(|X |·) is Lipschitz with

Lipschitz constant bounded by bk/2. Hence, since

max
t

|B[i, k]t − B[i, k, τ i,k]t | ≤ τ i,k

bk/2

and using the fact that F is a Lipschitz function with Lipschitz constant 1, we have that
on the event Bi

k , |F(B[i, k]) − F(B[i, k, τ i,k])| ≤ bk/3/bk/2, and thus, since |F | ≤ 1,

varGW
(

Eo
T [F(B�bk�)]

)

= EGW[F(B[1, k])F(B[2, k])] − EGW[F(B[1, k])]EGW[F(B[2, k])]
≤ 4PGW((B1

k )
c) + 4bk/3−k/2 + EGW[F(B[1, k, τ 1,k])F(B[2, k, τ 2,k])]

−EGW[F(B[1, k, τ 1,k])]EGW[F(B[2, k, τ 2,k])].

Conditioning on the event Ak and using again that |F | ≤ 1, we get

varGW
(

Eo
T [F(B�bk�)]

)
≤ 4PGW((B1

k )
c) + 4PGW(Ac

k) + 4bk/3−k/2

+ EGW[F(B[1, k, τ 1,k])F(B[2, k, τ 2,k])|Ak]
− EGW[F(B[1, k, τ 1,k])|Ak]EGW[F(B[2, k, τ 2,k])|Ak].
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Conditioned on the event Ak , the paths B[1, k, τ 1,k] and B[2, k, τ 2,k] are independent
under the GW measure. Therefore, we conclude that

varGW
(

Eo
T [F(B�bk�)]

)
≤ 4(PGW(Ac

k) + PGW((B1
k )

c) + bk/3−k/2). (80)

Let τ
j

i denote the successive regeneration times for X j· , j = 1, 2. The event {(B1
k )

c}∩
{τ 1

1 ≤ bk/4} implies that at least one of the first bk/4 inter-regeneration times τ 1
i+1 −τ 1

i
is larger than bk/3. Therefore,

PGW((B1
k )

c) ≤ PGW(τ 1
1 > bk/4) + PGW(one of (τ 1

i+1 − τ 1
i )bk/4

i=1 is larger than bk/3)

≤ PGW(τ 1
1 > bk/4) + bk/4 PGW(τ 1

2 − τ 1
1 > bk/3)

≤ PGW(τ 1
1 > bk/4) + bk/4−k/3 EGW (τ 1

2 − τ 1
1 )

≤ PGW(τ 1
1 > bk/4) + cbk/4−k/3.

where Markov’s inequality was used in the third step. Let T
 = min{t > 0 : |Xt | = 
}.
Let Yt be a nearest neighbor random walk on Z+ with P(Yt+1 = Yt −1|Yt ) = λ/(λ+1)

whenever Yt 	= 0. Y· and X · can be constructed on the same probability space, such
that T
 ≤ min{t > 0 : Yt = 
} =: T Y


 for all 
. On the other hand, using the Markov
property, for any constant c and all 
 large,

P(T Y

 > ec
) ≤

(

1 −
(

1

1 + λ

)

)ec
/


In particular, there exists a c1 = c1(λ) > 0 such that PGW(T
 > ec1
) ≤ e−
/c1

(better bounds are available but not needed). Thus, for some deterministic constants
ci = ci (λ, b) > 0, i ≥ 2, and all k large,

PGW(τ1 > bk/4/2) ≤ PGW(|Xτ1 | > c2k) + PGW(τ1 > bk/4/2, |Xτ1 | ≤ c2k)

≤ PGW(|Xτ1 | > c2k) + PGW(Tc2k > bk/4/2) ≤ e−c3k, (81)

where we have used the above mentioned fact that |Xτ1 | possesses exponential
moments. We conclude that with c4 ≤ c3,

PGW((B1
k )

c) ≤ b−c4k .

It remains to estimate PGW(Ac
k) ≤ 2PGW((A1

k)
c). Let

C′
k,i := {τ i

1 < bk/4/2}, C′′
k,i := {τ i

�bk/8� < bk/4}, Ck := C′
k,1 ∩ C′

k,2 ∩ C′′
k,1 ∩ C′′

k,2.

Using (81), it follows that PGW(C′c
k,1) ≤ b−c3k . On the other hand, the event C′

k,1 ∩
(C′′

k,1)
c implies that the sum of the difference τ 1

i+1 − τ 1
i , i = 1, . . . , �bk/8�, is larger
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than bk/4/2, and hence, by Markov’s inequality,

PGW(C′
k,1 ∩ (C′′

k,1)
c) ≤ 2bk/8 EGW (τ 1

2 − τ 1
1 )

bk/4 ≤ b−c5k,

for some deterministic constant c5 < c4. Since the same estimates are valid also for
C ′

k,2 and C ′′
k,2 replacing C ′

k,1 and C ′′
k,1, it follows that

PGW(Cc
k ) ≤ 4b−c5k . (82)

On the other hand, let Z i denote the collection of vertices in D�bk/8� hit by Xi· . On Ck

there are at most bk/4 vertices in Z1. The event (A1
k)

c ∩ Ck implies that the path X2

intersected the path X1 at a distance at least �bk/8� from the root, and this has to happen
before time τ 2

�bk/8�, i.e. before time bk/4, for otherwise Z1 ∩ Z2 = ∅. Therefore,

PGW((A1
k)

c ∩ Ck) ≤ EGWPo
T (X2· visits Z1 before time bk/4)

≤ bk/4 EGW max
v∈D�bk/8�

Po
T (X2· visits v before time bk/4). (83)

When λ > 1, there exists a constant c6 < c5 such that uniformly in v ∈ D�bk/8�,

Po
T (X2· visits v before time bk/4) ≤ bk/4e−c6bk/8

.

On the other hand, even when p1 > 0, Lemma 2.2 of [10] shows that there exists a
β > 0 such that with Mv = |{w is an ancestor of v : dw ≥ 2}|, it holds that

lim sup

→∞

PGW(min
v∈D


Mv/
 < β) < 0.

It immediately follows, reducing c6 if necessary, that when λ ≤ 1, for all k large,

EGW max
v∈D�bk/8�

Po
T (X2· visits v ever) ≤ e−c6bk/8

.

Substituting in (83), we conclude that whenever λ < m,

PGW(Ac
k ∩ Ck) ≤ 2PGW((A1

k)
c ∩ Ck) ≤ e−c7bk/8

.

Together with (82), (81), and (80), we conclude that (79) holds and thus conclude the
proof of Theorem 3. ��

Concluding remark Throughout the paper, we have assumed that p0 = 0 and that
the offspring distribution of the GW tree has exponential moments. We believe that the
main results of the paper hold under weaker assumptions (when the tree is conditioned
on non-extinction if p0 > 0), however proving this would require substantial further
work.
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