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Abstract Let BS1, . . . , BSn be independent identically distributed random
variables each having the standardized Bernoulli distribution with parame-
ter p ∈ (0, 1). Let m∗(p) := (1 + p + 2 p2)/(2

√
p − p2 + 4 p2) if 0 < p � 1

2 and
m∗(p) := 1 if 1

2 � p < 1. Let m � m∗(p). Let f be such a function that f and
f ′′ are nondecreasing and convex. Then it is proved that for all nonnegative
numbers c1, . . . , cn one has the inequality

Ef (c1BS1 + · · · + cnBSn) � Ef
(
s(m)(BS1 + · · · + BSn)

)
,

where s(m) := ( 1
n

∑n
i=1 c2m

i
) 1

2m . The lower bound m∗(p) on m is exact for each
p ∈ (0, 1). Moreover, Ef (c1BS1 +· · ·+cnBSn) is Schur-concave in (c2m

1 , . . . , c2m
n ).

A number of corollaries are obtained, including upper bounds on gener-
alized moments and tail probabilities of (super)martingales with differences
of bounded asymmetry, and also upper bounds on the maximal function of
such (super)martingales. Applications to generalized self-normalized sums and
t-statistics are given.
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1 Introduction

Exponential upper bounds, say of the form e−x2/(2B2), on the tails probabilities
of sums of independent random variables (r.v.’s) or, more generally, martingales
have had many applications in probability and statistics. In the applications, the
ratio B/x is usually small.

Such exponential bounds are based on upper bounds on the correspond-
ing exponential moments. However, in comparison with the “ideal”, “normal”
estimate 1 − Φ(x/B) ∼ B

x
√

2π
e−x2/(2B2) of the tail probability (where Φ(u) :=

P(Z � u), with Z ∼ N(0, 1)), the exponential upper bound e−x2/(2B2) “misses”
the usually small factor � B/x.

The apparent cause of this deficiency is that the class of exponential moment
functions is too small (and so is the class of the power functions). See [10,19–
21,24] for more on this subject.

For all α � 0, consider the following much richer classes of functions f : R →
R:

Hα+ := {f : f (x) =
∞∫

−∞
(x − t)α+ µ(dt) ∀u ∈ R}, (1)

where µ � 0 is a Borel measure, x+ := max(0, x), and xα+ := (x+)α for x ∈ R,
00 := 0; however, the subscript + will have a different meaning when used with
functions or classes of functions (as, for example, in the symbol Hα+). It is easy
to see [21, Proposition 1(ii)] that

0 � β < α implies Hα+ ⊆ Hβ
+. (2)

For a characterization of the class Hα+ for natural α see Lemma 2 in Sect. 4 of
this paper (cf. [24, Proposition 1.1]). In particular, for every t ∈ R, every β � α,
and every λ > 0, the functions u �→ (u − t)β+ and u �→ eλ(u−t) belong to Hα+.

The following is a special case of Theorem 4 of Pinelis [21]; see also Theo-
rem 3.11 of Pinelis [20].

Theorem 1 Suppose that α > 0, ξ and η are real-valued r.v.’s, and the tail function
u �→ P(η � u) is log-concave on R. Then the comparison inequality

E f (ξ) � E f (η) for all f ∈ Hα+ (3)

implies

P(ξ � x) � Bopt(x) := inf
t∈(−∞,x)

E(η − t)α+
(x − t)α

(4)

� cα,0 P(η � x) (5)
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for all real x, where the constant factor

cα,0 := Γ (α + 1)(e/α)α (6)

is the best possible.

A similar result for the case when α = 1 is contained in the book by Shorack
and Wellner [29], pp. 797–799.

Note that cα,0 ∼ √
2πα as α → ∞ and cα,0 > 1 for all α > 0.

Remark 1 The log-concavity of the tail function q(u) := P(η � u) in Theo-
rem 1 is needed only for inequality (5) but not for inequality (4). In view of
[20, Remark 3.13], the log-concavity requirement can be removed by replacing
q in (5) with any (e.g., the least) log-concave majorant of q. However, then the
optimality of cα,0 is not guaranteed.

Bound Bopt(x) in (4) is obvious but useful in some cases, since it is optimal
[20]. Theorem 2.5 of [20] provides a general description of how to compute the
optimal bound Bopt(x) effectively, even in a more general setting (the natural
condition x < sup supp η was missing in parts (iii) and (iv) of the theorem;
thanks are due to V. Bentkus for having drawn my attention to that omission).
In [4], some general properties of Bopt(x) are presented, and the description of
the calculation of Bopt(x) given by the mentioned Theorem 2.5 of [20] is detailed
for α ∈ {1, 2, 3} and specific families of distributions of the r.v. η: exponential,
uniform, normal, Bernoulli, binomial, and Poisson.

Note that, since the class Hα+ contains all increasing exponential functions
for each α > 0, the optimal bound Bopt(x) is also majorized by the standard
exponential bound

Bexp(x) := inf
h�0

e−hx E ehη. (7)

In particular, since obviously Bexp(x) � 1 for all x, it follows that Bopt(x) � 1
for all x; cf. [4, Lemma 3.1]. Thus, Bexp(x) is better than the bound cα,0 P(η � x)

in (5) for all small enough x. However, in applications (especially in statistics)
it is large values of x that usually are of primary interest, and then the bound
cα,0 P(η � x) will significantly outperform the exponential bound. For other
related developments, see [5,8,20–22,25,26].

In what follows, let (S0, S1, . . . ) be a sequence of r.v.’s adapted to a nonde-
creasing sequence of σ -algebras (H�0, H�1, . . . ), with differences

Xi := Si − Si−1, i = 1, 2, . . . .

The possible property of (S0, S1, . . . ) being a (super,sub)martingale will be
understood with respect to (H�0, H�1, . . . ).

The following normal domination statement is one of the main results of
[24].
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Theorem 2 [24] Suppose that (S0, S1, . . . ) is a supermartingale with S0 � 0
almost surely (a.s.) such that for every i = 1, 2, . . . there exist H�(i−1)-measur-
able r.v.’s Ai−1 and Bi−1 and a positive real number ci such that

− Ai−1 � Xi � Bi−1 and (8)

1
2 (Ai−1 + Bi−1) � ci (9)

a.s. Then for all f ∈ H5+ and all n = 1, 2, . . .

E f (Sn) � E f (s
√

nZ), (10)

where

s := s(1) :=
√

c2
1 + · · · + c2

n

n
. (11)

Note that inequality (10) for the smaller class of exponential functions in
place of the class H5+ is due to Hoeffding [13].

Based on Theorem 2 and a more general version of Theorem 1, upper bounds
on E f (Sn) for f ∈ Hβ

+ with β ∈ [0, 5] were given in [24], including upper bounds
on the tail probabilities P(Sn � x), as well as similar bounds on the distribution
of Mn := max0�k�n Sk in place of Sn and the most precise presently known
bounds for the measure concentration phenomenon in terms of separately-
Lipschitz (or, equivalently, 
1-Lipschitz) functions on product spaces.

Yet, it can be seen that even the best possible normal domination result may
be inadequate if the asymmetry of the random summands Xi is significant or if
n is not large. In such a case, one may try to use binomial domination instead of
normal, as in [1, Theorem 1], [3, Theorem 1.1], and [23, Theorem 2.3]. However,
in those theorems it was assumed that all the Xi’s are almost surely bounded
from above by the same constant. This condition may be too restrictive in
certain applications.

In this paper, another approach to the problem of asymmetry is presented.
Here we provide binomial upper bounds on generalized moments and tail prob-
abilities for Sn assuming that certain indices of asymmetry of the Xi’s (rather
than the Xi’s themselves) are uniformly bounded from above. This assump-
tion of bounded asymmetry (in contrast with the uniform boundedness) of the
Xi’s is rather natural in applications to generalized self-normalized sums and
t-statistics; see Sect. 3.

2 Statements of basic results and discussion

Let C2 denote the class of all twice continuously differentiable functions f : R →
R. Consider the following class of functions:

F3+ := {f ∈ C2 : f and f ′′ are nondecreasing and convex}. (12)
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An equivalent definition would be given by the formula

F3+ = {f ∈ C2 : f , f ′, f ′′, and f ′′′ are nondecreasing},

where f ′′′ denotes the right derivative of the convex function f ′′.
For example, functions x �→ a+b x+c (x− t)α+ and x �→ a+b x+c eλx belong

to F3+ for all a ∈ R, b � 0, c � 0, t ∈ R, α � 3, and λ � 0.
It is easy to see that the strict set inclusion H3+ ⊂ F3+ takes place; a related,

more nontrivial observation will be presented later as Proposition 2 on page 619.

Remark 2 If a function f : R → R is convex and a r.v. X has a finite expectation,
then, by Jensen’s inequality, E f (X) always exists in (−∞, ∞]. This remark will
be used in this paper (sometimes tacitly) for functions f in the class F3+, as well
as for other convex functions.

Throughout the paper, unless indicated otherwise, the following notation/
assumptions will be used:

m ∈ [1, ∞), p ∈ (0, 1), q := 1 − p, and BS1, . . . , BSn
i.i.d.∼ BS(p), (13)

where BS(p) denotes the standardized Bernoulli distribution with parameter
p: for a r.v. BS we let, by definition,

BS ∼ BS(p) ⇐⇒ P
(

BS =
√

q
p

)
= p = 1 − P

(
BS = −

√
p
q

)
;

thus, BS(p) is a two-point zero-mean unit-variance distribution. In particular,
BS( 1

2 ) is the distribution of a Rademacher r.v. ε, with P(ε = ±1) = 1
2 .

Introduce

m∗(p) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 + p + 2 p2

2
(√

p − p2 + 2 p2
) if 0 < p � 1

2 ,

1 if 1
2 � p < 1.

(14)

Later it will be clear that m∗(p) increases from 1 to ∞ as p decreases from 1
2

to 0 (see the proof of Lemma 17).
Introduce also the notation

s(m) :=
(

1
n

n∑

i=1

c2m
i

) 1
2m

(15)

for any nonnegative numbers c1, . . . , cn.
Of the main results of this paper, the following one is perhaps the easiest to

state (but not to prove).
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Theorem 3 For any real number

m � m∗(p), (16)

all f ∈ F3+, all natural n, and all nonnegative numbers c1, . . . , cn, one has

E f (c1BS1 + · · · + cnBSn) � E f
(

s(m) · (BS1 + · · · + BSn)
)

, (17)

Moreover, the lower bound m∗(p) on m is exact for each p ∈ (0, 1).

The exactness of the lower bound m∗(p) is understood here in the following
sense: Theorem 3 would be false if the function m∗ in (16) were replaced by any
other function, say m̃∗ : (0, 1) → R, whose value m̃∗(p) at any point p ∈ (0, 1) is
less than m∗(p).

The necessary proofs are deferred to Sect. 4.

Remark 3 The general restriction m � 1 in (13) is quite natural. Indeed, if
inequality (17) held for some m ∈ (0, 1) then, taking c1 = 1, c2 = · · · = cn = 0,
and letting n → ∞, one would have, by the central limit theorem, the inequality
E f (BS1) � f (0) for all f ∈ F3+, which is false even for f (x) ≡ ex or f (x) ≡ x3+.

Here is a extension of Theorem 3:

Theorem 4 Suppose that (S0, S1, . . . ) is a supermartingale with S0 � 0 a.s. such
that for some natural n and every i ∈ {1, . . . , n} there are positive H�(i−1)-mea-
surable r.v.’s Ai−1 and Bi−1 such that

− Ai−1 � Xi � Bi−1, (18)
√

Ai−1 Bi−1 � ci, and (19)
Bi−1

Ai−1
� q

p
(20)

a.s., where ci is a non-random number. Then, for any real number

m � m∗(p) (21)

and f ∈ F3+, one has the inequality

E f (Sn) � E f
(

s(m)(BS1 + · · · + BSn)
)

, (22)

where s(m) is defined by (15). Moreover, the lower bound m∗(p) on m is exact for
each p ∈ (0, 1).

Condition (20) may be referred to as a bounded-asymmetry condition.
One should compare (19) and (15) with (9) and (11). If Xa,b stands for a

zero-mean r.v. taking on values in the set {−a, b} for some positive a and b, then
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obviously the half-range 1
2 (a + b) of Xa,b is no less than its standard deviation√

ab. That is, (9) is more restrictive than (19). On the other hand, one has the
inequality s(m) � s(1) for m � 1. Moreover, the greater the uniform bound q

p
on asymmetry in (20) is, the greater m must be according to (21) and hence the
more pronounced the inequality s(m) � s(1) will be. Yet, it will be demonstrated
elsewhere that, overall, (19) and (15) work better in certain important statistical
applications than (9) and (11). Note also that one can choose the “ideal” value
m = 1 whenever the asymmetry index q

p does not exceed 1, that is, whenever
the Xi’s are not skewed to the right.

We shall show that conditions (18), (19), and (20) in Theorem 4 can be
replaced by conditions (23), (24), and (25) below. In fact, these two sets of
conditions are equivalent to each other in a certain sense; see e.g. Remark 2.4
in [24] and the proof of Theorem 2.3 therein, as well as the proof of Corollary 1
in Sect. 4.1 below.

Corollary 1 Suppose that (S0, S1, . . . ) is a supermartingale with S0 � 0 a.s. such
that for every i ∈ {1, . . . , n} there exist non-random positive real numbers bi and
ci such that a.s.

Xi � bi a.s., (23)

Var(Xi|H�(i−1)) � c2
i a.s., and (24)

b2
i

c2
i

� q
p

. (25)

Then inequality (22) holds—again for any m � m∗(p) and f ∈ F3+, and again
with s(m) defined by (15).

Recall the definition of the Schur majorizarion: for a := (a1, . . . , an) and
b := (b1, . . . , bn) in R

n, a � b means that a1 + · · · + an = b1 + · · · + bn and
a[1] + · · · + a[j] � b[1] + · · · + b[j] for all j ∈ {1, . . . , n}, where a[1] � · · · � a[n]
are the ordered numbers a1, . . . , an, from the largest to the smallest. Recall also
that a function Q : [0, ∞)n → R is referred to as Schur-concave if it reverses
the Schur majorization: for any a and b in [0, ∞)n such that a � b, one has
Q (a) � Q (b).

Theorems 3 and 4 are contained in the following theorem, which may thus
be considered the main result of this paper.

Theorem 5 The following statements are equivalent to one another.

(I) m � m∗(p).
(II) For all f ∈ F3+, all natural n � 2, and all nonnegative numbers c1, . . . , cn,

one has (17).
(III) For every natural n � 2 and every function f ∈ F3+, the function

[0, ∞)n � (a1, . . . , an) �−→ E f (a1/(2m)

1 BS1 + · · · + a1/(2m)
n BSn) (26)

is Schur-concave.
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(IV) Let the Si’s, Ai−1’s, Bi−1’s, ci’s, and s(m) be as in the statement of Theorem 4.
Then one has (22) for all f ∈ F3+.

The special case of statement (III) of Theorem 5 with p = 1
2 and m = 1 is

essentially due to Whittle [31] and Eaton [9].
From the “right-tail” Theorem 5, one can deduce its left-tail and two-tail ana-

logues. Appropriate left-tail and two-tail counterparts of F3+ are the following
classes of functions:

F3− := {f ∈ C2 : f and f ′′ are nonincreasing and convex} (27)

= {f : ∃g ∈ F3+ ∀x ∈ R f (x) = g(−x)} and

F3 := {f ∈ C2 : f and f ′′ are convex}. (28)

Remark 4 Theorem 5 holds with F3− in place of F3+ if the restrictions that (i)

(S0, S1, . . . ) is a supermartingale with S0 � 0 a.s. and (ii)
Bi−1

Ai−1
� q

p
a.s. in

Theorem 5 are replaced, respectively, with the following: (i) (S0, S1, . . . ) is a

submartingale with S0 � 0 a.s. and (ii)
Ai−1

Bi−1
� q

p
a.s. This “left-tail” analogue

is a trivial corollary of Theorem 5.

The “two-tail” analogue of Theorem 5 is more difficult to prove. It relies in
part on Proposition 1 below, preceded by the following definition.

Definition 1 Let us say that a sequence of functions (fn) in C2 converges to a
function f in C2 and write fn → f (as n → ∞) if fn(x) ↑ f (x) and f ′′

n (x) → f ′′(x)

for all real x. (This stronger notion of convergence will make it easier to verify
the convergence of relevant expected values; also, it naturally provides for the
relevant classes of functions to be closed.)

For any subset A of C2, its closure—denoted here by cl A—will be understood
here simply as the set of the limits of all sequences in A that are convergent in
C2. Obviously, cl A ⊇ A, for every A ⊆ C2.

Obviously, the “two-tail” class F3 contains both “one-tail” classes F3+ and
F3−. The more informative relation of F3 to F3+ and F3− (on which the proof of
Corollary 2 below is partly based) is given by

Proposition 1 One has F3 = cl G3, where

G3 : = {f ∈ C2 : ∃c � 0 ∃f+ ∈ F3+ ∃f− ∈ F3− ∀x ∈ R

f (x) = c x2/2 + f+(x) + f−(x)}. (29)

However, F3 �= G3. For example, the function f defined by the formula

f (x) := 8
3 (1 − x)3/2 I{x � 0} +

(
8
3 − 4x + x2 + 1

6 x3 + 1
16 x4

)
I{x > 0} (30)
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(for all x ∈ R) belongs to F3 but not to G3. Here and elsewhere in the paper, I{·}
denotes the indicator function.

Moreover, functions x �→ a + b x + c x2 + d |x − t|α , x �→ cosh λx, x �→ eλx,
x �→ (x − t)α+, and x �→ (t − x)α+ belong to F3 for all a ∈ R, b ∈ R, c � 0, d � 0,
t ∈ R, α � 3, and λ ∈ R. Note also that the classes F3+, F3−, and F3 are convex
cones; that is, any linear combination with nonnegative coefficients of functions
belonging to any one of these classes belongs to the same class.

Corollary 2 Theorem 5 holds with F3 in place of F3+ if the restrictions (i) m �
m∗(p), (ii) (S0, S1, . . . ) is a supermartingale with S0 � 0 a.s., and (iii) Bi−1

Ai−1
� q

p a.s.
in Theorem 5 are replaced, respectively, with the following stronger restrictions:

(i) m � m∗(p) and p � 1
2 ,

(ii) (S0, S1, . . . ) is a martingale with S0 = 0 a.s., and

(iii) max

(
Bi−1

Ai−1
,

Ai−1

Bi−1

)
� q

p
a.s.

Using Theorem 4, Corollary 1, and Remark 1
(
and in view of definition (12)

and Lemma 2 on page 619
)
, one immediately obtains the following bounds on

the tail probabilities of Sn, which may be compared with those provided by
Corollary 2.2 in [24].

Corollary 3 Suppose that the conditions of Theorem 4 or the conditions of Cor-
ollary 1 hold. Let

Tn := s(m)(BS1 + · · · + BSn),

where s(m) is still defined by (15). Then for all m � m∗(p) and all real x

P(Sn � x) � inf
t∈(−∞,x)

E(Tn − t)3+
(x − t)3 (31)

� c3,0 PLC(Tn � x), (32)

where x �→ PLC(Tn � x) is the least log-concave majorant of the function x �→
P(Tn � x) on R.

According to Remark 1, the upper bound in (31) is majorized by the expo-
nential upper bound (7), so that under the conditions of Corollary 3 one has

P(Sn � x) � e−nH (33)

for all real x, where H := (p + y) ln p+y
p + (q − y) ln q−y

q if 0 � y := x
n

√
pq

s(m) < q,
H := − ln p if y = q, H := ∞ if y > q, and H := 0 if y < 0. This exponential
upper bound is essentially due to Hoeffding [13].

Note that PLC(Tn � x) = P(Tn � x) for all x in the lattice

L := {nb + kh : k ∈ Z}
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generated by the support of the distribution of Tn, where b := s(m)
√

q
p and

h := s(m)/
√

pq. Using also results of [23], one immediately has the following.

Corollary 4 Under the conditions of Corollary 3,

P(Sn � x) � c3,0 PLin,LC(Tn � x + h
2 ) ∀x ∈ R, (34)

where x �→ PLin,LC(Tn � x) is the least log-concave majorant of the linear inter-
polation of the tail function x �→ P(Tn � x) over the lattice L.

The upper bound in (34) usually works better in statistical practice than those
in (32) and (33). An explicit formula for PLin,LC(Tn � x + h

2 ) is given in [23].
Corollary 3 should be compared with Theorem 1.3 of [3], which states that,

if (Si) is a martingale with S0 = 0 satisfying conditions (23) and (24) with the
additional restriction

bi = ci ∀i = 1, . . . , n,

in place of (25), then ∀x ∈ R

P(Sn � x) � c3,0 PLC(Tn � x) with Tn = s(1). (ε1 + · · · + εn). (35)

Thus, this result of [3] is a special case of Corollary 3—with p = 1
2 (so that one

may take m = 1). By the central limit theorem, inequality (35) implies

P(Sn � x) � c3,0 P(s(1)
√

nZ � x). (36)

Inequalities (36) and (35) are extensions of results in [19,20]. A version of
inequality (36), with constant factor 1/ P(Z >

√
3) = 24.01 . . . in place of

c3,0 = 2e3/9 = 4.46 . . . , appeared earlier in [2]. The generalized moments
E f (Tn) in the above upper bounds, where Tn := s(m) · (BS1 + · · · + BSn), can be
replaced by E f (s(1)

√
nZ) provided that p � 1

2 . That (S0, S1, . . . ) is allowed to be
a supermartingale (rather than only a martingale) makes it convenient to use
the simple but powerful truncation tool; cf. the discussion at the end of Sect. 2
in [24].

We shall also prove the following stronger, “maximal” version of the previous
results.

Corollary 5 One can replace Sn in the left-hand side of inequalities (31) and (34)
by

Mn := max
0�k�n

Sk.
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3 Applications: bounds on self-normalized sums

(Details on the results presented in this section are given in [27].)
Efron [11] considered the so-called self-normalized sum

V := X1 + · · · + Xn√
X2

1 + · · · + X2
n

, (37)

assuming that the Xi’s satisfy the orthant symmetry condition: the joint distribu-
tion of δ1X1, . . . , δnXn is the same for any choice of signs δ1, . . . , δn ∈ {1, −1}, so
that, in particular, each Xi is symmetric(ally distributed). It suffices that the Xi’s
be independent and symmetrically (but not necessarily identically) distributed.
On the event {X1 = · · · = Xn = 0}, let V := 0.

Following Efron [11], note that the conditional distribution of any symmetric
r.v. X given |X| is the symmetric distribution on the (at most) two-point set
{X, −X}. Therefore, under the orthant symmetry condition, the distribution
of V is the mixture of the distributions of the normalized Khinchin–Rade-
macher sums a1ε1 + · · · + anεn, where the εi’s are independent of the Xi’s and
ai = Xi/(X2

1 + · · · + X2
n)

1
2 , so that a2

1 + · · · + a2
n = 1 (except on the event

{X1 = · · · = Xn = 0}, where a1 = · · · = an = 0). Hence, using the well known
bound E exp

{
λ (a1ε1 + · · · + anεn)

}
� eλ2/2 (see e.g. the introduction in [24])

one has
E eλV � E eλZ (38)

for all λ ∈ R, whence

P (V � x) � e−x2/2 ∀x � 0. (39)

These results can be easily restated in terms of Student’s statistic T, which is a

monotonic function of V, as noted by Efron; namely, T =
√

n−1
n V/

√
1 − V2/n.

Inequalities (38) and (39) were improved in [9,10,19] as follows:

E f (V) � E f (Z) ∀f ∈ H3+ (40)

and

P (V � x) � 2e3

9
P(Z � x) ∀x ∈ R. (41)

Multivariate analogues of these results, which can be expressed in terms of
Hotelling’s statistic in place of Student’s, were also obtained in [19].

It was pointed out in [19, Theorem 2.8] that, since the normal tail decreases
fast, inequality (41) implies that relevant quantiles of V may exceed the cor-
responding standard normal quantiles only by a relatively small amount, so
that one can use (41) rather efficiently to test symmetry even for non-i.i.d.
observations.
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Here we shall present extensions of inequalities (40) and (41) to the case
when the Xi’s are not symmetric.

Our basic idea is to represent any zero-mean, possibly asymmetric distri-
bution as an appropriate mixture of two-point zero-mean distributions. Let us
assume at first that a zero-mean r.v. X has an everywhere strictly positive density
function. Consider the truncated r.v. Xa,b := XI{a � X � b}. Then, for every
fixed a ∈ (−∞, 0], the function b �→ E Xa,b is continuous and increasing on the
interval [0, ∞) from E Xa,0 � 0 to E Xa,∞ > 0. Hence, for each a ∈ (−∞, 0],
there exists a unique value b ∈ [0, ∞) such that E Xa,b = 0. Similarly, for each
b ∈ [0, ∞), there exists a unique value a ∈ (−∞, 0] such that E Xa,b = 0. That
is, one has a one-to-one correspondence between a ∈ (−∞, 0] and b ∈ [0, ∞)

such that E Xa,b = 0. Denote by r := rX the reciprocating function defined on
R and carrying this correspondence, so that

E X I{X is between x and r(x)} = 0 ∀ x ∈ R;

the function r is decreasing on R and such that r(r(x)) = x ∀x ∈ R; moreover,
r(0) = 0. (Clearly, r(x) = −x for all real x if the r.v. X is symmetric.) One also
has

r(x) = x−(G(x)) I{x > 0} + x+(G(x)) I{x < 0} , (42)

where x±(h) stand for the positive and negative roots x of the equation G(x) = h
and, in turn,

G(x) := E |X| I{|X| � |x|, sign X = sign x} . (43)

Thus, the set { {x, r(x)} : x ∈ R } of (at-most-)two-point sets constitutes a parti-
tion of R. Moreover, the two-point set {x, r(x)} is uniquely determined by the
distance |x − r(x)| between the two points, as well as by the product |x| |r(x)|.
Now one can see that the conditional distribution of the zero-mean r.v. X given
W := |X − r(X)| (or, equivalently, Y := |X r(X)|) is the uniquely determined
zero-mean distribution on the two-point set {X, r(X)}. Thus, the distribution
of the zero-mean r.v. X with an everywhere positive density is represented as
a mixture of two-point zero-mean distributions. This mixture is given rather
explicitly, provided that the distribution of r.v. X is known.

Thus, one can introduce the following generalized versions of the self-nor-
malized sum (37), which require—instead of the symmetry of independent r.v.’s
Xi—only that the Xi’s be zero-mean:

VW := X1 + · · · + Xn

1
2

√
W2

1 + · · · + W2
n

and VY,m := X1 + · · · + Xn

(Ym
1 + · · · + Ym

n )
1

2m

, (44)

where m � 1,

Wi := |Xi − ri(Xi)|, and Yi := |Xi ri(Xi)|,
and the reciprocating function ri := rXi is constructed as above, based on the
distribution of Xi, for each i, so that the reciprocating functions ri may be
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different from one another if the Xi’s are not identically distributed. On the
event {X1 = · · · = Xn = 0} (which is the same as either one of events {W1 =
· · · = Wn = 0} and {Y1 = · · · = Yn = 0}), let VW := 0 and VY,m := 0. Note that
VW = VY,1 = V when the Xi’s are symmetric. Logan et al. [16] and Shao [28]
obtained limit theorems for the “symmetric” version of VY,m (with Yi = X2

i ).
These constructions can be extended to the general case of any zero-mean r.v.

X, absolutely continuous or not. Here, one can use randomization (by means
of a r.v. uniformly distributed in interval (0, 1)) to deal with the atoms of the
distribution of r.v. X, and a modification of the inverse functions x±(h) to deal
with the intervals on which the distribution function of X and hence the func-
tion G are constant. Namely, in general r(X) is replaced by r(X, U), where U
is a r.v. uniformly distributed in interval (0, 1) and independent of X and, for
x ∈ R and u ∈ (0, 1),

r(x, u) :=
{

x−(G(x−) + u · (G(x) − G(x−))) if x ∈ [0, ∞),
x+(G(x+) + u · (G(x) − G(x+))) if x ∈ (−∞, 0],

x+(h) := inf{x ∈ [0, ∞] : G(x) � h},
x−(h) := sup{x ∈ [−∞, 0] : G(x) � h}.

It follows that, conditionally on the Yi’s (or, equivalently, on the Wi’s), the
Xi’s are independent zero-mean r.v.’s, and the conditional distribution of each Xi
is supported by the two-point set {Xi, r(Xi)}. Thus, the distribution of each Xi is
a mixture of zero-mean two-point distributions on the sets of the form {xi, ri(xi)}
for xi ∈ [0, ∞). Let us now use Theorem 4 and Corollary 3 with each supermar-
tingale-difference Xi there replaced by a zero-mean r.v. taking on two values,
(−Ai−1) and Bi−1, where

Ai−1 := − ri(xi)

(ym
1 + · · · + ym

n )
1

2m

, Bi−1 := xi

(ym
1 + · · · + ym

n )
1

2m

,

yi := |xiri(xi)|, and xi ∈ [0, ∞); at that, let ci := √
Ai−1Bi−1. Then one obtains

Corollary 6 Suppose that for some p ∈ (0, 1) and all i ∈ {1, . . . , n}
Xi

|ri(Xi)| I{Xi > 0} � q
p

a.s. (45)

Then for all m � m∗(p)

E f (VY,m) � E f (Tn) ∀f ∈ F3+ and (46)

P(VY,m � x) � c3,0 PLC(Tn � x) ∀x ∈ R, (47)

where Tn and PLC(Tn � x) have the same meaning as in Corollary 3, with
s(m) = n−1/(2m), and, in accordance with (6), c3,0 = 2e3/9 = 4.4634 . . . .
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Similarly, using the Wi’s instead of the Yi’s and results of [24] instead of
Theorem 4 and Corollary 3 of this paper, one has

Corollary 7

E f (VW) � E f (Z) ∀f ∈ H5+, whence (48)

P(VW � x) � c5,0 P(Z � x) ∀x ∈ R, (49)

where, in accordance with (6), c5,0 = 5!(e/5)5 = 5.699 . . . .

Of course, one can replace the upper bound in inequalities like (47) by either
of the more precise (but slightly less transparent and more difficult to compute)
upper bounds given in (31) and (34).

Condition (45) is likely to hold when the Xi’s are bounded i.i.d. r.v.’s.
Note that the reciprocating function r depends on the (usually unknown in

statistics) distribution of the underlying r.v. X. However, if, e.g. the Xi’s con-
stitute an i.i.d. sample, then the function G defined by (43) can be estimated
based on the sample, so that one can estimate the reciprocating function r. Thus,
replacing X1 +· · ·+Xn in the numerators of VW and VY,m by X1 +· · ·+Xn −nθ ,
one obtains approximate pivots to be used to construct approximate confidence
intervals or, equivalently, approximate tests for an unknown mean θ . One can
also use bootstrap to estimate the distributions of such pivots.

Inequalities presented in Corollaries 6 and 7 may be compared with limit
theorems for large deviations, such as the ones given in [14,28]. In addition
to the obvious distinction that limit theorems provide asymptotics, rather than
certain and explicit bounds, one may notice that in most cases the limit theo-
rems are obtained for i.i.d. Xi’s. Therefore, the inequalities may turn useful for
small and/or heteroscedastic samples, as they provide universal conservative
bounds, which may be rather accurate. Another advantage of our approach is
that it provides one with generalized moment comparison inequalities (such as
(46) or (48)) for rich classes of generalized moment functions f . Exponential
and power-moment inequalities for self-normalized sums were obtained in [7].

4 Proofs

4.1 Statements of lemmas and proofs of the main results

The proofs of the main results are preceded in this section by some definitions
and a series of lemmas. At least one of them (Lemma 12) may be of independent
interest. The proofs of the lemmas are deferred further to Sect. 4.2.

Let us introduce more classes of functions, in addition to the classes H3+, F3+,
F3−, F3, and G3 (recall (1), (12), (27), (28), and (29)):

G3+ := {f : ∃a ∈ R, b ∈ R, h ∈ H3+ ∀x ∈ R f (x) = a + b x + h(x)}; (50)

G3++ := {f : ∃a ∈ R, b � 0, h ∈ H3+ ∀x ∈ R f (x) = a + b x + h(x)}. (51)



Inequalities for sums of asymmetric random variables 619

Remark 5 It is not difficult to see that, if a function f is in F3+ or any other
defined above class of functions, then the shifted function x �→ f (x + a) is also
in the same class, for any real constant a. That is, all these classes of functions
are shift-invariant.

Our first lemma is very simple and probably well known, but I have not been
able to find it in the literature. So, it is stated (and proved) here for the readers’
convenience and easy reference.

Lemma 1 Suppose that a function g : R → R is convex and such that there exists
a finite limit g(−∞) := limx→−∞ g(x); in particular, the latter condition will obvi-
ously be the case if g is nonnegative and nondecreasing on R. Then g′(−∞) = 0,
where g′ is the right derivative of g.

Lemma 2 If α is a natural number then Hα+ coincides with the class H̃α+ of all
functions f : R → R such that the derivative f (α−1) is everywhere finite and con-
vex, and f (0)(−∞) = · · · = f (α−1)(−∞) = 0. Moreover, if f ∈ Hα+, then all the
functions f (0), . . . , f (α−1) are nonnegative.

Lemma 3 Let f : R → R be a function such that f ′′ is finite, nonnegative, non-
decreasing, and convex, with f ′′(−∞) = 0. Then f ∈ cl G3+. If, moreover, f is
nondecreasing, then f ∈ cl G3++.

Lemma 4 One has F3+ = cl G3++.

Lemma 5 One has F3 = cl G3, where G3 is defined by (29).

Lemma 6 If f ∈ F3+, then either f (x) = O(x) as x → ∞ or
lim infx→∞ f (x)/x2 ∈ (0, ∞].
Lemma 7 If f ∈ F3+, then f (x) = O(|x|) as x → −∞.

Lemma 8 F3 �= G3.

Proposition 2 There exists a function g ∈ F3+ \ G3+. (For example, one can let
g := f ′, where f is defined by (30).) Since G3++ ⊆ G3+, it follows that F3+ �= G3++.
(This proposition complements Lemmas 4 and 8. )

The following two lemmas are essentially well known. Their statements (and
proofs) are given here for easy reference.

Lemma 9 (Cf. e.g. [15] and [3, Lemma 4.3].) Let X be a r.v. such that E X � 0
and −a � X � b a.s. for some positive real numbers a and b. Let BS ∼ BS(p)

with

p := a
b + a

.

Then

E f (X) � E f (
√

a b BS)

for any nondecreasing convex function f , and hence for any function f ∈ F3+.
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Lemma 10 If X is a zero-mean r.v., then E f (c X) is nondecreasing in c � 0 for
any convex function f and hence for any f ∈ F3+.

Lemma 11 Let BS(p) ∼ BS(p). Then e(p) := E f (BS(p)) is nonincreasing in
p ∈ (0, 1) for any f ∈ H2+ and so, by (2), for any f ∈ H3+, whence, by Lemma 4,
for any f ∈ F3+.

The extension from Theorem 3 to Theorem 4 is based in part on the following
simple lemma, which may be of independent interest.

Lemma 12 Suppose that (S0, S1, . . . ) is a supermartingale with S0 � 0 a.s. such
that for every i ∈ {1, . . . , n} one has (18), (19), and (20). Then

E f (Sn) � E f (c1BS1 + · · · + cnBSn) (52)

for any f ∈ H2+, and so, by (2), for any f ∈ H3+, whence, by Lemma 4 and
Lebesgue’s dominated convergence theorem, for any f ∈ F3+.

For m � 1, introduce

p∗ := p∗(m) := 2m + 1 − √
4(m − 1)(m + 2) + 1

4(2m − 1)

= 2

(2m − 1) (2m + 1 + √
4(m − 1)(m + 2) + 1)

,
(53)

so that p∗ ∈ (0, 1
2 ]. Introduce also

δ1(u, c, p, m) := 2c(1 − c2m−2)u + 2pc(1 − c2m−1) + c2(1 − c2m−3);

δ2(u, c, p, m) := (1 − p)(1 − c2m−1)u2

+ 2c(1 − c2m−2)u + 2pc(1 − c2m−1) + c2(1 − c2m−3);

δ3(u, c, p, m) := − c2m−1u2 − 2(c2m−1 − cp + c2mp) u

+ (
(2c + c2 − 2c2m − c2m+1)p − c2m−1);

δ4(u, c, p, m) := (1 − c2m−1) p (1 + c + u)2.

Lemma 13 For any given pair (p, m) such that m � 1 and p ∈ (0, 1), the following
two statements are equivalent to each other.

(i) For every every function f ∈ H3+, the function

[0, ∞)2 � (a1, a2) �−→ E f
(
a1/(2m)

1 BS1 + a1/(2m)

2 BS2
)
,

is Schur-concave, where BSi
i.i.d.∼ BS(p), i = 1, 2.
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(ii) for all u ∈ R and c ∈ (0, 1), one has the inequalities

δ1(u, c, p, m) I{u � 0} � 0;

δ2(u, c, p, m) I{−c � u � 0} � 0;

δ3(u, c, p, m) I{−1 � u � −c} � 0.

Lemma 14 For all u � 0, c ∈ (0, 1), p ∈ [p∗, 1), and m � 1, one has δ1(u) :=
δ1(u, c, p, m) � 0.

Lemma 15 For all u ∈ [−c, 0], c ∈ (0, 1), p ∈ [p∗, 1), and m � 1, one has
δ2(u) := δ2(u, c, p, m) � 0.

Lemma 16 For all u ∈ [−1, −c], c ∈ (0, 1), p ∈ [p∗, 1), and m � 1, one has
δ3(u) := δ3(u, c, p, m) � 0.

Lemma 17 (Recall (14) and (53).) For p ∈ (0, 1) and m � 1, one has

m � m∗(p) ⇐⇒ p � p∗(m).

Lemma 18 In the context of Theorem 5, implication (II) �⇒ (I) is true.

Proof of Corollary 1 According to Theorem 2.1 in [23] (cf. [1,3,4]), conditions
(23) and (24) imply that

E f (Sn) � E f (Z1 + · · · + Zn) ∀f ∈ H2+, (54)

where Z1, . . . , Zn are independent zero-mean r.v.’s such that each Zi takes on
only two values, Bi−1 := bi and −Ai−1 := −c2

i /bi, so that condition (18) of
Theorem 4 is satisfied with Zi in place of Xi, and at that conditions (19) and (20)
hold (the latter one by virtue of (25)). Thus and in view of inequality (54), set
inclusion (2), and Theorem 4, one has the inequality (22) of Corollary 1 for all
f ∈ H3+, and so, by Lemma 4 and Lebesgue’s dominated convergence theorem,
for all f ∈ F3+. This completes the proof of Corollary 1. (Note: Theorem 4, used
in this proof, follows immediately from Theorem 5, which will be proved next,
without using Corollary 1.) ��
Proof of Theorem 5 It suffices to prove the implications

(I) �⇒ (III) �⇒ (II) �⇒ (I) and

(II) �⇒ (IV) �⇒ (II). (55)

(I) �⇒ (III): Suppose that condition m � m∗(p) of item (I) takes place. By
Lemma 17, this condition is equivalent to p � p∗(m). Now statement (III) for
n = 2 with H3+ in place of F3+ follows from Lemmas 13, 14, 15, and 16. Hence,
by the definition (51) of G3++ and Lemma 4, one has (III) for n = 2 ( recall that
the r.v.’s BSi each take on only finitely many, namely two, values).
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Now, in view of Remark 5 on page 619, by conditioning on all of the r.v.’s
BS1, . . . , BSn except any given two of them, (III) for any natural n � 2 follows
from the well-known result by Muirhead [18] (see, e.g., [17, Remark B.1 of
Chap. 2]), which states that a function of n nonnegative arguments is Schur-
concave iff it is Schur-concave in any two of its arguments.

(III) �⇒ (II): Let here a1 := c2m
1 , . . . , an := c2m

n and a := (a1 + · · · + an)/n,
so that s(m) = a 1/(2m). Note that (a1, . . . , an) � (a, . . . , a︸ ︷︷ ︸

n

). Now implication

(III) �⇒ (II) follows.
(II) �⇒ (I): This implication is true by Lemma 18.
(II) �⇒ (IV): This implication follows immediately from Lemma 12.
(IV) �⇒ (II): This implication is trivial. ��

Proof of Proposition 1 This follows immediately from Lemmas 5 and 8. ��
Proof of Corollary 2 It suffices to prove the same implications, (55), as in the
proof of Theorem 5, only with the changes stated in the formulation of Corol-
lary 2. Below, all these implications are understood in the context of Corollary 2.
The proofs of most of these implications are similar to their proofs in the context
of Theorem 5. Below, only the most significant changes are described.

(I) �⇒ (III): To prove this implication, in view of Theorem 5, Remark 4,
and Proposition 1, it suffices to verify that the function (26) is Schur-concave
when f (x) = x2 (for all real x). Also (cf. the proof of implication (I) �⇒ (III) in
the proof of Theorem 5), one may assume that n = 2. Thus, it suffices to verify
that, for any given m � 1, the expression

E(BS1 cos1/m θ + BS2 sin1/m θ)2 = cos2/m θ + sin2/m θ

is nondecreasing in θ ∈ [0, π/4]. But this is easy to see.
(II) �⇒ (I): This implication follows from Theorem 5, Remark 4, and the

observation that both classes F3+ and F3− are contained in F3.
(II) �⇒ (IV): In view of Theorem 5, Remark 4, Proposition 1, and

Lebesgue’s dominated convergence theorem, it suffices to verify that inequal-
ity (22) holds when f (x) = x2 for all real x and (S0, . . . , Sn) is a martingale as
described in the formulation of Corollary 2. Note that inequality (52) holds for
the function f0(x) := x2+ in place of f , since f0 ∈ H2+. By symmetry, (52) also
holds for the function f̃0(x) := (−x)2+ in place of f , given that (S0, . . . , Sn) is a
martingale as described. Thus, (52) holds when f (x) = x2( = x2+ + (−x)2+

)
for

all real x. It remains to note that

E(c1BS1 + · · · + cnBSn)2 = n (s(1))2 � n (s(m))2 = E(s(m)(BS1 + · · · + BSn))2,

so that one does have inequality (22) when f (x) = x2 for all real x. ��
Proof of Corollary 5 In the case when (Si) is a martingale, one can obtain Cor-
ollary 5 similarly to Corollary 3, using the Doob inequality P(Mn � x) �
E(Sn − t)3+/(x − t)3 for the convex function u �→ ft(u) := (u − t)3+ and t < x.
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It remains to observe that any supermartingale-differences Xi satisfying
condition (18) are majorized by certain martingale-differences X̃i satisfying
(18) (in place of Xi) as well. Such a reduction is similar to that in the proof of
Lemma 3.1 in [23]. Namely, for each i = 1, 2, . . . let

X̃i := (1 − γi−1)Xi + γi−1Bi−1, where γi−1 := Ei−1 Xi

Ei−1 Xi − Bi−1

and Ej denotes the conditional expectation given H�j; then γi−1 is H�(i−1)-
measurable; hence, Ei−1 X̃i = 0 a.s.; the conditions Bi−1 > 0 and Ei−1 Xi � 0
a.s. imply that γi−1 ∈ [0, 1) a.s.; hence, condition (18) yields X̃i ∈ [Xi, Bi−1] ⊆
[−Ai−1, Bi−1] a.s. Thus, the X̃i’s are martingale-differences satisfying the same
condition (18), while X̃i � Xi a.s. for each i, so that Sn � X̃1 + · · · + X̃n a.s. ��

4.2 Proofs of the lemmas

Symbolic calculations in the proofs of some lemmas (especially Lemmas 13, 15,
17, and 18) are rather involved and better done with Mathematica or similar
software.

Proof of Lemma 1 The convexity of g implies g(0) − g(x) � g′(x)(−x) and
g(2x)−g(x) � g′(x)x, so that |g′(x)||x| � max(|g(0)−g(x)|, |g(2x)−g(x)|) for all
x ∈ R. Letting now x → −∞ and using the existence of the finite limit g(−∞),
one has g′(−∞) = 0. ��
Proof of Lemma 2 This lemma was stated essentially as Proposition 1.1 in [23].
The proof given here is a little more detailed. Assume first that f ∈ Hα+, so that
f (x) = ∫

(x − t)α+ dµ(t) for a function µ ∈ Mα+, whence f (α−1)(x) = α! ∫ (x −
t)+ dµ(t) is convex as a limit of linear combinations with nonnegative coeffi-
cients of convex functions x �→ (x − t)+. The conditions f (0)(−∞) = · · · =
f (α−1)(−∞) = 0 follow by Lebesgue’s dominated convergence theorem. Thus,
f ∈ H̃α+. Moreover, it is clear that all the functions f (0), . . . , f (α−1) are nonnega-
tive.

Assume now that f ∈ H̃α+. Consider first the case α = 1. Then f is convex
and f (−∞) = 0. Hence, by Lemma 1, one has f ′(−∞) = 0. Therefore,

f (x) =
x∫

−∞
f ′(u) du =

x∫

−∞
du

u∫

−∞
d f ′(v) =

∫
(x − v)+ d µ(v),

by Fubini’s theorem, where µ := f ′; thus, f ∈ H1+. The case of any natural α � 2
can now be treated by induction, in a similar manner. Indeed, if f ∈ H̃α+ for a
natural α � 2, then f ′ ∈ H̃α−1+ , by the definition of H̃α+. Hence, for a function
µ ∈ Mα+,
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f (x) =
x∫

−∞
f ′(u) du =

x∫

−∞
du

∫
(u − v)α−1+ dµ(v) =

∫
(x − v)α+ d µ(v)/α,

so that f ∈ Hα+. ��
Proof of Lemma 3 Let f be any function satisfying the conditions of Lemma 3.
For any y ∈ R, introduce then the functions defined by the formulas

f2,y(x) := (
f ′′(y) + f ′′′(y)(x − y)

)
+ I{x � y} + f ′′(x) I{x > y} ; (56)

fy(x) :=
(

f (y) + f ′(y)(x − y) +
y∫

x

f2,y(u) (u − x) du
)

I{x � y}

+f (x) I{x > y} (57)

for all real x. Here f ′′′ denotes the right derivative of the convex function f ′′,
so that f ′′′ is nondecreasing. Since f ′′(y) � 0, the function f2,y is continuous,
whence it is seen that

f ′′
y = f2,y. (58)

Because f ′′ is convex, one has

f ′′(x) � f ′′(y) + f ′′′(y)(x − y) (59)

for all y and x; also, it is given that f ′′ is nonnegative; it follows that

f ′′ � f2,y. (60)

Observe that, moreover, the family of functions (f2,y) is nonincreasing in
y ∈ R. Indeed, let y and y1 be any real numbers such that y1 < y. Then
f2,y1 = f ′′ � f2,y on [y1, ∞), in view of (56) and (60). Recalling (59) and the fact
that f ′′′ is nondecreasing, one has the inequalities f ′′(y1) � f ′′(y)+ f ′′′(y)(y1 −y)

and f ′′′(y1)(x − y1) � f ′′′(y)(x − y1) for all x � y1; adding these inequalities, one
sees that f ′′(y1) + f ′′′(y1)(x − y1) � f ′′(y) + f ′′′(y)(x − y). It follows, in view of
(56), that f2,y1 � f2,y on the interval (−∞, y1] as well, and hence on the entire
real line.

Using integration-by-parts/Fubini’s theorem as in the proof of Lemma 2, one
can verify that for any function g ∈ C2 and all real y and x

g(x) =
(

g(y) + g′(y)(x − y) +
y∫

x

g′′(u) (u − x) du
)

I{x � y}

+g(x) I{x > y} . (61)
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By (58), for any real w one has fw ∈ C2, so that one can substitute fw for g in
(61). In fact, let us do so for w ∈ {y, y1}, again assuming that y1 < y. At that,
by (57), one has fy1 = f = fy on the interval [y, ∞) and hence fy1(y) = fy(y)

and f ′
y1

(y) = f ′
y(y). Now, since the family of functions (f ′′

y )y∈R = (f2,y)y∈R is non-
increasing, one can see that the family (fy)y∈R is nonincreasing as well. Next,
since I{x � y} → 0 and I{x > y} → 1 for each x as y → −∞, one concludes, in
view of (58), that for any decreasing sequence (yn) in R converging to −∞ one
has fyn → f , in the sense of Definition 1.

It remains to verify that for every real y one has fy ∈ G3+ and, moreover,
fy ∈ G3++ in the case when f is known to be nondecreasing. Observe that

f2,y(x) = f ′′′(y) (x − z) I{z � x � y} + f ′′(x) I{x > y} , (62)

where

z := y I
{
f ′′′(y) = 0

} + (y − f ′′(y)/f ′′′(y)) I
{
f ′′′(y) �= 0

}
.

Indeed, f ′′′ is nonnegative and nondecreasing (since f ′′ is nondecreasing and
convex). Hence, in the case when f ′′′(y) = 0, one has f ′′′ = 0 on the entire
interval (−∞, y]. This and the condition f ′′(−∞) = 0 implies f ′′ = 0 on the
entire interval (−∞, y], so that f ′′(y) = 0. Now one sees that expressions (56)
and (62) both equal f ′′(x) I{x > y} in the case when f ′′′(y) = 0. In the other
case, when f ′′′(y) �= 0, one has f ′′′(y) > 0 (since f ′′′ is nonnegative). Also, here
f ′′(y) + f ′′′(y)(x − y) = f ′′′(y) (x − z), whence (62) again follows.

Now, for the right derivative f ′
2,y of f2,y, (62) yields

f ′
2,y(x) = f ′′′(y) I{z � x � y} + f ′′′(x) I{x > y} .

Since f ′′′ is nonnegative and nondecreasing, it follows now that f ′
2,y is non-

decreasing. Therefore, f2,y is convex. That is, by (58), f ′′
y is convex. Also, (62)

and (58) show that f ′′
y = 0 on the interval (−∞, z]. This means that

fy(x) = a + b x for some real constants a and b and all x � z. (63)

Let now

hy(x) := fy(x) − (a + b x)

for all real x. Then h′′
y = f ′′

y is convex. Moreover, hy = 0 on the interval (−∞, z],
so that hy(−∞) = h′

y(−∞) = h′′
y(−∞) = 0. By Lemma 2, hy ∈ H3+. Thus,

fy ∈ G3+.
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If, moreover, f is nondecreasing, then f ′ � 0. Hence and because (in view of
(60)) f ′′(u) � f2,y(u) � f2,y(u) I{u > x} for all x, y, and u, one has

f ′
y(x) =

(
f ′(y) −

y∫

−∞
f2,y(u) I{u > x} du

)
I{x � y} + f ′(x) I{x > y}

� f ′(−∞) I{x � y} + f ′(x) I{x > y} � 0

for all x. Now (63) implies b � 0. Since hy ∈ H3+, one finally sees that fy ∈
G3++. ��
Proof of Lemma 4 First note that cl F3+ = F3+, because the pointwise conver-
gence preserves both the monotonicity and the convexity.

Next, take any f ∈ G3++, so that

f (x) = a + b x +
∫

(x − t)3+ dµ(t)

for all x, where a ∈ R, b � 0, and µ is nondecreasing and
∫
(−t)3+ dµ(t) < ∞. It

follows that f is nondecreasing and convex, since the functions x �→ (x− t)3+ are
so. Similarly, f ′′ is nondecreasing and convex, since f ′′(x) = 6

∫
(x − t)+ dµ(t).

That is, f ∈ F3+ for any f ∈ G3++, so that G3++ ⊆ F3+, whence cl G3++ ⊆ cl F3+ =
F3+.

It remains to show that F3+ ⊆ cl G3++. Take any f ∈ F3+. Then, by definition
(12), f and f ′′ are nondecreasing and convex. Hence, f ′ is nonnegative, nonde-
creasing, and convex. Now Lemma 1 yields f ′′(−∞) = 0. Also, f ′′ is nonnegative,
since f is convex. Thus, by Lemma 3, f ∈ cl G3++. ��
Proof of Lemma 5 First note that cl F3 = F3, because the pointwise conver-
gence preserves the convexity.

Next, it is trivial that G3 ⊆ F3, whence cl G3 ⊆ cl F3 = F3.
It remains to show that F3 ⊆ cl G3. Take any f ∈ F3. Then, by definition (28),

f and f ′′ are convex. The latter condition implies that at least one of the follow-
ing three cases must take place: f ′′ is nondecreasing on R or f ′′ is nonincreasing
on R or f ′′ switches from nonincreasing to nondecreasing.

Case 1: f ′′ is nondecreasing on R. Since f is convex, f ′′ � 0 on R. Hence,
there exists the limit c := f ′′(−∞) ∈ [0, ∞). Let

g(x) := f (x) − c x2/2

for all real x. Then g′′ = f ′′ − c = f ′′ − f ′′(−∞) � 0, since f ′′ is nondecreas-
ing. Also, g′′ = f ′′ − c is nondecreasing and convex, since f ′′ is so. In addition,
g′′(−∞) = 0. Therefore, by Lemma 3, g ∈ cl G3+. That is, there exists a sequence
of functions (gn) such that gn → g and

gn(x) = an + bn x + hn(x)
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for all real x, where, for each n, an and bn are real constants and hn is a function
in H3+; then hn ∈ F3+ (because H3+ ⊆ F3+, as seen, for example, from the proof
of Lemma 2). Let now

fn(x) := c x2/2 + gn(x) = c x2/2 + an + bn x + hn(x)

for all x and n. Then gn → g implies fn → f . Moreover, for every n one
has fn ∈ G3. Indeed, if bn < 0, then the function hn belongs to F3+ and the
function x �→ an + bn x belongs to F3−; and if bn � 0, then the function x �→
an + bn x + hn(x) belongs to F3+ and the function x �→ 0 belongs to F3−. Thus,
f ∈ cl G3 for any f ∈ F3 satisfying the condition of Case 1.

Case 2: f ′′ is nonincreasing on R. This case reduces to Case 1 by consider-
ing the function x �→ f̃ (x) := f (−x) in place of f . Indeed, if f ∈ F3 and f ′′ is
nonincreasing, then f̃ ∈ F3 and f̃ ′′ is nondecreasing. Moreover, fn ∈ G3 ⇐⇒
f̃n ∈ G3, where f̃n(x) := fn(−x) for all real x.

Case 3: There exists some real x0 such that f ′′ is nonincreasing on (−∞, x0]
and nondecreasing on [x0, ∞). Here without loss of generality (w.l.o.g.) x0 = 0.
Let

g(x) := f (x) − f ′(0)x − f ′′(0)x2/2

for all real x, so that g(0) = f (0) and g′(0) = g′′(0) = 0; moreover, g′′ = f ′′−f ′′(0)

is convex on R (since f ′′ is so), nonincreasing on (−∞, 0], and nondecreasing
on [0, ∞), whence g′′ � 0. Let, for all real x,

h+(x) := g′′(x)I{x > 0} and h−(x) := g′′(x)I{x � 0} ,

so that h+ + h− = g′′, h± � 0, h+ is nondecreasing, and h− is nonincreasing.
Also, h+ and h− are convex, since g′′ is convex and g′′ � g′′(0) = 0. Let further,
for all real x,

H+(x) :=
∫

(x − t)+ h+(t) dt and H−(x) :=
∫

(t − x)+ h−(t) dt,

so that H±(0) = 0,

H′+(x) =
∫

I{x > t} h+(t) dt =
x∫

0

g′′(t) dt I{x > 0} = g′(x)I{x > 0} ;

H′′+(x) = g′′(x)I{x > 0} = h+(x);

H′−(x) = −
∫

I{t > x} h−(t) dt = −
0∫

x

g′′(t) dt I{x � 0} = g′(x)I{x � 0} ;

H′′−(x) = g′′(x)I{x � 0} = h−(x).
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It follows that H′+ + H′− = g′, whence for all real x one has H+(x) + H−(x) =
g(x) − g(0), that is,

f (x) = f (0) + f ′(0)x + f ′′(0)x2/2 + H+(x) + H−(x). (64)

Also, H′′+ = h+ is nonnegative, nondecreasing, and convex, and hence H+ is
also convex. Also, since h+ � 0, the first expression for H′+(x) above shows that
H′+ � 0. Thus, H+ and H′′+ are nondecreasing and convex; that is, H+ ∈ F3+.
Similarly, H− ∈ F3−.

Note also that f ′′(0) � 0, since f belongs to F3 and is hence convex. If f ′(0)<0,
then the function H+ belongs to F3+ and the function x �→ f (0)+ f ′(0)x+H−(x)

belongs to F3−; and if f ′(0) � 0, then the function x �→ f (0) + f ′(0)x + H+(x)

belongs to F3+ and the function H− belongs to F3−. Thus, (64) implies that
f ∈ G3 ⊆ cl G3 for any f ∈ F3 satisfying the condition of Case 3.

One concludes that, in all cases f ∈ F3 implies f ∈ cl G3. That is, F3 ⊆ cl G3

indeed. ��
Proof of Lemma 6 Let f ∈ F3+.

Case 1: f ′′ = 0 on R. Then there exist real a and b such that f (x) = a + b x
for all real x, so that f (x) = O(x) as x → ∞.

Case 2: there exists some t ∈ R such that f ′′(t) �= 0. By (12), f ′′ is nonnegative
(because f is convex) and nondecreasing. Hence, f ′′(t) > 0 and f ′′(x) � f ′′(t) for
all x � t. It follows that f (x) � f (t) + f ′(t) (x − t) + f ′′(t) (x − t)2/2 for all x � t,
whence lim infx→∞ f (x)/x2 � f ′′(t)/2 > 0. ��
Proof of Lemma 7 Let f ∈ F3+. Since f is nondecreasing, one has f (x) � f (0)

for all x � 0. On the other hand, f (x) � f (0)+f ′(0)x for all real x, since f convex.
It follows that |f (x)| � |f (0)| + |f ′(0)x| for all x � 0, so that f (x) = O(|x|) as
x → −∞. ��
Proof of Lemma 8 Let f be the function defined by (30). Then it is easy to see
that f ∈ F3.

Suppose that f ∈ G3. Then, by (29), there exist c � 0, f+ ∈ F3+, and f− ∈ F3−
such that for all real x

f (x) = c x2/2 + f+(x) + f−(x).

Let x → −∞. Then, by Lemma 7, f+(x) = O(|x|), while by Lemma 6, either
f−(x) = O(|x|) or lim infx→−∞ f−(x)/x2 > 0. It follows that either f (x) = O(|x|)
as x → −∞ or lim infx→−∞ f (x)/x2 > 0. However, neither of these two alter-
natives is compatible with the fact that f (x) = 8

3 (1 − x)3/2 for x � 0. Thus,
f ∈ F3 \ G3. ��
Proof of Proposition 2 Let g := f ′, where f is defined by (30). Then it is easy to
see that g ∈ F3+.

Suppose that g ∈ G3+. Then, by (50), there exist real a and b and h ∈ H3+ such
that for all real x one has g(x) = a + b x + h(x) and hence g′(x) = b + h′(x).
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By Lemma 2, h(−∞) = h′(−∞) = 0. Hence, b = g′(−∞). But, by inspection,
g′(−∞) = 0. It follows that b = 0, and so, g(−∞) = a + h(−∞) = a ∈ R. This
contradicts the fact that g(−∞) = −∞. ��
Proof of Lemma 9 Write

X = X + a
b + a

b + b − X
b + a

(−a).

Let f be any nondecreasing convex function. The convexity (together with the
condition −a � X � b a.s.) implies that

f (X) � X + a
b + a

f (b) + b − X
b + a

f (−a) = E f (
√

a b BS) + f (b) − f (−a)

b + a
X

a.s. Now, since f is nondecreasing and E X � 0, the lemma follows. ��
Proof of Lemma 10 Since f is convex, the function [0, ∞) � c �→ f (c X) is con-
vex as well. Hence, the function [0, ∞) � c �→ g(c) := E f (c X) is convex. Since
E X = 0, one has g(c) � g(0) for all real c, by Jensen’s inequality. Therefore, the
right derivative of g is nonnegative at 0 and hence on [0, ∞). Now the lemma
follows. ��
Proof of Lemma 11 In view of the definition of the class H2+, it suffices to verify
the statement of the lemma for all functions f of the form ft(x) := (x − t)2+, for
all real t, so that e(p) = E(BS(p) − t)2+. Then

e′(p) =
(√

q
p − t

) (
−

√
p
q − t

)
I
{
−

√
p
q < t <

√
q
p

}
� 0.

��
Proof of Lemma 12 The proof is rather standard; cf. e.g. the corresponding
proofs in [9,30,19,12,20,6]. W.l.o.g., the BSi’s are independent of the Si’s. For
i = 0, 1, . . . , n and f ∈ H2+, introduce

Fi := E f
(
Si + ci+1BSi+1 + · · · + cnBSn

)
.

Recall that, by Remark 5, the classes Hα+ are invariant with respect to the shifts.
Hence, by Lemmas 9, 10, and 11,

Fi = E Ei−1 f (Si−1 + Xi + ci+1BSi+1 + · · · + cnBSn)

� E Ei−1 f (Si−1 + √
Ai−1Bi−1 B̃Si + ci+1BSi+1 + · · · + cnBSn)

� E Ei−1 f (Si−1 + ci B̃Si + ci+1BSi+1 + · · · + cnBSn)

� E Ei−1 f (Si−1 + ciBSi + ci+1BSi+1 + · · · + cnBSn)

= Fi−1
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for i = 1, . . . , n, where Ei−1 denotes the conditional expectation given the
σ -algebra Gi−1 generated by H�(i−1) and (BSi+1, . . . , BSn), and the conditional
distribution of B̃Si given Gi−1 is BS(pi), with

pi := Ai−1

Bi−1 + Ai−1
,

so that pi � p, according to (20). Hence,

E f (Sn) = Fn � F0 � E f (c1BS1 + · · · + cnBSn);

the last inequality follows because S0 � 0 a.s. and all functions f ∈ H2+ are
nondecreasing. ��

Proof of Lemma 13 Statement (i) is equivalent to the following: for every t ∈ R,
the function

[0, ∞)2 � (a1, a2) �−→ et,p,m(a1, a2) := E ft

(
a1/(2m)

1 BS1 + a1/(2m)

2 BS2

)

is Schur-concave, where BSi
i.i.d.∼ BS(p) and

ft(x) := 1
3 (x − t)3+.

Using the homogeneity property

et,p,m(λa1, λa2) = λ3/(2m) eλ−1/(2m) t,p,m(a1, a2)

for every λ > 0, one may assume w.l.o.g. that a1 +a2 = 1, so that a1 = cos2 θ and
a2 = sin2 θ , for some θ ∈ [0, π/2]; moreover, in view of the same homogeneity
property, one may replace here the i.i.d. standardized Bernoulli r.v.’s BS1 and
BS2 with i.i.d. centered Bernoulli r.v.’s BC1 and BC2, such that

P(BCi = 1 − p) = p = 1 − P(BCi = −p), i = 1, 2.

Therefore, statement (i) is equivalent to

∆p,m(θ , t) := ∂θ

(
E ft(BC1 cos1/m θ + BC2 sin1/m θ)

)
(65)

being nonnegative for all θ ∈ [0, π/4] and all t ∈ R (where ∂θ := ∂/∂θ).
Substituting (−u − p cos1/m θ − p sin1/m θ) for t

(
after the differentiation of

E ft(BC1 cos1/m θ + BC2 sin1/m θ) in θ
)
, one sees that statement (i) is equivalent

to
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∆1,p,m(θ , u) := m
(1 − p)p

cos1−1/m θ sin1−1/m θ

×∆p,m
(
θ , −u − p cos1/m θ − p sin1/m θ

)

= ∆2,p,m(cos1/m θ , sin1/m θ , u) (66)

being nonnegative for all θ ∈ [0, π/4] and u ∈ R, where

∆2,p,m(c1, c2, u) := −(c2m−1
1 − c2m−1

2 ) q u2+ − (c2m−1
2 q + c2m−1

1 p) (c1 + u)2+
+(c2m−1

1 q + c2m−1
2 p) (c2 + u)2+

+(c2m−1
1 − c2m−1

2 ) p (c1 + c2 + u)2+. (67)

Now, in view of the homogeneity relation

∆2,p,m(c1, c2, u) = c2m+1
1 ∆2,p,m(1, c2/c1, u/c1), where 0 < c2 < c1,

statement (i) reduces to ∆2,p,m(1, c, u) being nonnegative for all c ∈ (0, 1) and
u ∈ R.

It remains to note that

∆2,p,m(1, c, u) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δ1(u, c, p, m) if u � 0,
δ2(u, c, p, m) if u ∈ [−c, 0],
δ3(u, c, p, m) if u ∈ [−1, −c],
δ4(u, c, p, m) if u ∈ [−1 − c, −1],
0 otherwise,

(68)

and δ4(u, c, p, m) is manifestly nonnegative for all c ∈ (0, 1), u ∈ R, p ∈ (0, 1),
and m > 1. ��
Proof of Lemma 14 Note that δ1(u) � δ1(0) for u � 0, c ∈ (0, 1), and m � 1.
Next, (68) shows that δ1(0) = δ2(0). Now the lemma follows immediately from
Lemma 15 (which will be proved next, without using Lemma 14). ��
Proof of Lemma 15 W.l.o.g., m > 1. Note that

∂pδ2(u, c, p, m) = (2c − u2)(1 − c2m−1) > 0

for u ∈ [−c, 0], c ∈ (0, 1), and m > 1, so that w.l.o.g.

p = p∗ = p∗(m).

Next, δ2(u) is a convex quadratic polynomial, whose minimum over all u ∈ R is
attained at

u = u∗(c, p, m) := − c(1 − c2m−2)

(1 − c2m−1)(1 − p)
.
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Hence, it suffices to show that γ (c, p∗) is nonnegative for all c ∈ [0, 1] and m > 1,
where

γ (c, p) := δ2(u∗(c, p, m), c, p, m)
(1 − c2m−1)(1 − p)

c
= −2

(
1 − c2m−1)2

p2

+(1 − c2m−1)(2 − c + c2m−2 − 2c2m−1)p − c2m−2(1 − c)2.

The main idea in the proof of this lemma is to replace here the entry of p2 with
the equivalent (for p = p∗), first-degree in p polynomial expression according
to the identity

p2∗ = (4m2 − 1)p∗ − 1

2(2m − 1)2 (69)

(which follows from (53)), to obtain

(2m − 1)2γ (c, p∗) = f (c, p∗),

where

f (c, p) := (1 − c2m−1)2 − (2m − 1)2(1 − c)2c2m−2

+p (1 − c2m−1)(2m − 1)
(
(2m − 3)(1 − c2m−1)

−(2m − 1) c (1 − c2m−3)
)
.

It suffices to show that f (c, p) � 0 for all p ∈ (0, 1), m > 1, and c ∈ (0, 1).
Introduce

g(c) := f (c, p)/c2m;

g1(c) := g′(c)/c2m−3;

g2(c) := g′
1(c) c2;

g3(c) := g′
2(c)/c1−2m;

g4(c) := g′
3(c)/c1−2m;

g5(c) := g′
4(c)/c2m−4.

Then, letting

s := m − 1 > 0,

one has g′
5(c) = 8c−1−2s s (1 + s)(1 + 2s)2(1 + 4s)

(
1 − p + 4s2p

)
> 0 for all

c ∈ (0, 1), and so, g5 is increasing on (0, 1) to

g5(1) = −16 s (1 + s)(1 + 2s)2(1 − p + s + 4s2p) < 0.
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Hence, g5 < 0 on (0, 1), so that g4 is decreasing on (0, 1) to

g4(1) = 8 s (1 + 2s)2(1 − p + s + 4s2p) > 0.

Hence, g4 > 0 on (0, 1). Since g3(1) = g2(1) = g1(1) = g(1) = 0, it follows
successively that g3 < 0, g2 > 0, g1 < 0, and g > 0 on (0, 1). This completes the
proof of Lemma 15. ��
Proof of Lemma 16 This follows because δ3(u) is concave in u, δ3(−1) = c2(1−
c2m−1)p � 0, and δ3(−c) = δ2(−c) � 0, where the latter equality and inequality
follow immediately from (68) and Lemma 15, respectively. ��
Proof of Lemma 17 It is clear from the second expression for p∗(m) in (53) that
p∗(m) decreases continuously from 1

2 to 0 as m increases from 1 to ∞. Also, one
can verify that m∗(p∗(m)) = m for all m � 1 (here one may use identity (69)).

If now p ∈ (0, p∗(m)), then p = p∗(m1) for some m1 > m, whence m < m1 =
m∗(p∗(m1)) = m∗(p).

It remains to consider the condition p � p∗(m). If at that p > 1
2 , then

m � 1 = m∗(p), by (14). If, however, p ∈ [p∗(m), 1
2 ], then p = p∗(m1) for some

m1 ∈ [1, m], whence m � m1 = m∗(p∗(m1)) = m∗(p). ��
Proof of Lemma 18 Suppose, to the contrary, that statement (II) of Theorem 5
is true, while m < m∗(p). Then, by Lemma 17, one has

p < p∗ := p∗(m);

then, in particular, one has 0 < p < 1
2 . Introduce

up := − 21− 1
2m (m − 1)

(2m − 1)(1 − p)
.

In view of the elementary inequality p∗ � 1/(2m − 1) for m � 1 and the
condition p < p∗, one has

p <
1

2m − 1
,

which implies that

−2− 1
2m < up � 0.

Taking into account these bounds on p and up and recalling (66)–(67), one can
see that

∂θ∆1,p,m(θ , up)|θ=π/4 = 21−1/(2m)(2m − 1)(p − p∗)(p − p∗∗)
m (1 − p)

, (70)

where p∗∗ := p∗∗(m) := 2m + 1 + √
4(m − 1)(m + 2) + 1

4(2m − 1)
> p∗.
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Because of the assumption p < p∗, identity (70) yields

∂θ∆1,p,m(θ , up)|θ=π/4 > 0.

On the other hand,

∂θ∆1,p,m(θ , u)|θ=π/4 = m 21/m−1

(1 − p)p
∂θ∆p,m(θ , −u − 21−1/(2m) p)|θ=π/4

for all real u; this follows from (66), in view of the fact that the derivatives of
cos1−1/m θ sin1−1/m θ and cos1/m θ + sin1/m θ in θ at θ = π/4 are zero. Hence,

∂θ∆p,m(θ , tp)|θ=π/4 > 0 for tp := −up − 21−1/(2m) p.

Note also that ∆p,m(π/4, t) = 0 for all real t. Therefore, ∆p,m(θ , tp) < 0 for all
θ in a left neighborhood of π/4. Now (65) implies that π/4 is not a point of
maximum in θ of E ft(BC1 cos1/m θ + BC2 sin1/m θ) for t = tp. Hence, in view of
the homogeneity argument used in the proof of Lemma 13, π/4 is not a point
of maximum in θ of E ft(BS1 cos1/m θ + BS2 sin1/m θ) for t = tp/

√
pq. But, for

any t ∈ R, one has ft ∈ H3+ ⊆ F3+ (where the set inclusion follows by Lemma 2).
Thus, one obtains a contradiction with the assumed statement (II) of Theorem 5.

��
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