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Abstract. In this paper, we study the existence of solution to BSDE with quadratic growth
and unbounded terminal value. The main idea consists in using a localization procedure
together with a priori bounds.

1. Introduction

In this paper we are concerned with real valued backward stochastic differential
equations – BSDEs for short in the remaining –

Yt = ξ +
∫ T

t

f (s, Ys, Zs) ds −
∫ T

t

Zs · dBs, 0 ≤ t ≤ T

where (Bt )t≥0 is a standard Brownian motion. Such equations have been exten-
sively studied since the first paper of E. Pardoux and S. Peng [8]. The full list of
contributions is too long to give and we will only quote results in our framework.

Our setting is mainly the following : the generator, namely the function f , is of
quadratic growth in the variable z and the terminal condition, the random variable
ξ , will not be bounded. BSDEs with quadratic growth have been first studied by
M. Kobylanski in her PhD (see [4, 5]) and then by J.-P. Lepeltier and J. San Martin
in [6] and more recently in [7]. We should point out that BSDEs with quadratic
growth in the variable z have found applications in control and finance, see, e.g.,
J.-M. Bismut [1], N. El Karoui, R. Rouge [2],Y. Hu, P. Imkeller, M. Müller [3], . . .

All the general results on BSDEs with quadratic growth require that the ter-
minal condition ξ is a bounded random variable. The boundedness of the terminal
condition appears, from the point of view of the applications, to be restrictive and,
moreover, from a theoretical point of view, is not necessary to obtain a solution.
Indeed, let us consider the following well known equation :

Yt = ξ + 1

2

∫ T

t

|Zs |2 ds −
∫ T

t

Zs dBs, 0 ≤ t ≤ T ;

the change of variables Pt = eYt , Qt = eYt Zt , leads to the equation

Pt = eξ −
∫ T

t

Qs dBs
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which has a solution as soon as eξ is integrable. Actually, it can be shown, since
{eYt }t∈[0,T ] is a supermartingale, that the integrability of eξ is also a necessary
condition to obtain a solution for this BSDE. We refer to [7] for details. In this last
paper, the result obtained for quadratic BSDEs require ξ to be bounded except for
this example.

In this particular case we see that the existence of exponential moments of the
terminal condition is sufficient to construct a solution to our BSDE. Our paper will
be focused on the theoretical study of these BSDEs but with unbounded terminal
value with only exponential moments. To fill the gap between boundedness and
existence of exponential moments, we will use an approach based upon a localiza-
tion procedure together with a priori bounds. Let us quickly explain how it works
with a simple example.

Let f : R×R
d −→ R be a continuous function and ξ be a nonnegative terminal

condition such that

|f (y, z)| ≤ 1

2
|z|2, E

[
eξ
]

< ∞,

and let us try to construct a solution to the BSDE

Yt = ξ +
∫ T

t

f (Ys, Zs) ds −
∫ T

t

Zs · dBs, 0 ≤ t ≤ T .

As mentioned before, BSDEs with quadratic growth in the variable z can be solved
when the terminal solution is bounded. That is why we introduce (Y n, Zn) as the
minimal solution to the BSDE

Yn
t = ξ ∧ n +

∫ T

t

f (Y n
s , Zn

s ) ds −
∫ T

t

Zn
s · dBs,

and of course we want to pass to the limit when n → ∞ in this equation. The
process Yn is known to be bounded but the estimate depends on ‖ξ ∧ n‖∞ and
thus is far from being useful when ξ is not bounded. The first step of our approach
consists in finding an estimation for Yn independent of n. In this example, we can
use the explicit formula mentioned before to show that

0 ≤ − ln E

(
e−(ξ∧n) | Ft

)
≤ Yn

t ≤ ln E
(
eξ∧n | Ft

) ≤ ln E
(
eξ | Ft

)
.

With these inequalities in hands, we introduce the stopping time

τk = inf
{
t ∈ [0, T ] : ln E

(
eξ | Ft

) ≥ k
} ∧ T

and instead of working on the time interval [0, T ] we will restrict ourselves to
[0, τk] by considering the BSDE

Yn
t∧τk

= Yn
τk

+
∫ T ∧τk

t∧τk

f
(
Yn

s , Zn
s

)
ds −

∫ T ∧τk

t∧τk

Zn
s · dBs, 0 ≤ t ≤ T .

By construction, we have supn supt

∥∥Yn
t∧τk

∥∥
∞ ≤ k. This last property together with

the fact that the sequence (Y n)n≥1 is nondecreasing allows us, with the help of a
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result of Kobylanski, to pass to the limit when n → ∞, k being fixed and then to
send k to infinity to get a solution.

The rest of the paper is organized as follows. Next section is devoted to the
notations we use during this text. In Section 3, we claim our main result that we
prove in Section 4. Finally the last section is devoted to some additional results on
BSDEs with quadratic growth in z.

2. Notations

For the remaining of the paper, let us fix a nonnegative real number T > 0. First of
all, B = {Bt }t≥0 is a standard Brownian motion with values in R

d defined on some
complete probability space (�, F, P). {Ft }t≥0 is the augmented natural filtration
of B which satisfies the usual conditions. In this paper, we will always use this
filtration. The sigma-field of predictable subsets of [0, T ] × � is denoted P .

As mentioned in the introduction, a BSDE is an equation of the following type

Yt = ξ +
∫ T

t

f (s, Ys, Zs) ds −
∫ T

t

Zs · dBs, 0 ≤ t ≤ T . (1)

The function f is called the generator and ξ the terminal condition. Let us recall
that a generator is a random function f : [0, T ] × � × R × R

d −→ R which is
measurable with respect to P ⊗ B(R) ⊗ B(Rd) and a terminal condition is simply
a real FT –measurable random variable.

By a solution to the BSDE (1) we mean a pair (Y, Z) = {(Yt , Zt )}t∈[0,T ] of pre-
dictable processes with values in R × R

d such that P–a.s., t 	−→ Yt is continuous,
t 	−→ Zt belongs to L2(0, T ), t 	−→ f (t, Yt , Zt ) belongs to L1(0, T ) and P–a.s.

Yt = ξ +
∫ T

t

f (s, Ys, Zs) ds −
∫ T

t

Zs · dBs, 0 ≤ t ≤ T .

We will use the notation BSDE(ξ, f ) to say that we consider the BSDE whose gen-
erator is f and whose terminal condition is ξ ;

(
Yf (ξ), Zf (ξ)

)
means a solution

to the BSDE(ξ, f ). A solution
(
Yf (ξ), Zf (ξ)

)
is said to be minimal if P-a.s., for

each t ∈ [0, T ], Yf
t (ξ) ≤ Y

g
t (ζ ) whenever P–a.s. ξ ≤ ζ and f (t, y, z) ≤ g(t, y, z)

for all (t, y, z).
(
Yf (ξ), Zf (ξ)

)
is said to be minimal in some space B if it belongs

to this space and the previous property holds true as soon as (Y g(ζ ), Zg(ζ )) ∈ B.
For any real p > 0, Sp denotes the set of real-valued, adapted and càdlàg

processes {Yt }t∈[0,T ] such that

‖Y‖Sp := E
[
supt∈[0,T ] |Yt |p

]1∧1/p
< +∞.

If p ≥ 1, ‖ · ‖Sp is a norm on Sp and if p ∈ (0, 1), (X, X′) 	−→ ∥∥X − X′∥∥Sp

defines a distance on Sp. Under this metric, Sp is complete. Mp denotes the set
of (equivalent classes of) predictable processes {Zt }t∈[0,T ] with values in R

d such
that

‖Z‖Mp := E

[( ∫ T

0
|Zs |2 ds

)p/2
]1∧1/p

< +∞.
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For p ≥ 1, Mp(Rn) is a Banach space endowed with this norm and for p ∈ (0, 1),
Mp is a complete metric space with the resulting distance. We set S = ∪p>1Sp,
M = ∪p>1Mp and S∞ stands for the set of predictable bounded processes.

3. Quadratic BSDEs

In this section, we consider BSDE(ξ, f ) when the generator f has a linear growth
in y and a quadratic growth in z. We denote (H1) the assumption: there exist α ≥ 0,
β ≥ 0 and γ > 0 such that P–a.s.

∀t ∈ [0, T ], (y, z) 	−→ f (t, y, z) is continuous,

∀(t, y, z) ∈ [0, T ] × R × R
d , |f (t, y, z)| ≤ α + β|y| + γ

2
|z|2. (H1)

Concerning the terminal condition ξ , we will assume that

E

[
eγ eβT |ξ |

]
< +∞. (H2)

We will use also a stronger assumption on the integrability of ξ namely

∃λ > γ eβT , E

[
eλ |ξ |

]
< +∞. (H3)

It is clear that we can assume without loss of generality that α ≥ β/γ .
As we explained in the introduction, our method relies heavily on a priori esti-

mate. To obtain such estimations, we will use the change of variable Pt = eγYt ,
Qt = γ eγYt Zt ; if (Y, Z) is a solution to the BSDE(ξ, f ), (P, Q) solves the BSDE

Pt = eγ ξ +
∫ T

t

F (s, Ps, Qs) ds −
∫ T

t

Qs · dBs, 0 ≤ t ≤ T ,

with the function F defined by

F(s, p, q) = 1p>0

(
γp f

(
s,

ln p

γ
,

q

γp

)
− 1

2

|q|2
p

)
. (2)

In view of the growth of the generator f , we have F(s, p, q) ≤ 1p>0 p(αγ +
β| ln p|). For notational convenience, we denote by H the function

∀p ∈ R, H(p) = p (αγ + β ln p) 1[1,+∞)(p) + γα1(−∞,1)(p).

It is straightforward to check that, since α ≥ β/γ , H is convex and locally Lips-
chitz continuous and that, for any real p > 0, p (αγ + β| ln p|) ≤ H(p). Thus we
deduce the inequality

∀s ∈ [0, T ], ∀p ∈ R, ∀q ∈ R
d , F (s, p, q) ≤ H(p). (3)

To get an upper bound for Yt , the idea is to compare more or less Pt with φt (ξ)

where, for any real z, {φt (z)}0≤t≤T stands for the solution to the integral equation

φt = eγ z +
∫ T

t

H(φs) ds, 0 ≤ t ≤ T . (4)
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Using the convexity of H , we will able to prove that

Pt ≤ E (φt (ξ) | Ft ) , Yt ≤ 1

γ
ln E (φt (ξ) | Ft ) .

Before proving this result rigorously, let us recall that the integral equation (4)
can be solved easily. Indeed, we have, for any z ≥ 0,

φt (z) = exp

(
γα

eβ(T −t) − 1

β

)
exp

(
zγ eβ(T −t)

)
, if β > 0,

and φt (z) = eγα(T −t)eγ z if β = 0. Let us consider the case where z < 0. If
eγ z + T γα ≤ 1 then the solution is

φt = eγ z + γα(T − t)

and otherwise there exists 0 < S < T such that eγ z + γα(T − S) = 1 and

φt = [
eγ z + γα(T − t)

]
1(S,T ](t) + exp

(
γα

eβ(S−t) − 1

β

)
1[0,S](t).

It is plain to check that t 	→ φt (z) is decreasing and that z 	→ φt (z) is increasing
and continuous.

Lemma 1. Let the assumption (H1) hold and let ξ be a bounded FT –measurable
random variable. If (Y, Z) is a solution to the BSDE(ξ, f ) in S∞ × M2 then

− 1

γ
ln E (φt (−ξ) | Ft ) ≤ Yt ≤ 1

γ
ln E (φt (ξ) | Ft ) .

Proof. Let us set 
t = E (φt (ξ) | Ft ). We have


t = E

(
eγ ξ +

∫ T

t

H(φs(ξ)) ds

∣∣∣ Ft

)

= E

(
eγ ξ +

∫ T

t

E (H(φs(ξ)) | Fs) ds

∣∣∣ Ft

)
.

Thus writing the bounded Brownian martingale

E

(
eγ ξ +

∫ T

0
E (H(φs(ξ)) | Fs) ds

∣∣∣ Ft

)

= E

[
eγ ξ +

∫ T

0
E (H(φs(ξ)) | Fs) ds

]
+
∫ t

0
�s · dBs

(
, �) solves the BSDE


t = eγ ξ +
∫ T

t

E (H(φs(ξ)) | Fs) ds −
∫ T

t

�s · dBs.
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On the other hand, if (Y, Z) ∈ S∞ × M2 is a solution of (1), setting as before
Pt = eγYt , Qt = γ eγYt Zt , we have

Pt = eγ ξ +
∫ T

t

F (s, Ps, Qs) ds −
∫ T

t

Qs · dBs,

with F defined by (2). It follows that


t − Pt =
∫ T

t

(H(
s) − H(Ps)) ds +
∫ T

t

Rs ds −
∫ T

t

(�s − Qs) · dBs

where, in view of the inequality (3) and since H is convex,

Rs = E (H(φs(ξ)) | Fs) − H (E (φs(ξ) | Fs)) + H(Ps) − F(s, Ps, Qs)

is a nonnegative process. The function H is only locally Lipschitz but since 


and P are bounded we can apply the comparison theorem to get Pt ≤ 
t and
Yt ≤ 1

γ
ln 
t .

Finally, since the function −f (t, −y, −z) still satisfies the assumption (H1),
we get also the inequality −Yt ≤ 1

γ
ln E (φt (−ξ) | Ft ). ��

We are now in position to prove that under the assumptions described before
the BSDE (1) has at least a solution.

Theorem 2. Let the assumptions (H1) and (H2) hold. Then the BSDE (1) has at
least a solution (Y, Z) such that :

− 1

γ
ln E (φt (−ξ) | Ft ) ≤ Yt ≤ 1

γ
ln E (φt (ξ) | Ft ) . (5)

If moreover, (H3) holds, then Z belongs to M2.

Proof of the last part of Theorem 2. If (Y, Z) is a solution to the BSDE (1) such
that the inequalities (5) hold, then

|Yt | ≤ 1

γ
ln E (φ0(|ξ |) | Ft )

and, under the assumption (H3), we deduce that, for some p > 1,

E

[
supt∈[0,T ] epγ |Yt |

]
< +∞.

For n ≥ 1, let τn be the following stopping time

τn = inf

{
t ≥ 0 :

∫ t

0
e2γ |Ys ||Zs |2 ds ≥ n

}
∧ T ,

and let us consider the function from R+ into itself defined by

u(x) = 1

γ 2

(
eγ x − 1 − γ x

)
.
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x 	−→ u(|x|) is C2 and we have from Itô’s formula, with the notation sgn(x) =
−1x≤0 + 1x>0,

u(|Y0|) = u(|Yt∧τn |)
+
∫ t∧τn

0

(
u′(|Ys |) sgn(Ys)f (s, Ys, Zs) − 1

2
u′′(|Ys |)|Zs |2

)
ds

−
∫ t∧τn

0
u′(|Ys |) sgn(Ys)Zs · dBs.

It follows from (H1) since u′(x) ≥ 0 for x ≥ 0 that

u(|Y0|) ≤ u(|Yt∧τn |) +
∫ t∧τn

0
u′(|Ys |) (α + β|Ys |) ds

−
∫ t∧τn

0
u′(|Ys |) sgn(Ys)Zs · dBs

−1

2

∫ t∧τn

0

(
u′′(|Ys |) − γ u′(|Ys |)

) |Zs |2ds.

Moreover, we have (u′′ − γ u′)(x) = 1 for x ≥ 0 and, taking expectation of the
previous inequality, we get

1

2
E

[∫ T ∧τn

0
|Zs |2 ds

]
≤ E

[
1

γ 2 sup
t∈[0,T ]

eγ |Yt | + 1

γ

∫ T

0
eγ |Ys | (α + β|Ys |) ds

]

Fatou’s lemma together with the fact that eγ |Yt | ∈ Sp gives the result. ��

4. Proof of Theorem 2

Let us first construct a solution to the BSDE (1) in the case where ξ is nonnegative.
For each n ∈ N

∗, we set ξn = ξ ∧ n. Then it is known from [5, Theorem 2.3]
that the BSDE

Yn
t = ξn +

∫ T

t

f
(
s, Y n

s , Zn
s

)
ds −

∫ T

t

Zn
s · dBs, 0 ≤ t ≤ T

has a minimal solution (Y n, Zn) in S∞ × M2. Lemma 1 implies the inequalities

− 1

γ
ln E

(
φt

(−ξn
) | Ft

) ≤ Yn
t ≤ 1

γ
ln E

(
φt

(
ξn
) | Ft

)
.

Since we consider only minimal solutions, we have,

∀t ∈ [0, T ], Y n
t ≤ Yn+1

t .

We define Y = supn≥1 Yn.
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Since 0 ≤ φt (ξ
n) ≤ φ0(|ξ |) and 0 ≤ φt (−ξn) ≤ φ0(|ξ |), we deduce from

the dominated convergence theorem, noting that the random variable φ0(|ξ |) is
integrable by (H2), that

− 1

γ
ln E (φt (−ξ) | Ft ) ≤ Yt ≤ 1

γ
ln E (φt (ξ) | Ft ) .

In particular, we have limt→T Yt = ξ = YT . Indeed, for each S < T ,

lim sup
t→T

Yt ≤ lim sup
t→T

1

γ
ln E (φt (ξ) | Ft ) ≤ lim

t→T

1

γ
ln E (φS (ξ) | Ft )= 1

γ
ln φS(ξ),

and limS→T
1
γ

ln φS(ξ) = ξ . We can do the same for lim inf.
Let us introduce the following stopping time :

τk = inf

{
t ∈ [0, T ] :

1

γ
ln E (φ0 (|ξ |) | Ft ) ≥ k

}
∧ T .

Then (Y n
k , Zn

k ) := (Y n
t∧τk

, Zn
t 1t≤τk

) satisfies the following BSDE

Yn
k = ξn

k +
∫ T

t

1s≤τk
f
(
s, Y n

k (s), Zn
k (s)

)
ds −

∫ T

t

Zn
k (s) · dBs,

where of course ξn
k = Yn

k (T ) = Yn
τk

.
We are going to pass to the limit when n tends to +∞ for k fixed in this last

equation. The key point is that Yn
k is increasing in n and remains bounded by k. At

this stage, let us mention a mere generalization of Proposition 2.4 in [5].

Lemma 3 ([5]). Let (ξn)n≥1 be a sequence of FT –measurable bounded random
variables and (fn)n≥1 be a sequence of generators which are continuous with
respect to (y, z).

We assume that (ξn)n≥1 converges P–a.s. to ξ , that (fn)n≥1 converges locally
uniformly in (y, z) to the generator f , and also that

1. supn≥1 ‖ξn‖∞ < +∞ ;
2. supn≥1 |fn(t, y, z)| satisfies the inequality in (H1).

If for each n ≥ 1, the BSDE(ξn, fn) has a solution in S∞ × M2, such that(
Yfn(ξn)

)
n≥1 is nondecreasing (respectively nonincreasing), then P–a.s.(

Y
fn
t (ξn)

)
n≥1

converges uniformly on [0, T ] to Yt = supn≥1 Y
fn
t (ξn) (respectively

Yt = infn≥1 Y
fn
t (ξn)),

(
Zfn(ξn)

)
n≥1 converges to some Z in M2 and (Y, Z) is a

solution to BSDE(ξ, f ) in S∞ × M2.

Proof. It follows from Lemma 1 that there exists r > 0 such that, P–a.s.

∀n ≥ 1, ∀t ∈ [0, T ],
∣∣∣Yfn

t (ξn)

∣∣∣ ≤ r.
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Let us consider the continuous function ρ(x) = xr/ max(r, |x|). Since ρ(x) =
x for |x| ≤ r ,

(
Yfn(ξn), Z

fn(ξn)
)

solves the BSDE(ξn, gn) where gn(t, y, z) =
fn(t, ρ(y), z). Obviously, we have, for each n ≥ 1,

|gn(t, y, z)| ≤ α + β r + γ

2
|z|2,

and thus we can apply the result of Kobylanski. ��
Setting Yk(t) = supn Y n

k (t), it follows from the previous lemma that there exists
a process Zk ∈ M2 such that limn Zn

k = Zk in M2 and (Yk, Zk) solves the BSDE

Yk(t) = ξk +
∫ T

t

1s≤τk
f (s, Yk(s), Zk(s)) ds −

∫ T

t

Zk(s) · dBs, (6)

where ξk = supn Y n
τk

. But τk ≤ τk+1, and thus we get, coming back to the definition
of Yk , Zk and Y ,

Yt∧τk
= Yk+1(t ∧ τk) = Yk(t), Zk+1(t) 1t≤τk

= Zk(t).

As τk → T and the Yk’s are continuous processes we deduce in particular that Y

is continuous on [0, T ). On the other hand, as mentioned before limt→T Yt = ξ

and YT is equal to ξ by construction. Thus Y is a continuous process on the closed
interval [0, T ].

Then we define Z on (0, T ) by setting :

Zt = Zk(t), if t ∈ (0, τk).

From (6), (Y, Z) satisfies:

Yt∧τk
= Yτk

+
∫ τk

t∧τk

f (s, Ys, Zs)ds −
∫ τk

t∧τk

Zs · dBs. (7)

Finally, we have

P(

∫ T

0
|Zs |2 ds = ∞) = P

(∫ T

0
|Zs |2 ds = ∞, τk = T

)

+P

(∫ T

0
|Zs |2 ds = ∞, τk < T

)

≤ P

(∫ τk

0
|Zk(s)|2 ds = ∞

)
+ P(τk < T ),

and we deduce that, P–a.s.

∫ T

0
|Zs |2 ds < ∞.

By sending k to infinity in (7), we deduce that (Y, Z) is a solution of (1).
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Let us explain quickly how to extend this construction to the general case. Let
us fix n ∈ N

∗ and p ∈ N
∗ and set ξn,p = ξ+ ∧ n − ξ− ∧ p. Let us consider,

(Y n,p, Zn,p) the minimal bounded solution to the BSDE

Y
n,p
t = ξn,p +

∫ T

t

f
(
s, Y

n,p
s , Z

n,p
s

)
ds −

∫ T

t

Z
n,p
s · dBs, 0 ≤ t ≤ T

which satisfies

− 1

γ
ln E

(
φt

(−ξn,p
) | Ft

) ≤ Y
n,p
t ≤ 1

γ
ln E

(
φt

(
ξn,p

) | Ft

)
.

We have,

∀t ∈ [0, T ], Y
n,p+1
t ≤ Y

n,p
t ≤ Y

n+1,p
t ,

and we define Yp = supn≥1 Yn,p so that Y
p+1
t ≤ Y

p
t and Yt = infp≥1 Y

p
t .

By the dominated convergence theorem, we have

− 1

γ
ln E (φt (−ξ) | Ft ) ≤ Yt ≤ 1

γ
ln E (φt (ξ) | Ft ) ,

and in particular, we have limt→T Yt = ξ = YT . (Y
n,p
t∧τk

, Z
n,p
t 1t≤τk

) solves the
BSDE

Y
n,p
t∧τk

= Yn,p
τk

+
∫ T

t

1s≤τk
f
(
s, Y

n,p
s , Z

n,p
s

)
ds −

∫ T

t

Z
n,p
s 1s≤τk

· dBs.

But, once again Y
n,p
t∧τk

is increasing in n and decreasing in p and remains bounded
by k. Arguing as before, setting Yk(t) = infp supn Y

n,p
t∧τk

, there exists a process Zk

such that limp limn Zn,p(s)1s≤τk
= Zk(s) and (Yk, Zk) still solves the BSDE (6).

The rest of the proof is unchanged.

5. Additional results on quadratic BSDEs

5.1. Minimal solution

In this section, we give some complements on BSDEs with quadratic growth in z.

Proposition 4. Let (H1) hold and assume moreover that there exists r ≥ 0 such
that P–a.s.

f (t, y, z) ≥ −r (1 + |y| + |z|) .

Let us assume also that (H3) holds for ξ+ and that, for some p > 1, ξ− ∈ Lp.
Then BSDE(ξ, f ) has a minimal solution in S.
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Proof. Without loss of generality, let us assume that r is an integer. For each integer
n ≥ r , let us consider the function

fn(t, y, z) = inf
{
f (t, p, q) + n|p − y| + n|q − z| : (p, q) ∈ Q

1+d
}

.

Then fn is well defined and it is globally Lipschitz continuous with constant n.
Moreover (fn)n≥r is increasing and converges pointwise to f . Dini’s theorem
implies that the convergence is also uniform on compact sets. We have also, for all
n ≥ r ,

−r(1 + |y| + |z|) ≤ fn(t, y, z) ≤ f (t, y, z)

Let (Y n, Zn) be the unique solution in Sp × Mp to BSDE(ξ, fn). It follows from
the classical comparison theorem that

Y r
t ≤ Yn

t ≤ Yn+1
t .

Let us prove that Yn
t ≤ 1

γ
ln E (φt (ξ) | Ft ). To do this let us recall that, since fn is

Lipschitz,Yn
t = limm→+∞ Y

fn
t (ξm)where ξm = ξ 1|ξ |≤m. Moreover E (φt (ξm) | Ft )

−→ E (φt (ξ) | Ft ) a.s. since supm≥1 |φt (ξm)| ≤ φ0(ξ
+) which is integrable. Thus

we have only to prove that Y
fn
t (ξm) ≤ 1

γ
ln E (φt (ξm) | Ft ). We keep the notations

of the beginning of Section 4. (
, �) is solution to the BSDE


t = eγ ξm +
∫ T

t

H(
s) ds +
∫ T

t

s ds −
∫ T

t

�s · dBs,

where s = E (H(φs(ξ)) | Fs) − H(
s) is a nonnegative process since H is con-
vex.

It follows by setting Ut = 1
γ

ln 
t , Vt = �t

γ
t
that (U, V ) solves the BSDE

Ut = ξm +
∫ T

t

g(s, Us, Vs) ds −
∫ T

t

Vs · dBs

where we have set g(s, u, v) = (α + βu)1u≥0 + αeγ |u|1u<0 + γ
2 |v|2 + Cs with

Cs = 1
γ
e−γUs s . Since the process C is still nonnegative, we have the inequalities

fn(t, u, v) ≤ f (t, u, v) ≤ g(t, u, v)

taking into account the fact that αγ ≥ β. Since fn is Lipschitz continuous and(
Yfn(ξm) − U

)+
belongs to S, we can apply the extended comparison theorem

(see Proposition 5) to get, for each m ≥ 1, Y
fn
t (ξm) ≤ Ut and thus the inequality

we want to obtain.
We set Y = supn≥r Y n and, for k ≥ 1,

τk = inf

{
t ∈ [0, T ] : max

(
1

γ
ln E (φt (ξ) | Ft ) , −Y r

t

)
≥ k

}
∧ T .

Arguing as in the proof of Theorem 2, we construct a process Z such that (Y, Z)

solves BSDE(ξ, f ).
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Let us show that this solution is minimal in S. Let (Y ′, Z′) be a solution to the
BSDE(ξ ′, f ′) where ξ ≤ ξ ′ and f ≤ f ′. It is enough to check that Yn ≤ Y ′ to
prove that Y ≤ Y ′. But this is a direct consequence of Proposition 5. ��

To be complete, let us claim and prove the extended comparison theorem that
we used in the proof of the previous result.

Proposition 5. Let (Y, Z) be a solution to BSDE(ξ, f ) and (Y ′, Z′) be a solution
to BSDE(ξ ′, f ′). We assume that ξ ≤ ξ ′ and that f satisfies, for some constants µ

and λ, P–a.s.

(y − y′) · (f (t, y, z) − f (t, y′, z)
) ≤ µ|y − y′|2;∣∣f (t, y, z) − f (t, y, z′)

∣∣ ≤ λ|z − z′|.

If
(
Y − Y ′)+ belongs to S, then P–a.s. Yt ≤ Y ′

t .

Proof. Let us fix n ∈ N
∗ and denote τn the stopping time

τn = inf

{
t ∈ [0, T ] :

∫ t

0

(
|Zs |2 + ∣∣Z′

s

∣∣2) ds ≥ n

}
∧ T .

Tanaka’s formula leads to the equation, setting Ut = Yt − Y ′
t , Vt = Zt − Z′

t ,

eµ(t∧τn)U+
t∧τn

≤ eµτnU+
τn

−
∫ τn

t∧τn

eµs1Us>0Vs · dBs (8)

+
∫ τn

t∧τn

eµs
{
1Us>0

(
f (s, Ys, Zs) − f ′ (s, Y ′

s , Z
′
s

))− µU+
s

}
ds.

First of all, we write

f (s, Ys, Zs) − f ′ (s, Y ′
s , Z

′
s

) = f (s, Ys, Zs) − f
(
s, Y ′

s , Zs

)+ f
(
s, Y ′

s , Zs

)
−f ′ (s, Y ′

s , Z
′
s

)

and we deduce, using the monotonicity of f in y that

1Us>0
(
f (s, Ys, Zs) − f ′ (s, Y ′

s , Z
′
s

))− µU+
s ≤ 1Us>0

(
f
(
s, Y ′

s , Zs

)
−f ′ (s, Y ′

s , Z
′
s

) )
.

But f
(
s, Y ′

s , Z
′
s

)− f ′ (s, Y ′
s , Z

′
s

)
is nonpositive so that

1Us>0
(
f (s, Ys, Zs) − f ′ (s, Y ′

s , Z
′
s

))− µU+
s ≤ 1Us>0

(
f
(
s, Y ′

s , Zs

)
−f

(
s, Y ′

s , Z
′
s

) )
.

Finally we set

βs =
(
f
(
s, Y ′

s , Zs

)− f
(
s, Y ′

s , Z
′
s

))
Vs

|Vs |2
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which is a process bounded by λ. Coming back to (8), we obtain the following
inequality

eµ(t∧τn)U+
t∧τn

≤ eµτnU+
τn

+
∫ τn

t∧τn

eµs1Us>0βs · Vs ds −
∫ τn

t∧τn

eµs1Us>0Vs · dBs

By Girsanov’s theorem, we deduce that

E
∗
[
eµ(t∧τn)U+

t∧τn

]
≤ E

∗ [eµτnU+
τn

]
,

where P
∗ is the probability measure on (�, FT ) whose density with respect to P is

DT = exp

{∫ T

0
βs · dBs − 1

2

∫ T

0
|βs |2ds

}
;

it is worth noting that, since β is a bounded process, DT has moments of all order.
Since we know that U+ belongs to S, we can easily send n to infinity to get

E
∗ [eµtU+

t

] ≤ 0.

Thus Ut ≤ 0 P
∗–a.s. and since P

∗ is equivalent to P on (�, FT ), Yt ≤ Y ′
t P–a.s.. ��

5.2. One extension

In this paragraph, we explain how we can extend our results to a more general
setting allowing a superlinear growth of the generator in the variable y as in the
work [6].

Let h : R+ −→ R+ be a nondecreasing convex C1 function with h(0) > 0
such that ∫ +∞

0

du

h(u)
= +∞.

We denote (H1’) the assumption: there exists γ > 0 such that P–a.s.

∀t ∈ [0, T ], (y, z) 	−→ f (t, y, z) is continuous,

∀(t, y, z) ∈ [0, T ] × R × R
d , |f (t, y, z)| ≤ h(|y|) + γ

2
|z|2, (H1’)

sup
y>0

e−γyh(y) < +∞.

Let us point out that the previous setting, namely the linear growth condition, cor-
responds to h(y) = α + βy but we can also have a superlinear growth in y; for
instance, we can take h(y) = α (y + e) ln(y + e).

Before giving our integrability condition for the terminal value ξ , let us explain
what is the first modification we have to do. We consider only the case where
h is not constant. According to the third point of (H1’), let us denote by c =
supp∈(0,1) γph

(
− ln p

γ

)
and let us define

p0 = inf

{
p ≥ 1 : γph

(
ln p

γ

)
≥ c

}
.
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We define finally

H(p) = γph

(
ln p

γ

)
1p≥p0 + c1p<p0 .

Then H is convex and we have the following result.

Lemma 6. Let z ∈ R. The integral equation

φt = eγ z +
∫ T

t

H(φs) ds, 0 ≤ t ≤ T ,

has a unique continuous solution {φt (z)}0≤t≤T which is decreasing. Moreover, for
each t ∈ [0, T ], the map z 	−→ φt (z) is increasing and continuous.

Proof. φt is solution if and only if ut = ln φt/γ is a solution of the differential
equation

u′
t = −θ(ut ), 0 ≤ t ≤ T , uT = z ≥ 0,

where θ(x) = h(x)1
x≥ ln p0

γ

+ c
γ
e−γ x1

x<
ln p0

γ

. Let us consider the function � defined

by

�(x) =
∫ x

−∞
1

θ(u)
du, x ∈ R.

Since θ is positive, � is an increasing bijection from R onto (0, ∞) of class C1.
It’s plain to check that the unique solution to the previous differential equation is
�−1(T − t + �(z)) since for any solution we have �(ut )

′ = −1. Thus

φt = eγ�−1(T −t+�(z))

and the proof of the lemma is complete. ��
We are now in position to give our second assumption.

φ0(|ξ |) is integrable. (H2’)

Exactly as in the linear case, we can prove the following existence result that gen-
eralizes Theorem 2.

Theorem 7. Let assumptions (H1’) and (H2’) hold. Then the BSDE (1) has at least
a solution (Y, Z) such that :

− 1

γ
ln E (φt (−ξ) | Ft ) ≤ Yt ≤ 1

γ
ln E (φt (ξ) | Ft ) .
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