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Abstract. We consider the simple random walk on the (unique) infinite cluster of super-
critical bond percolation in Z

d with d ≥ 2. We prove that, for almost every percolation
configuration, the path distribution of the walk converges weakly to that of non-degener-
ate, isotropic Brownian motion. Our analysis is based on the consideration of a harmonic
deformation of the infinite cluster on which the random walk becomes a square-integrable
martingale. The size of the deformation, expressed by the so called corrector, is estimated
by means of ergodicity arguments.

1. Introduction

1.1. Motivation and model

Consider supercritical bond-percolation on Z
d , d ≥ 2, and the simple random walk

on the (unique) infinite cluster. In [38] Sidoravicius and Sznitman asked the fol-
lowing question: Is it true that for a.e. configuration in which the origin belongs to
the infinite cluster, the random walk started at the origin exits the infinite symmet-
ric slab {(x1, . . . , xd) : |xd | ≤ N} through the “top” side with probability tending
to 1/2 as N → ∞? Sidoravicius and Sznitman managed to answer their question
affirmatively in dimensions d ≥ 4 but dimensions d = 2, 3 remained open. In this
paper we extend the desired conclusion to all d ≥ 2. As in [38], we will do so by
proving a quenched invariance principle for the paths of the walk.

Random walk on percolation clusters is only one of many instances of “statisti-
cal mechanics in random media” that have been recently considered by physicists
and mathematicians. Other pertinent examples include, e.g., various diluted spin
systems, random copolymers [40], spin glasses [10,41], random-graph models [9],
etc. From this general perspective, the present problem is interesting for at least two
reasons: First, a good handle on simple random walk on a given graph is often a
prerequisite for the understanding of more complicated processes, e.g., self-avoid-
ing walk or loop-erased random walk. Second, information about the scaling prop-
erties of simple random walk on percolation cluster can, in principle, reveal some
new important facts about the structure of the infinite cluster and/or its harmonic
properties.
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Let us begin developing the mathematical layout of the problem. Let Z
d be the

d-dimensional hypercubic lattice and let Bd be the set of nearest neighbor edges.
We will use b to denote a generic edge, 〈x, y〉 to denote the edge between x and y,
and e to denote the edges from the origin to its nearest neighbors. Let� = {0, 1}Bd
be the space of all percolation configurations ω = (ωb)b∈Bd . Here ωb = 1 indi-
cates that the edge b is occupied and ωb = 0 implies that it is vacant. Let � be
the Borel σ -algebra on �—defined using the product topology—and let P be an
i.i.d. measure such that P(ωb = 1) = p for all b ∈ Bd . If x

ω←→ ∞ denotes the
event that the site x belongs to an infinite self-avoiding path using only occupied
bonds in ω, we write �∞=�∞ (ω) for the set

�∞ (ω) = {
x ∈ Z

d : x
ω←→ ∞}

. (1.1)

By Burton-Keane’s uniqueness theorem [12], the infinite cluster is unique and so
�∞ is connected with P-probability one.

For each x ∈ Z
d , let τx : �→ � be the “shift by x” defined by (τxω)b = ωx+b.

Note that P is τx-invariant for all x ∈ Z
d . Let pc = pc(d) denote the percolation

threshold on Z
d defined as the infimum of all p’s for which P(0 ∈�∞) > 0. Let

�0 = {0 ∈�∞} and, for p > pc, define the measure P0 by

P0(A) = P(A|�0), A ∈� . (1.2)

We will use E0 to denote expectation with respect to P0.
For each configuration ω ∈ �0, let (Xn)n≥0 be the simple random walk on

�∞ (ω) started at the origin. Explicitly, (Xn)n≥0 is a Markov chain with state
space Z

d , whose distribution P0,ω is defined by the transition probabilities

P0,ω(Xn+1 = x + e|Xn = x) = 1

2d
1{ωe=1} ◦ τx, |e| = 1, (1.3)

and

P0,ω(Xn+1 = x|Xn = x) =
∑

e : |e|=1

1

2d
1{ωe=0} ◦ τx, (1.4)

with the initial condition

P0,ω(X0 = 0) = 1. (1.5)

Thus, at each unit of time, the walk picks a neighbor at random and if the corre-
sponding edge is occupied, the walk moves to this neighbor. If the edge is vacant,
the move is suppressed.
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1.2. Main results

Our main result is that for P0-almost every ω ∈ �0, the linear interpolation of
(Xn), properly scaled, converges weakly to Brownian motion. For every T > 0,
let (C[0, T ],�T ) be the space of continuous functions f : [0, T ] → R equipped
with the σ -algebra �T of Borel sets relative to the supremum topology. The precise
statement is now as follows:

Theorem 1.1. Let d ≥ 2, p > pc(d) and let ω ∈ �0. Let (Xn)n≥0 be the random
walk with law P0,ω and let

B̃n(t) = 1√
n

(
X�tn + (tn− �tn)(X�tn+1 −X�tn)

)
, t ≥ 0. (1.6)

Then for all T > 0 and for P0-almost every ω, the law of (B̃n(t) : 0 ≤ t ≤ T )

on (C[0, T ],�T ) converges weakly to the law of an isotropic Brownian motion
(Bt : 0 ≤ t ≤ T ) whose diffusion constant, D = E(|B1|2) > 0, depends only on
the percolation parameter p and the dimension d .

The Markov chain (Xn)n≥0 represents only one of two natural ways to define
a simple random walk on the supercritical percolation cluster. Another possibility
is that, at each unit of time, the walk moves to a site chosen uniformly at random
from the accessible neighbors, i.e., the walk takes no pauses. In order to define this
process, let (Tk)k≥0 be the sequence of stopping times that mark the moments when
the walk (Xn)n≥0 made a move. Explicitly, T0 = 0 and

Tn+1 = inf{k > Tn : Xk �= Xk−1}, n ≥ 0. (1.7)

Using these stopping times—which are P0,ω-almost surely finite for all ω ∈ �0—
we define a new Markov chain (X′

n)n≥0 by

X′
n = XTn, n ≥ 0. (1.8)

It is easy to see that (X′
n)n≥0 has the desired distribution. Indeed, the walk starts at

the origin and its transition probabilities are given by

P0,ω(X
′
n = x + e|X′

n = x) = 1{ωe=1} ◦ τx∑
e′ : |e′|=1 1{ωe′=1} ◦ τx , |e| = 1. (1.9)

A simple modification of the arguments leading to Theorem 1.1 allows us to estab-
lish a functional central limit theorem for this random walk as well:

Theorem 1.2. Let d ≥ 2, p > pc(d) and let ω ∈ �0. Let (X′
n)n≥0 be the random

walk defined from (Xn)n≥0 as described in (1.8) and let B̃ ′
n(t) be the linear interpo-

lation of (X′
k)0≤k≤n defined by (1.6) with (Xk) replaced by (X′

k). Then for all T > 0
and for P0-almost every ω, the law of (B̃ ′

n(t) : 0 ≤ t ≤ T ) on (C[0, T ],�T ) con-
verges weakly to the law of an isotropic Brownian motion (Bt : 0 ≤ t ≤ T ) whose
diffusion constant, D′ = E(|B1|2) > 0, depends only on the percolation parame-
ter p and the dimension d .
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De Gennes [17], who introduced the problem of random walk on percolation
cluster to the physics community, thinks of the walk as the motion of “an ant in a
labyrinth.” From this perspective, the “lazy” walk (Xn) corresponds to a “blind”
ant, while the “agile” walk (X′

n) represents a “myopic” ant. While the character of
the scaling limit of the two “ants” is the same, there seems to be some distinction
in the rate the scaling limit is approached, cf [22] and references therein. As we
will see in the proof, the diffusion constants D and D′ are related via D′ = D�2,
where �−1 is the expected degree of the origin normalized by 2d , cf (6.23).

There is actually yet another way how to “put” simple random walk on �∞, and
that is to use continuous time. Here the corresponding result follows by combining
the CLT for the “lazy” walk with an appropriate Renewal Theorem for exponential
waiting times.

1.3. Discussion and related work

The subject of random walk in random environment has a long history; we refer to,
e.g., [10,42] for recent overviews of (certain parts of) this field. On general grounds,
each random-media problem comes in two distinct flavors: quenched, correspond-
ing to the situations discussed above where the walk is distributed according to anω-
dependent measure P0,ω, and annealed, in which the path distribution of the walk
is taken from the averaged measure A �→ E0(P0,ω(A)). Under suitable ergodicity
assumptions, the annealed problem typically corresponds to the quenched problem
averaged over the starting point. Yet the distinction is clear: In the annealed setting
the slab-exit problem from Sect. 1.1 is trivial by the symmetries of the averaged
measure, while its answer is a priori very environment-sensitive in the quenched
measure.

An annealed version of our theorems was proved in the 1980s by De Masi
et al [13, 14], based on earlier results of Kozlov [28], Kipnis and Varadhan [27]
and others in the context of random walk in a field of random conductances. (The
results of [13, 14] were primarily two-dimensional but, with the help of [3], they
apply to all d ≥ 2; cf [38].) A number of proofs of quenched invariance princi-
ples have appeared in recent years for the cases where an annealed principle was
already known. The most relevant paper is that of Sidoravicius and Sznitman [38]
which established Theorem 1.2 for random walk among random conductances in
all d ≥ 1 and, using a very different method, also for random walk on percolation
in d ≥ 4. (Thus our main theorem is new only in d = 2, 3.) The d ≥ 4 proof is
based on the fact that two independent random walk paths will intersect only very
little—something hard to generalize to d = 2, 3. As this paper shows, the argument
for random conductances is somewhat more flexible.

Another paper of relevance is that of Rassoul-Agha and Seppäläinen [37] where
a quenched invariance principle was established for directed random walks in
(space-time) random environments. The directed setting offers the possibility to
use independence more efficiently—every time step the walk enters a new environ-
ment—but the price to pay for this is the lack of reversibility. The directed nature of
the environment also permits consideration of distributions with a drift for which
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a CLT is not even expected to generally hold in the undirected setting; see [6, 39]
for an example of “pathologies” that may arise.

Finally, there have been a number of results dealing with harmonic proper-
ties of the simple random walk on percolation clusters. Grimmett, Kesten and
Zhang [20] proved via “electrostatic techniques” that this random walk is transient
in d ≥ 3; extensions concerning the existence of various “energy flows” appeared
in [1,24,26,29,33].A great amount of effort has been spent on deriving estimates on
the heat-kernel—i.e., the probability that the walk is at a particular site after n steps.
The first such bounds were obtained by Heicklen and Hoffman [23]. Later Mat-
hieu and Remy [31] realized that the right way to approach heat-kernel estimates
was through harmonic function theory of the infinite cluster and thus significantly
improved the results of [23]. Finally, Barlow [3] obtained, using again harmonic
function theory, Gaussian upper and lower bounds for the heat kernel. We refer
to [3] for further references concerning this area of research.
Note:At the time a preprint version of this paper was first circulated, we learned that
Mathieu and Piatnitski had announced a proof of the same result (albeit in continu-
ous-time setting). Their proof, which has in the meantime been posted [30], is close
in spirit to that of Theorem 1.1 of [38]; the main tools are Poincaré inequalities,
heat-kernel estimates and homogenization theory.

1.4. Outline

Let us outline the main steps of our proof of Theorems 1.1 and 1.2. The principal
idea—which permeates in various disguises throughout the work of Papanicolau
and Varadhan [35], Kozlov [28], Kipnis and Varadhan [27], De Masi et al [13,14],
Sidoravicius and Sznitman [38] and others—is to consider an embedding of �∞ (ω)

into the Euclidean space that makes the corresponding simple random walk a mar-
tingale. Formally, this is achieved by finding an R

d -valued discrete harmonic func-
tion on �∞ with a linear growth at infinity. The distance between the natural position
of a site x ∈�∞ and its counterpart in this harmonic embedding is expressed in
terms of the so-called corrector χ(x, ω) which is a principal object of study in this
paper. See Fig. 1 for an illustration.

It is clear that the corrector can be defined in any finite volume by solving an
appropriate discrete Dirichlet problem (this is how Fig. 1 was drawn); the diffi-
cult part is to define the corrector in infinite volume while maintaining the natural
(distributional) invariance with respect to shifts of the underlying lattice. Actually,
there is an alternative, probabilistic definition of the corrector,

χ(x, ω) = lim
n→∞

(
Ex,ω(Xn)− E0,ω(Xn)

)
. (1.10)

However, the only proof we presently have for the existence of such a limit is by
following, rather closely, the constructions from Sect. 2.3.

Once we have the corrector under control, the proof splits into two parts:
(1) proving that the martingale—i.e., the walk on the deformed graph—converges
to Brownian motion and (2) proving that the deformation of the path caused by the
change of embedding is negligible. The latter part (which is the principal contri-
bution of this work) amounts to a sublinear bound on the corrector χ(x, ω) as a
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Fig. 1. A portion of the infinite cluster �∞=�∞ (ω) before (left) and after (right) the har-
monic deformation x �→ x + χ(x, ω). Here p = 0.75 is already so large that all but a
few sites in the entire block belong to �∞. Upon the deformation, all “holes” (i.e., dual
connected components) get considerably stretched and rounded while the “dangling ends”
collapse onto the rest of the structure.

function of x. Here, somewhat unexpectedly, our level of control is considerably
better in d = 2 than in d ≥ 3. In particular, our proof in d = 2 avoids using
any of the recent sophisticated discrete-harmonic analyses but, to handle all d ≥ 2
uniformly, we need to invoke the main result of Barlow [3]. The proof is actually
carried out along these lines only for the setting in Theorem 1.1; Theorem 1.2
follows by noting that the time scales of both walks are comparable.

Here is a summary of the rest of this paper: In Sect. 2 we introduce the afore-
mentioned corrector and prove some of its basic properties. Sect. 3 collects the
needed facts about ergodic properties of the Markov chain “on environments.”
Both sections are based on previously known material; proofs have been included
to make the paper self-contained. The novel parts of the proof—sublinear bounds
on the corrector—appear in Sects. 4-5. The actual proofs of our main theorems are
carried out in Sect. 6. The Appendix (Sects. A and B) contains the proof of an upper
bound for the transition probabilities of our random walk, further discussion and
some conjectures.

2. Corrector—construction and harmonicity

In this section we will define and study the aforementioned corrector which is the
basic instrument of our proofs. The main idea is to consider the Markov chain
“on environments” (Sect. 2.1). The relevant properties of the corrector are listed in
Theorem 2.2 (Sect. 2.2); the proofs are based on spectral calculus (see Sect. 2.3).

2.1. Markov chain “on environments”

As is well known, cf Kipnis and Varadhan [27], the Markov chain (Xn)n≥0 in
(1.3–1.5) induces a Markov chain on�0, which can be interpreted as the trajectory
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Fig. 2. The harmonic deformation of a percolation configuration in the symmetric slab
{(x1, x2) ∈ Z

2 : |x2| ≤ N}. The star denotes the new position of the origin which in the
undeformed configuration was right in the center. The relative vertical shift of the origin
corresponds to the deviation of P0,ω(top hit before bottom) from one half. The figure also
has an interesting electrostatic interpretation: If the bottom and top bars are set to potentials
−1 and+1, respectively, then the site with deformed coordinates (x1, x2) has potential x2/N .

of “environments viewed from the perspective of the walk.” The transition proba-
bilities of this chain are given by the kernel Q : �0× �→ [0, 1],

Q(ω,A) = 1

2d

∑

e : |e|=1

(
1{ωe=1}1{τeω∈A} + 1{ωe=0}1{ω∈A}

)
. (2.1)

Our basic observations about the induced Markov chain are as follows:

Lemma 2.1. For every bounded measurable f : �→ R and every e with |e| = 1,

E0
(
f ◦ τe1{ωe=1}

) = E0
(
f 1{ω−e=1}

)
, (2.2)

where −e is the bond that is opposite to e. As a consequence, P0 is reversible and,
in particular, stationary for Markov kernel Q.

Proof. First we will prove (2.2). Neglecting the normalization by P(0 ∈�∞), we
need that

E
(
f ◦ τe1{0∈�∞}1{ωe=1}

) = E
(
f 1{0∈�∞}1{ω−e=1}

)
. (2.3)

This will follow from 1{ωe=1} = 1{ω−e=1} ◦ τe and the fact that, on {ωe = 1} we
have 1{0∈�∞} = 1{0∈�∞} ◦ τe. Indeed, these observations imply

f ◦ τe1{0∈�∞}1{ωe=1} =
(
f 1{0∈�∞}1{ω−e=1}

) ◦ τe (2.4)

and (2.3) then follows by the shift invariance of P.
From (2.2) we deduce that for any bounded, measurable f, g : �→ R,

E0
(
f (Qg)

) = E0
(
g(Qf )

)
, (2.5)
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where Qf : �→ R is the function

(Qf )(ω) = 1

2d

∑

e : |e|=1

(
1{ωe=1}f (τeω)+ 1{ωe=0}f (ω)

)
. (2.6)

Indeed, splitting the last sum into two terms, the second part reproduces exactly on
both sides of (2.5). For the first part we apply (2.2) and note that averaging over e
allows us to neglect the negative sign in front of e on the right-hand side. But (2.5)
is the definition of reversibility and, setting f = 1 and noting thatQ1 = 1, we also
get the stationarity of P0. ��

Lemma 2.1 underlines our main reason to work primarily with the “lazy” walk.
For the “agile” walk, to get a stationary law on environments, one has to weigh P0
by the degree of the origin—a factor that would drag through the entire derivation.

2.2. Kipnis-Varadhan construction

Next we will adapt the construction of Kipnis and Varadhan [27] to the present
situation. Let L2 = L2(�,�,P0) be the space of all Borel-measurable, square
integrable functions on�. Abusing the notation slightly, we will use “L2” both for
R-valued functions as well as R

d -valued functions. We equip L2 with the inner
product (f, g) = E0(fg)—with “fg” interpreted as the dot product of f and g
when these functions are vector-valued. Let Q be the operator defined by (2.6).
Note that, when applied to a vector-valued function,Q acts like a scalar, i.e., inde-
pendently on each component.

From (2.5) we know

(f,Qg) = (Qf, g) (2.7)

and so Q is symmetric. An explicit calculation gives us

∣∣(f,Qf )
∣∣ ≤ 1

2d

∑

e : |e|=1

{∣∣(f,1{ωe=1}f ◦ τe)
∣∣+(f,1{ωe=0}f )

}

≤ 1

2d

∑

e : |e|=1

{∣∣(f,1{ωe=1}f )
∣∣1/2

∣∣(f,1{ω−e=1}f )
∣∣1/2 + (f,1{ωe=0}f )

}

≤ 1

2d

∑

e : |e|=1

{
(f,1{ωe=1}f )+ (f,1{ωe=0}f )

}
= (f, f ) (2.8)

and so ‖Q‖L2 ≤ 1. In particular, Q is self-adjoint and spec(Q) ⊂ [−1, 1].
Let V : �→ R

d be the local drift at the origin, i.e.,

V (ω) = 1

2d

∑

e : |e|=1

e1{ωe=1}. (2.9)

(We will only be interested inV (ω) forω ∈ �0, but that is of no consequence here.)
Clearly, since V is bounded, we have V ∈ L2. For each ε > 0, let ψε : � → R

d

be the solution of

(1 + ε −Q)ψε = V. (2.10)
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Since 1 − Q is a non-negative operator, ψε is well-defined and ψε ∈ L2 for all
ε > 0. The following theorem is the core of the whole theory:

Theorem 2.2. There is a function χ : Z
d ×�0 → R

d such that for every x ∈ Z
d ,

lim
ε↓0

1{x∈�∞}(ψε ◦ τx − ψε) = χ(x, ·), in L2. (2.11)

Moreover, the following properties hold:

(1) (Shift invariance) For P0-almost every ω ∈ �0,

χ(x, ω)− χ(y, ω) = χ
(
x − y, τy(ω)

)
(2.12)

holds for all x, y ∈�∞ (ω).
(2) (Harmonicity) For P0-almost every ω ∈ �0, the function

x �→ χ(x, ω)+ x (2.13)

is harmonic with respect to the transition probabilities (1.3–1.4).
(3) (Square integrability) There exists a constant C <∞ such that

∥∥[χ(x + e, ·)− χ(x, ·)]1{x∈�∞}1{ωe=1} ◦ τx
∥∥

2 < C (2.14)

is true for all x ∈ Z
d and all e with |e| = 1.

The rest of this section is spent on proving Theorem 2.2. The proof is based
on spectral calculus and it closely follows the corresponding arguments from [27].
Alternative constructions invoke projection arguments, cf [30, 34].

2.3. Spectral calculations

Let μV denote the spectral measure of Q : L2 → L2 associated with function V ,
i.e., for every bounded, continuous 
 : [−1, 1] → R, we have

(
V,
(Q)V

) =
∫ 1

−1

(λ)μV (dλ). (2.15)

(Since Q acts as a scalar, μV is the sum of the “usual” spectral measures for the
Cartesian components of V .) In the integral we used that, since spec(Q) ∈ [−1, 1],
the measureμV is supported entirely in [−1, 1]. The first observation, made already
by Kipnis and Varadhan, is stated as follows:

Lemma 2.3.

∫ 1

−1

1

1 − λμV (dλ) <∞. (2.16)
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Proof. With some caution concerning the infinite cluster, the proof is a combination
of arguments right before Theorem 1.3 of [27] and those in the proof of Theorem 4.1
of [27]. Let f ∈ L2 be a bounded real-valued function and note that, by Lemma 2.1
and the symmetry of the sums,

∑

e : |e|=1

eE0(f 1{ωe=1}) = 1

2

∑

e : |e|=1

eE0
(
(f − f ◦ τe)1{ωe=1}

)
. (2.17)

Hence, for every a ∈ R
d we get

(f, a · V ) = 1

2

1

2d

∑

e : |e|=1

(e · a)E0
(
(f − f ◦ τe)1{ωe=1}

)

≤ 1

2

( 1

2d

∑

e : |e|=1

(e · a)2P(ωe = 1)
)1/2

×
( 1

2d

∑

e : |e|=1

E0
(
(f − f ◦ τe)21{ωe=1}

))1/2
. (2.18)

The first term on the right-hand side equals a constant times |a|, while Lemma 2.1
allows us to rewrite the second term into

1

2d

∑

e : |e|=1

E0
(
(f − f ◦ τe)21{ωe=1}

)

= 2
1

2d

∑

e : |e|=1

E0
(
f (f − f ◦ τe)1{ωe=1}

) = 2
(
f, (1 −Q)f )

. (2.19)

We thus get that there exists a constant C0 <∞ such that for all bounded f ∈ L2,

∣∣(f, a · V )∣∣ ≤ C0|a|
(
f, (1 −Q)f )1/2. (2.20)

Applying (2.20) for f of the form f = a · �(Q)V , summing a over coordi-
nate vectors in R

d and invoking (2.15), we find that for every bounded continuous
� : [−1, 1] → R and C = C0

√
d ,

∣∣∣∣

∫
�(λ)μV (dλ)

∣∣∣∣ ≤ C

( ∫
(1 − λ)�(λ)2μV (dλ)

)1/2

. (2.21)

Substituting �ε(λ) = (1/ε)∧ 1
1−λ for � and noting that (1 − λ)�ε(λ) ≤ 1, we get

∫
�ε(λ)μV (dλ) ≤ C

( ∫
�ε(λ)μV (dλ)

)1/2

(2.22)

and so
∫
�ε(λ)μV (dλ) ≤ C2. (2.23)
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The Monotone Convergence Theorem now implies
∫

1

1 − λμV (dλ) = sup
ε>0

∫
�ε(λ)μV (dλ) ≤ C2 <∞, (2.24)

proving the desired claim. ��
Using spectral calculus we will now prove:

Lemma 2.4. Let ψε be as defined in (2.10). Then

lim
ε↓0

ε‖ψε‖2
2 = 0. (2.25)

Moreover, for e with |e| = 1 let G(ε)e = 1{0∈�∞}1{ωe=1}(ψε ◦ τe − ψε). Then for
all x ∈ Z

d and all e with |e| = 1,

lim
ε1,ε2↓0

∥∥G(ε1)
e ◦ τx −G(ε2)

e ◦ τx
∥∥

2 = 0 (2.26)

Proof. The main ideas are again taken more or less directly from the proof of Theo-
rem 1.3 in [27]; some caution is necessary regarding the containment in the infinite
cluster in the proof of (2.26). By the definition of ψε ,

ε‖ψε‖2
2 =

∫ 1

−1

ε

(1 + ε − λ)2μV (dλ). (2.27)

The integrand is dominated by 1
1−λ and tends to zero as ε ↓ 0 for every λ in the

support of μV . Then (2.25) follows by the Dominated Convergence Theorem.
The second part of the claim is proved similarly: First we get rid of the x-

dependence by noting that, due to the fact that G(ε)e ◦ τx �= 0 enforces x ∈�∞, the
translation invariance of P implies

∥∥G(ε1)
e ◦ τx −G(ε2)

e ◦ τx
∥∥

2 ≤ ∥∥G(ε1)
e −G(ε2)

e

∥∥
2. (2.28)

Next we square the right-hand side and average over all e. Using that Ge �= 0 also
enforces ωe = 1 and applying (2.17), we thus get

1

2d

∑

e : |e|=1

∥∥G(ε1)
e −G(ε2)

e

∥∥2
2 = 2

(
ψε1 − ψε2 , (1 −Q)(ψε1 − ψε2)

)
. (2.29)

Now we calculate
(
ψε1 − ψε2 , (1 −Q)(ψε1 − ψε2)

)

=
∫ 1

−1

(ε1 − ε2)
2(1 − λ)

(1 + ε1 − λ)2(1 + ε2 − λ)2μV (dλ). (2.30)

The integrand is again bounded by 1
1−λ , for all ε1, ε2 > 0, and it tends to zero

as ε1, ε2 ↓ 0. The claim follows by the Dominated Convergence Theorem. ��
Now we are ready to prove Theorem 2.2:



94 N. Berger, M. Biskup

Proof of Theorem 2.2. Let G(ε)e ◦ τx be as in Lemma 2.4. Using (2.26) we know
that G(ε)e ◦ τx converges in L2 as ε ↓ 0. We denote Gx,x+e = limε↓0G

(ε)
e ◦ τx .

Since G(ε)e ◦ τx is a gradient field on �∞, we have Gx,x+e(ω) + Gx+e,x(ω) = 0
and, more generally,

∑n
k=0Gxk,xk+1 = 0 whenever (x0, . . . , xn) is a closed loop

on �∞. Thus, we may define

χ(x, ω)
def=

n−1∑

k=0

Gxk,xk+1(ω), (2.31)

where (x0, x1, . . . , xn) is a nearest-neighbor path on �∞ (ω) connecting x0 = 0
to xn = x. By the above “loop” conditions, the definition is independent of this
path for almost every ω ∈ {x ∈�∞}. The shift invariance (2.12) now follows from
this definition and Gx,x+e = G0,e ◦ τx .

In light of shift invariance, to prove the harmonicity of x �→ x + χ(x, ω) it
suffices to show that, almost surely,

1

2d

∑

e : |e|=1

[
χ(0, ·)− χ(e, ·)]1{ωe=1} = V. (2.32)

Since χ(e, ·)− χ(0, ·) = G0,e, the left hand side is the ε ↓ 0 limit of

1

2d

∑

e : |e|=1

[
ψε − ψε ◦ τe

]
1{ωe=1} = (1 −Q)ψε. (2.33)

The definition ofψε tells us that (1−Q)ψε = −εψε+V . From here we get (2.32)
by recalling that εψε(ω) tends to zero in L2.

To prove the square integrability in part (3) we note that, by the construction of
the corrector,

[
χ(x + e, ·)− χ(x, ·)]1{x∈�∞}1{ωe=1} ◦ τx = Gx,x+e. (2.34)

But Gx,x+e is the L2-limit of L2-functions G(ε)e ◦ τx whose L2-norm is bounded
by that of G(ε)e . Hence (2.14) follows with C = maxe : |e|=1 ‖G0,e‖2. ��

3. Ergodic-theory input

Here we will establish some basic claims whose common feature is the use of ergo-
dic theory. Modulo some care for the containment in the infinite cluster, all of these
results are quite standard and their proofs (cf Sect. 3.2) may be skipped on a first
reading. Readers interested only in the principal conclusions of this section should
focus their attention on Theorems 3.1 and 3.2.
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3.1. Statements

Our first result concerns the convergence of ergodic averages for the Markov chain
on environments. The claim that will suffice for our later needs is as follows:

Theorem 3.1. Let f ∈ L1(�,�,P0). Then for P0-almost all ω ∈ �,

lim
n→∞

1

n

n−1∑

k=0

f ◦ τXk (ω) = E0(f ), P0,ω-almost surely. (3.1)

Similarly, if f : �×�→ R is measurable with E0(E0,ω|f (ω, τX1ω)|) <∞, then

lim
n→∞

1

n

n−1∑

k=0

f (τXkω, τXk+1ω) = E0
(
E0,ω(f (ω, τX1ω))

)
(3.2)

for P0-almost all ω and P0,ω-almost all trajectories of (Xk)k≥0.

The next principal result of this section will be the ergodicity of the “induced
shift” on �0. To define this concept, let e be a vector with |e| = 1 and, for every
ω ∈ �0, let

n(ω) = min
{
k > 0 : ke ∈�∞ (ω)

}
. (3.3)

By Birkhoff’s Ergodic Theorem we know that {k > 0 : ke ∈�∞} has positive den-
sity in N and son(ω) <∞ almost surely.Therefore we can define the mapσe : �0 →
�0 by

σe(ω) = τn(ω)e ω. (3.4)

We call σe the induced shift. Then we claim:

Theorem 3.2. For every e with |e| = 1, the induced shift σe : �0 → �0 is P0-pre-
serving and ergodic with respect to P0.

Both theorems will follow once we establish of ergodicity of the Markov chain
on environments (see Proposition 3.5). For finite-state (irreducible) Markov chains
the proof of ergodicity is a standard textbook material (cf [36, page 51]), but our
state space is somewhat large and so alternative arguments are necessary. Since we
could not find appropriate versions of all needed claims in the literature, we include
complete proofs.

3.2. Proofs

We begin by Theorem 3.2 which will follow from a more general statement,
Lemma 3.3, below. Let (X ,�, μ) be a probability space, and let T : X → X
be invertible, measure preserving and ergodic with respect to μ. Let A ∈� be of
positive measure, and define n : A→ N ∪ {∞} by

n(x) = min
{
k > 0 : T k(x) ∈ A}

. (3.5)
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The Poincaré Recurrence Theorem (cf [36, Sect. 2.3]) tells us that n(x) <∞ almost
surely. Therefore we can define, up to a set of measure zero, the map S : A → A

by

S(x) = T n(x)(x), x ∈ A. (3.6)

Then we have:

Lemma 3.3. S is measure preserving and ergodic with respect to μ(·|A). It is also
almost surely invertible with respect to the same measure.

Proof. (1) S is measure preserving: For j ≥ 1, let Aj = {x ∈ A : n(x) = j}.
Then the Aj ’s are disjoint and μ(A \ ⋃

j≥1Aj) = 0. First we show that

i �= j ⇒ S(Ai) ∩ S(Aj ) = ∅. (3.7)

To do this, we use the fact that T is invertible. Indeed, if x ∈ S(Ai) ∩ S(Aj )
for 1 ≤ i < j , then x = T i(y) = T j (z) for some y, z ∈ A with n(y) = i

and n(z) = j . But the fact that T is invertible implies that y = T j−i (z),
which means n(z) ≤ j − i < j , a contradiction. To see that S is measure
preserving, we note that the restriction of S to Aj is T j , which is measure
preserving. Hence, S is measure preserving onAj and, by (3.7), on the disjoint
union

⋃
j≥1Aj as well.

(2) S is almost surely invertible: S−1({x}) ∩ {S is well defined} is a one-point set
by the fact that T is itself invertible.

(3) S is ergodic: Let B ∈� be such that B ⊆ A and 0 < μ(B) < μ(A). Assume
that B is S-invariant. Then Sn(x) /∈ A \ B for all x ∈ B and all n ≥ 1. This
means that for every x ∈ B and every k ≥ 1 such that T k(x) ∈ A, we have
T k(x) /∈ A\B. If follows thatC = ⋃

k≥1 T
k(B) is (almost-surely) T -invariant

and μ(C) ∈ (0, 1), a contradiction with the ergodicity of T . ��
Proof of Theorem 3.2. We know that the shift τe is invertible, measure preserving
and ergodic with respect to P. By Lemma 3.3 the induced shift σe : �0 → �0
is P0-preserving, almost-surely invertible and ergodic with respect to P0. ��

In the present circumstances, Theorem 3.2 has one important consequence:

Lemma 3.4. Let B ∈� be a subset of �0 such that for almost all ω ∈ B,

P0,ω(τX1ω ∈ B) = 1. (3.8)

Then B is a zero-one event under P0.

Proof. The Markov property and (3.8) imply thatP0,ω(τXnω ∈ B) = 1 for alln ≥ 1
and P0-almost every ω ∈ B. We claim that σe(ω) ∈ B for P0-almost every ω ∈ B.
Indeed, letω ∈ B be such that τXnω ∈ B for all n ≥ 1,P0,ω-almost surely. Let n(ω)
be as in (3.3) and note that we have n(ω)e ∈�∞. By the uniqueness of the infinite
cluster, there is a path of finite length connecting 0 andn(ω)e. If  is the length of this
path, we have P0,ω(X = n(ω)e) > 0. This means that σe(ω) = τn(ω)e(ω) ∈ B,
i.e., B is almost surely σe-invariant. By the ergodicity of the induced shift, B is a
zero-one event. ��
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Our next goal will be to prove that the Markov chain on environments is ergo-
dic. Let X = �Z and define � to be the product σ -algebra on X ; �=�⊗Z. The
space X is a space of two-sided sequences (. . . , ω−1, ω0, ω1, . . . )—the trajectories
of the Markov chain on environments. (Note that the index on ω is an index in the
sequence which is unrelated to the value of the configuration at a point.) Let μ be
the measure on (X ,�) such that for any B ∈�2n+1,

μ
(
(ω−n, . . . , ωn) ∈ B

)

=
∫

B

P0(dω−n)Q(ω−n, dω−n+1) · · ·Q(ωn−1, dωn), (3.9)

where Q is the Markov kernel defined in (2.1). (Since P0 is preserved by Q,
these finite-dimensional measures are consistent and μ exists and is unique by
Kolmogorov’s Theorem.) Clearly, (τXk (ω))k≥0 has the same law in E0(P0,ω(·))
as (ω0, ω1, . . . ) has in μ. Let T : X → X be the shift defined by (T ω)n = ωn+1.
Then T is measure preserving.

Proposition 3.5. T is ergodic with respect to μ.

Proof. LetEμ denote expectation with respect toμ. PickA ⊆ X that is measurable
and T -invariant. We need to show that

μ(A) ∈ {0, 1}. (3.10)

Let f : � → R be defined as f (ω0) = Eμ(1A|ω0). First we claim that f = 1A
almost surely. Indeed, since A is T -invariant, there exist A+ ∈ σ(ωk : k > 0)
and A− ∈ σ(ωk : k < 0) such that A and A± differ only by null sets from one
another. (This follows by approximation of A by finite-dimensional events and
using the T -invariance of A.) Now conditional on ω0, the event A+ is independent
of σ(ωk : k < 0) and so Lévy’s Martingale Convergence Theorem gives us

Eμ(1A|ω0) = Eμ(1A+|ω0) = Eμ(1A+|ω0, ω−1, . . . , ω−n)

= Eμ(1A−|ω0, ω−1, . . . , ω−n) −→
n→∞ 1A− = 1A, (3.11)

with all equalities valid μ-almost surely.
Next let B ⊂ � be defined by B = {ω0 : f (ω0) = 1}. Clearly, B is �-measur-

able and, since the ω0-marginal of μ is P0,

μ(A) = Eμ(f ) = P0(B). (3.12)

Hence, to prove (3.10), we need to show that

P0(B) ∈ {0, 1}. (3.13)

But A is T -invariant and so, up to sets of measure zero, if ω0 ∈ B then ω1 ∈ B.
This means that B satisfies condition (3.8) of Lemma 3.4 and so (3.13) holds. ��

Now we can finally prove Theorem 3.1:
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Proof of Theorem 3.1. Recall that (τXk (ω))k≥0 has the same law in E0(P0,ω(·))
as (ω0, ω1, . . . ) has in μ. Hence, if g(. . . , ω−1, ω0, ω1, . . . ) = f (ω0) then

lim
n→∞

1

n

∞∑

k=0

f ◦ τXk D= lim
n→∞

1

n

∞∑

k=0

g ◦ T k. (3.14)

The latter limit exists by Birkhoff’s Ergodic Theorem and (by Proposition 3.5)
equals Eμ(g) = E0(f ) almost surely. The second part is proved analogously. ��

4. Sublinearity along coordinate directions

Equipped with the tools from the previous two sections, we can start addressing
the main problem of our proof: the sublinearity of the corrector. Here we will prove
the corresponding claim along the coordinate directions in Z

d .
Fix e with |e| = 1 and let n(ω) be as defined in (3.3). Define a sequence nk(ω)

inductively by n1(ω) = n(ω) and nk+1(ω) = nk(σe(ω)). The numbers (nk), which
are well-defined and finite on a set of full P0-measure, represent the successive
“arrivals” of �∞ to the positive part of the coordinate axis in direction e. Let χ be
the corrector defined in Theorem 2.2. The main goal of this section is to prove the
following theorem:

Theorem 4.1. For P0-almost all ω ∈ �0,

lim
k→∞

χ(nk(ω)e, ω)

k
= 0. (4.1)

The proof is based on the following facts about the moments of χ(nk(ω)e, ω):

Proposition 4.2. Abbreviate ve = ve(ω) = n1(ω)e. Then

(1) E0(|χ(ve, ·)|) <∞.
(2) E0(χ(ve, ·)) = 0.

The proof of this proposition will in turn be based on a bound on the tails of
the length of the shortest path connecting the origin to ve. We begin by showing
that |ve| has exponential tails:

Lemma 4.3. For each p > pc there exists a constant a = a(p) > 0 such that for
all e with |e| = 1,

P0
(|ve| > n

) ≤ e−an, n ≥ 1. (4.2)

Proof. The proof uses a different argument in d = 2 and d ≥ 3. In d ≥ 3, we will
use the fact that the slab-percolation threshold coincides with pc, as was proved
by Grimmett and Marstrand [21]. Indeed, given p > pc, let K ≥ 1 be so large
that Z

d−1×{1, . . . , K} contains an infinite cluster almost surely. By the uniqueness
of the percolation cluster in Z

d , this slab-cluster is almost surely a subset of �∞.
Our bound in (4.2) is derived as follows: Let AK be the event that at least one of
the sites in {je : j = 1, . . . , K} is contained in the infinite connected component
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in Z
d−1 × {1, . . . , K}. Then {|ve| ≥ Kn} ∩ {0 ∈�∞} ⊂ ⋂

≤n τKe(A). Since the
events τKe(A),  = 1, . . . , n, are independent, letting pK = P(AK) we have

P(|ve| ≥ Kn, 0 ∈�∞) ≤ (1 − pK)n, n ≥ 1. (4.3)

From here (4.2) follows by choosing a appropriately.
In dimension d = 2, we will instead use a duality argument. Let �n be the

box {1, . . . , n} × {1, . . . , n}. On {|ve| ≥ n} ∩ {0 ∈�∞}, none of the boundary
sites {je : j = 1, . . . , n} are in �∞. So either at least one of these sites is in a
finite component of size larger than n or there exists a dual crossing of �n in the
direction of e. By the exponential decay of truncated connectivities (Theorem 8.18
of Grimmett [19]) and dual connectivities (Theorem 6.75 of Grimmett [19]), the
probability of each of these events decays exponentially with n. ��

Our next lemma provides the requisite tail bound for the length of the shortest
path between the origin and ve:

Lemma 4.4. Let L = L(ω) be the length of the shortest occupied path from 0
to ve. Then there exist a constant C <∞ and a > 0 such that for every n ≥ 1,

P0(L > n) < Ce−an. (4.4)

Proof. Let dω(0, x) be the length of the shortest path from 0 to x in configurationω.
Pick ε > 0 such that εn is an integer. Then

{L > n} ⊂ {|ve| ≥ εn
} ∪

εn⋃

k=1

{
dω(0, ke) > n; 0, ke ∈�∞

}
. (4.5)

In light of Lemma 4.3, the claim will follow once we show that the probability
of all events in the giant union on the right-hand side is bounded by e−a′n with
some a′ > 0 (independently of k).

We will use the following large-deviation result from Theorem 1.1 of Antal and
Pisztora [2]: There exist constants a, ρ <∞ such that

P
(
dω(0, x) > ρ|x|) ≤ e−a|x| (4.6)

once |x| is sufficiently large. Unfortunately, we cannot use this bound in (4.5)
directly, because ke can be arbitrarily close to 0 (in ∞ distance on Z

d ). To cir-
cumvent this problem, let we be the site −me such that m = min{m′ > εn : −
m′e ∈�∞} and let Ax,y = {dω(x, y) ≥ n/2, x, y ∈�∞}. Then, on {dω(0, x) >
n}, either |we| > 2εn or at least one site “between” −2εne and −εne is con-
nected to either 0 or ke by a path longer than n/2. Since on {|we| > 2εn} we must
have |v−e ◦ σm−e| > εn for at least one m = 1, . . . εn, we have

{
dω(0, ke) > n; 0, ke ∈�∞

}

⊂
( εn⋃

m=1

σm−e
({|v−e| ≥ εn}) ∪

⋃

εn≤≤2εn

(
A0,−e ∪ Ake,−e

))
. (4.7)
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Now all events in the first giant union have the same probability, which is exponen-
tially small by Lemma 4.3. As to the second union, by (4.6) we know that

P0(A0,−e) ≤ e−a ≤ e−aεn (4.8)

whenever ε is so small that 4ερ ≤ 1, and a similar bound holds for Ake,−e as well
(except that here we need 6ερ ≤ 1). The various unions then contribute a linear
factor in n, which is absorbed into the exponential once n is sufficiently large. ��

It is possible that a proper merge of the arguments in the previous two proofs
might yield the same result without relying on Antal and Pisztora’s bound (4.6).
(Indeed, the main other “external” ingredient of our proofs is Grimmett and Mar-
strand’s paper [21] which lies at the core of [2] as well.) However, we find the
argument using (4.6) conceptually cleaner and so we are content with the present,
even though not necessarily optimal, proof.

Next we state a trivial, but interesting technical lemma:

Lemma 4.5. Let p > 1 and r ∈ [1, p). Suppose that X1, X2, . . . are random
variables such that supj≥1 ‖Xj‖p < ∞ and let N be a random variable taking
values in positive integers such that N ∈ Ls for some s satisfying

s > r
1 + 1/p

1 − r/p

. (4.9)

Then
∑N
j=1Xj ∈ Lr . Explicitly,

∥∥∥
N∑

j=1

Xj

∥∥∥
r
≤ C

(
sup
j≥1

‖Xj‖p
)(‖N‖s

)s[1/r−1/p], (4.10)

where C is a finite constant depending only on p, r and s.

Proof. Let us define q ∈ (1,∞) by r/p + 1/q = 1. From the Hölder inequality and
the uniform bound on ‖Xj‖p we get

E

∣∣∣
N∑

j=1

Xj

∣∣∣
r =

∑

n≥1

E

( ∣∣∣
n∑

j=1

Xj

∣∣∣
r

1{N=n}
)

≤
∑

n≥1

∥∥∥
n∑

j=1

Xj

∥∥∥
r

p
P (N = n)

1/q

≤ (
sup
j≥1

‖Xj‖p
)r ∑

n≥1

nr P (N = n)
1/q . (4.11)

Under the assumption that N has s moments, we get

∑

n≥1

nr P (N = n)
1/q ≤

( ∑

n≥1

n(r−
s/q)

p/r

)r/p(
E(Ns)

)1/q (4.12)

by invoking the Hölder inequality one more time. The first term on the right-hand
side is finite whenever s obeys the bound (4.9). ��
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Proof of Proposition 4.2. Let χ(x, ω) be the corrector. By Theorem 2.2, on the
set {x ∈�∞}, χ(x, ·) is an L2-limit of functions χε(x, ·) = ψε ◦ τx −ψε , as ε ↓ 0.
To prove that χ(ve, ·) ∈ L1, recall the notation G(ε)e from Lemma 2.4 and let—as
in Lemma 4.4—L = L(ω) be the length of the shortest path from 0 to ve. Then

|χε(ve, ω)| ≤
∑

x : |x|∞≤L(ω)

∑

e : |e|=1

∣∣G(ε)e ◦ τx(ω)
∣∣. (4.13)

But Theorem 2.2 ensures that ‖G(ε)e ◦τx‖2 ≤ ‖G(ε)e ‖2 < C for all x and e and all ε >
0, while the number of terms in the sum does not exceedN(ω) = 2d(2L(ω)+1)d .
By Lemma 4.4,N has all moments and so, by Lemma 4.5, supε>0 ‖χε(ve, ·)‖r <∞
for all r ∈ [1, 2). In particular, χ(ve, ·) ∈ L1.

In order to prove part (2), we first note that a uniform bound on Lr -norm
of χε(ve, ·) for some r > 1 implies that the family {χε(ve, ·)}ε>0 is uniformly
integrable. Since χε(ve, ·) → χ(ve, ·) in probability, χε(ve, ·) → χ(ve, ·) in L1

and it thus suffices to prove

E0
(
χε(ve, ·)

) = 0, ε > 0. (4.14)

This is implied by Theorem 3.2 and the fact χε(ve, ·) = ψε ◦ σe − ψε with ψε
absolutely integrable. ��
Proof of Theorem 4.1. Let f (ω) = χ(n1(ω)e, ω), and let σe be the induced shift
in the direction of e. Then we can write

χ
(
nk(ω)e, ω

) =
k−1∑

=0

f ◦ σ e (ω). (4.15)

By Proposition 4.2 we have f ∈ L1 and E0(f ) = 0. Since Theorem 3.2 ensures
that σe is P0-preserving and ergodic, the claim follows from Birkhoff’s Ergodic
Theorem. ��

5. Sublinearity everywhere

Here we will prove the principal technical estimates of this work. The level of
control is different in d = 2 and d ≥ 3, so we treat these cases separately. (Not-
withstanding, the d ≥ 3 proof applies in d = 2 as well.)

5.1. Sublinearity in two dimensions

We begin with an estimate of the corrector in large boxes in Z
2:

Theorem 5.1. Let d = 2 and let χ be the corrector defined in Theorem 2.2. Then
for P0-almost every ω ∈ �0,

lim
n→∞ max

x∈�∞(ω)|x|∞≤n

|χ(x, ω)|
n

= 0. (5.1)
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The proof will be based on the following concept:

Definition 5.2. Given K > 0 and ε > 0, we say that a site x ∈ Z
d is K, ε-good

(or just good) in configuration ω ∈ � if x ∈�∞ (ω) and
∣∣χ(y, ω)− χ(x, ω)∣∣ < K + ε|x − y| (5.2)

holds for every y ∈�∞ (ω) of the form y = e, where  ∈ Z and e is a unit
coordinate vector. We will use �K,ε=�K,ε (ω) to denote the set of K, ε-good sites
in configuration ω.

On the basis of Theorem 4.1 it is clear that for each ε > 0 there exists aK <∞
such that the P0(0 ∈�K,ε) > 0. Our first goal is to estimate the size of the largest
interval free of good points in blocks [−n, n] on the coordinate axes:

Lemma 5.3. Let e be one of the principal lattice vectors in Z
2 and, given ε > 0,

letK be so large that P0(0 ∈�K,ε) > 0. For all n ≥ 1 andω ∈ �, let y0 < · · · < yr
be the ordered set of all integers from [−n, n] such that yie ∈�K,ε (ω). Let

�n(ω) = max
j=1,...,r

(yj − yj−1). (5.3)

(If no such yi exists, we define �n(ω) = ∞.) Then

lim
n→∞

�n
n

= 0, P-almost surely. (5.4)

Proof. Since P is τe invariant and τe is ergodic, we have

lim
n→∞

1

n+ 1

n∑

k=0

1{0∈�K,ε} ◦ τ ke = P(0 ∈�K,ε) (5.5)

P-almost surely. A similar statement applies to the limit n → −∞. But if �n/n
does not tend to zero, at least one of these limits would not exist. ��

Proof of Theorem 5.1. Fix ε ∈ (0, 1/2) and let K0 be such that P(0 ∈�K,ε) > 0
for all K ≥ K0 (we are using that �K,ε increases with K). Let ��0 ⊂ �0 be the
set of configurations such that the conclusion of Lemma 5.3 applies for both x
and y-axes, and that shift-invariance (2.12) holds for all x, y in the infinite cluster.
We will show that for everyω ∈ ��0 the limsup in (5.1) is less than 6ε almost surely.

Let e1 and e2 denote the coordinate vectors in Z
2. Fix ω ∈ ��0 and ad-

just K ≥ K0 so that 0 ∈�K,ε . (This is possible by the definition of ��0.) Then
we define (xk)k∈Z to be the increasing two-sided sequence of all integers such that
xke1 exhausts all K, ε-good points on the e1-axis, i.e.,

xke1 ∈�K,ε (ω), k ∈ Z. (5.6)

If �n be the maximal gap between consecutive xj ’s that lie in [−n, n], cf (5.3), we
define n1(ω) be the least integer such that �n/n < ε for all n ≥ n1(ω). Similarly
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we identify a two-sided increasing sequence (yn)n∈Z of integers exhausting the
sites such that

yke2 ∈�K,ε (ω), k ∈ Z, (5.7)

and let n2(ω) be the quantity corresponding to n1(ω) in this case.
Let n0 = max{n1, n2}. We claim that for all n ≥ n0(ω),

max
x∈�∞(ω)|x|∞≤n

|χ(x, ω)| ≤ 2K + 6εn. (5.8)

To prove this, let us consider the grid G = G(ω) of good lines

{xke1 + ne2 : n ∈ Z}, k ∈ Z, (5.9)

and

{ne1 + yke2 : n ∈ Z}, k ∈ Z, (5.10)

see Fig. 3. As a first step we will use the harmonicity of x �→ x + χ(x, ω) to
deal with x ∈�∞ \G. Indeed, any such x is enclosed between two horizontal and
two vertical grid lines and every path on �∞ connecting x to “infinity” necessarily

n

o(n)

Fig. 3. An illustration of the main idea of the proof of Theorem 5.1. Here a square of side n
is intersected by a grid G of good lines “emanating” from the good points on the x and y
axes. The crosses represent the points on these lines which are in �∞. Along the good lines
the corrector grows slower than linear and so anywhere on G sublinearity holds. For the
part of �∞ that is not on G, the maximum principle for x �→ x + χ(x, ω) lets us bound the
corrector by the values on the parts of the grid that surround it, modulo factors of order o(n).
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intersects one of these lines at a point which is also in �∞. Applying the maximum
(and minimum) principle for harmonic functions we get

max
x∈�∞�G

|x|∞≤n
|χ(x, ω)| ≤ 2εn+ max

x∈�∞∩G

|x|∞≤2n

|χ(x, ω)|. (5.11)

Here we used that the enclosing lines are not more than ε
1−ε n ≤ 2εn ≤ n apart

and, in particular, they all intersect the block [−2n, 2n] × [−2n, 2n].
To estimate the maximum on the grid, we pick, say, a horizontal grid line

with y-coordinate yk and note that, by (2.12), for every x ∈�∞ on this line,

χ(x, ω)− χ(yke2, ω) = χ(x − yke2, τyke2ω). (5.12)

By (5.7) and the fact that x − yke2 ∈�∞ (τyke2ω) we have

∣∣χ(x, ω)− χ(yke2, ω)
∣∣ ≤ K + 2εn (5.13)

whenever x is such that |x|∞ ≤ 2n. Applying the same argument to the vertical
line through the origin, and x replaced by yke2, we get

∣∣χ(x, ω)
∣∣ ≤ 2K + 4εn (5.14)

for every x ∈�∞ ∩ G with |x|∞ ≤ 2n. Combining this with (5.11), the esti-
mate (5.8) and the whole claim are finally proved. ��

Interestingly, a variant of the above strategy for controlling the corrector in
d = 2 has independently been developed by Chris Hoffman [25] to control the
geodesics in the first-passage percolation on Z

2.

5.2. Three and higher dimensions

In d ≥ 3 we have the following weaker version of Theorem 5.1:

Theorem 5.4. Let d ≥ 3. Then for all ε > 0 and P0-almost all ω,

lim sup
n→∞

1

(2n+ 1)d
∑

x∈�∞(ω)|x|≤n

1{|χ(x,ω)|≥εn} = 0. (5.15)

Here we fix the dimension d and run an induction over ν-dimensional sections
of the d-dimensional box {x ∈ Z

d : |x| ≤ n}. Specifically, for each ν = 1, . . . , d,
let �νn be the ν-dimensional box

�νn =
{
k1e1 + · · · + kνeν : ki ∈ Z, |ki | ≤ n ∀i = 1, . . . , ν

}
. (5.16)

The induction eventually gives (5.15) for ν = d thus proving the theorem.
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Since it is not advantageous to assume that 0 ∈�∞, we will carry out the proof
for differences of the form χ(x, ω)−χ(y, ω) with x, y ∈�∞. For each ω ∈ �, we
thus consider the (upper) density

�ν(ω) = lim
ε↓0

lim sup
n→∞

inf
y∈�∞(ω)∩�1

n

1

|�νn|
∑

x∈�∞(ω)∩�νn
1{|χ(x,ω)−χ(y,ω)|≥εn}.

(5.17)

Note that the infimum is taken only over sites in one-dimensional box �1
n. Our

goal is to show by induction that �ν = 0 almost surely for all ν = 1, . . . , d. The
induction step is encapsulated into the following lemma:

Lemma 5.5. Let 1 ≤ ν < d . If �ν = 0, P-almost surely, then also �ν+1 = 0,
P-almost surely.

Before we start the formal proof, let us discuss its main idea: Suppose that
�ν = 0 for some ν < d , P-almost surely. Pick ε > 0. Then for P-almost every ω
and all sufficiently large n, there exists a set of sites � ⊂ �νn∩ �∞ such that

∣∣(�νn∩ �∞) \�
∣∣ ≤ ε|�νn| (5.18)

and
∣∣χ(x, ω)− χ(y, ω)∣∣ ≤ εn, x, y ∈ �. (5.19)

Moreover, n sufficiently large,� could be picked so that�∩�1
n �= ∅ and, assum-

ingK � 1, the non-K, ε-good sites could be pitched out with little loss of density
to achieve even

� ⊂�K,ε . (5.20)

(All these claims are direct consequences of the Pointwise Ergodic Theorem and
the fact that P(0 ∈�K,ε) converges to the density of �∞ as K → ∞.)

As a result of this construction we have
∣∣χ(z, ω)− χ(x, ω)∣∣ ≤ K + εn (5.21)

for any x ∈ � and any z ∈ �ν+1
n ∩ �∞ of the form x + jeν+1. Thus, if r, s ∈�∞

∩�ν+1
n are of the latter form, r = x + jeν+1 and s = y + keν+1—see Fig. 4 for

an illustration—then (5.21) implies

|χ(r, ω)− χ(s, ω)| ≤ |χ(x, ω)− χ(y, ω)| + 2K + 2εn. (5.22)

Invoking the “induction hypothesis” (5.19), the right-hand side is less than 2K +
3εn, implying a bound of the type (5.19) but one-dimension higher.

Unfortunately, the above is not sufficient to prove (5.19) for all but a vanishing
fraction of all sites in�ν+1

n . The reason is that the r’s and s’s for which (5.22) holds
need to be of the form x + jeν+1 for some x ∈ �∩ �∞. But �∞ will occupy only
about P∞ = P(0 ∈�∞) fraction of all sites in �νn, and so this argument does not
permit us to control more than fraction about P∞ of �ν+1

n ∩ �∞.
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x

y

L

x

y

r

s

Fig. 4. The main idea underlying the proof of Theorem 5.4. The figure on the left represents
an n × n square in a two-dimensional plane in Z

3; the crosses now stand for good sites; cf
Definition 5.2. Here L is chosen so that (1− δ)-fraction of all vertical lines find a good point
on the intersection with one of the L horizontal lines; n is assumed so large that every pair
of these lines has two good points “above” each other. Any two good points x and y in the
square are connected by broken-line path that uses at most 4 good points in between. The
dashed lines indicate the vertical pieces of one such path. The figure on the right indicates
how this is used to control the difference of the corrector at two general points r, s ∈�∞ in
an n× n× n cube in Z

3—with obvious extensions to all d ≥ 3.

To fix this problem, we will have to work with a “stack” of translates of �νn at
the same time. (These correspond to the stack of horizontal lines on the left of of
Fig. 4.) Explicitly, consider the collection of ν-boxes

�νn,j = τjeν+1(�
ν
n), j = 1, . . . , L. (5.23)

Here L is a deterministic number chosen so that, for a given δ > 0, the set

�0 = {
x ∈ �νn : ∃j ∈ {0, . . . , L− 1}, x + jeν+1 ∈ �νn,j∩ �∞

}
(5.24)

is so large that

|�0| ≥ (1 − δ)|�νn| (5.25)

once n is sufficiently large. These choices ensure that (1− δ)-fraction of�νn is now
“covered” which by repeating the above argument gives us control over χ(r, ω) for
nearly the same fraction of all sites r ∈ �ν+1

n ∩ �∞.

Proof of Lemma 5.5. Let ν < d and suppose that �ν = 0, P-almost surely. Fix δ
with 0 < δ < 1

2P
2∞ and let L be as defined above. Choose ε > 0 so that

Lε + δ < 1

2
P 2
∞. (5.26)

For a fixed but large K , and P-almost every ω and n exceeding an ω-dependent
quantity, for each j = 1, . . . , L, we can find �j ⊂ �νn,j∩ �∞ satisfying the
properties (5.18–5.20)—with �νn replaced by �νn,j . Given �1, . . . , �L, let � be
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the set of sites in �ν+1
n ∩ �∞ whose projection onto the linear subspace H =

{k1e1+· · ·+kνeν : ki ∈ Z}belongs to the corresponding projection of�1∪· · ·∪�L.
Note that the �j could be chosen so that � ∩�1

n �= ∅.
By their construction, the projections of the �j ’s, j = 1, . . . , L, onto H “fail

to cover” at most Lε|�νn| sites in �0, and so at most (δ + Lε)|�νn| sites in �νn are
not of the form x + ieν+1 for some x ∈ ⋃

j �j . It follows that
∣∣(�ν+1

n ∩ �∞) \�
∣∣ ≤ (δ + Lε)|�ν+1

n |, (5.27)

i.e.,� contains all except at most (Lε+δ)-fraction of all sites in�ν+1
n that we care

about. Next we note that if K is sufficiently large, then for every 1 ≤ i < j ≤ L,
the set H contains at least 1

2P
2∞-fraction of sites x such that

zi
def= x + ieν ∈�K,ε and zj

def= x + jeν ∈�K,ε . (5.28)

Since we assumed (5.26), once n � 1, for each pair (i, j) with 1 ≤ i < j ≤ L

such zi and zj can be found so that zi ∈ �i and zj ∈ �j . But the�j ’s were picked
to make (5.19) true and so via these pairs of sites we now show that

∣∣χ(y, ω)− χ(x, ω)∣∣ ≤ K + εL+ 2εn (5.29)

for every x, y ∈ �1 ∪ · · · ∪�L; see again (the left part of) Fig. 4.
From (5.19) and (5.29) we now conclude that for all r, s ∈ �,

∣∣χ(r, ω)− χ(s, ω)∣∣ ≤ 3K + εL+ 4εn < 5εn, (5.30)

provided that εn > 3K + εL. If �ν,ε denotes the right-hand side of (5.17) before
taking ε ↓ 0, the bounds (5.27) and (5.30) and � ∩�1

n �= ∅ yield

�ν+1,5ε(ω) ≤ δ + Lε, (5.31)

for P-almost every ω. But the left-hand side of this inequality increases as ε ↓ 0
while the right-hand side decreases. Thus, taking ε ↓ 0 and δ ↓ 0 proves thatρν+1 =
0 holds P-almost surely. ��
Proof of Theorem 5.4. The proof is an easy consequence of Lemma 5.5. First, by
Theorem 4.1 we know that �1(ω) = 0 for P0-almost every ω. Invoking appropriate
shifts, the same conclusion applies P-almost surely. Using induction on dimension,
Lemma 5.5 then tells us that �d(ω) = 0 for P0-almost every ω. Let ω ∈ �0. By
Theorem 4.1, for each ε > 0 there is n0 = n0(ω) with P0(n0 < ∞) = 1 such
that for all n ≥ n0(ω), we have |χ(x, ω)| ≤ εn for all x ∈ �1

n∩ �∞ (ω). Using
this to estimate away the infimum in (5.17), the fact that �d = 0 now immediately
implies (5.15) for all ε > 0. ��
6. Proof of main results

Here we will finally prove our main theorems. First, in Sect. 6.1, we will show the
convergence of the “lazy” walk on the deformed graph to Brownian motion and
then, in Sect. 6.2, we use our previous results on corrector growth to extend this to
the walk on the original graph. This separation will allow us to treat the parts of the
proof common for d = 2 and d ≥ 3 in a unified way. Theorem 1.2, which concerns
the “agile” walk, is proved in Sect. 6.3.
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6.1. Convergence on deformed graph

We begin with a simple observation that will drive all underlying derivations:

Lemma 6.1. Fix ω ∈ �0 and let x �→ χ(x, ω) be the corrector. Given a path of
random walk (Xn)n≥0 with law P0,ω, let

M(ω)
n = Xn + χ(Xn, ω), n ≥ 0. (6.1)

Then (M(ω)
n )n≥0 is an L2-martingale for the filtration (σ (X0, . . . , Xn))n≥0. More-

over, conditional on Xk0 = x, the increments (M(ω)
k+k0

−M
(ω)
k0
)k≥0 have the same

law as (M(τxω)
k )k≥0.

Proof. Since Xn is bounded, χ(Xn, ω) is bounded and so M(ω)
n is square integra-

ble with respect to P0,ω. Since x �→ x + χ(x, ω) is harmonic with respect to the
transition probabilities of the random walk (Xn) with law P0,ω, we have

E0,ω
(
M
(ω)
n+1

∣∣σ(Xn)
) = M(ω)

n , n ≥ 0, (6.2)

P0,ω-almost surely. Since M(ω)
n is σ(Xn)-measurable, (M(ω)

n ) is a martingale. The
stated relation between the laws of (M(ω)

k+k0
−M(ω)

k0
)k≥0 and (M(τxω)

k )k≥0 is implied

by the shift-invariance (2.12) and the fact that (M(ω)
n ) is a simple random walk on

the deformed infinite component. ��
Next we will establish the convergence of the above martingale to Brownian

motion. The precise statement is as follows:

Theorem 6.2. Let d ≥ 2, p > pc and ω ∈ �0. Let (Xn)n≥0 be the random walk

with law P0,ω and let (M(ω)
n )n≥0 be as defined in (6.1). Let (B̂(ω)n (t) : t ≥ 0) be

defined by

B̂(ω)n (t) = 1√
n

(
M
(ω)
�tn + (tn− �tn)(M(ω)

�tn+1 −M(ω)
�tn)

)
, t ≥ 0. (6.3)

Then for all T > 0 and P0-almost every ω, the law of (B̂n(t) : 0 ≤ t ≤ T )

on (C[0, T ],�T ) converges weakly to the law of an isotropic Brownian motion
(Bt : 0 ≤ t ≤ T ) with diffusion constant D, i.e., E(B2

t ) = Dt , where

D = E0

(
E0,ω

∣∣X1 + χ(X1, ω)
∣∣2

)
∈ (0,∞). (6.4)

Proof. Without much loss of generality, we may confine ourselves to the case
when T = 1. Let �k= σ(X0, X1, . . . , Xk) and fix a vector a ∈ R

d . We will
show that (the piece-wise linearization) of t �→ a ·M(ω)

�tn scales to one-dimensional
Brownian motion. For m ≤ n, consider the random variable

V (ω)n,m(ε) =
1

n

m∑

k=0

E0,ω

([
a · (M(ω)

k+1 −M(ω)
k )

]21{|a·(M(ω)
k+1−M(ω)

k )|≥ε√n}
∣∣∣ �k

)
.

(6.5)

In order to apply the Lindeberg-Feller Functional CLT for martingales (Theo-
rem 7.7.3 of Durrett [15]), we need to verify that for P0-almost every ω,
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(1) V (ω)n,�tn(0)→ Ct in P0,ω-probability for all t ∈ [0, 1] and some C ∈ (0,∞).

(2) V (ω)n,n (ε)→ 0 in P0,ω-probability for all ε > 0.

Both of these conditions will be implied by Theorem 3.1. Indeed, by the last con-
clusion of Lemma 6.1 we may write

V (ω)n,m(ε) =
1

n

m∑

k=0

fε
√
n ◦ τXk (ω), (6.6)

where

fK(ω) = E0,ω

([
a ·M(ω)

1

]21{|a·M(ω)
1 |≥K}

)
. (6.7)

Now if ε = 0, Theorem 3.1 tells us that, for P0-almost every ω,

lim
n→∞V

(ω)
n,n (0) = E0

(
E0,ω

(
[a ·M(ω)

1 ]2)
)
= 1

d
D|a|2, (6.8)

where we used the symmetry of the joint expectations under rotations by 90◦. From
here condition (1) follows by scaling out the t-dependence first and working with tn
instead of n.

On the other hand, when ε > 0, we have fε√n ≤ fK once n is sufficiently large
and so, P0-almost surely,

lim sup
n→∞

V (ω)n,n (ε) ≤ E0

(
E0,ω

(
[a ·M(ω)

1 ]21{|a·M(ω)
1 |≥K}

)) −→
K→∞

0, (6.9)

where to apply Dominated Convergence we used that a ·M(ω)
1 ∈ L2. Hence, the

above conditions (1) and (2) hold—in fact, even with limits taken P0,ω-almost
surely. Applying the Martingale functional CLT and the Cramér-Wold device (The-
orem 2.9.2 of [15]), we conclude that, for P0-almost everyω, the linear interpolation
of the sequence (M(ω)

k /
√
n)k=1,...,n converges to isotropic Brownian motion with

covariance matrix 1
d
D1.

To make the proof complete, we need to show thatD ∈ (0,∞). Here the finite-
ness is immediate by the square-integrability of χ . The positivity can be shown
in many ways: either by a direct computation from (6.4) using that E0(E0,ω(X1 ·
χ(X1, ω)) = 0 [which in turn is implied by E0(χ(e, ω)1{ωe=1}) = 0 for every
coordinate vector e] or by invoking the sublinearity of the corrector proved in
Theorems 5.1–5.4, or by an appeal to the lower (or, alternatively, upper) bound
in [3, Theorem 1]. ��

6.2. Correction on the corrector

It remains to estimate the influence of the harmonic deformation on the path of the
walk. As already mentioned, while our proof in d = 2 is completely self-contained,
for d ≥ 3 we rely heavily on (a discrete version of) the sophisticated Theorem 1 of
Barlow [3].

Let us first dismiss the two-dimensional case of Theorem 1.1:
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Proof of Theorem 1.1 (d = 2). We need to extend the conclusion of Theorem 6.2
to the linear interpolation of (Xn). Since the corrector is an additive perturbation
of M(ω)

n , it clearly suffices to show that, for P0-almost every ω,

max
1≤k≤n

|χ(Xk, ω)|√
n

−→
n→∞ 0, in P0,ω-probability. (6.10)

By Theorem 5.1 we know that for every ε > 0 there exists aK = K(ω) <∞ such
that

|χ(x, ω)| ≤ K + ε|x|∞, x ∈�∞ (ω). (6.11)

If ε < 1/2, then this implies

|χ(Xk, ω)| ≤ 2K + 2ε|M(ω)
k |. (6.12)

But the above CLT for (Mk) tells us that maxk≤n |M(ω)
k |/√n converges in law to

the maximum of a Brownian motion B(t) over t ∈ [0, 1]. Hence, if P denotes the
probability law of the Brownian motion, the Portmanteau Theorem (Theorem 2.1
of [7]) allows us to conclude

lim sup
n→∞

P0,ω
(

max
k≤n

|χ(Xk, ω)| ≥ δ
√
n

) ≤ P
(

max
0≤t≤1

|B(t)| ≥ δ

2ε

)
. (6.13)

The right-hand side tends to zero as ε ↓ 0 for all δ > 0. ��
In order to prove the same result in d ≥ 3, we will need the following upper

bounds on the transition probability of our random walk:

Theorem 6.3. (1) There is a random variable C = C(ω) with P0(C < ∞) = 1
such that for all ω ∈ �0 and all x ∈�∞ (ω),

P0,ω(Xn = x) ≤ C(ω)

nd/2
, n ≥ 1. (6.14)

(2) There are constants c1, c2 ∈ (0,∞) and random variables Nx = Nx(ω) such
that for all ω ∈ �0, all x ∈�∞ (ω), all R ≥ 1, and all n ≥ Nx(ω),

Px,ω
(|Xn − x| > R

) ≤ c1 exp
{−c2R

2/n
}
. (6.15)

Moreover, the random variables (Nx) have stretched-exponential tails, i.e.,
there exist constants c3 > 0 and θ > 0 such that for all x ∈ Z

d ,

P0(Nx > R) ≤ e−c3R
θ

, R ≥ 1. (6.16)

For a continuous-time version of our walk, these bounds are the content of The-
orem 1 of Barlow [3]. (In fact, the continuous-time version of the bound (6.14) was
obtained already by Mathieu and Remy [31].) Unfortunately, to derive Theorem 6.3
from Barlow’s Theorem 1, one needs to invoke various non-trivial facts about per-
colation and/or mixing of Markov chains. In Appendix A we list these facts and
show how to assemble all ingredients together to establish the above upper bounds.
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Proof of Theorem 1.1 (d ≥ 3). We will adapt (the easier part of) the proof of Theo-
rem 1.1 in Sidoravicius and Sznitman [38]. First we show that the laws of (B̃n(t) : t ≤
T ) on (C[0, T ],�T ) are tight. To that end it suffices to show (e.g., by Theorem 8.6
of Ethier-Kurtz [16]) that if �n is the class of all stopping times of the filtra-
tion (σ ({B̃n(s) : s ≤ t}))0≤t≤T , then

lim sup
ε↓0

lim sup
n→∞

sup
τ∈�n

E0,ω
(|B̃n(τ + ε)− B̃n(τ )|2

) = 0. (6.17)

As in [38], we replace τ by its integer-valued approximation. Explicitly, let τ̂ =
�nτ + 1 and let δ be a number such that nδ = �nε + 1. Since τ̂ differs from nτ

by a constant of order unity, and similarly for τ̂ + nδ and n(τ + ε), we have

|B̃n(τ + ε)− B̃n(τ )| ≤ 1√
n
|Xτ̂+nδ −Xτ̂ | +

c4√
n

(6.18)

for some constant c4 <∞. This allows us to estimate (6.17) by means of the second
moment of |Xτ̂+nδ −Xτ̂ |.

Recalling that τ ≤ T , we may assume that τ̂ ≤ 2T n. By (6.16) we know
that there exists an almost-surely finite random variable C′ = C′(ω) such that
max|x|≤R Nx ≤ C′(ω)(logR)ζ once R ≥ 2, where ζ = 2/θ . Since |Xτ̂ | ≤ 2T n,
this implies thatNXτ̂ ≤ C′(ω)[log(2T n)]ζ . Theorem 6.3(2) and the strong Markov
property—τ̂ is a stopping time of the random walk—tell us that, for some con-
stant c5 <∞ (depending only on c1, c2 and the dimension),

E0,ω
(|Xτ̂+nδ −Xτ̂ |2

) ≤ c5 εn, n ≥ n0(ω). (6.19)

Here we used ε − δ = O(1/n) and let n0(ω) be such that δn ≥ C′(ω)[log(2T n)]ζ

for all n ≥ n0. The bound (6.17) is now proved by combining (6.18–6.19) and
taking the required limits.

Once we know that the laws of (B̃n(t) : t ≤ T ) are tight, it suffices to show the
convergence of finite-dimensional distributions. In light of Theorem 6.2 (and the
Markov property of the walk), for that it is enough to prove that for all t > 0 and
P0-almost every ω,

χ(X�tn, ω)√
n

−→
n→∞ 0 in P0,ω-probability. (6.20)

Without loss of generality, we need to do this only for t = 1. By Theorem 6.3, the
random variable Xn lies with probability 1 − ε in the block [−M√

n,M
√
n]d ∩

Z
d , provided M sufficiently large (with “large” depending possibly on ω). Using

Theorem 6.3(1) to estimate P0,ω(Xn = x) for x inside this block, we have

P0,ω
(|χ(Xn, ω)| > δ

√
n

) ≤ ε + C(ω) 1

nd/2

∑

x∈�∞(ω)
|x|≤M√

n

1{|χ(x,ω)|>δ√n}. (6.21)

But Theorem 5.4 tells us that, for all δ,M > 0 and P0-almost every ω, the second
term tends to zero as n→ ∞. This proves (6.20) and the whole claim. ��
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6.3. Extension to “agile” walk

It remains to prove Theorem 1.2 for the “agile” version of simple random walk
on �∞. Since the proof is based entirely on the statement of Theorem 1.1, we will
resume a unified treatment of all d ≥ 2. First we will make the observation that the
times of the two walks run proportionally to each other:

Lemma 6.4. Let (Tk)k≥0 be the stopping times defined in (1.7). Then for all t ≥ 0
and P0-almost every ω,

T�tn
n

−→
n→∞ �t, P0,ω-almost surely, (6.22)

where

1

�
= E0

( 1

2d

∑

e : |e|=1

1{ωe=1}
)
. (6.23)

Proof. This is an easy consequence of the second part of Theorem 3.1 and the fact
that for P0-almost every ω we have τxω �= ω once x �= 0. Indeed, let f (ω, ω′) =
1{ω �=ω′}. For t = 0 the statement holds trivially so let us assume that t > 0. If n is
so large that T�nt > 0, we have

n

T�tn
= 1

T�tn

T�tn∑

k=1

f (τXk−1ω, τXkω). (6.24)

Since T�tn → ∞ as n → ∞, by Theorem 3.1 the right hand side converges
to the expectation of f (ω, τX1ω) in the annealed measure E0(P0,ω(·)). A direct
calculation shows that this expectation equals �. ��
Proof of Theorem 1.2. The proof is based on a standard approximation argument
for stochastic processes. Let B̃n(t) be as in Theorem 1.1 and recall that B̃ ′

n(t) is a
linear interpolation of the values B̃n(Tk/n) for k = 0, . . . , n. The path-continuity
of the processes B̃n(t) as well as the limiting Brownian motion implies that for
every ε > 0 there is a δ > 0 such that

P0,ω

(
sup
t,t ′≤T
|t−t ′|<δ

∣∣B̃n(t)− B̃n(t ′)
∣∣ < ε

)
> 1 − ε (6.25)

once n is sufficiently large. Similarly, Lemma 6.4, the continuity of t �→ �t and
the monotonicity of k �→ Tk imply that for n sufficiently large,

P0,ω

(
sup
t≤T

∣∣∣
T�tn
n

−�t
∣∣∣ < δ

)
> 1 − ε. (6.26)

On the intersection of these events, the equality B̃ ′
n(k/n) = B̃n(Tk/n) yields

max
0≤k≤�T n

∣∣B̃ ′
n(
k/n)− B̃n(�k/n)

∣∣ < ε. (6.27)
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In light of piece-wise linearity this shows that, with probability at least 1 − 2ε, the
paths t �→ B̃ ′

n(t) and t �→ B̃n(�t) are within a multiple of ε in the supremum norm
of each other. In particular, if Bt denotes the weak limit of the process (Bn(t) : t ≤
T ), then (B̃ ′

n(t) : t ≤ T ) converges in law to (B�t : t ≤ T ). The latter is an isotropic
Brownian motion with diffusion constant D′ = D�2. ��

A. Heat-kernel upper bounds

Let (Zt )t≥0 denote the continuous-time random walk which attempts a jump to one
of its nearest-neighbors at rate one (regardless of the number of accessible neigh-
bors). Let qωt (x, y) denote the probability that Zt started at x is at y at time t . In his
paper [3], Barlow proved the following statement: There exist constants C1, C2 ∈
(0,∞) and, for each x ∈ Z

d , a random variable S(x) = S(x, ω) ∈ (0,∞) such
that for all x, y ∈� (ω) and all t > S(x),

qωt (x, y) ≤ C1t
−d/2 exp

{−C2|x − y|2/t
}
. (A.1)

Moreover, S(x) has uniformly stretched-exponential tails, i.e.,

P0
(
S(x) > R

) ≤ e−C3R
θ ′
, R ≥ 1. (A.2)

Barlow provides also a corresponding, and significantly harder-to-prove lower
bound which requires the additional condition t > |x−y|. However, for (A.1), this
condition is redundant.

In the remarks after his Theorem 1, Barlow mentions that appropriate modi-
fications to his arguments yield the corresponding discrete time estimates. Here
we present the details of these modifications which are needed to make our proof
of the invariance principles in Theorems 1.1 and 1.2 complete. Notice that we do
not re-prove Barlow’s bounds in their full generality, just the absolute minimum
necessary for our purposes.

A.1. Uniform bound

There will be two kinds of bounds on the heat-kernel as a function of the terminal
position of the walk after n steps: a uniform bound by a constant times n−d/2 and
a non-uniform, Gaussian bound on the tails. We begin with the statement of the
uniform upper bound:

Proposition A.1. Let d ≥ 2 and let p > pc(d). There exists a random vari-
able C = C(ω) with P(C <∞) = 1 such that for all ω ∈ �0 and all x ∈�∞,

P0,ω(Xn = x) ≤ C(ω)

nd/2
, n ≥ 1. (A.3)

The proof will invoke the isoperimetric bound from Barlow [3]:
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Lemma A.2. There exists a constant c ∈ (0,∞) such that for P0-almost every ω
and all R sufficiently large,

|∂�|
|�| ≥ c|�|−1/d (A.4)

for all � ⊂�∞ ∩[−R,R]d such that |�| > R0.01.

Proof. This is a consequence of Proposition 2.11 on page 3042, and Lemma 2.13
on page 3045 of Barlow’s paper [3]. ��

This isoperimetric bound will be combined with the technique of evolving sets,
developed by Morris and Peres [32], whose salient features we will now recall.
Consider a Markov chain on a countable state-space V , let p(x, y) be the transi-
tion kernel and let π be a stationary measure. Let Q(x, y) = π(x)p(x, y) and for
each S1, S2 ⊂ V , letQ(S1, S2) =

∑
x∈S1

∑
y∈S2

Q(x, y). For each set S ⊂ V with
finite non-zero total measure π(S) we define the conductance 
S by


S = Q(S, Sc)

π(S)
. (A.5)

For sufficiently large r , we also define the function


(r) = inf
{

S : π(S) ≤ r

}
. (A.6)

The following is the content of Theorem 2 in Morris and Peres [32]: Suppose
that p(x, x) ≥ γ for some γ ∈ (0, 1/2] and all x ∈ V . Let ε > 0 and x, y ∈ V . If n
is so large that

n ≥ 1 + (1 − γ )2
γ 2

∫ 4/ε

4[π(x)∧π(y)]
4

u
(u)2
du, (A.7)

then

pn(x, y) ≤ επ(y). (A.8)

Equipped with this powerful result, we are now ready to complete the proof of
Proposition A.1:

Proof of Proposition A.1. First we will prove the desired bound for even times.
Fix ω ∈ � and let Yn = X2n be the random walk on �∞ (ω) observed only at
even times. For each x, y ∈�∞ (ω), let us use p(x, y) to denote the transition
probability Px,ω(Y1 = y). Let π(x) denote the degree of x on �∞ (ω). Then π is
an invariant measure of this chain. Moreover, by our restriction to even times we
have p(x, x) ≥ (2d)−2 > 0 and so (A.7–A.8) can be applied.

By Lemma A.2 we have that 
S ≥ cπ(S)−
1
d for some c > 0 and all sets S of

the form S =�∞ ∩[−R,R]d for R � 1. Hence 
(r) ≤ c′ r−
1
d for some finite

c′ = c′(ω). Plugging into the integral (A.7) and using that π is bounded, we find

that if n ≥ c̃ ε−
2
d , then (A.8) holds. Here c̃ is a positive constant that may depend

on ω. Choosing the minimal n possible, and applying pn(x, y) = Px,ω(Yn = y),
the bound (A.8) proves the desired claim for all even times. To extend the result to
odd times, we apply the Markov property at time one. ��
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A.2. Gaussian tails

Next we will attend to the Gaussian-tail bound. Given the random variables S(x, ω)
from (A.1–A.2), define random variables Nx = Nx(ω) by

Nx = S(x) ∨ sup
y : y �=x

S(y)2

|y − x| . (A.9)

Here is a restatement of the corresponding bound from Theorem 6.3:

Proposition A.3. Let d ≥ 2 and p > pc(d). There exist constants c1, c2 ∈ (0,∞)

such that for all ω ∈ �0, all x ∈�∞ (ω), all R ≥ 1 and all n > Nx(ω),
∑

y : |y−x|>R
Px,ω(Xn = y) < c1 exp

{−c2R
2/n

}
. (A.10)

Proof. The proof is an adaptation of Barlow’s Theorem 1 to the discrete setting.
Let (Xn) be the discrete time random walk, and let (Zt )t≥0 be the continuous time
random walk with jumps occurring at rate 1, both started at x. We consider the cou-
pling of the two walks such that they make the same moves. We will use P and E
to denote the coupling measure and the corresponding expectation, respectively.

Let n ≥ Nx and let An be the event that |Xn − x| > R. Pick K > 1 and let

In =
∫ 4n

n

1{|Zt−x|>R/K} dt (A.11)

be the amount of time in [n, 4n] that the walk (Zt ) spends at distance larger than R/K
from x. By the inequality

P(An) ≤ E(In)

E(In|An), (A.12)

it suffices to derive an appropriate upper bound on E(In) and a matching lower
bound on E(In|An). Note that we may assume that R ≤ n because otherwise we
have P(An) = 0 and there is nothing to prove.

To derive an upper bound on E(In), we note that for t > n, our choice n ≥ Nx
implies t > S(x). The expectation can then be bounded using (A.1):

E(In) =
∫ 4n

n

∑

y : |y−x|>R/K
qt (x, y) dt

≤ C1

∫ 4n

n

t−d/2
∑

x : |x|>R/K
e−C2|x|2/t dt ≤ C4ne−C5

R2
n , (A.13)

where C4 and C5 are constants (possibly depending on K).
It thus remains to prove that, for some constant C6 > 0,

E(In|An) ≥ C6 n. (A.14)
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To derive this inequality, let us recall that the transitions of Zt happen at rate one,
and they are independent of the path of the walk. Hence, if Bn is the event that Zt
attempted at least n jumps by time 2n, then P(Bn|An) = P(Bn) is bounded away
from zero for all n ≥ 1. Therefore, it suffices to prove that E(In|An ∩ Bn) ≥ C6n.

Let T be the first time when the walk (Zt ) is farther from x thanR. OnAn∩Bn,
this happens before time 2n, i.e., T ≤ 2n. LetQR = [−R,R]d ∩Z

d andQR/K =
[−R/K, R/K]d ∩Z

d . Then for values z on the external boundary ofQR—which are
those that ZT can take—the bound (A.1) tells us

∑

y∈QR/K
qωt (z, y) ≤ C1

(
2R

K

)d
max
s>0

{
s−d/2 exp(− 1

4C2R
2/s)

}
≤ C7K

−d , (A.15)

provided that t > S(z). But our assumptions n ≥ Nx and R ≤ n imply n ≥ S(z),
and so in light of the fact that T ≤ 2n onAn∩Bn, (A.15) actually holds for all t such
that T + t ∈ [3n, 4n]. Plugging ZT for z on the left-hand side and taking expecta-
tion gets us an upper bound on P(Zt ∈ QR/K |An ∩ Bn)—with t now playing the
role of T + t . Hence,

E(In|An ∩ Bn) ≥
∫ 4n

3n
P (Zt �∈ QR/K |An ∩ Bn) ≥ n(1 − C7K

−d). (A.16)

Choosing K sufficiently large, the right-hand side grows linearly in n. ��
Proof of Theorem 6.3. Part (1) is a direct consequence of Proposition A.1, while
part (2) follows from Proposition A.3 and the fact that if the S(x) have stretched
exponential tails (uniformly in x), then so do the Nx’s. ��

B. Some questions and conjectures

While our control of the corrector in d ≥ 3 is sufficient to push the proof of the
functional CLT through, it is not sufficient to provide the conceptually correct proof
of the kind we have constructed for d = 2. However, we do not see any reason
why d ≥ 3 should be different from d = 2, so our first conjecture is:

Conjecture 1. Theorem 5.1 is true in all d ≥ 2.

Our proof of Theorem 5.1 in d = 2 hinged on the fact that the corrector plus
the position is a harmonic function on the percolation cluster. Of interest is the
question whether harmonicity is an essential ingredient or just mere convenience.
Yuval Peres suggested the following generalization of Conjecture 1:

Question 2. Let f : Z
d → R be a shift invariant, ergodic process on Z

d whose
gradients are in L1 and have expectation zero. Is it true that

lim
n→∞

1

n
max

x∈Zd∩[−n,n]d

∣∣f (x)
∣∣ = 0 (B.1)

almost surely?
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Update: The above question, while obviously true in d = 1, has a negative answer
in all d ≥ 2. The first counterexample, based on constructions in [43] and [11],
was provided to us by Martin Zerner. Later Tom Liggett pointed out the following,
embarrassingly simple, counterexample: Let f (x) be i.i.d. with distribution func-
tion P(f (x) > u) = u−d for u ≥ 1. Then (f (x))x∈Zd is shift-invariant, ergodic,
with f ∈ L1 and the gradients of f having zero mean, yet n−1 max|x|≤n |f (x)| has
a non-trivial distributional limit as n→ ∞.

The harmonic embedding of �∞ has been indispensable for our proofs, but it
also appears to be a very interesting object in its own right. This motivates many
questions about the corrector χ(x, ω). Unfortunately, at the moment it is not even
clear what properties make the corrector unique. The following question has been
asked by Scott Sheffield:

Question 3. Is it true that, for a.e.ω ∈ �0, there exists only one vector-valued func-
tion x �→ χ(x, ω) on �∞ (ω) such that x �→ x+χ(x, ω) is harmonic on �∞ (ω),
χ(0, ω) = 0 and χ(x, ω)/|x| → 0 as |x| → ∞?

If this question is answered in the affirmative, we could generate the corrector by
its finite-volume approximations (this would also fully justify Fig. 1). If we restrict
ourselves to functions that have the shift-invariance property (2.12), uniqueness can
presumably be shown using the “electrostatic methods” from, e.g., [18]. However,
it is not clear whether (2.12) holds for the corrector defined by the thermodynamic
limit from finite boxes.

As to the more detailed properties of the corrector, for the purposes of the pres-
ent work one would like to know how χ(x, ω) scales with x and whether it has
a well-defined scaling limit. We believe that, in sufficiently high dimension, the
corrector is actually tight:

Conjecture 4. Let d � 1. Then for each ε > 0 there exists K < ∞ such that
P0( |χ(x, ω)| > K | x ∈�∞) < ε for all x ∈ Z

d .

It appears that one might be able to prove Conjecture 4 by using Barlow’s heat-
kernel estimates. To capture the behavior in low dimensions, we make a somewhat
wilder guess:

Conjecture 5. Let d ≥ 1. Then the law of x �→ ε
2−d

2 χ(�x/ε) on compact subsets
of R

d converges weakly (as ε ↓ 0) to Gaussian Free Field, i.e., a multivariate
Gaussian field with covariance proportional to �−11, where � is the Dirichlet
Laplacian on R

d and 1 is the d-dimensional unit matrix.

Here is a heuristic reasoning that led us to these conjectures: Consider the
problem of random conductances to avoid problems with conditioning on contain-
ment in the infinite cluster. To show the above convergence, we need that for any
smooth f : R

d → R with compact support,

εd
∑

x∈Zd

(�f )(xε) ε
2−d

2 χ(x)
D−→
ε↓0

N (
0, σ 2‖∇f ‖2

21
)
, (B.2)
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where ∇ and � denote the (continuous) gradient and Laplacian, respectively, and
where N (0, C) is a mean-zero, covariance-C multivariate normal random vari-
able. Next we note that the corrector is defined, more or less, as the solution to the
equation �dχ = −V , where V is the local drift and �d is the relevant generator,
which is basically a discrete Laplacian on Z

d . Thus, if g : R
d → R is smooth with

compact support and gε(x) = g(xε), then

ε
d+2

2
∑

x∈Zd

ε−2(�dgε)(x)χ(x) = −ε d−2
2

∑

x∈Zd

gε(x)V (x)

= εd/2
∑

e : |e|=1

∑

x∈Zd

gε(x + e)− gε(x)
ε

e ω(x,x+e)

D−→
ε↓0

N (
0, ‖∇g‖2

21
)

(B.3)

The convergence statement (B.2) would then follow from (B.3) provided we can
replace the “discretized” Laplacian ε−2�dgε by its continuous counterpart �g.

Note that for d = 1 and conductances bounded away from zero, Conjecture 5 is
actually a theorem. Indeed, the corrector is a random walk with increments given by
reciprocal conductances and so the convergence follows by the invariance principle
for random walks. Conjecture 5 suggests that Conjecture 4 applies for d ≥ 3.

Despite the emphasis on the harmonic embedding of �∞, our proofs used, quite
significantly, the underlying group structure of Z

d ; e.g., in Sect. 4. Presumably this
will not prevent application of our method to other regular lattices, but for more
irregular graphs, e.g., Voronoi percolation in R

d , significant changes may be neces-
sary. A similar discussion applies to various natural subdomains of Z

d ; for instance,
it is not clear how to adapt our proof to random walk on the infinite percolation
cluster in the half-space {x ∈ Z

d : xd ≥ 0}.
A different direction of generalizations are the models of long-range percolation

with power-law decay of bond probabilities. Here we conjecture:

Conjecture 6. Let d ≥ 1 and consider long-range percolation obtained by adding
to Z

d a bond between every two distinct sites x, y ∈ Z
d independently with proba-

bility proportional to |x − y|−(d+α). If α ∈ (0, 2), then the corresponding random
walk scales to a symmetric α-stable Levy process in R

d .

Note that, according to this conjecture, in d = 1, the interval α ∈ (0, 2) of
“interesting” exponents is larger than the interval for which an infinite connected
component may occur even without the “help” of nearest neighbor connections.
On the other hand, in dimensions d ≥ 3, the interval conjectured for stable con-
vergence is strictly smaller than that of “genuine” long-range percolation behavior,
as defined, e.g., in terms of the scaling of graph distance with Euclidean distance;
cf [4, 5, 8].
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