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Abstract We construct random locally compact real trees called Lévy trees
that are the genealogical trees associated with continuous-state branching pro-
cesses. More precisely, we define a growing family of discrete Galton–Watson
trees with i.i.d. exponential branch lengths that is consistent under Bernoulli
percolation on leaves; we define the Lévy tree as the limit of this growing
family with respect to the Gromov–Hausdorff topology on metric spaces. This
elementary approach notably includes supercritical trees and does not make
use of the height process introduced by Le Gall and Le Jan to code the gene-
alogy of (sub)critical continuous-state branching processes. We construct the
mass measure of Lévy trees and we give a decomposition along the ancestral
subtree of a Poisson sampling directed by the mass measure.
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1 Introduction

Continuous-state branching processes have been introduced by Jirina [22] and
Lamperti [23–25]. They are the continuous analogues of the Galton–Watson
Markov chains. Recall that the distribution of a continuous-state branching
process is characterized by a real-valued function ψ defined on [0, ∞) that is of
the form

ψ(c) = αc + βc2 +
∫

(0,∞)

(e−cx − 1 + cx1{x<1})�(dx), (1)

where α ∈ R, β ≥ 0, and � is the Lévy measure which satisfies

∫

(0,∞)

(1 ∧ x2)�(dx) < ∞.

ψ is called the branching mechanism of the continuous-state branching process.
More precisely, Z = (Zt, t ≥ 0) is a continuous-state branching process with
branching mechanism ψ (a CSBP(ψ) for short) iff it is a [0, ∞]-valued Feller
process whose transition kernel is characterized by

E[exp(−λZs+t)|Zs] = exp(−u(t, λ)Zs),

where u is the unique non-negative solution of

∂tu(t, λ) = −ψ(u(t, λ)) and u(0, λ) = λ, t ≥ 0, λ ≥ 0. (2)

We shall always assume that

lim
c→∞ψ(c) = +∞.

This is equivalent to P(limt→∞ Zt = 0) > 0.
We shall mostly restrict our attention to the case where Zt has a finite expecta-

tion which is equivalent to the fact that the right derivative ofψ at 0 is finite. We
denote this right derivative by m := ψ ′(0+). We refer to the case m ∈ [−∞, 0)
(resp. m = 0 and m ∈ (0, +∞)) as to the supercritical case (resp. critical case
and subcritical case).

Sinceψ(0) = 0 andψ is convex, the equationψ(c) = 0 has at most two roots.
We denote by γ the largest root (observe that γ > 0 only in the supercritical
case: m < 0).

Equation (2) can be rewritten in the following integrated form

λ∫

u(t,λ)

dc
ψ(c)

= t, t ≥ 0, λ �= γ . (3)
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We shall often assume that Z has a positive probability of extinction which is
equivalent to the following analytical condition

∞∫
dc
ψ(c)

< ∞ (4)

(see [5]). In that case, we have

P (∃t ≥ 0 : Zt = 0| Z0 = a) = exp(−aγ ).

If (4) is not satisfied then the underlying Lévy tree will fail to be locally compact.
The main goal of this paper is to construct an (a,ψ)-Lévy tree that can be

interpreted as the genealogical tree of a population whose size evolves accord-
ing a CSBP(ψ) Z with initial state Z0 = a. We proceed by approximating
the Lévy tree by Galton–Watson trees with exponential edge lengths. More
precisely, recall that a Galton–Watson tree with exponential edge lengths is
the genealogical tree of a progenitor and its descendants, where individuals
have independent and identically exponentially distributed lifetimes with a
rate c ∈ (0, ∞), and produce offspring at the end of their lives independently
according to an offspring distribution ξ on {0, 2, 3, . . .}. Instead of one single tree,
we rather consider a random number of independent Galton–Watson trees, the
random number of progenitors being a Poisson random variable with param-
eter a. We call such a forest a Galton–Watson forest (a GW(ξ , c, a)-forest for
short).

Let F be a GW(ξ , c, a)-forest. We perform a Bernoulli leaf colouring on
F i.e. we attach independent Bernoulli marks with parameter p to all leaves
and interpret a mark 0 as black, a mark 1 as red. An elementary calculation
will show that the subforest Fb spanned by the black leaves and the root is a
GW(ξb, cb, ab)-forest, where ξb, cb, ab are calculated explicitly in terms of ξ , c,
a and p (see after Remark 4.1).

One of the aims of the paper is to construct a family (Fλ ; λ ≥ 0) of random
trees such that for any λ ≥ 0, Fλ is a GW(ξλ, cλ, aλ)-forest and that is consistent
under Bernoulli leaf colouring: namely, for any 0 ≤ µ ≤ λ, we want Fµ to be the
black subtree obtained from Fλ by a Bernoulli leaf colouring with parameter
1 − p = µ/λ. Theorem 4.2 asserts that the distribution of such a leaf colouring
consistent family can be parameterized by (a,ψ), where a ∈ (0, ∞) and ψ is the
branching mechanism of a continuous-state branching process (CSBP(ψ)) that
is of the form (1); more precisely we have

aλ = aψ−1(λ), cλ = ψ ′(ψ−1(λ)),

ϕλ(r) =
∞∑

k=0

ξλ(k)rk = r + ψ((1 − r)ψ−1(λ))

ψ−1(λ)ψ ′(ψ−1(λ))
. (5)

This offspring distribution appears in [21] in the Brownian case and Theo-
rem 3.2.1 [10] in the critical and the subcritical cases as the distribution of the
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ancestral tree corresponding to Poisson marks on [0, ∞) via the coding of the
Lévy tree by the height process. We refer to Remark 5.4 for a detailed discussion
of the connection of our results and the work in [10,11].

Conversely, Proposition 4.4 asserts that to each (a,ψ) there corresponds a
growing family (Fλ; λ ≥ 0) of GW-trees with edge lengths, consistent under
Bernoulli leaf colouring as explained before and whose distribution is specified
by (5). This process can be viewed as a forest-valued inhomogeneous continu-
ous-time Markov chain whose characteristics are specified by Remark 4.10.

The leaf-colouring consistent forest growth processes that we consider can
be viewed in a more general framework of Markovian forest growth processes.
Several schemes to construct such processes preserving Galton–Watson for-
ests and allowing the passage to continuous limits are more or less explicit in
the literature. They are often more easily described by their co-transition rules.
Firstly, Neveu [30] and Salminen [35] erase branches in general (non-explosive)
Galton–Watson trees with exponential edge lengths continuously from their
tips. Le Jan [28], Abraham [1] and Pitman [33] reverse the procedure to grow
stable/Brownian trees and forests from appropriate Galton–Watson trees/for-
ests. Secondly, Aldous and Pitman [2] perform percolation on the edges in
general Galton–Watson trees (without edge lengths) and retain the connected
component containing the root, as a tree-valued Markov process as the perco-
lation probability varies. They call the procedure pruning of a Galton–Watson
tree. The viewpoint is to gradually reduce the tree by consistently decreasing
the percolation probability. Geiger and Kaufmann [18] discount the offspring
distribution to reduce a given Galton–Watson tree in a size-biased way. This
can be seen as a special case of multiplicity-dependent pruning at vertices. We
will see here that it is also related to the third scheme of reduction by Bernoulli
leaf colouring, that we study in this paper.

Let us denote by (Zλt )t≥0 the population size process associated with Fλ.
Assume that m is finite. Then, it is easy to show that for any t ≥ 0, a.s.

1
ψ−1(λ)

Zλt −→
λ→∞ Zt,

where Z is a CSBP(ψ) such that Z0 = a. Under the additional assumption (4)
we prove in Theorem 5.1 an a.s. convergence for the entire genealogy: as in the
paper by Evans et al. [16], we consider genealogical trees as tree-like metric
spaces and more precisely as locally compact rooted real trees, whose precise
definition is given in Sect. 3.1. We introduce the set T of root preserving isome-
try classes of such trees equipped with the pointed Gromov–Hausdorff metric
δ [see (18) in Sect. 3.2 for the definition]; we prove in Proposition 3.4 that (T, δ)
is a Polish space. This is a simple generalization of the compact case proved in
[16]. Then, we see the growing process of trees (Fλ; λ ≥ 0) as a collection of
locally compact rooted real trees (Fλ, dλ, ρ), λ ≥ 0, such that for any 0 ≤ µ ≤ λ

Fµ ⊂ Fλ and dλ|Fµ×Fµ
= dµ
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(here ρ stands for the common root of the trees). Then Theorem 5.1 asserts that
a.s.

δ (Fλ, F) −→
λ→∞ 0,

where F is the completion of
⋃

Fλ. The limiting random tree is called the
(ψ , a)-Lévy forest.

This result is related to the work of Pitman and Winkel [34] who perform
Bernoulli leaf colouring in the special case of binary Galton–Watson forests.
They show, that in this case, the forest growth process has independent “incre-
ments”, expressed by a composition rule. It can be consistently extended to
increase to the Brownian forest. This passage to the limit is understood by
convergence of coding height processes via a Donsker type theorem. In the
critical or subcritical case m ≥ 0, it is also clear (see Remark 5.4 for a detailed
explanation), that the distribution of the root preserving isometry class of F
is the same as the distribution induced by the corresponding forest coded by
the height process introduced by Le Gall and Le Jan [26] (see also [10]). Let us
mention that a framework of real trees and the Gromov–Hausdorff metric has
been developed for probabilistic applications by Evans in [13], Evans et al. in
[16], and Evans and Winter in [14].

In Sect. 5.3, we define the ψ-excursion measure � that can be seen as the
“distribution” of a single ψ-Lévy tree. More precisely, Proposition 5.5 asserts
that the isometry classes of the connected components of F\{ρ} form a Poisson
point process on T with intensity measure a�.

Our definition of the Lévy forest also allows to construct the mass measure
on F denoted by m in the following way: let us denote by mλ the empirical
distribution of the leaves of Fλ; then Theorem 5.2 asserts that mλ/λ converges
to m a.s. for the vague topology for the Radon measures on F . It also asserts
that the topological support of the mass measure is F and that the isometry
class of the tree spanned by the root ρ and the points of a Poisson point process
on F with intensity measure λm has the same distribution as the isometry class
of Fλ.

In the last section, Theorem 5.6 provides a decomposition of F along Fλ.
In the supercritical case m < 0, it is easy to see that if F is infinite, then the
infinite subtree of F is simply the tree F0 and the latter decomposition provides
a decomposition of the Lévy forest along its infinite component which is dis-
tributed as a GW(ξ0,ψ ′(γ ), a)-forest. This generalizes a decomposition known
for Galton–Watson trees (see [29]), and for embedded spatial trees in the su-
perprocess context (see Theorem 3.2 of [15], see also [12]), in the case where
ψ(c) = αc + βc2, α < 0.

This paper is organized as follows: in Sect. 2, we set notation concerning
discrete trees and we discuss the Bernoulli leaf colouring of discrete Galton–
Watson trees. In Sect. 3 we introduce real trees (Sect. 3.1) and we define the
Gromov–Hausdorff topology on the isometry classes of locally compact rooted
real trees (Sect. 3.2); in Sects. 5.2 and 5.4 for technical reasons we shall need to
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embed locally compact trees in the Banach space 
1(N); the way to do this is
explained in Sect. 3.4. In Sect. 4 we define the growth process of the Lévy for-
est: we first discuss in Sect. 4.1 the Bernoulli leaf colouring of Galton–Watson
trees with exponential edge lengths and in particular we prove Theorem 4.2
that specifies the distribution of Bernoulli leaf colouring consistent families of
Galton–Watson trees; Sect. 4.2 is devoted to the construction of the growth
process; we briefly discuss the infinitesimal dynamics of the growth process and
at the end of this subsection we also give a special probabilistic construction of
the increments of the growing process that shall be used in the proofs of the
next sections. Section 5 is devoted to the study of the Lévy forest: in Sect. 5.1
we prove the convergence result Theorem 5.1; in Sect. 5.2 we prove Theorem
5.2 that concerns the mass measure; Sect. 5.3 is devoted to the definition of the
excursion measure; in Sect. 5.4 we discuss the decomposition of the Lévy forest
along the ancestral tree of the points of a Poisson sample with the mass measure
as intensity measure.

2 Discrete trees

2.1 Basic definitions and notation

Let us set

U =
∞⋃

n=0

N
∗ n,

where N
∗ = {1, 2, . . .} and by convention N

∗ 0 = {∅}. The concatenation of words
in U is denoted w = vu = (v1, . . . , vm, u1, . . . , un) for v = (v1, . . . , vm), u =
(u1, . . . , un) ∈ U. Following Neveu [30] we represent an ordered rooted tree as
a subset t ⊂ U satisfying

• ∅ ∈ t; ∅ is called the progenitor of t.
• j ∈ N, vj ∈ t ⇒ v ∈ t; v is called the parent of vj.
• For any v ∈ t, there exists an integer kv(t) such that vj ∈ t , 1 ≤ j ≤ kv(t).

kv(t) is the number of children of v.

We denote by Tdiscr the space of all ordered rooted discrete trees. On each
t ∈ Tdiscr, we have the genealogical order given by

v � w ⇐⇒ vu = w for some u ∈ U.

Any tree t ∈ Tdiscr is also totally ordered by the lexicographical order on U

denoted by ≤. Note that if t is infinite, then (Tdiscr, ≤) cannot in general be
embedded in (N, ≤) in an order-preserving way.

Let u ∈ t. We say that u is a leaf of t iff ku(t) = 0. We denote by Lf(t) the set
of leaves of t. Note that Lf(t) is possibly empty. We define the shifted subtree of
t above u by
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θut = {v ∈ U : uv ∈ t}.

Then θut = ∅ iff u ∈ Lf(t). Let v ∈ t. We denote by [[u, v]] the shortest path
between u and v and by u ∧ v the last common ancestor (or branching point) of
u and v. We set ]]u, v]] := [[u, v]]\{u} and we define similarly [[u, v[[ and ]]u, v[[.

We endow Tdiscr with the σ -algebra Gdiscr generated by the countable family
of subsets {t ∈ Tdiscr : u ∈ t} , u ∈ U. Unless otherwise specified, the random
variables that we consider in this paper are defined on the same probability
space (�, A, P) which is assumed to be large enough to carry as many indepen-
dent random variables as we require. Let ξ be a probability distribution on N. We
call Galton–Watson tree with offspring distribution ξ (a GW(ξ)-tree for short)
any Gdiscr-measurable random variable τ whose distribution is characterized by
the two following conditions:

(i) P(k∅(τ ) = i) = ξ(i), i ≥ 0.
(ii) For every i ≥ 1 such that ξ(i) �= 0, the shifted trees θ1(τ ), . . . , θi(τ ) under

P(· | k∅(τ ) = i) are independent copies of τ under P.

We shall sometimes consider finite sequences of discrete trees f = (t1, . . . , tn).
We call them forests of discrete trees and we denote their set by Fdiscr. The ele-
ments of the forest are ordered by putting first the vertices of the first tree, next
the vertices of the second tree etc. The genealogical order on a forest is defined
tree by tree. A Galton–Watson forest with n elements is just a sequence of n
i.i.d. GW-discrete trees.

2.2 Bernoulli leaf colouring of Galton–Watson trees

In this section we discuss Bernoulli colouring of the leaves of a GW-tree and we
compute the distribution of the whole tree conditionally on the genealogy of
the leaves remaining after the colouring. More precisely, let p ∈ (0, 1) and let τ
be a GW(ξ)-tree. We assume that τ has leaves almost surely which is obviously
equivalent to the condition

ξ(0) > 0, (6)

and it will be convenient to assume that ξ is a proper offspring distribution,
namely ξ(1) = 0.

We colour independently at random each leaf of τ in red with probability p
and in black with probability 1 − p. If there is at least one black leaf, we also
colour in black the subtree spanned by the root and the black leaves, namely the
ancestral tree of the black leaves; then, we colour in red the remaining vertices.
If there is no black leaf, we colour all the tree in red.

Assume that τ is not completely red. Then, the black subtree is isomorphic
to a random tree in Tdiscr denoted by τsub and also called the black subtree.
The black tree (which is distinct from the black subtree) is obtained as follows:
define a graph with set of vertices V and set of edges E given by

V = {u ∈ τsub : ku(τsub) �= 1}
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Fig. 1 The black vertices are
represented by the thick
circles and the red ones by the
thin circles. The dashed arrows
represent the reconstruction
procedure

and

E = {{u, v} ; u, v ∈ τsub : u �= v and V∩]]u, v[[= ∅} .

Here ]]u, v[[ is the shortest path between u and v in τsub. Put on V the order
inherited from τsub. Then (V, E), with the least element as the distinguished
vertex, is an ordered rooted tree isomorphic to a unique element τb in Tdiscr
that is taken as the definition of the black tree (see Fig. 1).

The main goal of this section is to give the joint distribution of τb, τsub and τ
in terms of ξ and p. More precisely, let us define the colour of each vertex u ∈ τ
as a mark cu ∈ {0, 1}: cu = 0 if u is black and cu = 1 if it is red. The two-colours
tree is the {0, 1}-marked tree τ̃ = (τ ; cu, u ∈ τ) distributed as follows:

• Conditionally on τ , the random variables {cu, u ∈ Lf(τ )} are i.i.d. Bernoulli
random variables with expectation p.

• For any v ∈ τ , we set cv = 0 if there is u ∈ Lf(τ ) such that v � u and cu = 0;
set cv = 1 otherwise.

Let u ∈ τ . We denote by kr
u(τ̃ ) the number of red children of u and by kb

u(τ̃ )

the number of black ones. Let l ≥ 0 and ε = (ε1, . . . , εl) ∈ {0, 1}l. Denote by lr
the number of 1’s in ε and by lb the number of 0’s. Let f1, . . . , fl be l nonnegative
measurable functions on the set of two-coloured discrete trees equipped with
the smallest σ -field making the marks measurable. Then it is easy to show that

E

⎡
⎣ l∏

i=1

fi(θiτ̃ ) ; k∅(τ ) = l ; (c1, . . . , cl) = ε

⎤
⎦

= ξ(l)g(p)lr(1 − g(p))lb
l∏

i=1

E
[
fi(τ̃ ) |c∅ = εi

]
, (7)

where g(p) = E[p#Lf(τ )]. Here θjτ̃ stands for the marked tree shifted at the j-th
child of the progenitor:

θjτ̃ = (θjτ ; cju, u ∈ θjτ).
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Let us denote by ϕ the generating function of ξ :

ϕ(s) =
∑
k≥0

ξ(k)sk, s ∈ [0, 1].

By splitting τ at the root, we prove that g satisfies

g(s) = ϕ(g(s))− ξ(0)(1 − s), s ∈ [0, 1]. (8)

Formula (7) implies that τ̃ is a two-types Galton–Watson tree whose branching
mechanism is described as follows:

(a) The tree τ̃ is completely red iff c∅ = 1 which happens with probability
g(p). The tree conditioned to have no black vertices is a (completely red)
GW(ξr)-tree where ξr is given by

ξr(l) =
{
ξ(l)g(p)l−1 if l ≥ 1;
ξ(0)p/g(p) if l = 0.

Then, the generating function ϕr of ξr is given by

ϕr(s) = 1 − ϕ(g(p))− ϕ(g(p)s)
g(p)

, s ∈ [0, 1]. (9)

(b) Conditionally on having at least one black leaf, the two-types offspring
distribution is given by

P

((
kr

∅(τ̃ ), kb
∅(τ̃ )

)
= (lr, lb)|c∅ = 1

)

=

⎧⎪⎪⎨
⎪⎪⎩
ξ(lb + lr)g(p)lr(1 − g(p))lb−1 (lb + lr)!

lb!lr! if lb ≥ 1, lr ≥ 0;

ξ(0)
1 − p

1 − g(p)
if lb = lr = 0.

(c) Conditionally on {kr
∅(τ̃ ) = lr; kb

∅(τ̃ ) = lb}, (c1, . . . , clr+lb) is uniformly dis-
tributed among the (lb + lr)!/lr!lb! possibilities.

(d) Conditionally on {(c1, . . . , clb+lr) = ε}, ε ∈ {0, 1}lb+lr , the marked trees
θ1τ̃ , . . . , θlb+lr τ̃ are independent and θiτ̃ has the same distribution as τ̃
under P( · |c∅ = εi).

Before giving the joint law of τb , τsub and τ , we need to introduce some
notation: we first define the “black” offspring distribution ξb by

ξb(l) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ(l)(g(p))(1 − g(p))l−1

(1 − ϕ′(g(p)))l! if l ≥ 2;

0 if l = 1;
ξ(0)(1 − p)

(1 − g(p))(1 − ϕ′(g(p)))
if l = 0.
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Then, its generating function is given by

ϕb(s) = s + ϕ(g(p)+ s(1 − g(p)))− g(p)− s(1 − g(p))
(1 − g(p))(1 − ϕ′(g(p)))

, s ∈ [0, 1]. (10)

We also introduce for any l ≥ 1 the following probability distribution on N:

νl(k) = ξ(l + k)
(l + k)!g(p)k
k!ϕ(l)(g(p)) , k ≥ 0. (11)

The joint law of the black tree and the red forest is given by the following:
Reconstruction procedure for discrete GW-trees

• Step 1: Let τ1 be a GW(ξb)-tree. For any u ∈ τ1 distinct from the root,
replace the edge between u and its parent by a chain of a random number
of Nu + 1 edges, and graft on the root a chain with a random number N∅ of
edges. The Nu, u ∈ τ1 are distributed as follows: conditionally on τ1, they
are i.i.d. random variables with a geometric distribution given by

P(Nu = k|u ∈ τ1) = (1 − ϕ′(g(p)))ϕ′(g(p))k, k ≥ 0. (12)

The resulting random element in Tdiscr is denoted by τ2 and has the same
distribution as the black subtree. See the passage from τ1 to τ2 in Fig. 1.

• Step 2: Independently, on each vertex u ∈ τ2 such that ku(τ2) = l ≥ 1 graft a
random number with distribution νl(·) of red vertices. Insert these new red
vertices uniformly at random among the l black ones. Then, graft indepen-
dently on each newly added red vertex an independent GW(ξr)-tree. We
obtain a two-colours tree denoted by τ̃3.

We get the following identity:

(τb, τsub, τ̃ ) under P ( · |c∅ = 1)
(dist)= (τ1, τ2, τ̃3) . (13)

This identity is a consequence of an elementary computation based on (a), (b),
(c) and (d), and it is left to the reader. Note that (13) implies in particular that
the black tree τb is distributed as a GW(ξb)-tree.

Denote by N the number of red trees grafted on the black subtree of τ̃ if
τ̃ is not completely red and set N = 1 if τ̃ is completely red. Denote by κ the
generating function of N: κ(s) := E[sN]. By splitting τ̃ at the root and by an
elementary computation based on (7), we show that κ(s) satisfies the following
equation

ϕ (κ(s))− κ(s) = ϕ (sg(p))− sg(p)− (ϕ (g(p))− g(p)) . (14)

We shall use this identity in Sect. 5.1.
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3 The space of locally compact rooted real trees

3.1 Real trees

Real trees form a class of loop-free length spaces, which turn out to be the class
of limiting objects of many discrete trees, extending the class of trees with edge
lengths. More precisely we say that a metric space (T, d, ρ) is a rooted real tree
if it satisfies the following conditions:

• For all s, t ∈ T, there is an isometry fs,t : [0, d(s, t)] → T such that fs,t(0) = s
and fs,t(d(s, t)) = t;

• If q is a continuous injective map from [0, 1] into T, we have

q([0, 1]) = fq(0),q(1)([0, d(q(0), q(1))])

• ρ ∈ T is a distinguished point, called the root.

Let us introduce some notation: we denote by [[s, t]] the trace of fs,t: [[s, t]] :=
fs,t([0, d(s, t)]). We also denote by ]]s, t]], [[s, t[[ and ]]s, t[[ the respective images of
(0, d(s, t)], [0, d(s, t)) and (0, d(s, t)) by fs,t. There is a nice characterization of real
trees that we use in the next subsection which is called the four points condition:
let (X, d) be a complete path-connected metric space; then it is a real tree iff
for all s1, s2, s3, s4 ∈ X

d(s1, s2)+ d(s3, s4) ≤ (d(s1, s3)+ d(s2, s4)) ∨ (d(s3, s2)+ d(s1, s4)). (15)

We refer to [7–9] for general results concerning real trees, [31,32] for applica-
tions of real trees to group theory and to [10,11,13,14,16] and also [20] for a
probabilistic use of real trees.

In this paper we restrict our attention to locally compact real trees. By the
Hopf–Rinow theorem (see for instance [19], Chapter 1) the closed balls are
compact sets. For any s ∈ T we denote by n(s, T) the degree of s, namely the
(possibly infinite) number of connected components of T \ {s}. For convenience
of notation, we often denote n(s, T) by n(s) when there is no risk of confusion.
We denote by

Lf(T) = {s ∈ T \ {ρ} : n(s, T) = 1} and Br(T) = {s ∈ T \ {ρ} : n(s, T) ≥ 3}

respectively the set of the leaves of T and the set of branching points of T. We also
denote by Sk(T) the internal skeleton of T that is defined by Sk(T) = T\Lf(T).
We can easily prove that for any sequence (sn, n ≥ 1) dense in T, we have

Sk(T) =
⋃
n≥1

[[ρ, sn[[. (16)

Then, the closure of Sk(T) is T. Note that the trace on Sk(T) of the Borel σ -field
is generated by the “intervals” [[s, s′]], s, s′ ∈ Sk(T). Thus we can define a unique
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positive Borel measure 
T(ds) on T such that


T(Lf(T)) = 0 and 
T([[s, s′]]) = d(s, s′).

The measure 
T is usually called the length measure of T. We next prove the
following simple lemma.

Lemma 3.1 The set of branching points of a locally compact real tree is at most
countable.

Proof Let (T, d) be a locally compact real tree. Assume that Br(T) is uncount-
ably infinite. Since Br(T) ⊂ Sk(T), by (16) there is a positive integer n such
that the set S := [[ρ, sn]] ∩ Br(T) is uncountable. Then with any x ∈ S, we can
associate a connected component Cx of T \ {x} such that [[ρ, sn]] ∩ Cx = ∅ since
x is a branching point. A simple argument implies that Cx ∩ Cy = ∅ for any
x �= y and T cannot be separable, which contradicts the fact that it is locally
compact. ��

In the present paper we define step by step a growing family of trees by
recursively grafting independent random trees on nodes and branches of the
tree of the previous step. Let us explain in the deterministic setting one step of
this grafting procedure: let (T, d, ρ) be a locally compact rooted real tree, let
(Ti, di, ρi), i ∈ I, be a family of locally compact real trees and let (si, i ∈ I) be a
collection of vertices of T. We specify T ′ as disjoint union

T ′ = T
∐
i∈I

Ti \ {ρi}

and we define a function d′ on T ′ × T ′ as follows: d′ coincides with d on T × T
and if s ∈ Ti \ {ρi} and s′ ∈ T ′, then we set

d′(s, s′) =
⎧⎨
⎩

di(s, ρi)+ d(si, s′) if s′ ∈ T;
di(s, ρi)+ d(si, sj)+ dj(s′, ρj) if s′ ∈ Tj \ {ρj}, i �= j;
di(s, s′) if s′ ∈ Ti \ {ρi}.

It is easy to prove that (T ′, d′, ρ′ = ρ) is a real tree and we use the notation

(T, d′, ρ′) = T �i∈I (si, Ti)

to mean that (T ′, d′, ρ′) is obtained from (T, d, ρ) by this grafting procedure.

3.2 Gromov–Hausdorff convergence of pointed metric spaces

The purpose of this section is to introduce a nice topology on the set T of
isometry classes of locally compact rooted real trees: more precisely, we say
that two pointed metric spaces (X1, d1, ρ1) and (X2, d2, ρ2) are equivalent iff
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there exists an isometry f from X1 onto X2 such that f (ρ1) = ρ2. Evans et al.
[16] showed that the set Tcpct of isometry classes of compact rooted real trees
equipped with the Gromov–Hausdorff distance whose definition is recalled
below, is a complete and separable metric space. Here we define a metric on T

and prove a similar result in the the locally compact case. For sake of clarity, we
actually prove this result for locally compact length spaces, the real tree case
being a simple consequence of the four points conditions (15) that characterizes
real trees.

Let us first recall the definition of the Gromov–Hausdorff distance of two
pointed compact metric spaces (X1, d1, ρ1) and (X2, d2, ρ2): we set

δcpct(X1, X2) = inf {dHaus(f1(X1), f2(X2)) ∨ d(f1(ρ1), f2(ρ2))} ,

where the infimum is taken over all isometric embeddings fi : Xi → E, i = 1, 2
into a common metric space (E, d) and over all metric spaces (E, d). Here dHaus
stands for the Hausdorff distance on the set of compact subsets of E. Observe
that δcpct only depends on the isometry classes of the Xi’s and we can show that
it defines a metric on the set of isometry classes of all pointed compact metric
spaces (see [19]).

There is a useful way to control δcpct(X1, X2) via ε-isometries. Namely, we
say that a (possibly not continuous) map f : X1 → X2 is a pointed ε-isometry if

(i) f (ρ1) = ρ2
(ii) dis(f ) := sup{|d1(x, y)− d2(f (x), f (y))| ; x, y ∈ X1} < ε;

(iii) f (X1) is an ε-net of X2 (by ε-net we mean that any point of X2 is at
distance at most ε of f (X1)).

The quantity dis(f ) is called the distortion of f . The following lemma is a straight-
forward consequence of the non-pointed case stated in Corollary 7.3.28 in [6].

Lemma 3.2 Let (X1, d1, ρ1) and (X2, d2, ρ2) be two pointed compact metric
spaces. Then,

(a) If δcpct(X1, X2) < ε, then there exists a 4ε-isometry from X1 to X2.
(b) If there exists an ε-isometry from X1 to X2, then δcpct(X1, X2) < 4ε.

Let us now recall from [6], Chapter 8, a way to extend the Gromov–Haus-
dorff convergence to non-compact metric spaces. Let (X, d) be a metric space.
Let r ≥ 0 and ρ ∈ X. We denote by BX(ρ, r) the closed ball centred at ρ with
radius r. Let (Xn, dn, ρn), n ≥ 1, be a sequence of pointed metric spaces; we say
that this sequence converges in the pointed Gromov–Hausdorff sense to the
pointed metric space (X, d, ρ) if for any r, ε > 0 there exists n0 = n0(r, ε) ≥ 1
such that for every n ≥ n0, there is a map fn : BXn(ρn, r) → X satisfying the
following conditions:

(i’) fn(ρn) = ρ;
(ii’) dis(fn) < ε;

(iii’) The ε-neighbourhood of fn(BXn(ρn, r)) contains BX(ρ, r − ε).
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We use the following notation:

(Xn, dn, ρn)
G−H−→
n→∞ (X, d, ρ). (17)

Let us briefly recall from [6] useful properties of pointed Gromov–Hausdorff
convergence. Assume that (17) holds. Then,

(a) (8.1.8 and 8.1.9 [6]) If the Xn’s are locally compact length spaces and if X
is complete, then X is a locally compact length space.

(b) (8.1.2 [6]) If the Xn’s are compact and if X is compact, then

δcpct(Xn, X) −→
n→∞ 0.

(c) (8.1.3 [6]) If X is a length space, then for any r > 0

δcpct(BXn(ρ, r), BX(ρ, r)) −→
n→∞ 0.

(d) (8.1.9 [6]) (Pre-compactness): Let C be a set of pointed metric spaces.
Assume that for any r, ε > 0, there exists N(r, ε) such that for every
(X, d, ρ) ∈ C the closed ball BX(ρ, r) admits an ε-net with at most N(r, ε)
points. Then, any sequence of elements of C contains a converging subse-
quence in the pointed Gromov–Hausdorff sense.

For locally compact length spaces, the pointed Gromov–Hausdorff conver-
gence is compatible with the following metric: let (X1, d1, ρ1) and (X2, d2, ρ2) be
two pointed locally compact length spaces; under our assumptions
(BXi(ρi, r), di, ρi) is a pointed compact space so it makes sense to define

δ(X1, X2) =
∑
k≥1

2−kδcpct(BX1(ρ1, k), BX2(ρ2, k)). (18)

Clearly, δ only depends on the isometry classes of X1 and X2. Let us denote by
X the set of isometry classes of pointed locally compact length spaces and by
Xcpct the set corresponding to pointed compact length spaces.

Proposition 3.3 Let (Xn, dn, ρn), n ≥ 1 and (X, d, ρ) be representatives of ele-
ments in X. Then

(Xn, dn, ρn)
G−H−→
n→∞ (X, d, ρ) ⇐⇒ lim

n→∞ δ(Xn, X) = 0.

Moreover, (X, δ) is complete and separable.

Proof The fact that the δ-convergence implies the pointed Gromov–Hausdorff
convergence is easy to deduce from properties (b) and Lemma 3.2. The converse
is a consequence of (c).
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Next, we prove that δ is a metric on X. Since δcpct satisfies the triangle
inequality, so does δ. Let (X1, d1, ρ1) and (X2, d2, ρ2) be two pointed locally
compact length spaces such that δ(X1, X2) = 0. Then, for every k ≥ 1 there
exists an isometry fk from BX1(ρ1, k) onto BX2(ρ2, k) with fk(ρ1) = ρ2. Let
(xn, n ≥ 1) be a dense sequence in X1. By the Cantor diagonal procedure we
can find an increasing sequence of indices (ki, i ≥ 1) such that for any n ≥ 1,
(fki(xn), i ≥ 1) converges in X2. Set f (xn) = limi→∞ fki(xn): it defines an isomet-
ric embedding of (xn, n ≥ 1) into X2 such that f (ρ1) = ρ2 which can be easily
extended to an isometry f from X1 into X2.

It remains to prove that f (X1) = X2. By exchanging the roles of X1 and X2,
we get an isometric embedding g from X2 into X1 such that g(ρ2) = ρ1. Then,
for any k ≥ 1, f ◦ g is an isometric map from the compact set BX2(ρ2, k) into
itself. Thus, it is a bijective map and we get f (BX1(ρ1, k)) = BX2(ρ2, k) for any
k ≥ 1 which easily proves that f is actually onto X2.

It remains to prove that X equipped with the metric δ is complete and sepa-
rable. Since the set of isometry classes of compact metric spaces equipped with
δcpct is separable, so is (X, δ) for Xcpct is dense in (X, δ) by definition of δ.

We have to show that (X, δ) is complete. Let (Xn, dn, ρn), n ≥ 1, be a Cau-
chy sequence of representatives of elements of X. To prove that this sequence
converges, we only have to prove that it forms a δ-precompact set. Fix r, ε > 0;
choose k > r + 1 and n0 ≥ 1 such that for any n, m ≥ n0 , δ(Xn, Xm) < 2−kε/12.
It implies

δcpct(BXn(ρn, k), BXn0
(ρn0 , k)) < ε/12, n ≥ n0. (19)

By Lemma 3.2, there exists a pointed ε/3-isometry

fn : BXn0
(ρn0 , k) −→ BXn(ρn, k).

Let {x1, . . . , xN} be a ε/3-net of BXn0
(ρn0 , k). Then, for any n ≥ n0, the set

{fn(x1), . . . fn(xN)}

is an ε-net of BXn(ρn, k) and thus, of BXn(ρn, r). So we can find N(r, ε) = N such
that for any n ≥ 1 the closed ball BXn(ρn, r) admits an ε-net with at most N(r, ε)
points. The compactness criterion (d) completes the proof. ��

Recall that T denotes the set of isometry classes of locally compact rooted
real trees. Since the four points condition is obviously a closed condition for δ,
it implies that T is a closed subset of X and we deduce from Proposition 3.3 the
following result.

Proposition 3.4 (T, δ) is a complete and separable metric space.

Following the proof of Lemma 2.7 in [16], we prove the following lemma that
we shall use in the next section.
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Lemma 3.5 Let ((Tn, dn, ρ))n≥1 be a Cauchy sequence of representatives of
elements of (T, δ) such that Tn ⊂ Tn+1 and dn+1|Tn×Tn = dn, n ≥ 1. Set for
any a, b ∈ Tn, n ≥ 1:

d(a, b) = dn(a, b), a, b ∈ Tn, n ≥ 1.

This defines a metric on T∞ := ⋃
n≥1 Tn. Furthermore, all metric comple-

tions of (T∞, d, ρ) are isometric and form the limit in (T, δ) of the sequence
((Tn, dn, ρ))n≥1.

3.3 Galton–Watson real trees with exponential edge lengths

Let us consider a discrete tree with positive marks. Namely let t ∈ Tdiscr and let
m = (mu; u ∈ t) be a collection of marks in [0, ∞]. We assume that if mu = ∞
then u has no child: ku(t) = 0. Such a pair (t, m) is called a marked tree and
the set of marked trees is denoted by Tmark. We denote by Gmark the σ -algebra
generated by the events {(t, m) : u ∈ t, mu > a}, u ∈ U and a ∈ [0, ∞). Thinking
of the marks as distances between the nodes of t, we can associate with (t, m) a
real tree denoted by T(t, m) = (T, d, ρ) as follows: set ρ = (∅, 0) and

T = {ρ} ∪
⋃

u∈t : 0<mu<∞
{(u, s), s ∈ (0, mu]} ∪

⋃
u∈t : mu=∞

{(u, s), s ∈ (0, ∞)}

and we define d as follows: let σ = (u, s) ∈ T \ {ρ}, then we set

d(ρ, σ) = s +
∑

v∈[[∅,u[[
mv,

where we recall notation [[∅, u[[= [[∅, u]] \ {u}. Let σ ′ = (u′, s′) ∈ T \ {ρ}. We
define

d(σ , σ ′) =
⎧⎨
⎩

d(ρ, σ)+ d(ρ, σ ′)− 2
∑

v∈[[∅,u∧u′]]
mv if u ∧ u′ /∈ {u, u′}

|d(ρ, σ)− d(ρ, σ ′)| otherwise.

It is easy to check that T(t, m) = (T, d, ρ) is a real tree. Instead of a sin-
gle tree, consider now a marked forest (f , m) that is a finite sequence (f , m) =
((ti, m(i)); 1 ≤ i ≤ n) of marked trees; the set of marked forests is denoted by
Fmark. With a marked forest (f , m) we associate the real tree T(f , m) defined by

T(t, m) = {ρ} �1≤i≤n (ρ, T(ti, m(i)))

which obtained by pasting at ρ the trees T(ti, m(i)). We also denote by T(f , m)
the equivalence class of T(f , m) up to root preserving isometries. Note that
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T(f , m) may fail to be locally compact. For instance T(f , m) is locally compact
if for any infinite line of descent: u0 � · · · � un � · · · , we have

∑
n≥0

mun = +∞. (20)

If (20) is satisfied then the real tree T(f , m) that is obtained from f and m, is
called a a discrete tree with edge lengths, namely a rooted real tree (T, d, ρ) such
that

∀r > 0, #BT(ρ, r) ∩ Br(T) < ∞ and n(σ , T) < ∞, σ ∈ T. (21)

Conversely, with each discrete tree with edge lengths (T, d, ρ) we can asso-
ciate a discrete forest f ∈ Fdiscr and a set of marks m = (mu, u ∈ f ) such that
(T, d, ρ) = T(f , m). One way to proceed is the following: we call edges of T the
connected components of T\(Br(T)∪{ρ}); each edge is isometric to an interval
of the real line (that possibly has one infinite end); by convention, the left end of
an edge is the closest end to the root; observe that T is the closure of the union
of its edges by (21); fix an order on each group of edges sharing the same left
end and then label the edges of T by integer words in the following recursive
way:

• Each of the n(ρ, T) edges of T having the root ρ as a left end are labelled
by the empty word ∅.

• Take a finite edge whose right end is denoted by y ∈ T. Assume that this
edge is labelled by u ∈ U and consider the edges whose left end is y: the j-th
edge with respect to the previously fixed order is then labelled by the word
uj.

In this way we construct a discrete forest f . Consider the edge labelled by the
word u ∈ U. There are two cases: if the edge is infinite, then set mu = ∞; if
the edge is finite, then set mu = d(ρ, y) − d(ρ, x), where x and y stand for its
resp. left and right ends. We clearly have T(f , m) = (T, d, ρ). Note that such
a marked forest (f , m) is not unique. However, it is uniquely determined if we
assume first that f is proper that is ku(f ) �= 1, u ∈ f , and then if some order on
the edges of T sharing the same left end has been specified.

Let ξ be an offspring distribution and let c be a positive real number. Let τ be
a GW(ξ)-tree and conditionally on τ , let m = (mu, u ∈ τ) be i.i.d. exponentially
distributed random variables with parameter c. The random real tree T(τ , m) =
(T , d, ρ) is called a Galton–Watson real tree with parameters (ξ , c) (a GW(ξ , c)-
real tree for short). Define for any t ≥ 0, Zt(T ) = #{v ∈ T : d(0, v) = t}. Then,
we can show that (Zt(T ), t ≥ 0) is a continuous-time Markov branching process.
Moreover, if we denote by ϕ the generating function of ξ , then

E
[
exp(−θZt(T ))

] = exp(−v(t, θ)),
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where v(t, θ) is the unique non-negative solution of the integral equation

e−v(t,θ)∫

e−θ

dr
ϕ(r)− r

= ct (22)

(see Chapter III, Sect. 3, p. 106 [4]). T is a discrete tree with edge lengths
[namely, T satisfies (20)] iff Zt(T ) is a.s. finite for all t ≥ 0, which is equivalent
to the following analytical condition

1−∫
dr

|ϕ(r)− r| = ∞. (23)

Unless otherwise specified, we assume that all the GW-real trees that we consider
in this paper satisfy (23).

Define the height of T by h(T ) := sup{d(ρ, σ), σ ∈ T } ∈ [0, ∞]. Then
observe that P(h(T ) ≤ t) = exp(−v(t)), where for any t ≥ 0 we set v(t) =
limθ→∞ v(t, θ). It satisfies

e−v(t)∫

0

dr
ϕ(r)− r

= ct. (24)

We end this subsection by precisely defining the class of random discrete
trees that we shall consider: more specifically, let (τi; i ≥ 1) be an i.i.d. sequence
of GW(ξ)-trees and conditionally on the τi’s, let (mu(i), u ∈ τi, i ≥ 1) be inde-
pendent exponentially distributed random variables with parameter c. Fix a
positive real number a > 0 and denote by N a Poisson random variable with
expectation a that is assumed to be independent of the m(i)’s and of the τi’s.
Set (f , m) = (τi, m(i); 1 ≤ i ≤ N). The real tree T(f , m) = (F , d, ρ) is called
a Galton–Watson real forest with parameters (ξ , c, a) (a GW(ξ , c, a)-real forest
for short). Observe that if N = 0 then F = {ρ}.

3.4 Isometrical embeddings of real trees in 
1(N)

For technical reasons we shall sometimes need to consider specific represen-
tatives of real trees rather that isometry classes. Following Aldous’s idea (see
[3]), we may choose to embed locally compact rooted trees in the vector space

1(N) of the summable real-valued sequences equipped with the || · ||1-norm.
Namely,


1(N) =
⎧⎨
⎩x = (xn)n≥0 ∈ R

N : ||x||1 :=
∑
n≥0

|xn| < ∞
⎫⎬
⎭.
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We introduce the space T
1 of the subsets T ⊂ 
1(N) such that (T, || · ||1, 0) is a
locally compact rooted real tree. Let us denote by dHaus the Hausdorff distance
on compact subsets of 
1(N). Then, for any T, T ′ ∈ T
1 , define

d(T, T ′) =
∑
k≥0

2−kdHaus (BT(0, k), BT ′(0, k)) .

Note that
δ(T, T ′) ≤ d(T, T ′). (25)

Proposition 3.6 (T
1 , d) is a Polish space.

Proof It is easily proved that (T
1 , d) is a separable metric space. Let us prove
it is complete. Let (Tn, n ≥ 0) be a Cauchy sequence of elements of (T
1 , d).
Then, for any k ≥ 1, BTn(0, k), n ≥ 0 is a dHaus-Cauchy sequence of closed
subsets of 
1(N). Thus, by a well-known property of Hausdorff distances (see
e.g. Proposition 7.3.7 of [6]), for any k ≥ 0 there exists a closed set Ck ⊂ 
1(N)

such that

lim
n→∞ dHaus

(
BTn(0, k), Ck

) = 0,

which implies limn→∞ δ
(
BTn(0, k), Ck

)
by (25). By Theorem 3.4, (Ck, || · ||1, 0)

has to be a compact rooted real tree. Moreover, for any k′ ≥ k we have Ck ⊂ Ck′
and Property (c) in Sect. 3.2 implies that

BCk′ (0, k) = Ck.

Now set T = ⋃
k≥0 Ck . The previous observations easily implies that (T, ||·||1, 0)

is a locally compact rooted real tree and that limn→∞ d (Tn, T) = 0, which com-
pletes the proof. ��

Let us now briefly explain how to isometrically embed a discrete tree with
edge lengths (T, d, ρ) in 
1(N). Recall from Sect. 3.3 that we can find a discrete
forest f ∈ Fdiscr and marks m = (mu, u ∈ f ) such that T(f , m) = (T, d, ρ).
Recall also the definition of an edge of T and recall that to each vertex u ∈ f
corresponds an edge in T. We now order the vertices of f as follows: order the
roots of f and put them first; then order the vertices at height 1 and put them
after the roots of f ; order the vertices at height 2 and put them next, etc. For
any k ≥ 0, denote by I(k) the edge of T corresponding to the k-th vertex of f
visited with respect to the linear order above defined and denote by xk the left
end of I(k). Clearly xk belongs to the closure of the set {ρ} ∪⋃j<k I(j). Then,
let us introduce for any k ≥ 0 the sequence ek ∈ 
1(N) given by ek(n) = 0 if
n �= k and ek(k) = 1. Let P = (nk, k ≥ 0) be an N-valued increasing sequence;
we recursively define the map fP from T to 
1(N) as follows.



332 T. Duquesne, M. Winkel

• fP(ρ) = 0;
• For any k ≥ 1, and any σ ∈ I(k),

fP(σ ) = fP(xk)+ d(xk, σ)enk .

It is easy to check that fP is an isometry. Thus (T, d, ρ) and (fP(T), || · ||1, 0)
are equivalent. Now we prove the following proposition.

Proposition 3.7 Every element of T has a representative in T
1 .

Proof We have to prove that any locally compact rooted real tree (T, d, ρ)
can be embedded isometrically in 
1(N). It is possible to find a non-decreasing
sequence of subsets Kn, n ≥ 0, with no limit points and such that Kn is a 2−n-net
of T. We set

Tn =
⋃
σ∈Kn

[[ρ, σ ]] and T∞ =
⋃
n≥0

Tn.

Clearly, the Tn’s are an increasing family of discrete trees with edge lengths and
the closure of T∞ is T. We recursively define a map f from T∞ to 
1(N) in the
following way:

• Let P0 and Pn,i , n ≥ 0, i ≥ 0 be disjoint subsets of N. We consider fP0 , the
isometrical embedding of T0 into 
1(N) as defined above and we require
that f coincides with fP0 on T0.

• Assume that f is defined on Tn; Denote by To
n,i , i ∈ In, the connected

components of Tn+1\Tn. Denote by ρn,i the closest point to the root of the
closure Tn,i of To

n,i. Then, ρn,i ∈ Tn and the (Tn,i, d, ρn,i) are rooted discrete
trees with edge lengths. We assume for convenience of notations that the
sets of indices In are subsets of N. Then, for any σ ∈ Tn,i, we set

f (σ ) = f (ρn,i)+ fPn,i(σ ),

where fPn,i stands for the above defined isometrical embedding of Tn,i in

1(N).

Thus, f is an isometrical embedding of T∞ into 
1(N), which has a unique
extension to the closure T of T∞. This completes the proof of the proposition.

��

4 The growth process

4.1 Bernoulli colouring of the leaves and extensibility of GW-real trees

In this section we discuss the Bernoulli colouring of the leaves of GW-real trees
and forests. In particular, we introduce the class of Lévy GW-real trees that is,
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roughly speaking, the class of GW-real trees consistent under Bernoulli colour-
ing. More precisely, let T be a discrete tree with edge lengths, that is a rooted
real tree satisfying (21). Let p ∈ [0, 1]. Then, colour independently each leaf of
T in black with probability 1 − p and in red with probability p. Denote by A
the set of the black leaves. If A is non-empty, then colour in black the following
subtree:

Tblack =
⋃
σ∈A

[[ρ, σ ]].

Then, colour in red the remaining part T\Tblack of the tree. If A is empty, then
colour in red the whole tree T and set Tblack = {ρ}. As in the discrete case such
a colouring is called a p-Bernoulli leaf colouring of T.

Remark 4.1 Observe that if T has leaves and if it is not reduced to a point, then
the black subtree is reduced to the root iff T is completely red.

Let ξ be an offspring distribution on N such that ξ(0) > 0. Let us assume
that ξ is proper, namely ξ(1) = 0. Fix two positive real numbers a, c > 0 and
denote by T (resp. F) a GW(ξ , c)-real tree (resp. a GW(ξ , c, a)-real forest).
Let p ∈ (0, 1). Denote by Tblack (resp. Fblack) the black subtree of T (resp.
F) resulting from a p-Bernoulli leaf colouring (here the extra random vari-
ables used for the Bernoulli colourings are chosen independent of T and of
F). As in the reconstruction procedure discussed in Sect. 2.2, we first com-
pute the distribution of T (resp. F) conditionally on Tblack (resp. Fblack). To
that end, recall the notation g(p), ξb, ξr, νl from Sect. 2.2. Let T ′ (resp. F ′) be a
GW(ξb, (1 − ϕ′(g(p)))c)-real tree (resp. a GW(ξb, (1 − ϕ′(g(p)))c, (1 − g(p))a)-
real forest). Let P = {σi; i ∈ I} be a Poisson point process on T ′ (resp. on F ′)
with intensity ϕ′(g(p))c 
T ′ (resp. ϕ′(g(p))c 
F ′).

Reconstruction procedure on GW-real trees

• For T ′: on each vertex σ ∈ P ∪ Br(T ′) graft independently a random num-
ber Nσ of independent GW(ξr, c)-real trees; conditionally on P ∪ Br(T ′)
the Nσ ’s are independent and the conditional distribution of Nσ is νl where
l = n(σ , T ′)− 1. Denote by T ′′ the resulting tree.

• For F ′: do the same as for T ′ and graft on the root Nρ additional inde-
pendent GW(ξr, c)-real trees, where Nρ stands for an independent Poisson
random variable with parameter ag(p). Denote by F ′′ the resulting tree.

Lemma 4.1 Assume that (23) holds. Then,

(
T black, T

)
under P ( · |Tblack �= {ρ}) (d)=

(
T ′, T ′′

)

and

(
Fblack, F

) (d)=
(
F ′, F ′′

)
.
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Proof Recall from Sect. 3.3 the definition of an edge of a discrete tree with edge
lengths. Let us assume that T = T(τ , m) where τ is a GW(ξ)-tree and where
m = (mu, u ∈ τ) is a collection of independent exponential random variables
with parameter c. Similarly we can write

T black = T(τblack, mblack) and T ′ = T(τ ′, m′).

Since the leaves of T exactly correspond to the leaves of τ , τblack is obtained
from τ by a p-Bernoulli leaf colouring. Thus, by the results of Sect. 2.2, condi-
tionally on {Tblack �= {ρ}}, τblack is distributed as τ ′, namely as a GW(ξb)-real
tree. Moreover, the marks m′ are independent exponential random variables
with parameter c(1 − ϕ′(g(p))). We need the following elementary claim whose
proof is left to the reader.

• Claim. Let M be an exponential random variable with parameter α > 0;
consider an independent Poisson process on [0, ∞) with intensity β > 0,
which splits the interval [0, M] into N subintervals with lengths L1, . . . , LN ;
then N is a geometric random variable with parameter β/(α + β):

P(N = k + 1) = α

β + α

(
β

β + α

)k

, k ≥ 0.

Moreover, conditionally on N the Li’s are independent exponentially dis-
tributed random variables with parameter α + β.

Now consider one edge I ⊂ T ′ that corresponds to a vertex u ∈ τ ′ as
explained in Sect. 3.3. Condition on τ ′ and use the claim with

M = mu, α = c(1 − ϕ′(g(p))) and β = cϕ′(g(p))

in order to show that the Poisson point process P splits I into N subintervals
whose lengths are independent exponential variables with parameter c; more-
over N has a geometric distribution with parameter ϕ′(g(p)). Now observe that
adding the points of P in T ′ corresponds to adding the line-trees to τ ′ as in
Step 1 of the reconstruction procedure for discrete trees in Sect. 2.2. Then,
note that we next graft on T ′ independent red GW(ξr, c)-real trees according
to Step 2 of the reconstruction procedure for discrete trees. Thus, we can write
T ′′ = T(τ ′′, m′′) where τ ′′ is obtained by Steps 1 and 2 of the reconstruction
procedure for discrete trees in Sect. 2.2 and where m′′ is a collection of inde-
pendent exponential variables with parameter c. This proves the first identity
of the lemma. The second one is a simple consequence of the first one and its
proof is left to the reader. ��

We now discuss the converse problem to determine the possible offspring
distributions that appear as “black” distributions; more precisely, we say that
a proper offspring distribution ξb is p-extensible if we can find a proper off-
spring distribution ξ such that ξb is the “black” distribution associated with a
p-Bernoulli leaf colouring of a GW(ξ)-tree.
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Theorem 4.2 Let ξb be a proper offspring distribution on N. Then, the two
following assertions are equivalent

(I) ξb is p-extensible for all sufficiently large p ∈ (0, 1).
(II) There exists ψ that is the branching mechanism of a CSBP (thus of the

form (1)) such that

ϕb(r) = r + ψ(1 − r), r ∈ [0, 1],

where ϕb stands for the generating function of ξb.

Proof Let us first prove that (I) implies (II). With any p ∈ (0, 1) we can associ-
ate the p-extension ξ of ξb (ξ depends on p but we ignore this for convenience
of notation). Recall (10) and set vp = g(p)/(1 − g(p)) where g is the gener-
ating function of the number of leaves of a GW(ξb)-tree, which satisfies (8).
Observe that (10) implies that ϕb is C∞ on (−vp, 1) and continuous on [−vp, 1].
Moreover,

∀v ∈ (−vp, 1), ∀n ≥ 2 : ϕ
(n)
b (v) ≥ 0. (26)

We first prove the following equation

p = 1 − ϕb(0)
vp + ϕb(−vp)

. (27)

To that end, first note that

ϕb(0) = ξb(0) = (1 + vp)(1 − ϕ′
b(−vp))(ϕ(g(p))− g(p)) (28)

Then, observe that

ϕ(0) = ξ(0) = vp + ϕb(−vp)

(1 + vp)(1 − ϕ′
b(−vp))

. (29)

Deduce from (8) that

1 − p = ϕ(g(p))− g(p)
ξ(0)

and use (28)and (29) to prove (27).
Let us now define vmax ∈ (0, ∞] by

vmax = sup{v ≥ 0 : ϕ(n)b (u) ≥ 0, u ∈ (−v, 1), n ≥ 2}.

Suppose that vmax < ∞. First observe that by (27) we can find an increasing
sequence pn ∈ (0, 1) → 1 such that

lim
n→∞ϕb(−vpn) = +∞.
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Since ϕb is convex on (−vmax, 1], it implies that

lim
v→vmax

ϕb(−v) = +∞ and lim
v→vmax

ϕ′
b(−v) = −∞.

But the second limit is impossible for ϕ′
b is a convex non-decreasing function

on (−vmax, 1). Thus, we must have vmax = ∞ and (26) implies that

∀v ∈ (−∞, 1), ∀n ≥ 2 : ϕ
(n)
b (v) ≥ 0.

Set ψ(u) = ϕb(1 − u) − 1 + u , u ∈ [0, +∞). The previous observation implies
that ψ has the following properties

(a) ψ(0) = 0 and ψ ′(1) = 1;
(b) ψ ′′ is completely monotone on [0, +∞).

Bernstein’s Theorem and a standard integration argument adapted from the
proof of Theorem 2, Chapter XIII.7 in [17] imply that ψ is of the form (1).

Let us assume (II). Obviously ψ(0) = 0 and ψ(1) > 0. Since ξb is proper, we
get ξb(1) = ϕ′(0) = 0, which impliesψ ′(1) = 1. Then the fact that (II) implies (I)
is an easy consequence of the following display (whose proof is left to reader).
If ϕb(r) = r+ψ(1− r) , r ∈ [0, 1] and if p ∈ (0, 1), then the offspring distribution
ξ , whose generating function ϕ is given by

ϕ(r) = r + ψ
(
(1 − r)ψ−1 (ψ(1)/(1 − p))

)
ψ−1 (ψ(1)/(1 − p)) ψ ′ (ψ−1 (ψ(1)/(1 − p))

) (30)

is a p-extension of ξb. ��
Remark 4.2 Observe that Theorem 4.2 is true for offspring distributions that
do not satisfy (23). If ϕb is of the form given by Theorem 4.2 (II), then it is easy
to prove that if even

ϕ′
b(1) =

∑
k≥0

kξb(k) < ∞,

then, ψ ′(0+) is finite.

The main objects that we discuss in this paper are families of GW-real forests
that are consistent under Bernoulli leaf colouring. More precisely, let (Fλ; λ ∈
[0, ∞)) be a collection of random locally compact rooted trees such that for
any λ ≥ 0 , Fλ is a GW(ξλ, cλ, aλ)-real forest, such that for any λ > 0, ξλ is a
proper offspring distribution satisfying ξλ(0) > 0 and such that cλ and aλ are
non-negative real numbers. We say that (Fλ; λ ∈ [0, ∞)) is Bernoulli leaf col-
ouring consistent if for any 0 ≤ µ ≤ λ, Fµ ⊂ Fλ and Fµ is obtained from Fλ as
the “black” tree resulting from a p-Bernoulli leaf colouring with 1 − p = µ/λ.
According to Lemma 4.1 this implies that ξλ is the (1 − µ/λ)-extension of ξµ.
Therefore, ξµ is p-extensible for any sufficiently large p and ξµ has to be of the
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form given by Theorem 4.2 (II). Accordingly, there is a function ψ satisfying
(1) such that for any λ > 0:

ξλ(k) = ψ−1(λ)k−1
∣∣ψ(k)(ψ−1(λ))

∣∣
k!ψ ′(ψ−1(λ))

if k �= 1 (31)

and ξλ(1) = 0. The generating function ϕλ of ξλ is then given by

ϕλ(s) = s + ψ
(
(1 − s)ψ−1(λ)

)
ψ−1(λ)ψ ′(ψ−1(λ))

. (32)

Remark 4.3 We can easily prove that any other branching mechanism ψ̃ satis-
fying (31) is of the form ψ̃(c) = ψ(kc) for some k ∈ (0, ∞).

Remark 4.4 Recall that γ is the largest root of ψ . Thus γ >0 iff m=ψ ′(0+)<0.
Observe that if γ > 0, then

ϕ0(s) = s + ψ ((1 − s)γ )
γψ ′(γ )

and ξ0(0) = 0. A GW(ξ0)-tree is then infinite with no leaf. On the other hand,
if γ = 0, then ξ0(0) = 1.

Let λ > 0. By definition, the black distribution associated with ξλ via a
(1 − µ/λ)-Bernoulli leaf colouring is ξµ. It is also easy to compute the function
g that solves (8). Namely,

g(s) = 1 − ψ−1 ((1 − s)λ)

ψ−1(λ)
. (33)

Thus, the probability for a GW(ξλ)-tree to be completely red is

g(p) = 1 − ψ−1(µ)

ψ−1(λ)
. (34)

The red distribution associated with ξλ via a (1 −µ/λ)-Bernoulli leaf colouring
is denoted by ξµ,λ := ξr and is given by

ξµ,λ(k) =
∣∣ψ(k)(ψ−1(λ))

∣∣
ψ ′(ψ−1(λ))

(
ψ−1(λ)− ψ−1(µ)

)k−1

k! , k ≥ 2, (35)

ξµ,λ(1) = 0 and ξµ,λ(0) = λ− µ(
ψ−1(λ)− ψ−1(µ)

)
ψ ′(ψ−1(λ))

.
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The generating function of ξµ,λ is denoted by ϕµ,λ and is given by

ϕµ,λ(s) = s + ψ
(
ψ−1(λ)− s(ψ−1(λ)− ψ−1(µ))

)− µ

(ψ−1(λ)− ψ−1(µ))ψ ′(ψ−1(λ))
. (36)

Remark 4.5 Assume 0 ≤ µ < λ. Observe thatϕ′
µ,λ(1) = 1−ψ ′(ψ−1(µ))/ψ ′(ψ−1

(λ)) ≤ 1. Thus, ξµ,λ is a subcritical or critical offspring distribution and therefore,
any GW(ξµ,λ)-real tree is a.s. finite.

Let 0 < µ < λ. For any l ≥ 1 we denote by νµ,λ
l the distribution given by (11)

with ϕ = ϕλ, ξ = ξλ and g(p) as in (34). For any l ≥ 2, νµ,λ
l is given by

ν
µ,λ
l (k) =

∣∣ψ(l+k)(ψ−1(λ))
∣∣∣∣ψ(l)(ψ−1(µ))
∣∣
(
ψ−1(λ)− ψ−1(µ)

)k
k! , k ≥ 0 (37)

and for l = 1

ν
µ,λ
1 (k) =

∣∣ψ(1+k)(ψ−1(λ))
∣∣

ψ ′(ψ−1(λ))− ψ ′(ψ−1(µ))

(
ψ−1(λ)− ψ−1(µ)

)k
k! , k ≥ 1, (38)

with νµ,λ
1 (0) = 0.

Remark 4.6 If 0 = µ < λ and l ≥ 2, then (37) still makes sense provided that

∣∣∣ψ(l)(ψ−1(0))
∣∣∣ =

∣∣∣ψ(l)(γ )
∣∣∣ < ∞. (39)

Of course, this is always the case in the supercritical case where γ > 0. We
point out that in many interesting (sub)critical cases such as stable branching
mechanisms ψ(c) = cα , α ∈ (1, 2), condition (39) is not fulfilled.

Now observe that the parameter ϕ′(g(p)) of the geometric distribution in (12)
is given by

ϕ′(g(p)) = 1 − ψ ′(ψ−1(µ))

ψ ′(ψ−1(λ))
. (40)

Then, according to Lemma 4.1 we have

aµ/aλ = ψ−1(µ)/ψ−1(λ) and cµ/cλ = ψ ′(ψ−1(µ))/ψ ′(ψ−1(λ)).

We choose the following parameterization: Thanks to Remark 4.3, there is a
unique (a,ψ) such that

aλ = aψ−1(λ) and cλ = ψ ′(ψ−1(λ)), (41)
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where a > 0. Such a Bernoulli leaf colouring consistent family (Fλ; λ ∈ [0, ∞))

whose distribution is specified by (31) and (41) is called an (a,ψ)-Lévy growth
process.

Remark 4.7 For any µ ≥ 0, we set

ψµ(x) = ψ(x + ψ−1(µ))− µ.

Then, ψ ′
µ(0+) = ψ ′(ψ−1(µ)). If µ > 0, then ψ ′

µ(0+) is finite. It is also easy to
check that

ψ−1
µ (x) = ψ−1(x + µ)− ψ−1(µ);

Thus, for any µ ≤ λ

(ψλ−µ)µ = ψλ.

Note that ξλ and ξµ,λ actually depend on ψ : ξλ;ψ = ξλ , ξµ,λ;ψ = ξµ,λ. Then, it is
easy to check that for any µ0 ≤ µ ≤ λ:

ξµ,λ = ξλ−µ;ψµ and ξµ,λ;ψµ0
= ξµ+µ0,λ+µ0 . (42)

Notation 4.1 Fix 0 ≤ µ < λ and a > 0. We shall use the following notation. We
denote by

• �µ(dT) the distribution on T of the isometry class of a GW(ξµ,ψ ′(ψ−1(µ)))-
real tree,

• �a
µ(dT) the distribution on T of the isometry class of a GW(ξµ,ψ ′(ψ−1(µ)),

aψ−1(µ))-real forest,
• �µ,λ(dT) the distribution on T of the isometry class of a GW(ξµ,λ,ψ ′(ψ−1

(λ)))-real tree,
• �a

µ,λ(dT) the distribution on T of the isometry class of a GW(ξµ,λ,ψ ′(ψ−1

(λ)),
a(ψ−1(λ)− ψ−1(µ))-real forest.

According to the previous remark, we get

�a
µ,λ = �a

λ−µ;ψµ and �µ,λ = �λ−µ;ψµ (43)

with an obvious notation. Observe also that �0
µ = δ{ρ} that is the Dirac mass at

the isometry class {ρ} of the point tree. Thus �0
µ �= �µ.

4.2 Construction of the growth process

In this section we discuss how to grow a tree in order to obtain Bernoulli col-
ouring consistent families of GW-real trees and related tree-valued processes.
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The definition given in this subsection is slightly more general for we want to
start the growth process at any discrete real tree with edge lengths, up to minor
restrictions. Fix 0 ≤ µ < λ and a > 0. Let ψ be of the form (1). There are two
cases to consider.

• Case 1: 0 < µ < λ. Let (T, d, ρ) be any discrete real tree with edge lengths.
We define a random tree denoted by Qa

µ,λ(T) via the following grafting
procedure:
– The grafting procedure on T: Let P be a Poisson point process on T with

intensity measure

(ψ ′(ψ−1(λ))− ψ ′(ψ−1(µ))) 
T .

Graft a random number Nσ of independent GW(ξµ,λ,ψ ′(ψ−1(λ)))-real
trees on each vertex σ ∈ P ∪Br(T); here Nσ has distribution νµ,λ

l , where
l = n(σ , T) − 1. The resulting tree is denoted by Qµ,λ(T). Then, graft
on ρ a random number Nρ of independent GW-real trees with the same
distribution, where Nρ is a Poisson random variable with parameter
a(ψ−1(λ)− ψ−1(µ)). Denote by Qa

µ,λ(T) the resulting tree.
• Case 2: 0 = µ < λ. If the condition (39) is satisfied for all l ≥ 2, then the

grafting procedure in Case 1 works without restrictions on T. If (39) is not
satisfied for all l ≥ 2 and lmax is the largest l for which (39) does hold,
then we restrict ourselves to trees T with no vertices σ whose multiplicity
n(σ , T) > lmax. This always includes the case T = {ρ}, for which Qa

µ,λ({ρ})
is a GW(ξµ,λ,ψ ′(ψ−1(λ)), a(ψ−1(λ)− ψ−1(µ)))-real forest.

We say that the discrete real trees with edge lengths for which Qa
µ,λ(T) is

defined as above are in the domain of Qa
µ,λ.

Remark 4.8 Observe that Q0
µ,λ(T) = Qµ,λ(T) and note that if T reduces to its

root ρ then Qµ,λ(T) = {ρ}.

Consider a GW(ξλ,ψ ′(ψ−1(λ)))-real tree (resp. a GW(ξλ,ψ ′(ψ−1(λ)),
aψ−1(λ))-real forest) denoted by T (λ) (resp. by F(λ)). Denote by Tµ(λ) (resp.
by Fµ(λ)) the black subtree obtained by a (1 − µ/λ)-Bernoulli leaf colour-
ing of T (λ) (resp. of F(λ)). Let T ′ (resp. F ′) be a GW(ξµ,ψ ′(ψ−1(µ)))-real
tree (resp. a GW(ξµ,ψ ′(ψ−1(µ)), aψ−1(µ))-real forest). The grafting proce-
dure corresponds to the reconstruction procedure explained at the beginning
of the previous section and Lemma 4.1 implies that

(
T µ(λ), T (λ)

)
under P

( · |Tµ(λ) �= {ρ}) (d)=
(
T ′, Qµ,λ(T ′)

)
(44)

and (
Fµ(λ), F(λ)

) (d)=
(
F ′, Q

a
µ,λ(F ′)

)
. (45)
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Here Qµ,λ(T ′) and Q
a
µ,λ(F ′) stand for the isometry classes of resp. Qµ,λ(T ′) and

Qa
µ,λ(F ′) (the extra random variables used to define the grafting procedures on

T ′ and F ′ are chosen independent of these trees).
The grafting procedure enjoys a Markov-like property in the following sense:

fix a ≥ 0 and let 0 ≤ λ1 < λ2 < λ3. For T in the domain of Qa
λ1,λ3

, set F =
Qa
λ1,λ3

(T). Let Uσ , σ ∈ Lf(F)\Lf(T) be [0, 1]-uniform independent random
variables conditionally on F . We define

Fb = T ∪
⋃{

[[ρ, σ ]] ; σ ∈ Lf(F)\Lf(T) : Uσ ≤ λ2 − λ1

λ3 − λ1

}
.

Fb is thus the black tree resulting from a (1 − (λ2 − λ1)/(λ3 − λ1))-Bernoulli
colouring of the leaves of F that are not in T.

Proposition 4.3 For any a ≥ 0, any 0 ≤ λ1 < λ2 < λ3 and any discrete tree with
edge lengths T in the domain of Qa

λ1,λ2
, we have

(
Q

a
λ1,λ2

(T), Q
a
λ2,λ3

(
Qa
λ1,λ2

(T)
))

(d)= (
Fb, F

)

(here the extra random variables used to define Qa
λ2,λ3

are chosen independent of
Qa
λ1,λ2

(T)).

Proof By Remark 4.7, we only have to prove

(
Q

a
0,µ(T), Q

a
µ,λ

(
Qa

0,µ(T)
))

(d)= (
Fb, F

)
(46)

by replacing ψ by ψλ1 and by taking µ = λ2 − λ1 and λ = λ3 − λ1 in (46).
Let us denote by P the Poisson point process on T involved in the grafting

procedure defining F . For any σ ∈ P∪Br(T)∪{ρ}, we denote by T i
σ , 1 ≤ i ≤ Nσ ,

the trees grafted on σ . Denote by T i
b(σ ) the tree Fb ∩ T i

σ and set

Jr(σ ) = {
i ∈ {1, . . . , Nσ } : T i

b(σ ) = {σ }} and Jb(σ ) = {1, . . . , Nσ }\Jr(σ ).

Then, observe that performing a (1 − µ/λ)-Bernoulli leaf colouring on
Lf(F)\Lf(T) is the same as performing independent (1 − µ/λ)-Bernoulli leaf
colourings on the T i

σ ’s. Accordingly, conditionally on Jr(σ ) and on Jb(σ ) the
pairs of trees (T i

σ , T i
b(σ )), i ∈ Jb(σ ), and the trees T i

σ , i ∈ Jr(σ ), are inde-
pendent; moreover, by (44), conditionally on Jr(σ ) and on Jb(σ ) the isometry
classes of (T i

σ , T i
b(σ )), i ∈ Jb(σ ), are independent copies of (Qµ,λ(T ), T ) where

T is a GW(ξµ,ψ ′(ψ−1(µ)))-real tree. To simplify notation we assume that for
any σ ∈ P ∪ Br(T) ∪ {ρ} and any i ∈ Jb(σ )

Qµ,λ(T i
b(σ )) = T i

σ . (47)
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Now recall that conditionally on Nσ , the events that T i
σ is completely red, i ∈

{1, . . . , Nσ }, are independent events and have probability 1 − ψ−1(µ)/ψ−1(λ).
Since Nσ has distribution ν0,λ

l , with l = n(σ , T)− 1, we get

P (#Jb(σ ) = kb; #Jr(σ ) = kr|P)

= (kb + kr)!
kb!kr!

(
1 − ψ−1(µ)

ψ−1(λ)

)kr
(
ψ−1(µ)

ψ−1(λ)

)kb

ν
0,λ
l (kb + kr). (48)

Now set P1 = {σ ∈ P : #Jb(σ ) ≥ 1} and P2 = P\P1. It is easy to deduce from
the latter observations that P1 and P2 are independent Poisson point processes
with respective intensities

ψ−1(µ) 
T and (ψ−1(λ)− ψ−1(µ)) 
T .

A long but straightforward computation based on (48) (which is left to the
reader) implies that conditionally on P1 and P2 the following assertions are
true:

(a) Ifσ ∈ P1, then #Jb(σ )has distribution ν0,µ
1 and conditionally on #Jb(σ ) = j,

#Jr(σ ) has distribution νµ,λ
j+1;

(b) If σ ∈ P2, then #Jr(σ ) has distribution νµ,λ
1 ;

(c) If σ ∈ Br(T), then #Jb(σ ) has distribution ν0,µ
l , where l = n(σ , T) − 1.

Moreover, conditionally on #Jb(σ ) = j, #Jr(σ ) has distribution νµ,λ
j+l ;

(d) #Jb(ρ) and #Jr(ρ) are independent Poisson random variables with respec-
tive parameters ψ−1(µ)a and (ψ−1(λ)− ψ−1(µ))a.

Next, observe that

Fb = T �σ∈P1∪Br(T)∪{ρ}
i∈Jb(σ )

(
σ , T i

b(σ )
)

. (49)

According to the distribution of P1 and of Jb(σ ), σ ∈ P1 ∪ Br(T) ∪ {ρ}, (49)
implies that Fb is obtained from T by the grafting procedure corresponding to
the “grafting operator” Qa

0,µ and, more precisely, that Fb has the same distri-
bution as the isometry class of Qa

0,µ(T). To simplify notation we assume that

Fb = Qa
0,µ(T). (50)

We now graft trees on Fb according to the “grafting operator” Qa
µ,λ. Observe

that this procedure can be split in the three following steps:

(i) Graft trees according the “grafting operator” Qµ,λ independently on
each T i

b(σ ), i ∈ Jb(σ ) , σ ∈ P1 ∪ Br(T) ∪ {ρ}. Note that by (47) the
resulting trees have the same distribution as the T i

σ ’s .
(ii) Choose additional grafting points on T according to a Poisson point pro-

cess with the same distribution as P2. We denote this set of points by
P ′

2.



Growth of Lévy trees 343

(iii) Graft a random number of independent GW(ξµ,λ,ψ ′(ψ−1(λ)))-real trees
at each σ ∈ P1 ∪ P ′

2 ∪ Br(T) ∩ {ρ}, the random number of trees grafted
on σ having distribution νµ,λ

l , with

l = n(σ , Fb)− 1 = n(σ , T)− 1 + #Jb(σ ).

If #Jb(σ ) = j, then by the grafting procedure, #Jr(σ ) is distributed νµ,λ
l+j ,

and the resulting trees have the same distributions as T i
σ , i ∈ Jb(σ ),

σ ∈ P1 ∪ P2 ∪ Br(T) ∪ {ρ}.
This implies that the isometry class of Qa

µ,λ(Fb) has the same distribution as

F and it completes the proof of (46) by (49). ��
Fix λ > 0 and T in the domain of Qa

0,λ, set F(λ) = Qa
0,λ(T), and for all

µ ∈ [0, λ] set

Fµ(λ) = T ∪
⋃

{[[ρ, σ ]] ; σ ∈ Lf(F(λ))\Lf(T) : Uσ ≤ µ/λ} ,

where the Uσ ’s are i.i.d. [0, 1]-uniform variables conditionally on F(λ). The fol-
lowing proposition discusses how to construct an (a,ψ)-growth process starting
from a discrete tree with edge lengths (T, d, ρ).

Proposition 4.4 Let T be in the domain of Qa
0,1. Then, there exists a family of

random rooted locally compact real trees (Fλ, dλ, ρ), λ ∈ [0, ∞) such that a.s.

(i) F0 = T and for any 0 ≤ µ ≤ λ

Fµ ⊂ Fλ and dµ = dλ |Fµ×Fµ
.

(ii) The map λ −→ Fλ is cadlag in (T, δ) and

(
Fµ, 0 ≤ µ ≤ λ

) (d)= (
Fµ(λ), 0 ≤ µ ≤ λ

)
.

Proof Let (λn; n ≥ 0) be an increasing sequence that goes to ∞ and such
that λ0 = 0. Set F0 = T and define the sequence (Fλn ; n ≥ 1) by Fλn+1 =
Qa
λn,λn+1

(Fλn), n ≥ 0, where the extra random variables used in the grafting
procedure at step n are chosen to be independent of Fλn . Associate a random
variable Vσ with any σ ∈ ⋃

Lf(Fλn)\Lf(T) such that conditionally on the
sequence (Fλn ; n ≥ 1), the Vσ ’s are i.i.d. uniformly distributed in [0, 1]. Then,
for any λ ∈ [λn, λn+1) we define the growth process as follows:

Fλ = Fλn ∪
⋃{

[[ρ, σ ]], σ ∈ Lf(Fλn+1)\Lf(Fλn) : Vσ ≤ λ− λn

λn+1 − λn

}

and

dλ = dλn+1 |Fλ×Fλ
.
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Thus, point (i) clearly holds and it implies that λ −→ Fλ is cadlag in (T, δ). Fix
n ≥ 0. Then use Proposition 4.3 successively for λ0, . . . , λn and use notation Uσ

as defined just before the statement of the proposition, to prove that the joint
distribution of F(λn+1) and

(
Fλk(λn+1) ; Uσ , σ ∈ Lf(Fλk+1(λn+1))\Lf(Fλk(λn+1)), 0 ≤ k ≤ n

)

is the same as the joint distribution of Fλn+1 and

((
Fλk ;

λk + (λk+1 − λk)Vσ
λn+1

, σ ∈ Lf(Fλk+1)\Lf(Fλk)

)
, 0 ≤ k ≤ n

)
.

Thus, for any n ≥ 0:

(
Fµ, 0 ≤ µ ≤ λn+1

) (d)= (
Fµ(λn+1), 0 ≤ µ ≤ λn+1

)
,

which implies the second part of the proposition by an easy argument. ��
Remark 4.9 Following the construction given in the proof of Proposition 3.7,
we can embed the growth process in 
1(N) and we obtain a non-decreasing
cadlag process in (T
1 , d).

Remark 4.10 Observe that the distribution of Q
a
µ,λ(T) only depends on the

isometry class of (T, d, ρ) so it makes sense to denote by Pµ,λ(T, dT ) the distri-
bution on T of Q

a
µ,λ(T). Proposition 4.3 and (45) imply that the isometry classes

(Fλ; λ ≥ 0) of a (a,ψ)-Lévy growth process as defined in the end of Sect. 4.1 is
a T-valued inhomogeneous Markov process with transition kernel Pµ,λ(T, dT )
(in the Brownian case ψ(λ) = λ2/2, Pitman and Winkel in [34] proved that this
process has independent growth increments expressed by a composition rule).
Observe, however, that Q

a
µ,λ(T) is only defined for trees in the domain.

More specifically, it is clear from the construction that the growth process
(Fλ)λ≥0 is a pure jump process obtained by adding single branches. More pre-
cisely, we get the following jump-chain with holding times construction of the
process of (Fλ)λ≥0 started at a compact discrete tree with edge lengths (T, d, ρ).
The equivalence classes of (Fλ)λ≥0 have the same distribution as the equiv-
alence classes of the non-decreasing family of real trees (F̃λ)λ≥0 that has a
discrete set of jump times (�n)n≥1 at which branches of lengths (Ln)n≥1 are
added, at locations (�n)n≥1 and such that the process (�n,�n, Ln, F̃�n)n≥0 is a
Markov chain with transition kernel

P
(
�n+1 ∈ dλ ; �n+1 ∈ dσ ; Ln+1 = dy ; F̃�n+1 ∈ dT ′ ∣∣�n = µ ; F̃�n = T

)

= ψ ′(ψ−1(λ)) exp

⎛
⎝−ψ ′(ψ−1(λ)) y −

λ∫

µ

ds <Ms,T>

⎞
⎠

× dλ Mλ,T(dσ) dy δ{T�(σ ,[[0,y]])}(dT ′),
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where

ψ ′(ψ−1(µ)) Mµ,T(dσ) = ψ ′′(ψ−1(µ))
T(dσ)

+
∑

v∈Br(T)\{ρ}

|ψ(n(σ ,T))(ψ−1(µ))|
|ψ(n(σ ,T)−1)(ψ−1(µ))|δv(dσ)+ aδρ(dσ)

and 〈Ms,T〉 stands for the total mass of Ms,T . Since the result is not important
in the sequel, we skip the proof that is an easy consequence of the grafting
procedure.

For technical purposes, we end the subsection by providing an alternative
definition of the grafting procedure that is less direct but that is used in the
proofs of the results of the next section. Recall from (1) notation for the Lévy
measure � and the Brownian parameter β of ψ . For convenience of notation
we set

q = ψ ′(ψ−1(λ)) and c = ψ−1(λ)− ψ−1(µ). (51)

Fix l ≥ 2. Assume that µ > 0 or µ = 0 and (39) is satisfied for l. Then we define
the distribution ηµ,l(dx) on [0, ∞) by

ηµ,l(dx) = 2β 1{l=2}
|ψ(2)(ψ−1(µ))|δ0(dx)+ xle−xψ−1(µ)

|ψ(l)(ψ−1(µ))|�(dx).

It is easy to check that ηµ,l(dx) is a probability measure.
Let (T, d, ρ) be in the domain of Qa

µ,λ. Let

P1 =
{
(σ (1)i , xi), i ∈ I(1)

}
and P2 =

{
(σ (2)i , yi), i ∈ I(2)

}

be two independent Poisson point processes on T × [0, ∞) with respective
intensities


T(dσ)⊗ xe−ψ−1(µ)x�(dx) and 2β 
T(dσ)⊗ dy.

We shall use the following notation: define for any k ∈ {1, 2},

S(k)µ =
{
σ (k)i , i ∈ I(k)

}

and set

Sµ = S(1)µ ∪ S(2)µ ∪ Br(T) ∪ {ρ} and S′
µ = S(1)µ ∪ Br(T) ∪ {ρ} .

We then introduce the collection of random variables Aµ = {aσ (µ), σ ∈ S′
µ}

that are distributed as follows:
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• a
σ
(1)
i
(µ) = xi , i ∈ I(1);

• (aσ (µ), σ ∈ Br(T) ∪ {ρ}) is a set of independent real-valued random vari-
ables independent of P1 and P2. Moreover, aρ(µ) = a and for any σ ∈
Br(T) \ {ρ}, aσ (µ) is distributed according to ηµ,l(dx) where l = n(σ , T)− 1.

We next define a collection of random trees {(Fσ (λ), dσ ,λ, ρσ ,λ), σ ∈ Sµ} inde-
pendent conditionally on P1 , P2 and Aµ, and whose conditional distribution is
given as follows.

• If σ ∈ S′
µ, then (Fσ (λ), dσ ,λ, ρσ ,λ) is distributed as a GW(ξµ,λ, q, c aσ )-real

forest with the convention that Fσ (λ) = {ρσ ,λ} if aσ = 0.
• If σ = σ

(2)
j , j ∈ I(2), then (Fσ (λ), dσ ,λ, ρσ ,λ) is a single GW(ξµ,λ, q)-real tree

if yj ≤ ψ−1(λ)− ψ−1(µ) and it is simply the point tree {ρσ ,λ} otherwise.

We set

Sµ,λ = {
σ ∈ Sµ : Fσ (λ) �= {ρσ ,λ}

}

and

T ′ = T �σ∈Sµ,λ\{ρ} (σ , Fσ (λ)) and F ′ = T ′ � (ρ, Fρ(λ)).

The following lemma implies that

T
′ (d)= Qµ,λ(T) and F

′ (d)= Q
a
µ,λ(T). (52)

Lemma 4.5 (I) Let E be a connected component of T\(Br(T) ∪ {ρ}) (an
edge of T). Then, E ∩ Sµ,λ is a Poisson point process with intensity

(
ψ ′(ψ−1(λ))− ψ ′(ψ−1(µ))

)
1E(σ )
T(dσ).

(II) Conditionally on Sµ,λ, the random real forests (Fσ (λ), dσ ,λ, ρσ ,λ) , σ ∈
Sµ,λ, are independent. Moreover, for any σ ∈ Sµ,λ\{ρ}, the forest Fσ (λ)
consists of a random number Nσ (λ) of independent GW(ξµ,λ,ψ ′(ψ−1

(λ)))-real rooted trees, whose conditional distribution is given by

P
(
Nσ (λ) = k | Sµ,λ

) = ν
µ,λ
l (k), k ≥ 1,

where l = n(σ , T)− 1.

Proof Set S1,2
µ = S(1)µ ∪ S(2)µ and let M be the measure on T given by

M(dT ) = 2β(ψ−1(λ)− ψ−1(µ))�µ,λ(dT )+
∫

(0,∞)

�(dx) xe−ψ−1(µ)x�x
µ,λ(dT ).
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An easy computation implies that

M(T �={ρ})=2β(ψ−1(λ)−ψ−1(µ))+
∫

(0,∞)

�(dx)xe−ψ−1(µ)x
(
1−e−(ψ−1(λ)−ψ−1(µ))x

)

= ψ ′(ψ−1(λ))− ψ ′(ψ−1(µ)).

If we set M̃ = M( · | T �= {ρ}), then standard results on Poisson point processes
imply that

{
(σ , Fσ (λ)), σ ∈ S1,2

µ : Fσ (λ) �= {ρ}
}

is a Poisson point process with intensity

(ψ ′(ψ−1(λ))− ψ ′(ψ−1(µ)))
T(dσ)⊗ M̃(dT ).

This implies the first point of the lemma.
Now, observe that if T has distribution M̃, then T is obtained by pasting at

the root N independent copies of GW(ξr, q)-real rooted trees, where ξr = ξµ,λ,
q is given by (51), and the distribution of N is given first by M̃(N = 0) = 0 and
for any k ≥ 1 by

(ψ ′(ψ−1(λ))− ψ ′(ψ−1(µ)))M̃(N = k) = 2β c 1{k=1}

+
∫

(0,∞)

�(dx)xe−ψ−1(µ)xe−cx(cx)k/k!

= (−1)k+1ψ(k+1)(ψ−1(λ)) ck/k!.

Accordingly, M̃(N = k) = ν
µ,λ
1 (k) , k ≥ 0, which implies the second part of the

lemma in the σ ∈ S1,2
µ ∩ Sµ,λ case.

It remains to consider σ ∈ Br(T): in that case the forest Fσ (λ) is composed
of Nσ independent random GW(ξr, q)-real rooted trees, where Nσ is a mixture
of Poisson random variables whose distribution is given for any k ≥ 0 by:

P
(
Nσ = k | Sµ,λ

) = E

[
e−caσ (µ) (caσ (µ))k

k!

]

= 2β1{l=2,k=0}
|ψ(2)(ψ−1(µ))| + 1

|ψ(l)(ψ−1(µ))|
×

∫

(0,∞)

�(dx)xk+lcke−x(c+ψ−1(µ))/k!

= ν
µ,λ
l (k)

(here again l = n(σ , T)− 1). This completes the proof of the lemma. ��
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Remark 4.11 Let T be in the domain of Qa
µ,λ. Deduce from the definition of

the Fσ (λ)’s that the sets of random variables

P1(λ) =
{
(σ , Fσ (λ)), σ ∈ S(1)µ ∩ Sµ,λ

}
, P2(λ) =

{
(σ , Fσ (λ)), σ ∈ S(2)µ ∩ Sµ,λ

}

and P3(λ) = {(σ , Fσ (λ)), σ ∈ Br(T) ∪ {ρ}} are independent. Their distributions
are given as follows:

(i) P1(λ) is a Poisson point process on T × T with intensity measure


T(dσ)⊗
∫

(0,∞)

�(dr)re−rψ−1(µ)�r
µ,λ(dT ∩ {T �= {ρ}})

(Recall that {ρ} stands for the isometry class of the point tree).
(ii) P2(λ) is a Poisson point process on T × T with intensity measure

2β
T(dσ)⊗ (ψ−1(λ)− ψ−1(µ))�µ,λ(dT ).

(iii) For every σ ∈ Br(T) , Fσ (λ) has distribution

∫

[0,∞)

ηµ,l(dr)�r
µ,λ(dT ),

where l = n(σ , T)− 1 and Fρ(λ) has distribution �a
λ,µ(dT ).

Remark 4.12 Fix r > 0. Denote the total number of trees added on the closed
ball BT(ρ, r) in T by Nµ,λ(r). Then, note that

Nµ,λ(r) =
∑

σ∈Sµ,λ∩BT (ρ,r)

n(ρσ ,λ, Fσ (λ)).

Then, conditionally on P1, P2 and Aµ, Nµ,λ(r) is distributed as a Poisson random
variable with parameter cAµ(r), where we recall that c = ψ−1(λ)−ψ−1(µ) and
where

Aµ(r) = 2β
T(BT(ρ, r))+
∑

σ∈S′
µ∩BT (ρ,r)

aσ (µ).

Thus,
E

[
sNµ,λ(r)

]
= E

[
exp(−cAµ(r)(1 − s))

]
. (53)
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5 The Lévy forest

5.1 Construction of the Lévy forest

In this section, we study the increasing limit of Fλ as λ → ∞, and properties of
the limit. Let us consider an (a,ψ)-growth process (Fλ, dλ, ρ), λ ∈ [0, ∞) started
at a discrete tree with edge lengths T (that is admissible as specified in Propo-
sition 4.4). Set F∞ = ⋃

Fλ and define a metric d on F∞ by d(σ , σ ′) = dλ(σ , σ ′)
if σ , σ ′ ∈ Fλ. We denote by (F , d) a completion of (F∞, d).

Theorem 5.1 Assume that (4) holds. Almost surely, (F , d, ρ) is a locally compact
rooted real tree and

δ(Fλ, F) −→
λ→∞ 0.

Remark 5.1 If (4) does not holds, then the population may become extinct but
in an infinite time and therefore the underlying genealogical tree cannot be
locally compact.

Proof Thanks to Lemma 3.5, it is sufficient to prove that for any r ∈ (0, ∞) a.s.
the collection of closed balls (BFλ

(ρ, r); λ ≥ 0) is Cauchy when λ goes to infinity
with respect to the Hausdorff distance dHaus on compact subsets of (F , d). For
λ > µ, set

�µ,λ(r) := dHaus
(
BFµ

(ρ, r), BFλ
(ρ, r)

)
.

Since �µ,λ(r) is non-decreasing in λ and non-increasing in µ, we only have to
prove that for any t > 0

lim
µ→∞ inf

λ≥µ P
(
�µ,λ(r) ≤ t

) = 1. (54)

We first need to introduce some notation: let (T o
i , i ∈ I) be the connected com-

ponents of the open set Fλ\T in Fλ. Denote by σi the vertex of T on which T o
i

is grafted and set Ti = T o
i ∪ {σi}. Then, the (Ti, d, σi)’s are compact rooted real

trees and

Fλ = T �i∈I (σi, Ti).

Let µ ∈ [0, λ] and let i ∈ I. Set T ′
i = Ti ∩ Fµ and denote by (T o

i,j , j ∈ J(i)) the
connected components of Ti\T ′

i . Denote by σi,j the vertex of T ′
i on which T o

i,j is
grafted and set Ti,j = T o

i,j ∪ {σi,j}. Clearly, the (Ti,j, d, σi,j)’s are compact rooted
real trees. Observe that

Fλ\Fµ =
⋃
i∈I,

j∈J(i)

T o
i,j and Fµ = T �i∈I (σi, T ′

i ).
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Thus,

Fλ = Fµ � i∈I,
j∈J(i)

(σi,j, Ti,j).

To simplify notation, we set

hi,j := h(Ti,j) = sup{d(σi,j, σ), σ ∈ Ti,j}

and I(r) := {i ∈ I : d(ρ, σi) ≤ r}. Then, the previous observations imply

�µ,λ(r) ≤ max{hi,j, i ∈ I(r), j ∈ J(i)}. (55)

Now deduce from Proposition 4.3

(
Q

a
0,µ(T), Q

a
µ,λ(Q

a
0,µ(T))

)
(d)= (

Fµ, Fλ

)
.

So if we set

N0,λ(r) = #I(r), Ni = #J(i) and Nµ,λ(r) =
∑

i∈I(r)

Ni,

then we get the following:

(a) Conditionally on Ni , i ∈ I, the trees T i,j, i ∈ I(r), j ∈ J(i), are independent
GW(ξµ,λ,ψ ′(ψ−1(λ)))-real trees.

(b) Conditionally on N0,λ(r), (T
′
i, T i), i ∈ I(r) are i.i.d. pairs of trees distrib-

uted as (T ′
, T ) where T is a GW(ξ0,λ,ψ ′(ψ−1(λ)))-real tree and T ′ is

obtained from T as the black subtree resulting from a (1−µ/λ)-Bernoulli
leaf colouring.

Thus, if we set Kµ,λ(t) = P(max{hi,j, i ∈ I(r), j ∈ J(i)} ≤ t), we deduce from (a)

Kµ,λ(t) = E
[
exp(−vµ,λ(t)Nµ,λ(r))

]
, (56)

where exp(−vµ,λ(t)) := P(h(T ′′) ≤ t) and T ′′ is a GW(ξµ,λ,ψ ′(ψ−1(λ)))-real
tree. Then, (24) applied to ϕµ,λ and a simple change of variable imply that
vµ,λ(t) satisfies the following equation

ψ−1(λ)−ψ−1(µ)∫

(ψ−1(λ)−ψ−1(µ))(1−e−vµ,λ(t))

dx

ψ(ψ−1(µ)+ x)− µ
= t. (57)

We now need to compute the distribution of Nµ,λ(r) and accordingly the distri-
bution of the Ni, i ∈ I(r). If (T ′, T ) are as in (b), then denote by M the number
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of red trees grafted on T ′. Note that M is possibly equal to 1 if T ′ is reduced to
the point tree {ρ}, that is if T is completely red. Set κ(s) = E[sM]. According to
(14), κ satisfies

ϕ0,λ (κ(s))− κ(s) = ϕ0,λ(sg(p))− sg(p)− (
ϕ0,λ(g(p))− g(p)

)
,

where we recall that 1 − p = µ/λ and

g(p) = E[p#Lf(T )] = 1 − ψ−1(µ)− γ

ψ−1(λ)− γ
.

A straightforward computation implies:

(ψ−1(λ)−γ )(1−κ(s)) = ψ−1[ψ((ψ−1(λ)−ψ−1(µ))(1− s)+ψ−1(µ))−µ]−γ .
(58)

Then, by (a) and (b) we get:

E
[
exp(−vµ,λ(t)Nµ,λ(r))

] = E

[
κ(e−vµ,λ(t))N0,λ(r)

]
.

Recall the notation of Remark 4.12: we take here µ = 0 and therefore we set

A0(r) = 2β
T(BT(ρ, r)) +
∑

σ∈S′
0∩BT (ρ,r)

aσ (0).

Thus, by (53)

Kµ,λ(t) = E

[
exp(−A0(r) (ψ−1(λ)− γ )(1 − κ(e−vµ,λ(t))))

]
.

Deduce from (57) that

lim
λ→∞(ψ

−1(λ)− ψ−1(µ))(1 − e−vµ,λ(t)) = wµ(t) < ∞

which satisfies

∞∫

wµ(t)

dx

ψ(ψ−1(µ)+ x)− µ
= t.

Notice that here we use (4). Thus, by (57)

lim
λ→∞ Kµ,λ(t) = E[exp(−A0(r)(ψ−1(ψ(wµ(t)+ ψ−1(µ))− µ)− γ ))].
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Finally observe that

t =
∞∫

wµ(t)

dx

ψ(ψ−1(µ)+ x)− µ
=

∞∫

ψ(ψ−1(µ)+wµ(t))−µ

dy

yψ ′(ψ−1(µ+ y))
,

which implies

lim
µ→∞ψ(ψ

−1(µ)+ wµ(t))− µ = 0

by dominated convergence. Thus

lim
µ→∞ lim

λ→∞ Kµ,λ(t) = 1.

It proves (54), which completes the proof of the theorem. ��
Remark 5.2 Assume that the (a,ψ)-Lévy growth process (Fλ, || · ||1, 0), λ ∈
[0, ∞) is T
1 -valued. The proof actually implies that a.s.

d(Fλ, F) −→
λ→∞ 0.

Notation 5.1 • The random locally compact rooted real tree obtained as a
limit of an (a,ψ)-Lévy growth process starting at T is called an (a,ψ)-Lévy
forest starting at T and we shall sometimes denote such a random tree by
the symbol Qa

0,∞(T). We also denote by Q
a
0,∞(T) its isometry class.

• We call (a,ψ)-Lévy forest the random tree Qa
0,∞(F0), where F0 is a GW(ξ0,ψ ′

(γ ), aγ )-real forest that is independent of the random variables used to
define the growth process. We denote by Pa(dT ) the distribution on T of
Q

a
0,∞(F0).

• Let µ ≥ 0. Observe that ψµ satisfies the assumptions of Theorem 5.1. We
denote the limit of the (a,ψµ)-growth process started at T by the symbol
Qa
µ,∞(T).

• Observe that 0 is the only root of ψµ(x) = 0. So an (a,ψµ)-Lévy forest is
the limit of an (a,ψµ)-growth process started a the tree reduced to a point.
We denote the distribution of the isometry class of an (a,ψµ)-Lévy forest
by Pa

µ(dT ). If γ > 0, then Pa
0 �= Pa.

• We shall also consider the following random trees. Let Tµ be a GW(ξµ,ψ ′
(ψ−1(µ)))-real tree and let Tµ,λ be GW(ξµ,λ,ψ ′(ψ−1(λ)))-real tree. We

denote by Pµ(dT ) the distribution on T of Q
a=0
µ,∞(Tµ) and we denote by

Pµ,λ(dT ) the distribution on T of Q
a=0
λ,∞(Tµ,λ). Now observe that P0

µ = δ{ρ}
and thus P0

µ �= Pµ (recall that {ρ} stands for the isometry class of the tree
reduced to a point).
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Let us end this subsection by two useful observations: first note that
Proposition 4.3 combined with Theorem 5.1 with ψµ imply that for any dis-
crete tree with edge lengths T, we have

Q
a
λ,∞

(
Qa
µ,λ(T)

)
(d)= Q

a
µ,∞(T) (59)

(here the extra random variables used to define Qa
λ,∞ are chosen independent of

Qa
µ,λ(T)). Then, recall notation�a

µ,λ from the previous section. Apply Theorem
5.1 with ψµ to get

�a
µ,λ −→

λ→∞ Pa
µ (60)

weakly in the space of probability measures on T.

5.2 The mass measure

Let a ≥ 0 and let (Fλ; λ ≥ 0) be an (a,ψ)-Lévy growth process starting from
a GW(ξ0,ψ ′(γ ), aγ )-forest F0 (see Remark 4.4 for the definition of ξ0), which
reduces to a point in the (sub)critical case. We assume that the Fλ are embedded
in 
1(N) and we denote by F the limit of this growth process in T
1 . We also
denote by mλ the empirical distribution of the leaves of Lf(Fλ):

mλ =
∑

σ∈Lf(Fλ)

δσ . (61)

Theorem 5.2 Assume that (4) holds. Then there exists a random measure m on

1(N) such that

(i) Almost surely the convergence

λ−1mλ −→
λ→∞ m

holds for the vague topology of Radon measures on 
1(N);
(ii) Almost surely the topological support of m is F ;

(iii) Let P = {(σj, Uj), j ∈ J)} be a Cox process on 
1(N)×[0, ∞)with random
intensity m(dσ)⊗du. For any λ ≥ 0 denote by F ′

λ the subtree of F spanned
by 0 and the set of vertices {σj ; j ∈ J, Uj ≤ λ} :

F ′
λ = F0 ∪

⋃
{[[0, σj]] ; j ∈ J, Uj ≤ λ}.

Then,

(Fλ; λ ≥ 0)
(d)= (F ′

λ; λ ≥ 0).

Remark 5.3 The measure m is concentrated on the leaves of F since by defini-
tion m(F∞) = 0 and since F\Lf(F) ⊂ F∞.
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Proof Let us prove (i). By standard density arguments, it is sufficient to prove
that for any non-negative continuous function f on 
1(N) with compact support
there exists a non-negative finite random variable m(f ) such that we a.s. have

λ−1〈mλ, f 〉 −→
λ→∞ m(f ). (62)

Fix µ ≥ 0. We denote by T o
i , i ∈ I(µ), the connected components of F\Fµ and

we denote by σi the vertex of Fµ on which T o
i is grafted and we set

Ti = {σi} ∪ T o
i and Ti(λ) = Ti ∩ Fλ, λ ≥ µ.

Set for any λ ≥ µ

mTi
λ =

∑
σ∈Lf(Ti(λ))

δσ ,

with the conventions that if Ti(λ) = {σi} then Lf(Ti(λ)) = ∅ and mTi
λ = 0. Then,

for any λ2 ≥ λ1 ≥ µ

λ−1
2 〈mλ2 , f 〉 − λ−1

1 〈mλ1 , f 〉 = T1 + T2 + T3,

where

T1 =
(
λ−1

2 − λ−1
1

)
〈mµ, f 〉,

T2 =
∑

i∈I(µ)

〈
λ−1

2 mTi
λ2

− λ−1
1 mTi

λ1
, f − f (σi)

〉
,

T3 =
∑

i∈I(µ)

f (σi)
(〈
λ−1

2 mTi
λ2

〉
−
〈
λ−1

1 mTi
λ1

〉)
.

We set

M(λ) := λ−1〈mλ, 1B(0,r)〉 = λ−1#{σ ∈ Lf(Fλ) : ||σ ||1 ≤ r},

where r is such that f (σ ) = 0 if ||σ ||1 > r and where B(0, r) is the ball of radius
r in 
1(N). We also define for any λ ≥ µ

Mµ,f (λ) :=
∑

i∈I(µ)

f (σi)λ
−1
〈
mTi
λ

〉
.

Lemma 5.3 There exist two finite non-negative random variables Mµ,f (∞) and
M(∞) such that a.s.

Mµ,f (λ) −→
λ→∞ Mµ,f (∞) and M(λ) −→

λ→∞ M(∞).
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Proof of the lemma: For any λ ≥ µ, denote by Gλ the sigma-field generated by
Fµ, the random variables (σi, T i(λ

′); λ′ ≥ λ), i ∈ I(µ), and the P-null sets. Set
also

I(µ, λ) = {i ∈ I(µ) : Ti(λ) �= {σi}}.

Clearly for any λ ≥ λ′ ≥ µ, we have Gλ ⊂ Gλ′ and Mµ,f (λ) is Gλ-measurable.

Moreover, the random variable 〈mTi
λ 〉 only depends on Gλ via T i(λ). Then,

observe that for any λ ≥ λ′ conditionally on Fµ and on I(µ, λ), the trees
(T i(λ

′), T i(λ)) , i ∈ I(µ, λ), are independent and distributed as (T b, T ) where
T is a GW(ξµ,λ,ψ ′(ψ−1(λ)))-real tree and where Tb is the black subtree of T
resulting from a (1 − (λ′ − µ)/(λ − µ))-Bernoulli leaf colouring. Therefore,
conditional on T , #Lf(Tb) has a binomial distribution with parameters #Lf(T )
and (λ′ − µ)/(λ− µ). Accordingly

E
[

#Lf(Tb)| T
] = λ′ − µ

λ− µ
#Lf(T ).

Then, deduce from the latter observations that

E
[

Mµ,f (λ
′)
∣∣Gλ] =

∑
i∈I(µ)

f (σi)λ
′−1

E

[〈
mTi
λ′
〉∣∣∣ T i(λ)

]

= λ′ − µ

λ− µ
.
λ

λ′ Mµ,f (λ).

Thus, ( λ
λ−µMµ,f (λ); λ ≥ µ) is a non-negative backward martingale with

respect to (Gλ; λ ≥ µ). A similar result holds for ( λ
λ−µM(λ); λ ≥ µ). There-

fore, these two backward martingales converge to two limits in [0, ∞] denoted
by resp. Mµ,f (∞) and M(∞). Since λ/(λ − µ) converges to 1 when λ goes to
infinity, it implies the two convergences of the lemma. It remains to show that
these two limiting random variables are a.s. finite.

To that end, observe that

Mµ,f (λ) ≤ ||f ||∞
λ

∑
i∈I(µ)

1[0,r](||σi||1) #Lf(Ti(λ)). (63)

Then, recall that conditionally on Fµ and I(µ, λ), the trees T i(λ) , i ∈ I(µ, λ)
are independent with the same distribution as T . Fix θ > 0. Use Remark 4.7,
take s = e−θ/λ and replace ψ by ψµ in (33), to get

g(e−θ/λ) = E

[
e− θ

λ
#Lf(T )

]
= 1 − ψ−1

µ ((1 − e−θ/λ)(λ− µ))

ψ−1
µ (λ− µ)

.
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Set Nµ,λ(r) = #{i ∈ I(µ, λ) : ||σi||1 ≤ r}. Then the previous observation implies

E

⎡
⎣exp

⎛
⎝−θ λ−1

∑
i∈I(µ,λ)

1[0,r](||σi||1) #Lf(Ti(λ))

⎞
⎠
⎤
⎦ = E

[(
g(e− θ

λ )
)Nµ,λ(r)

]
.

Now use Remark 4.12 to get

E

[(
g(e− θ

λ )
)Nµ,λ(r)

]
= E

[
exp(−Aµ(r)ψ−1

µ ((1 − e− θ
λ )(λ− µ)))

]
.

Thus,

lim
λ→∞ E

[(
g(e−θ/λ)

)Nµ,λ(r)
]

= E

[
e−Aµ(r)ψ−1

µ (θ)
]

.

Then, by (63)

E

[
e−θMµ,f (∞)

]
= lim

λ→∞ E
[
exp

(−θMµ,f (λ)
)]

≥ lim
λ→∞ E

⎡
⎣exp

⎛
⎝−θ ||f ||∞

λ

∑
i∈I(µ)

1[0,r](||σi||1)#Lf(Ti(λ))

⎞
⎠
⎤
⎦

= E

[
e−Aµ(r)ψ−1

µ (θ ||f ||∞)
]

.

Since the right member of the last inequality tends to 1 when θ goes to 0, so does
the first member, which implies that Mµ,f (∞) is a.s. finite. A similar argument
works for M(∞). This completes the proof of the lemma. ��

Let us fix �′ ⊂ � such that P(�′) = 1 and such that the following limits hold

lim
λ→∞ d(Fλ, F) = 0, lim

λ→∞ Mµ,f (λ) = Mµ,f (∞) and lim
λ→∞ M(λ) = M(∞).

We fix ω ∈ �′. Let ε > 0. For any η > 0 we denote the modulus of uniform
continuity of f by w(f , η) := sup{|f (σ )− f (σ ′)|; ||σ − σ ′||1 ≤ η}.
(a) We choose η such that

(3M(∞)+ 1)w(f , η) ≤ ε.

(b) We choose µ large enough such that

d(Fµ, F) ≤ η
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(c) Then, we choose λ large enough such that for any λ1, λ2 ≥ λ

∣∣Mµ,f (λ1)− Mµ,f (λ2)
∣∣ < ε, M(λ1)+ M(λ2) ≤ 3M(∞)+ 1

and

|T1| =
∣∣∣λ−1

2 − λ−1
1

∣∣∣ < mµ, f > ≤ ε.

Then, by (b) we have

〈
λ−1

2 mTi
λ2

− λ−1
1 mTi

λ1
, f − f (σi)

〉
≤ w(f , η)

(
λ−1

2

〈
mTi
λ2

〉
+ λ−1

1

〈
mTi
λ1

〉)
.

Thus, by (a) and (c)

|T2| ≤ (M(λ1)+ M(λ2))w(f , η)

≤ (3M(∞)+ 1)w(f , η) ≤ ε.

Now observe that T3 = Mµ,f (λ1) − Mµ,f (λ2). By (c) we get |T3| ≤ ε. Thus we
have proved that for any ω ∈ �′ and any ε > 0, we can find a sufficiently large
λ such that

sup
λ1,λ2≥λ

∣∣∣λ−1
2 〈mλ2 , f 〉 − λ−1

1 〈mλ1 , f 〉
∣∣∣ ≤ 3ε,

which implies (62) and then (i) of Theorem 5.2.
Let us prove (ii). To that end, set for any θ ∈ [0, ∞) and any λ > µ

hµ,λ(θ) = ψ−1
µ (θ + λ− µ)− ψ−1

µ (θ)

ψ−1
µ (λ− µ)

.

We need the following lemma.

Lemma 5.4 Conditionally on Fµ and on I(µ, λ), the random variables m(Ti) ,
i ∈ I(µ, λ) are i.i.d. and the Laplace transform of their conditional distribution is
hµ,λ.

Proof of the lemma Since for any i ∈ I(µ, λ), m({σi}) = 0, it is easy to check
that

(λ′)−1
〈
mTi
λ′
〉

−→
λ′→∞

m(Ti). (64)

Now observe that almost surely for λ′ ≥ λ ≥ µ, conditionally on Fµ and on
I(µ, λ), the trees Ti(λ

′) , i ∈ I(µ, λ), are independent and distributed as T where
T stands for a GW(ξµ,λ′ ,ψ ′(ψ−1(λ′)))-real tree conditioned on not being com-

pletely red after a
(

1 − λ−µ
λ′−µ

)
-Bernoulli leaf colouring. Denote by Tb the black
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subtree resulting from such a colouring. An elementary computation based on
Remark 4.7 and (33) implies that

E

[
s#Lf(T )

∣∣∣ Tb �= {ρ}
]

= ψ−1
µ ((1 − s)λ′ + sλ− µ)− ψ−1

µ ((1 − s)(λ′ − µ))

ψ−1
µ (λ− µ)

.

Take s = exp(−θ/λ′) and then observe that the right member converges to
hµ,λ(θ) when λ′ goes to infinity. This completes the proof of the lemma. ��
End of the proof of the theorem: Since ψ−1

µ is concave, we get

hµ,λ(θ) ≤ 1

ψ−1
µ (λ− µ)

.
λ− µ

ψ ′
µ(ψ

−1
µ (θ))

−→
θ→∞ 0.

Thus for any λ > µ , m(Ti) > 0 , i ∈ I(µ, λ) a.s. It implies that a.s. m(Ti) > 0
for every i ∈ I(µ). Then a.s. for every µ ≥ 0 the topological support of m has a
non-trivial intersection with each of the connected components of F\Fµ, which
implies (ii).

Let us prove (iii). Since the process (F ′
λ; λ ≥ 0) is obviously Bernoulli leaf

colouring consistent, we only have to prove that for a fixed µ > 0, we have

F ′
µ

(d)= Fµ. (65)

Conditionally on (Fλ; λ ≥ 0), let Vσ , σ ∈ ⋃
λ≥0 Lf(Fλ) be i.i.d. [0, 1]-uniform

random variables. Set for any λ ≥ µ

Nµ,λ =
∑

σ∈Lf(Fλ)

1[0,µ/λ](Vσ ) δ(σ ,λVσ ).

Denote by M(
1(N)) the set of Radon measures on 
1(N) and equip it with a
metric compatible with the vague topology. Let K be a measurable non-negative
function on T
1 ×M(
1(N)) and let f be a non-negative continuous function on

1(N)× [0,µ] with compact support. Set

Eλ = E

[
K(F , m)e−〈Nµ,λ,f 〉] .

First observe that

Eλ = E

⎡
⎣K(F , m) exp

⎛
⎝ ∑
σ∈Lf(Fλ)

log

⎛
⎝1 − 1

λ

µ∫

0

du
(

1 − e−f (σ ,u)
)⎞⎠
⎞
⎠
⎤
⎦ .

Note that all the products and sums involved in the latter expression are finite
since f has compact support. Let r > 0 be such that f (σ , u) = 0 for all σ such
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that ||σ ||1 ≥ r and all u ∈ [0,µ]. We now use the elementary inequality

0 ≤ − log(1 − x)− x ≤ x2

2(1 − x)
, x ∈ [0, 1)

to get

∣∣∣∣∣∣
∑

σ∈Lf(Fλ)

log

⎛
⎝1 − 1

λ

µ∫

0

du
(

1 − e−f (u,σ)
)⎞⎠+

µ∫

0

du
∫

1
λ

mλ(dσ)
(

1 − e−f (u,σ)
)∣∣∣∣∣∣

≤ 1
2λ

µ2

1 − µ/λ

1
λ

mλ (B(0, r)) .

The first point of the Theorem then implies that

lim
λ→∞ Eλ = E

⎡
⎣K(F , m) exp

⎛
⎝−

µ∫

0

du
∫

m(dσ)
(

1 − e−f (u,σ)
)⎞⎠
⎤
⎦ .

This implies that the following joint convergence

(
F , m, Nµ,λ

) −→
λ→∞

(
F , m, Nµ,∞

)
(66)

holds in distribution on T
1 ×M(
1(N))×M(
1(N)×[0,µ]); here Nµ,∞ stands
for a Cox process on 
1(N)× [0,µ] with random intensity m(dσ)⊗ 1[0,µ](x)dx.
Using Skorohod’s representation theorem, we assume that (66) holds a.s. (for
convenience we keep denoting the random variables in the same way). For any
λ ∈ (µ, ∞)∪ {∞}, we denote by Pµ,λ the set of σ ∈ 
1(N) for which there exists
U ∈ [0,µ] such that (σ , U) is an atom of Nµ,λ. We also introduce the subtree
Fµ,λ of F spanned by 0 and the points of Pµ,λ:

Fµ,λ :=
⋃

σ∈Pµ,λ

[[0, σ ]].

Clearly,

Fµ,∞
(d)= F ′

µ. (67)

Next deduce from Lemma 4.1 and from the definition of Nµ,λ that the distri-
bution of Fµ,λ does not depend on λ and is equal to �a

µ. Observe now that for
any r > 0 such that ||σ ||1 �= r if σ ∈ Pµ,∞, (66) implies

dHaus
(
Pµ,λ ∩ B(0, r), Pµ,∞ ∩ B(0, r)

) −→
λ→∞ 0.
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(Recall that dHaus stands for the Hausdorff distance on the compact subsets of

1(N)). Next, set for any r > 0 and any λ ∈ [µ, ∞) ∪ {∞}

Fµ,λ(r) =
⋃

{[[0, σ ]] ; σ ∈ Pµ,λ ∩ B(0, r)}.

Note that for any σ , σ ′ ∈ F

dHaus
([[0, σ ]], [[0, σ ′]]) ≤ ||σ − σ ′||1.

Thus, we get

dHaus
(
Fµ,λ(r), Fµ,∞(r)

) ≤ dHaus
(
Pµ,λ ∩ B(0, r), Pµ,∞ ∩ B(0, r)

)
.

Then for any r > 0 such that ||σ ||1 �= r if σ ∈ Pµ,∞,

dHaus
(
Fµ,λ(r), Fµ,∞(r)

) −→
λ→∞ 0. (68)

Let r > 0 be such that ||σ ||1 �= r if σ ∈ Pµ,∞. Since Pµ,∞ has no limit point, we
can find η ∈ (0, 1) such that

Pµ,∞ ∩ (B(0, r + η)\B(0, r − η)) = ∅. (69)

For the same reason, there is only a finite number of connected components
C1, . . . , Ck of F\B(0, r) containing at least one point of Pµ,∞. For any 1 ≤ i ≤ k,
denote by σi the point of F on which Ci is grafted (observe that ||σi||1 = r).
Then,

Fµ,∞ ∩ B(0, r) = Fµ,∞(r) ∪
k⋃

i=1

[[0, σi]] (70)

Set R = max1≤i≤k min{||σ ||1, σ ∈ Pµ,∞ ∩ Ci}. Observe that R > r + η and that
for any r′ > R, we have

Fµ,∞(r′) ∩ B(0, r) = Fµ,∞(r) ∪
k⋃

i=1

[[0, σi]] (71)

= Fµ,∞ ∩ B(0, r). (72)

Now for any λ > µ such that

dHaus
(
Pµ,λ ∩ B(0, R + 1), Pµ,∞ ∩ B(0, R + 1)

)
< η/2,
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the connected components of F\B(0, r) containing at least one point of Pµ,λ
are exactly C1, . . . , Ck. Thus,

Fµ,λ(R + 1) ∩ B(0, r) = Fµ,λ(r) ∪
k⋃

i=1

[[0, σi]] (73)

= Fµ,λ ∩ B(0, r). (74)

Then by (68), (70), (71) and (73),

dHaus
(
Fµ,λ ∩ B(0, r), Fµ,∞ ∩ B(0, r)

) ≤ dHaus
(
Fµ,λ(R+1), Fµ,∞(R+1)

) −→
λ→∞ 0.

This implies that a.s.

δ
(
Fµ,λ, Fµ,∞

) −→
λ→∞ 0.

Since the distribution of the Fµ,λ is constant and equal to �a
µ , it implies that

Fµ,∞ is also distributed according to �a
µ, which proves (67) and which com-

pletes the proof of (iii) and the proof of the Theorem by (65). ��
Remark 5.4 (Connection with previous the work in [10,11,26,27])

Lévy forests have first been defined in the subcritical or critical case via the
coding by a process H = (Ht, t ≥ 0) introduced by Le Gall and Le Jan in
[26] called the ψ-height process. This process is obtained from a Lévy process
X = (Xt, t ≥ 0) with Laplace exponent ψ , by the following approximation
procedure: for every t ≥ 0, the following limit in probability exists

Ht = lim
ε→0

1
ε

t∫

0

ds 1{Xs≤Is
t +ε},

where we have set Is
t := infs≤r≤t Xr (this approximation is a consequence of

Lemma 1.1.3 in [10]). Set Ta = inf{t ≥ 0 : Xt = −a}. Then, the process
(Ht, 0 ≤ t ≤ Ta) represents the “contour” of the tree (F , d, ρ) in the following
sense. For any s, s′ ∈ [0, Ta], set

d(s, s′) = Hs + Hs′ − 2 inf
s∧s′≤u≤s∨s′

Hu

and introduce the equivalence relation s ∼ s′ iff d(s, s′) = 0. Then Theorem 2.1
in [11] asserts that

(F , d, ρ) := ([0, Ta]/ ∼, d, 0̃
)

is a random compact rooted real tree, where for any s ∈ [0, Ta], we denote by
s̃ the ∼-isometry class of s. Let us explain why F , defined in this way, is an
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(a,ψ)-Lévy forest. Let P = {(ti, ri), i ∈ J} be a Poisson point process on [0, ∞)2

with Lebesgue measure as intensity measure. For any λ ≥ 0 we set

F(λ) =
⋃

{[[ρ, t̃i]] ; i ∈ J : ri ≤ λ ; ti ≤ Ta}.

Obviously, the family of real trees (F(λ); λ ≥ 0) is consistent under Bernoulli
leaf colouring and Theorem 3.2.1 [10] asserts that (F(λ), d, ρ) is a GW(ξλ,ψ ′(ψ−1

(λ)), aψ−1(λ))-real forest. Thus, (F(λ); λ ≥ 0) is an (a,ψ)-growth process.
Besides, it is clear from the construction that a.s.

lim
λ→∞ δ(F(λ), F) = 0.

Moreover, if we take (F(λ); λ ≥ 0) in Theorem 5.2, the mass distribution is
clearly the image of the Lebesgue measure on the line by the canonical pro-
jection associated with ∼. We refer to [11] for discussion of various geometric
properties of Lévy forests.

Remark 5.5 The construction of the mass measure on a Lévy tree given in [11]
only relies on the metric structure of the Lévy tree and not on a particular
coding (see the remark before Theorem 4.4 in [11]). We failed to give a proof
well-suited to our approach of the assertion that m is actually a deterministic
functional of its topological support F .

5.3 Excursion measure of Lévy trees

Fix a > 0 and consider an (a,ψ)-Lévy forest F . Denote by T o
i , i ∈ J, the con-

nected components of F\{ρ} and set for any i ∈ J, Ti = {ρ}∪T o
i . The main goal

of this section is to define a Borel measure �(dT ) on T such that the following
proposition holds:

Proposition 5.5 The point measure

N (dT) :=
∑
i∈J

δT i
(dT)

is a Poisson point measure on T with intensity measure a�(dT ).

Before proving this proposition, recall the notation Pµ(dT ) and Pµ,λ(dT )
from Sect. 5.1. We first establish

Claim Pλ =
(

1 − ψ−1(µ)

ψ−1(λ)

)
Pµ,λ + ψ−1(µ)

ψ−1(λ)
Pµ. (75)

Proof of the claim Let Tµ and Tµ,λ be as in the last point of Notation 5.1. Per-
form a (1 − µ/λ)-Bernoulli leaf colouring on Tλ. Recall that the probability
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that Tλ is completely red is 1 − ψ−1(µ)/ψ−1(λ). Moreover, conditionally on
this event, T λ is distributed as T µ,λ and conditionally on the complementary
event, T λ is distributed as Qµ,λ(Tµ). Then, flip a coin with probability 1 −
ψ−1(µ)/ψ−1(λ) to be head. If it is head, then set T ′ = Tµ,λ; otherwise set
T ′ = Qµ,λ(Tµ). The previous observations imply that T ′

and T λ have the same
distribution. Accordingly, Qλ,∞(Tλ) and Qλ,∞(T ′) have the same distribution.
Use now (59) with T = Tµ to get

Q
a
λ,∞

(
Qa
µ,λ(Tµ)

)
(d)= Q

a
µ,∞(Tµ).

This, combined with the previous observation, implies the claim. ��
Let λ0 = 0 < λ1 < λ2 · · · be any increasing sequence going to infinity. We

define the excursion measure by

�(dT ) = γP0(dT )+
∑
n≥0

(ψ−1(λn+1)− ψ−1(λn))Pλn,λn+1(dT ).

Recall that γ = ψ−1(0). Let us first prove that �(dT ) does not depend on
(λn; n ≥ 0) and more precisely for any non-negative measurable function K on
T, let us prove that

〈�, K〉 = lim
λ→∞ ↑ 〈ψ−1(λ)Pλ, K〉. (76)

Proof of (76) Equation (75) implies that λ → 〈ψ−1(λ)Pλ, K〉 is non-decreasing.
Thus, the limit in (76) exists in [0, ∞]. Denote this limit by L(K) and observe
that

ψ−1(λn)〈Pλn , K〉 = γP0(dT )+
n−1∑
k=0

(ψ−1(λk+1)− ψ−1(λk))〈Pλk,λk+1 , K〉.

Thus, by letting n go to infinity, we get 〈�, K〉 = L(K), which proves (76).
��

Proof of the proposition Fix λ > 0 and define

Jλ = {i ∈ J : Ti ∩ Fλ �= {ρ}}.

Set Ti(λ) = Ti ∩ Fλ for any i ∈ Jλ. From the construction of the growth pro-
cess, we deduce that #Jλ is a Poisson random variable with parameter aψ−1(λ)

and that conditionally on Jλ, the T i(λ) , i ∈ Jλ, are i.i.d. and distributed as
the isometry class of a GW(ξλ,ψ ′(ψ−1(λ)))-real tree. Now observe that for any
i ∈ Jλ the tree Ti is obtained as the limit of a growth process started at Ti(λ).
Then T i and Qλ,∞(Ti(λ)) have the same distribution. Thus conditionally on Jλ
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the T i , i ∈ Jλ, are independent and distributed according to Pλ and for any
non-negative measurable function K on T, we have

E

⎡
⎣exp

⎛
⎝−

∑
i∈Jλ

K(T i)

⎞
⎠
⎤
⎦ = E

[(∫
Pλ(dT )e−K(T )

)#Jλ
]

= E

[
exp

(
−aψ−1(λ)

∫
Pλ(dT )

(
1 − e−K(T )

))]
.

Now, observe that

〈N , K〉 = lim
λ→∞ ↑

∑
i∈Jλ

K(T i),

which completes the proof by (76) and by the dominated convergence theorem.
��

Recall that the height h(T) of a rooted real tree (T, d, ρ) is the (possibly
infinite) real number sup{d(ρ, σ), σ ∈ T}. Observe that h(T) is invariant under
isometries so it makes sense to define h(T) as the height of any representative
of T. It is easy to check here that a.s.

lim
λ→∞ ↑ h(Fλ) = h(F). (77)

Recall from (24) that the probability that the height of a single GW(ξλ,ψ ′(ψ−1

(λ)))-real tree is greater that x is e−vλ(x) where vλ(x) satisfies

ψ−1(λ)

e−vλ(x)∫

0

du

ψ((1 − u)ψ−1(λ))
= x.

Then, (77) and a simple computation imply that

P
(
h(F) ≤ x

) = exp(−av(x)),

where v satisfies the equation

∞∫

v(x)

du
ψ(u)

= x. (78)

Now observe that h(F) = sup{h(T i), i ∈ J}. Thus Proposition 5.5 implies that

�(h(T ) > x) = v(x). (79)
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Remark 5.6 Observe that Proposition 5.5 and (79) imply that a.s.

a = lim
ε→0

1
v(ε)

#{i ∈ J : h(T i) > ε}.

Notation 5.2 The measure � is called the ψ-excursion measure. The terminol-
ogy comes from the fact that in the critical or subcritical case when the Lévy
forest is coded by a ψ-height process as explained in Remark 5.4, � is the dis-
tribution of the tree coded by one excursion above 0 of the height process. In
the last section we shall use the notation �λ for the ψλ-excursion measure.

5.4 Decomposition of the Lévy forest along the ancestral tree of a Poisson
sample

Fix µ0 ≥ 0 and a ≥ 0. Consider a T
1 -valued (a,ψ)-growth process (Fλ; λ ≥ 0)
and denote by F the limit of this growth process. Recall that Fµ0 is distributed
as the isometry class of the ancestral subtree of a Poisson sampling on F with
intensity µ0. m. The aim of this subsection is to compute the distribution of F
conditionally on Fµ0 , as the reconstruction procedure does in the discrete case.
To avoid technicalities and to make easier the statement of this decomposition
we also assume that

Fµ0 = Qa
0,µ0

(F0), (80)

where the extra random variables used to define Qa
0,µ0

are chosen indepen-
dent of F0. Before stating the main result, we need to introduce some notation:
denote by Gr the set of points on which the connected components of F\Fµ0 are
grafted; for any σ ∈ Gr, denote by Fo

i (σ ), i ∈ J(σ ), the connected components
of F\Fµ0 that are grafted on σ and set

Fσ = {σ } ∪ {Fo
i (σ ), i ∈ J(σ )}.

Observe that Fσ is a closed and connected set. Next, let us introduce the sets of
points

S1
µ0

= {σ ∈ Gr\(Br(Fµ0) ∪ {ρ}) : #J(σ ) ≥ 2}

and

S2
µ0

= {σ ∈ Gr\(Br(Fµ0) ∪ {ρ}) : #J(σ ) = 1}.

Note that some branching points of Fµ0 may not be in Gr. We then set

Sµ0 = S1
µ0

∪ S2
µ0

∪ Br(Fµ0) ∪ {ρ},

and if σ ∈ (Br(Fµ0) ∪ {ρ})\Gr, then we set Fσ = {σ }.
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Recall from the end of Sect. 5.3 the notation �µ0 for the ψµ0 -excursion
measure and also recall from Sect. 5.1 the notation Pr

µ0
. Let us denote by vµ0

the function defined on [0, ∞) that satisfies

∞∫

vµ0 (t)

du
ψµ0(u)

= t. (81)

Theorem 5.6 Almost surely for every σ ∈ Sµ0 , the following limit exists and is
finite

a(σ ) := lim
ε→0

1
vµ0(ε)

#{i ∈ J(σ ) : h(Fo
i (σ )) > ε}.

Moreover, conditionally on Fµ0 the collections of random variables

P1 = {(σ , a(σ ), Fσ ), σ ∈ S1
µ0

} P2 = {(σ , Fσ ), σ ∈ S2
µ0

}

and P3 = {(a(σ ), Fσ ), σ ∈ Br(Fµ0) ∪ {ρ}}, are independent. Their conditional
distributions are given by the following:

(i) P1 is a Poisson point process on Fµ0 × [0, ∞)× T with intensity measure


Fµ0
(dσ)⊗ e−rψ−1(µ0)�(dr)⊗ Pr

µ0
(dT );

(ii) P2 is a Poisson point process on Fµ0 × T with intensity measure

2β
Fµ0
(dσ)⊗�µ0(dT );

(iii) The (a(σ ), Fσ ), σ ∈ Br(Fµ0) ∪ {ρ} are independent random variables;
moreover, for each σ ∈ Br(Fµ0), the [0, ∞)× T-valued random variables
(a(σ ), Fσ ) are distributed according to

ηµ0,l(dr)⊗ Pr
µ0
(dT ),

where l = n(σ , Fµ0)− 1; a(ρ) = a and Fρ is distributed according to Pa
µ0

.

Remark 5.7 Recall that P0
µ0

= δ{ρ}. If l = 2 in (iii), then since

ηµ0,2({0}) = 2β
ψ(2)(ψ−1(µ0))

,

Fσ reduces to a point with probability ηµ0,2({0}) > 0 as soon as β > 0.
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Proof Set for any λ ≥ µ0 and any σ ∈ Sµ0 , Fσ (λ) = Fσ ∩ Fλ and

Sµ0,λ = {σ ∈ Sµ0 : Fσ (λ) �= {σ }}.

Deduce from Theorem 5.1 that a.s. for any σ ∈ Sµ0

d(Fσ (λ), Fσ ) −→
λ→∞ 0. (82)

Recall notation �µ0,λ and �r
µ0,λ from the end of Sect. 4.1. For convenience of

notation, let us set

M1(dT ) =
∫

(0,∞)

�(dr)re−rψ−1(µ0)Pr
µ0
(dT )

and

M2(dT ) = 2β�µ0(dT ).

Lemma 5.7 For any non-negative continuous function R on T, any µ0 ≥ 0 and
any ε > 0, we have

(a) 2β
(
ψ−1(λ)− ψ−1(µ0)

) ∫

{h(T )>ε}
�µ0,λ(dT )

(
1 − e−R(T )

)

−→
λ→∞

∫

{h(T )>ε}
M2(dT )

(
1 − e−R(T )

)
.

(b)
∫

(0,∞)

�(dr)re−rψ−1(µ0)

∫

{h(T )>ε}
�r
µ0,λ(dT )

(
1 − e−R(T )

)

−→
λ→∞

∫

{h(T )>ε}
M1(dT )

(
1 − e−R(T )

)
.

End of the proof of the theorem Before proving the lemma, let us complete the
proof of the theorem. Let K be a non-negative continuous function on 
1(N)×T

such that K(σ , T ) = 0 for every T ∈ T and every σ such that ||σ ||1 ≥ r0, where
r0 is a fixed positive number. First deduce from (82) that a.s. for every σ ∈ Sµ0

lim
λ→∞ ↑ h(Fσ (λ)) = h(Fσ ).
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Fix ε > 0. Since F is locally compact, there is only a finite number of Fσ ’s such
that h(Fσ ) > ε and ||σ ||1 ≤ r0. Thus for any i ∈ {1, 2} a.s.

lim
λ→∞

∑
σ∈Sµ0,λ∩Si

µ0

K(σ , Fσ (λ))1{h(Fσ (λ))>ε} =
∑
σ∈Si

µ0

K(σ , Fσ )1{h(Fσ )>ε}. (83)

Since we have supposed (80),

P1(λ) = {(σ , Fσ (λ)), σ ∈ S1
µ0

∩ Sµ0,λ}, P2(λ) = {(σ , Fσ (λ)), σ ∈ S2
µ0

∩ Sµ0,λ}

and P3(λ) = {(σ , Fσ (λ)), σ ∈ Br(T) ∪ {ρ}} are distributed as specified in
Remark 4.11 with T = Fµ0 . Then deduce from (83) and Remark 4.11 (i) and
(ii) and from Lemma 5.7 that

E

⎡
⎢⎣exp

⎛
⎜⎝−

∑
σ∈Si

µ0

K(σ , Fσ )1{h(Fσ )>ε}

⎞
⎟⎠
∣∣∣∣∣∣∣
Fµ0 , Si

µ0
∩ Sµ0,λ

⎤
⎥⎦

= exp

⎛
⎜⎝−

∫

Fµ0

(dσ)
∫

{h(T )>ε}
Mi(dT )

(
1 − e−K(σ ,T )

)
⎞
⎟⎠ ,

for i ∈ {1, 2}. Now, let ε go to 0: this implies that conditionally on Fµ0 the
sets of points {(σ , Fσ ) ; σ ∈ Si

µ0
}, i ∈ {1, 2} are two independent Poisson point

processes with resp. intensity measures 
Fµ0
⊗ Mi , i ∈ {1, 2} .

Recall that (60) asserts that for any r > 0, the probability measure�r
µ0,λ on T

weakly converges to Pr
µ0

. This observation combined with Remark 4.11 implies
that conditionally on Fµ0 for every σ ∈ Br(Fµ0), Fσ is distributed according to

∫

[0,∞)

ηµ0,l(dr)Pr
µ0
(dT ),

(with l = n(σ , Fµ0) − 1), and that Fρ is distributed according to Pa
µ0

. Then,
Remark 5.6 implies the first point of the theorem; this, combined with the
previous observations, implies that conditionally on Fµ0 , P1 , P2 and P3 are
distributed as specified in the theorem; then, their conditional independence
is an easy consequence of the conditional independence of P1(λ) , P2(λ) and
P3(λ) stated in Remark 4.11. This completes the proof of the theorem. ��
Proof of Lemma 5.7 Recall (43) by replacing ψ by ψµ0 , the first point of the
lemma is then equivalent to the following limit

ψ−1(λ)

∫

{h(T )>ε}
�λ(dT )

(
1 − e−R(T )

)
−→
λ→∞

∫

{h(T )>ε}
�(dT )

(
1 − e−R(T )

)
. (84)
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Recall from Sect. 5.3 the notation Ti , i ∈ J, for the subtrees of F grafted at
{ρ}. Set Ti(λ) = Fλ ∩ Ti, i ∈ J and

J(λ) = {i ∈ J : Ti(λ) �= {ρ}}.

Since #J(λ) is a Poisson variable with parameter aψ−1(λ) and since condition-
ally on J(λ), the trees T i(λ), i ∈ J(λ) are independent with the same distribution
�λ, we get

E

⎡
⎣exp

⎛
⎝−

∑
i∈J(λ)

R(T i(λ))1{h(T i(λ))>ε}

⎞
⎠
⎤
⎦ (85)

= exp

⎛
⎜⎝−aψ−1(λ)

∫

{h(T )>ε}
�λ(dT )

(
1 − e−R(T )

)
⎞
⎟⎠ . (86)

Now observe that a.s. for any i ∈ J

lim
λ→∞ δ(T i, T i(λ)) = 0 and lim

λ→∞ ↑ h(T i(λ)) = h(T i). (87)

Since F is locally compact, there are only finitely many Ti’s such that h(T i) > ε.
Thus (87) implies

lim
λ→∞

∑
i∈J(λ)

R(T i(λ))1{h(T i(λ))>ε} =
∑
i∈J

R(T i)1{h(T i)>ε}, (88)

and (a) follows from Proposition 5.5 and (85).
It remains to prove (b). An elementary computation based on (24) with

ϕ = ϕµ0,λ implies that

�r
µ0,λ

(
h(T ) > ε

) = 1 − exp
(
−r(ψ−1(λ)− ψ−1(µ0))(1 − e−vµ0,λ(ε))

)

where vµ0,λ satisfies the following equation

ψ−1(λ)−ψ−1(µ0)∫

(ψ−1(λ)−ψ−1(µ0))(1−e
−vµ0,λ(ε))

du
ψµ0(u)

= ε.

Thus,

lim
λ→∞ ↑ �r

µ0,λ
(
h(T ) > ε

) = 1 − e−rvµ0 (ε) = Pr
µ0

(
h(T ) > ε

)
, (89)
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where vµ0 satisfies (81). By (60), for any r > 0 we get

lim
λ→∞

∫

{h(T )>ε}
�r
µ0,λ(dT )

(
1 − e−R(T )

)
=

∫

{h(T )>ε}
Pr
µ0
(dT )

(
1 − e−R(T )

)
. (90)

Now by (89)

∫

{h(T )>ε}
�r
µ0,λ(dT )

(
1 − e−R(T )

)
≤ Pr

µ0

(
h(T ) > ε

) = 1 − e−rvµ0 (ε).

Now note that

∫

(0,∞)

�(dr)re−rψ−1(µ0)(1 − e−rvµ0 (ε)) < ∞,

which implies (b) by (90) and the dominated convergence theorem. This com-
pletes the proof of the lemma. ��

References

1. Abraham, R.: Un arbre aléatoire infini associé à l’excursion Brownienne. In: Sém. de Proba.,
vol. XXVI, pp. 374–397. Springer, Berlin (1992)

2. Aldous, D., Pitman, J.: Tree-valued Markov chains derived from Galton–Watson pro-
cesses. Ann. Inst. H. Poincaré 34, 637–686 (1998)

3. Aldous, D.J.: The continuum random tree I. Ann. Probab. 19, 1–28 (1991)
4. Athreya, K., Ney, P.: Branching process. Number 196 in Grundlehren der Mathematischen

Wissenschaften. Springer, Berlin (1972)
5. Bingham, N.H.: Continuous branching processes and spectral positivity. Stoch. Process.

Appl. 4, 217–242 (1976)
6. Burago, Y., Burago, D., Ivanov, S.: A Course in Metric Geometry, vol. 33. AMS, Boston (2001)
7. Dress, A.: Trees, tight extensions of metric spaces, and the cohomological dimension of certain

groups: a note on combinatorial properties of metric spaces. Adv. Math. 53, 321–402 (1984)
8. Dress, A., Moulton, V., Terhalle, W.: T-theory: an overview. Eur. J. Comb. 17, 161–175 (1996)
9. Dress, A., Terhalle, W.: The real tree. Adv. Math. 120, 283–301 (1996)

10. Duquesne, T., Le Gall, J.-F.: Random Trees, Lévy Processes and Spatial Branching Processes.
Astérisque no 281 (2002)

11. Duquesne, T., Le Gall, J.-F.: Probabilistic and fractal aspects of Lévy trees. Probab. Theory
Relat. Fields 131(4), 553–603 (2005)

12. Dynkin, E.B.: A type of interaction between superprocesses and branching particle systems.
In: Measure-valued processes, stochastic partial differential equations, and interacting sys-
tems (Montreal, PQ, 1992). CRM Proc. Lecture Notes, vol. 5, pp. 83–86. Amer. Math. Soc.,
Providence (1994)

13. Evans, S.: Snakes and spiders: Brownian motion on real trees. Probab. Theory Relat.
Fields 117(3), 361–386 (2000)

14. Evans, S.N., Winter, A.: Subtree prune and regraft: a reversible real tree-valued Markov pro-
cess. Ann. Probab. 34(3), 918–961 (2006)

15. Evans, S.N., O’Connell, N.: Weighted occupation time for branching particle systems and a
representation for the supercritical superprocess. Can. Math. Bull. 37(2), 187–196 (1994)



Growth of Lévy trees 371

16. Evans, S.N., Pitman, J., Winter, A.: Rayleigh processes, real trees, and root growth with
re-grafting. Probab. Theory Relat. Fields 134(1), 81–126 (2006)

17. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley,
New York (1971)

18. Geiger, J., Kauffmann, L.: The shape of large Galton–Watson trees with possibly infinite
variance. Rand. Struct. Alg. 25(3), 311–335 (2004)

19. Gromov, M.: Metric Structures for Riemannian and non-Riemannian Spaces. Progress in
Mathematics. Birkhäuser, Basel (1999)

20. Hambly, B.M., Lyons, T.J.: Uniqueness for the signature of a path of bounded variation and
continuous analogues for the free group. Preprint (2004)

21. Hobson, D.G.: Marked excursions and random trees. In: Lecture Notes in Mathematics. Sémi-
naire de Probabilités XXXIV, vol. 1729, pp. 289–301. Springer, Berlin (2000)

22. Jirina, M.: Stochastic branching processes with continous state-space. Czech. Math. J. 8, 292–
313 (1958)

23. Lamperti, J.: Continuous-state branching processes. Bull. Amer. Math. Soc. 73, 382–386 (1967)
24. Lamperti, J.: The limit of a sequence of branching processes. Z. Wahrsch. Verw. Gebiete 7, 271–

288 (1967)
25. Lamperti, J.: Limiting distributions of branching processes. In: 5th Berkeley Symposium, vol.

II, Part 2, pp. 225–241 (1967)
26. Le Gall, J.-F., Le Jan, Y.: Branching processes in Lévy processes: the exploration process. Ann.

Probab. 26(1), 213–252 (1998)
27. Le Gall, J.-F., Le Jan, Y.: Branching processes in Lévy processes: Laplace functionals of snakes

and superprocesses. Ann. Probab. 26, 1407–1432 (1999)
28. Le Jan, Y.: Superprocesses and projective limits of branching Markov processes. Ann. Inst. H.

Poincaré 27, 91–106 (1991)
29. Lyons, R., Peres, Y: Probability on Trees and Networks. Cambridge University Press, Cam-

bridge, in progress. Current version published on the web at http://php.indiana.edu/∼rdlyons
(2004)

30. Neveu, J.: Arbres et processus de Galton–Watson. Ann. Inst. H. Poincaré 26, 199–207 (1986)
31. Paulin, F.: Topologie de Gromov équivariante, structures hyperboliques et arbres réels. Invent.

Math. 94(1), 53–80 (1988)
32. Paulin, F.: The Gromov topology on real-trees. Topology Appl. 32(3), 197–221 (1989)
33. Pitman, J.: Combinatorial stochastic processes, Ecole d’Eté de Probabilités de Saint-Flour

XXXII, 2002. Lecture Notes in Mathematics, vol. 1875. Springer, Berlin (2006)
34. Pitman, J., Winkel, M.: Growth of the Brownian forest. Ann. Probab. 33(6), 2188–2211 (2005)
35. Salminen, P.: Cutting Markovian trees. Ann. Acad. Scient. Fenn. A. I. Math. 17, 123–137 (1992)


	Growth of Lévy trees
	Abstract
	Introduction
	Discrete trees
	Basic definitions and notation
	Bernoulli leaf colouring of Galton--Watson trees
	The space of locally compact rooted real trees
	Real trees
	Gromov--Hausdorff convergence of pointed metric spaces
	Galton--Watson real trees with exponential edge lengths
	Isometrical embeddings of real trees in 1  (N)
	The growth process
	Bernoulli colouring of the leaves and extensibility of GW-real trees
	Construction of the growth process
	The Lévy forest
	Construction of the Lévy forest
	The mass measure
	Excursion measure of Lévy trees
	Decomposition of the Lévy forest along the ancestral tree of a Poisson sample


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


