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Abstract Consider a locally compact group G acting measurably on some
spaces S and T. We prove a general representation of G-invariant measures on
S and the existence of invariant disintegrations of jointly invariant measures
on S × T. The results are applied to Palm and related kernels associated with
a stationary random pair (ξ , η), where ξ is a random measure on S and η is a
random element in T.
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1 Introduction

Kernels—in the sense of measurable functions into a measure space—clearly
abound in probability theory, appearing as conditional distributions, Markov
transition functions, potential kernels, random measures, point processes, Palm
measures, or Gibbs and Papangelou kernels. When the underlying distribution
is invariant under a group of transformations, one expects those kernels to
be invariant too, in an appropriate sense. In view of their non-uniqueness, it
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becomes an important and non-trivial problem to establish the existence of
invariant versions.

Keeping such applications in mind, we prove in Sect. 2 a general representa-
tion of invariant measures on an abstract space S, when the underlying group
G is locally compact and its action on S is proper but not necessarily transitive.
The invariance problem for kernels is discussed in Sect. 3. Here we consider a
locally compact group G, acting measurably on two abstract spaces S and T,
along with a kernel µ from S to T. Typically, µ arises as a disintegration kernel
of a jointly invariant measure M on S×T, and we need to find a suitably invari-
ant version of µ. This also involves the construction of an invariant supporting
measure on S. Two totally different approaches are considered here, based on
skew factorization and regularization (often called perfection), respectively.

The rest of the paper deals with some probabilistic applications. Thus, the
basic invariance theorems for Palm, Gibbs, and Papangelou kernels appear
in Sect. 5. Section 6 contains some characterizations of Palm measures and a
related coupling theorem. In Sect. 7, we consider the dual problem of finding
invariant representations of stationary random measures, including those in
terms of stationary random measures on the underlying group. The preliminary
Sect. 4 introduces the various kinds of Palm kernels and explains their con-
nection to ordinary conditioning. Prompted by some remarks of a referee, we
emphasize that all major results in this paper are (believed to be) entirely new,
not just technical improvements of old results, unless something else is said to
the contrary.

We turn to some historical and bibliographical comments. Invariant mea-
sures form a classical subject, covered by numerous textbooks and monographs,
such as Hewitt and Ross [9]. Some basic probabilistic aspects are explored by
Dynkin [4], and some recent developments are given by Schindler [29]. Ele-
mentary introductions appear in [12,27]. Invariant disintegrations, along with
some applications to stochastic geometry, are discussed in [17].

The study of Palm measures goes back to the pioneering work of Palm [23],
Khinchin [16], Kaplan [15], Ryll-Nardzewski [28], Slivnyak [30], Matthes [18],
and Mecke [21]. Originally devised as a tool in queuing theory, as clarified by the
modern expositions in [1,6], their importance for applications is not restricted
to point processes, as decisively demonstrated by some recent work on su-
perprocesses (Dawson [3]) and regenerative processes (Kallenberg [13]). The
Papangelou and Gibbs kernels were discovered and explored by Papangelou
[25,26] and Kallenberg [10,11], in work motivated by applications to stochastic
geometry and statistical mechanics (cf. [20]).

Basic facts about random measures may be gathered from [11]. A com-
prehensive and diverse introduction to Palm measures is given in [2]. Further
information on this rich subject appears in [11,19,33]. Elementary introductions
are offered in [12,22].

We conclude with some remarks on notation. For measures µ, measurable
functions f , and measurable subsets B on a common space S, we define µf =∫

fdµ and µ[f ; B] = ∫
B fdµ. When f ≥ 0, we write f · µ for the measure ν�µ

with µ-density f , where � denotes absolute continuity. The relation µ ∼ ν
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means that both µ�ν and ν�µ. The restriction 1B · µ of µ to B is often writ-
ten as 1Bµ. All random elements are defined on an abstract probability space
(�, A, P), and we write Eξ = ∫

ξdP and E[ξ ; A] = ∫
A ξdP as before. We always

assume � to be rich enough to support any randomization variables we may

need. Probability distributions are written as L(ξ) = P{ξ ∈ ·}, and ξ
d= η means

that L(ξ) = L(η).

2 Invariant measures

Throughout this paper, we assume G to be an lcsc (locally compact, second
countable Hausdorff) group with left and right Haar measures λ and λ̃ and with
modular function �. When G acts on a space S, we define the associated shifts θr
and projections πs by θrs = πsr = rs, r ∈ G, s ∈ S. The sets πsG are called orbits,
and the action is said to be transitive if πsG = S for all s. If even S is a topological
space, then the action is said to be topologically proper if each projection πs is
continuous and such that π−1

s K is compact in G for every compact set K ⊂ S.
The following result suggests a non-topological notion of properness. Here and
below N = {1, 2, . . . }.
Lemma 2.1 For G acting measurably on S, these conditions are equivalent:

(i) There exists a measurable function g > 0 on S such that λ(g ◦ πs) < ∞ for
all s ∈ S.

(ii) There exists a measurable partition B1, B2, . . . of S such that λ(π−1
s Bk) < ∞

for all k ∈ N and s ∈ S.

Proof Suppose that (i) holds for some measurable function g > 0. Define

Bk = g−1[k−1, (k − 1)−1), k ∈ N,

where 0−1 = ∞. By Fubini’s theorem, we get for any s ∈ S,

∑

k
k−1λ(π−1

s Bk) = λ
∑

k
k−11Bk ◦ πs ≤ λ(g ◦ πs) < ∞,

which shows that the sets B1, B2, . . . satisfy (ii).
Conversely, assuming (ii) to hold for some sets B1, B2, . . . , we write

bk(s) = (λ ◦ π−1
s )Bk, s ∈ S, k ∈ N,

m(s) = min{k ∈ N; bk(s) > 0}, s ∈ S,
Ak = {s ∈ S; m(s) = k}, k ∈ N.

The Ak form a measurable partition of S, since
∑

k≥1bk(s) = λG > 0. Hence,
the function

g(s) =
∑

k
1Ak(s)

∑

n
2−n 1Bn(s)

bk(s)
bk(s) + bn(s)

, s ∈ S,
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is measurable and satisfies 0 < g(s) < ∞ for all s ∈ S. Since also

bk(rs) =
∫

λ(dp) 1Bk(prs) = �(r)
∫

λ(dp) 1Bk(ps) = �(r) bk(s),

and hence 1Ak(rs) = 1Ak(s), we have

(λ ◦ π−1
s )g =

∑

k,n
2−n

∫
λ(dr) 1Ak∩Bn(rs)

bk(rs)
bk(rs) + bn(rs)

=
∑

k,n
2−n 1Ak(s)

bk(s)
bk(s) + bn(s)

∫
λ(dr) 1Bn(rs)

≤
∑

k
1Ak(s) bk(s)

∑

n
2−n

= bm(s)(s) = (λ ◦ π−1
s )Bm(s) < ∞,

which shows that even (i) is fulfilled. 
�
When the conditions of Lemma 2.1 are satisfied, we say that G acts properly

on S. This is trivially true when G is compact. If even S is lcsc and the action
of G is continuous and topologically proper, then (ii) is clearly fulfilled for any
partition of S into relatively compact, measurable subsets B1, B2, . . . . Thus, the
present notion of properness is then implied by the earlier, topological version.

When G acts measurably on (S, S), we write IS for the G-invariant σ -field in
S, consisting of all sets B ∈ S such that θ−1

r B = B for every r ∈ G. A measure µ

on S is said to be G-invariant if µ◦θ−1
r = µ for all r ∈ G and s-finite if µn ↑ µ for

some bounded measures µn on S. Note that Fubini’s theorem, usually proved
for σ -finite measures, remains valid for s-finite ones.

Lemma 2.2 Let G act measurably on S, and let µ and ν be s-finite, G-invari-
ant measures on S. Then µ � ν iff the same relation holds on IS. This holds
automatically when G acts transitively on S and ν = 0.

Proof Assume that µ � ν on IS, and fix any B ∈ S with νB = 0. Define
f (s) = ∫

1B(rs) λ̃(dr) and A = {s ∈ S; f (s) > 0}, and note that f and A are
S-measurable by Fubini’s theorem. For any r ∈ G we have f (rs) = f (s) by the
right invariance of λ̃, and therefore θ−1

r A = A, which shows that A is G-invari-
ant and hence belongs to IS. Next, we may use Fubini’s theorem for s-finite
measures and the G-invariance of ν to get νf = λ̃(G) ν(B) = 0, which implies
f = 0 a.e. ν. This gives νA = 0, and so by hypothesis µA = 0, which implies
µf = 0. Finally, by the s-finite version of Fubini’s theorem and the G-invariance
of µ, we have λ̃(G) µ(B) = µf = 0, which implies µB = 0 since λ̃ = 0. Thus,
the relation µ � ν extends to S. The last assertion is obvious since IS = {∅, S}
in the transitive case. 
�

We also need the following invariant version of the Radon–Nikodym theo-
rem. The result is a special case of Theorem 3.5 (for T a singleton set), whose
proof is independent of all results in this section.
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Lemma 2.3 Let G act measurably on S, and let µ � ν be σ -finite and G-invari-
ant measures on S. Then µ = f ·ν for some measurable and G-invariant function
f ≥ 0 on S.

Writing M for the convex set of G-invariant measures in MS, the class of
σ -finite measures on S, we say that ν ∈ M is extreme if the relation ν = ν′ + ν′′
with ν′, ν′′ ∈ M implies that both ν′ and ν′′ are proportional to ν. We also say
that ν is ergodic if νA ∧ νAc = 0 for every A ∈ IS. When G acts properly on S,
we define a kernel ϕ on S by

ϕs = λ ◦ π−1
s

λ(g ◦ πs)
, s ∈ S, (1)

where g is such as in Lemma 2.1. The following result gives a unique represen-
tation of G-invariant measures on S.

Theorem 2.4 Let G act properly on a Borel space S, fix g as in Lemma 2.1,
and define a kernel ϕ by (1). Then a σ -finite measure ν on S is G-invariant iff
ν = ∫

m µ(dm) for some measure µ on the range ϕ(S) = {ϕs; s ∈ S}, in which
case µ is unique and given by µ = (g·ν)◦ϕ−1. The measures ϕs are either singular
or equal, and ν is ergodic or extreme iff it is proportional to some ϕs, which is
always true when G acts transitively on S.

Though invariant measures form a classical subject covered by a vast liter-
ature (for different aspects, see [4,9,14,17,29]), the present result seems to be
new. Only the transitive case is straightforward (cf. [27, p. 384] or [12, p. 41]).
In the general case, our key idea is to use the kernel ϕ to provide a measurable
labeling of the orbits.

Proof The measures ϕs are σ -finite since ϕsg = 1 for all s ∈ S, and the left-
invariance of λ yields the G-invariance

ϕs ◦ θ−1
r = ϕs, r ∈ G, s ∈ S. (2)

Noting that λ ◦ π−1
rs = �(r) λ ◦ π−1

s for all r and s, we see that also

ϕrs = ϕs, r ∈ G, s ∈ S. (3)

The mapping s �→ ϕs is measurable by Fubini’s theorem, and the diagonal D
in M2

S is measurable since MS inherits the Borel property from S. Hence, the
graph �−1D = {(s, ϕs); s ∈ S} is measurable in S×MS, where �(s, m) = (ϕs, m)

on S × MS. Finally, the projection ϕ(S) of �−1D onto MS is universally mea-
surable since S is Borel.

For any G-invariant measure ν on S, we define a measure ν̃ on S by

ν̃ =
∫

g(s) ν(ds) ϕs =
∫

m µ(dm), (4)
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where µ = (g · ν) ◦ ϕ−1. Note that ν̃ is G-invariant by (2) and also σ -finite since
ν̃g = νg < ∞. If A ∈ IS with ν̃A = 0, we have

0 = ν̃A = λG
∫

A

g(s) ν(ds)
λ(g ◦ πs)

, (5)

and we get νA = 0 since g > 0. This gives ν � ν̃ on IS, which extends to S
by Lemma 2.2. Hence, Lemma 2.3 yields ν = h · ν̃ for some measurable and
G-invariant function h ≥ 0 on S.

To identify h, we note that ϕs(hf ) = h(s) ϕsf for any s ∈ S and measurable
function f ≥ 0, and so

νf = ν̃(hf ) =
∫

g(s) h(s) ν(ds) ϕsf .

Applying this to the functions

f±(s) = g(s) 1{(h(s) − 1)± > 0}, s ∈ S,

where 1{·} = 1{·}, and using the G-invariance of h, we obtain

∫
ν(ds) g(s) (h(s) − 1) 1{(h(s) − 1)± > 0} = 0,

which yields ν(g|h − 1|) = 0 and hence h = 1 a.e. ν. This gives ν = ν̃, and the
representation (4) remains valid for ν. In the transitive case, (3) shows that ϕs
is independent of s, and (4) reduces to ν = (νg) ϕs for all s ∈ S.

For measurable M ⊂ MS, the set A = ϕ−1M ⊂ S is G-invariant by (3), and
so ϕs[g; A] = 1A(s) = 1M(ϕs) for all s ∈ S. Assuming ν to be G-invariant with a
representation

∫
m µ(dm), where µ is restricted to ϕ(S), we get

ν[g; A] =
∫

m[g; A] µ(dm) = µM. (6)

In particular, µ is uniquely determined by ν.
For any s ∈ S, consider a σ -finite and G-invariant measure ν � ϕs. By

Lemma 2.3 we have ν = h · ϕs for some measurable and G-invariant function
h ≥ 0 on S, and so ν = h(s) ϕs, which shows that ν is proportional to ϕs. In
particular, if ϕs = ν + ν′ for some G-invariant measures ν and ν′, then ν and ν′
are both proportional to ϕs, which means that ϕs is extreme.

For any s, t ∈ S, consider the Lebesgue decomposition ϕt = ν + ν′ of ϕt with
respect to ϕs, so that ν � ϕs and ν′ ⊥ ϕs. Then (2) yields for any r ∈ G

ϕt = ϕt ◦ θ−1
r = ν ◦ θ−1

r + ν′ ◦ θ−1
r ,
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and also

ν ◦ θ−1
r � ϕs ◦ θ−1

r = ϕs,

ν′ ◦ θ−1
r ⊥ ϕs ◦ θ−1

r = ϕs.

The uniqueness of the decomposition gives ν ◦ θ−1
r = ν and ν′ ◦ θ−1

r = ν′, which
means that ν and ν′ are again G-invariant. Since ϕt is extreme, we conclude that
ν and ν′ are both proportional to ϕt, and since ν ⊥ ν′, we have either ν = 0
or ν′ = 0. Here ν = 0 implies ϕt ⊥ ϕs. If instead ν′ = 0, we get ϕt � ϕs,
and it follows as before that ϕt = cϕs for some constant c ≥ 0. Noting that
1 = ϕtg = cϕsg = c, we obtain ϕt = ϕs. This shows that ϕs and ϕt are either
singular or equal.

Now consider any extreme, G-invariant measure ν on S, represented as in
(4) with µ = (g · ν) ◦ ϕ−1. If µ is non-degenerate, we may choose a measurable
set M ⊂ MS such that µM∧µMc > 0. Writing A = ϕ−1M, we see from (6) that
ν[g; A] ∧ ν[g; Ac] > 0, which implies νA ∧ νAc > 0 since g > 0. The restrictions
1A · ν and 1Ac · ν are G-invariant since this is true for both A and ν. Since they
are also non-zero and mutually singular, this contradicts the extremality of ν.
We conclude that µ is degenerate and hence supported by a single measure ϕs,
which means that ν is proportional to ϕs.

For any A ∈ IS, we have as in (5)

ϕsA ∧ ϕsAc = λG
λ(g ◦ πs)

(1A(s) ∧ 1Ac(s)) = 0, s ∈ S,

which shows that each ϕs is ergodic. Conversely, suppose that ν = ∫
m µ(dm)

is G-invariant and ergodic. If µ is not degenerate, we may choose M ⊂ MS
to be measurable with µM ∧ µMc > 0. As before, we see that A = ϕ−1M is
G-invariant with νA ∧ νAc > 0, which contradicts the ergodicity of ν. Hence, µ

is degenerate, which means that ν is proportional to some ϕs. 
�

Similar ideas can be used to construct σ -finite, invariant measures.

Proposition 2.5 Let G act properly on S. Then for any s-finite, G-invariant mea-
sure µ on S, there exists a σ -finite, G-invariant measure ν ∼ µ on S, and ν is
unique up to a normalization when the group action is transitive.

Proof Since µ is s-finite, there exist some bounded measures µn ↑ µ on S, and
we may define a bounded measure ρ on S by

ρ =
∑

n
2−n µn

µnS ∨ 1
.

For g as in Lemma 2.1 and the ϕs as in (1), we define ν = ∫
ρ(ds) ϕs. Then ν is

σ -finite since νg = ρS < ∞, and by (2) it is also G-invariant.
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For any A ∈ S we have µA = 0 iff µnA = 0 for all n, which is equivalent to
ρA = 0. This shows that ρ ∼ µ. We also have ν ∼ ρ on IS since

νA = λG
∫

A

ρ(ds)
λ(g ◦ πs)

, A ∈ IS.

Hence, ν ∼ µ on IS, which extends to S by Lemma 2.2. In the transitive case, (3)
shows that ϕs is independent of s, and the last assertion follows as in Theorem
2.4. 
�

Finally, Lemma 2.3 yields a short proof for the uniqueness of invariant mea-
sures in the transitive case (cf. [12, p. 41]):

Corollary 2.6 Let G act measurably and transitively on S. Then any two σ -finite,
G-invariant measures on S agree up to a normalization.

Proof Let ν1 and ν2 be σ -finite and G-invariant measures on S. Then ν1 �
ν1 + ν2 ≡ ν, and so by Lemma 2.3 we have ν1 = h · ν for some G-invariant,
measurable function h ≥ 0 on S. Since the group action is transitive, h is just
a constant c ≥ 0, and we get (1 − c)ν1 = cν2, which means that ν1 and ν2 are
proportional. 
�

3 Invariant kernels and disintegrations

Given two measurable spaces (S, S) and (T, T ), a kernel from S to T is defined
as a function µ ≥ 0 on S×T such that µ(s, B) is a σ -finite measure in B for fixed
s and a measurable function of s for fixed B. (For basic properties of kernels
and their products, see [12, pp. 20f.]) A disintegration (along S) of a measure M
on S × T is a representation M = ν ⊗ µ, where ν is a σ -finite measure on S and
µ is a kernel from S to T. We begin with the basic existence result.

Lemma 3.1 Let M be a σ -finite measure on S × T, where T is Borel. Then
M = ν ⊗ µ for some σ -finite measure ν on S and kernel µ from S to T. Here
µsT < ∞ for s ∈ S a.e. ν iff M(· × T) is σ -finite.

Proof Choose a measurable function f > 0 on S × T with Mf = 1, and apply
the existence theorem for conditional distributions (cf. [12, p. 107]) to the prob-
ability measure f · M. We may choose ν = M(· × T), equivalent to µsT = 1 a.e.,
iff M(· × T) is σ -finite. 
�

Now suppose that G acts measurably on S and T, and let M be a measure on
S×T with disintegration ν⊗µ. Then for any r ∈ G we note that M◦θ−1

r = ν̃⊗µ̃,
where ν̃ = ν ◦ θ−1

r and µ̃rs = µs ◦ θ−1
r . In the special case where M is jointly G-

invariant, we get ν ⊗µ = ν̃ ⊗ µ̃, which suggests that we look for disintegrations
M = ν ⊗ µ satisfying ν = ν̃ and µ = µ̃ for all r ∈ G. Thus, we want ν and µ to
be G-invariant, where the latter invariance is defined by

µrs = µs ◦ θ−1
r , r ∈ G, s ∈ S. (7)
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We consider two methods of constructing invariant disintegrations. The easiest
case is when S contains the group G as a factor.

Theorem 3.2 Let G act measurably on S and T, where T is Borel, and consider
a σ -finite, jointly G-invariant measure M on G × S × T. Then M = λ⊗ ν ⊗µ for
some G-invariant kernels ν from G to S and µ from G × S to T, given by

νr = ν̂ ◦ θ−1
r , µr,s = µ̂r−1s ◦ θ−1

r , r ∈ G, s ∈ S,

for some measure ν̂ on S and kernel µ̂ from S to T. Here the measure ν̂ ⊗ µ̂ on
S × T is unique.

Note that λ ⊗ ν is again invariant, which makes (λ ⊗ ν) ⊗ µ an invariant
disintegration of M. Our proof begins with a simple factorization.

Lemma 3.3 Let the σ -finite measure µ on G × S be left-invariant under shifts in
G only. Then µ = λ ⊗ ν for a unique, σ -finite measure ν on S.

Here the difficulty is to show that µ remains σ -finite on the class of measur-
able rectangles (cf. [2, pp. 461–462]).

Proof Fix any nonempty, open, relatively compact set B ⊂ G, and put

b(r) =
∫

1B(pr) λ(dp), r ∈ G.

Since all right translates of B have the same properties, we get 0 < b(r) < ∞
for r ∈ G. By the σ -finiteness of µ, we may next choose a measurable function
h > 0 on G × S such that the function b(r)h(r, s) is µ-integrable. Define

ĥ(s) =
∫

h(r−1, s) λ(dr), s ∈ S,

µ̂A =
∫

A

ĥ(s) µ(· × ds), A ∈ S.

Using the left invariance of λ and µ and Fubini’s theorem, we get

µ̂SB =
∫ ∫

b(r) h(r, s) µ(dr ds) < ∞.

Noting that each µ̂A is again left-invariant, we get µ̂A(rB) < ∞ for every r ∈ G,
and since every compact set in G is covered by finitely many translates rB, we
conclude that the measures µ̂A are Radon. By the uniqueness of Haar measure
up to a normalization, we obtain µ̂A = ρAλ for some constants ρA. Since µ̂AB is
a bounded measure in A, the same thing is true for ρA, and we get ĥ ·µ = λ⊗ρ,
which implies µ = λ ⊗ ν with ν = ĥ−1 · ρ. 
�
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The last lemma leads easily to the following skew factorization.

Lemma 3.4 Let G act measurably on S, and consider a σ -finite, jointly G-invari-
ant measure µ on G × S. Then µ = (λ ⊗ ν) ◦ ϑ−1 for a unique, σ -finite measure
ν on S, where

ϑ(r, s) = (r, rs), r ∈ G, s ∈ S.

Proof Define the shifts θr and θ ′
r on G × S by

θr(p, s) = (rp, rs), θ ′
r(p, s) = (rp, s), p, r ∈ G, s ∈ S,

and note that ϑ−1 ◦ θr = θ ′
r ◦ ϑ−1 for all r ∈ G. Since µ is jointly G-invariant,

we get

µ ◦ ϑ ◦ θ ′
r
−1 = µ ◦ θ−1

r ◦ ϑ = µ ◦ ϑ ,

where ϑ = (ϑ−1)−1. Hence, µ ◦ ϑ is invariant under the shifts θ ′
r, and Lemma

3.3 yields the factorization µ ◦ ϑ = λ ⊗ ν. Now apply ϑ−1 to both sides. 
�
Proof of Theorem 3.2 By Lemma 3.4 we have M = (λ ⊗ ρ) ◦ ϑ−1 for some
σ -finite measure ρ on S × T, where the mapping ϑ on G × S × T is given by
ϑ(r, s, t) = (r, rs, rt). Introducing a further disintegration ρ = ν̂ ⊗ µ̂ in terms of a
measure ν̂ on S and a kernel µ̂ from S to T, we get M = (λ ⊗ ν̂ ⊗ µ̂) ◦ ϑ−1. Now
define the kernels µ and ν by (19), and note that they are both G-invariant, in
the sense that νr ◦ θ−1

p = νpr and µr,s ◦ θ−1
p = µpr,ps for all p, r ∈ G and s ∈ S. To

prove the required disintegration, we may write

(λ ⊗ ν ⊗ µ)f =
∫

λ(dr)
∫

νr(ds)
∫

µr,s(dt) f (r, s, t)

=
∫

λ(dr)
∫

ν̂(ds)
∫

µ̂s(dt)f (r, rs, rt)

= ((λ ⊗ ν̂ ⊗ µ̂) ◦ ϑ−1)f = Mf ,

for any measurable function f ≥ 0, where the iterated integrals should be read
from right to left. The uniqueness of ν̂ ⊗ µ̂ follows from the same computation
together with the uniqueness in Lemma 3.4. 
�

If an invariant supporting measure is already known, we can construct an
associated invariant disintegration kernel by a suitable regularization.

Theorem 3.5 Let G act measurably on S and T, where T is Borel. Consider
some σ -finite, jointly G-invariant measures ν on S and M on S × T such that
M(· × T) � ν. Then M = ν ⊗ µ for a G-invariant kernel µ from S to T, which
is unique when G acts transitively on S.
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Proof Since M and ν are σ -finite with M(·×T) � ν and T is Borel, there exists
a kernel µ from S to T such that M = ν ⊗ µ. Using the invariance of ν and M,
we get

µrs = µs ◦ θ−1
r , s ∈ S a.e. ν, r ∈ G, (8)

which may also be written as µs = µrs ◦ θr for the same s and r. Now fix a mea-
surable function g ≥ 0 on G with λ̃g = 1. Since the mapping (r, s) �→ µrs ◦ θr on
G × S is product measurable (cf. [12, p. 21]), we may define a kernel µ̂ from S
to T by

µ̂s =
∫

(g · λ̃)(dr) (µrs ◦ θr), s ∈ S.

Using (8) and Fubini’s theorem gives

µs = µrs ◦ θr, r ∈ G a.e. λ̃, s ∈ S a.e. ν, (9)

and so µ̂s = µs a.e. ν, which shows that even M = ν ⊗ µ̂.
For any r ∈ G and s ∈ S, we have

µ̂rs ◦ θr =
∫

(g · λ̃)(dp) (µprs ◦ θpr) =
∫ ∫

(g · λ̃)2(dp dq) (µprs ◦ θpr).

Using the right invariance of λ̃, we get for r ∈ G and s ∈ S and for any measur-
able function f ≥ 0 on T,

|(µ̂s − µ̂rs ◦ θr)f | =
∣
∣
∣
∣

∫ ∫
(g · λ̃)2(dp dq) (µps ◦ θp − µqrs ◦ θqr)f

∣
∣
∣
∣

≤
∫ ∫

g(p) g(qr−1) λ̃2(dp dq) |(µps ◦ θp − µqs ◦ θq)f |.

Writing

A = {s ∈ S; µps ◦ θp = µqs ◦ θq, (p, q) ∈ G2 a.e. λ̃2},

we conclude that

µ̂s = µ̂rs ◦ θr, r ∈ G, s ∈ A. (10)

The set A is measurable by Fubini’s theorem. Fixing any r ∈ G and s ∈ A
and using the right invariance of λ̃ and the identity θpr = θp ◦ θr, we get

λ̃2{(p, q); µprs ◦ θp = µqrs ◦ θq} = λ̃2{(p, q); µps ◦ θp = µqs ◦ θq} = 0,



296 O. Kallenberg

and so rs ∈ A, which proves the invariance θ−1
r A = A. Finally, (9) yields

νAc = 0. Writing

µ̂′
s = 1A(s) µ̂s, s ∈ S, (11)

we get µ̂′
s = µ̂s = µs a.e. ν, and so even M = ν ⊗ µ̂′. Using (10), (11), and the

invariance of A, we note that µ̂′
s = µ̂′

rs ◦ θr holds identically.
To prove the asserted uniqueness, suppose that M = ν ⊗µ = ν ⊗µ′ for some

G-invariant kernels µ and µ′. Then µs = µ′
s for s ∈ S a.e. ν. Fixing any s ∈ S

with this property and using the invariance of µ and µ′, we get µrs = µ′
rs for

any r ∈ G. In the transitive case, any element t ∈ S equals rs for some r ∈ G,
and it follows that µ = µ′. 
�

Additional regularity conditions may be needed to construct ν.

Corollary 3.6 Let G act measurably on S and T, where T is Borel and the action
on S is proper, and consider a σ -finite, jointly G-invariant measure M on S × T.
Then M = ν ⊗ µ for some σ -finite, G-invariant measure ν on S and G-invariant
kernel µ from S to T. If the action on S is even transitive, then µ and ν are unique
up to reciprocal normalizations.

Proof The projection M(· × T) is clearly s-finite and G-invariant, and so by
Proposition 2.5 there exists a σ -finite, G-invariant measure ν ∼ M(· × T).
Since M is σ -finite and jointly G-invariant, Theorem 3.5 yields M = ν ⊗ µ

for some G-invariant kernel µ from S to T. If the action of G on S is even
transitive, then the same results show that ν and µ are unique up to reciprocal
normalizations. 
�

Under suitable conditions, we can go even further and represent a G-invari-
ant kernel µ from S to T in terms of an invariant kernel η ◦ µ from S to G,
where η is an invariant kernel from MT to G and (η ◦ µ)s = η(µs, ·).
Theorem 3.7 Let G act measurably on S and T, where T is Borel and the action
on T is proper and transitive, and fix an a ∈ T. Then for any σ -finite, G-invariant
measure ν on S and G-invariant kernel µ from S to T, there exists a G-invariant
kernel η from MT to G such that

µs = (η ◦ µ)s ◦ π−1
a , s ∈ S a.e. ν. (12)

Proof Since ν and µ are both G-invariant and G acts properly and transitively
on T, we see as in Proposition 2.5 that µ has a supporting measure ρ = λ ◦π−1

a .
Then Theorem 3.5 yields a G-invariant kernel ζ from T to MT such that

∫
ν(ds)

∫
µs(dt) f (t, µs) =

∫
ρ(dt)

∫
ζt(dm) f (t, m), (13)

for any measurable function f ≥ 0. Next, we may define an invariant kernel
ζ̃ from G to MT by ζ̃r = ζra, r ∈ G. Letting A ⊂ MT be measurable and
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G-invariant with ν{s; µs ∈ A} = 0, we get by (13) and the G-invariance of ζ

0 =
∫

ν(ds) µs(T) 1A(µs) =
∫

ρ(dt) ζt(A) = λ(G) ζa(A),

and so ζ̃rA = ζraA = ζaA = 0 for all r ∈ G. Hence, (λ⊗ ζ̃ )(G×·) � ν{s; µs ∈ ·}
on the G-invariant σ -field in MT , which extends by Lemma 2.2 to the entire
σ -field in MT , since both sides are G-invariant because of the invariance of λ,
ν, ζ̃ , and µ. By another application of Theorem 3.5, there exists a G-invariant
kernel η from MT to G satisfying

∫
λ(dr)

∫
ζ̃r(dm) f (r, m) =

∫
ν(ds)

∫
ηµs(dr) f (r, µs). (14)

Using (13), (14), and the definitions of ζ̃ and ρ, we get for any measurable
function f ≥ 0 on T × MT

∫
ν(ds)

∫
(ηµs ◦ π−1

a )(dt) f (t, µs) =
∫

λ(dr)
∫

ζra(dm) f (ra, m)

=
∫

ν(ds)
∫

µs(dt) f (t, µs),

and (12) follows since f was arbitrary. 
�

4 Palm and Gibbs kernels

A random measure on a measurable space (S, S) is defined as a kernel ξ from
the basic probability space (�, A, P) to S. We always assume ξ to be uniformly
σ -finite, in the sense that there exist a measurable partition B1, B2, . . . of S such
that ξBk < ∞ a.s. for all k. Note that ξ may also be regarded as a random
element in MS, the space of σ -finite measures on S, endowed with the σ -field
generated by all evaluation maps µ �→ µB, B ∈ S. When ξ is restricted to the
the subspace NS of integer-valued measures, it is called a point process on S.
Assuming S to be Borel, we may then write ξ as a finite or countable sum of
random unit masses δτk , and we say that ξ is simple if the τk are a.s. distinct, so
that a.s. ξ{s} = 0 or 1 for all s.

Given a random measure ξ on S and a random element η in a space (T, T ),
we define the associated Campbell measure C on S × T by the integrals Cf =
E

∫
f (s, η)ξ(ds) for measurable f ≥ 0. If C is σ -finite and T is Borel, then Lemma

3.1 yields a disintegration C = ν ⊗Q into a σ -finite measure ν on S and a kernel
Q from S to T. Assuming (as we may) that ν ∼ Eξ , we call ν a supporting
measure for ξ and Q the associated Palm kernel. The Palm measures Qs are
bounded for s ∈ S a.e. ν iff the intensity measure Eξ itself is σ -finite, in which
case we may choose ν = Eξ and let the Qs be probability measures on T, then
called the Palm distributions of η with respect to ξ .
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Multivariate Palm measures are obtained by taking ξ = ⊗
k ξk for some

random measures ξk on Sk, k ≤ n, so that Q becomes a kernel from S = ⊗
k Sk

to T. When ξ is a point process, the Palm measures of ξ with respect to itself
satisfy Qs{µ; µ{s} = 0} = 0 for almost every s, and we may introduce the
reduced Palm measures Q′

s = Qs{µ; µ − δs ∈ ·}. The kernel Q′ and its higher-
dimensional counterparts may also be obtained directly, by disintegration of
the reduced Campbell measures C′

n on Sn × NS, given by

C′
nf = E

∫
. . .

∫
f
(

s1, . . . , sn, ξ −
∑

k
δsk

)
ξ (n)(ds1 · · · dsn),

where the factorial measures ξ (n) are given recursively by ξ (1) = ξ and

ξ (n)f =
∫

ξ(ds1)

∫
· · ·

∫
f (s1, . . . , sn) (ξ − δs1)

(n−1)(ds2 · · · dsn).

When ξ is simple, ξ (n) is just the restriction of the product measure ξn to the
non-diagonal part of Sn.

Owing to the a.e. symmetry of Q′
s1,...,sn

in the subscripts sk, we may iden-
tify the vectors s = (s1, . . . , sn) with the measures m = ∑

k δsk and write Q′
m

instead of Q′
s. Similarly, C′

n may be regarded as a measure on N 2
S . Defining the

compound Campbell measure C∞ by C∞f = ∑
µ≤ξ f (µ, ξ −µ) for measurable

f ≥ 0, with summation over N̂S = {µ ∈ NS; µS < ∞}, we have C∞ = ∑
n C′

n/n!
(cf. [11, p. 123]), which shows that the reduced Palm kernels of different orders
are obtainable by disintegration of C∞ with respect to the first component. A
disintegration with respect to the second component yields the Gibbs kernel
(see below), and for a.s. bounded ξ , the two kernels will essentially agree up to
a normalization.

The previous definitions are justified by the following descriptions in terms
of ordinary conditioning. Here k(n) = k!/(k − n)! for k ≥ n ≥ 0.

Proposition 4.1 Consider a random measure ξ on a Borel space S, and fix a set
B ∈ S with ξB < ∞ a.s.

(i) Let η be a random element in T such that the Campbell measure of (ξ , η) is
σ -finite. Consider a random element τ in S with τ /∈ B when ξB = 0, and
such that P[τ ∈ · | ξ , η] = 1Bξ/ξB a.s. on {ξB > 0}. Then ξ has supporting
measure ν = L(τ ) on B and associated Palm measures Qs of η, given for
s ∈ B a.e. ν by Qτ = E[ ξB; η ∈ · | τ ] a.s. on {τ ∈ B}.

(ii) When ξ is a point process, fix any n ∈ N, and consider a random element β in
Sn with β ∈ Bn when ξB < n, and such that P[β ∈ · | ξ ] = (1Bξ)(n)/(ξB)(n)

a.s. on {ξB ≥ n}. Then ξ (n) has supporting measure ν′
n = L(β) on Bn and

associated n-th order reduced Palm measures Q′
s, given for s ∈ Bn a.e. ν′

n
by Q′

β = E[ (ξB)(n); ξ − µβ ∈ · | β] a.s. on {β ∈ Bn}.
(iii) When ξ is a point process, let ζ be a point process on S such that P[ζ ∈

· | ξ ] = 2−ξB ∑
µ≤1Bξ δµ a.s. Then ξ has compound Campbell measure

ν ⊗ Q′ on N̂B × NS, where ν = L(ζ ) and Q′
ζ = E[ 2ξB; ξ − ζ ∈ · | ζ ] a.s.
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In particular, (i) yields for any measurable function f ≥ 0 on S × T

∫
f (s, t) Qs(dt) = E[f (τ , η) ξB| τ ∈ ds], s ∈ B a.e. ν,

(cf. [12, p. 108]). If ξ = δσ for some random element σ in S, then ξ has support-
ing measure Eξ = L(σ ), and the associated Palm distributions Qs are regular
conditional distributions P[η ∈ · | σ ∈ ds].

Proof (i) On B we have ν = L(τ ) = E[ξ/ξB; ξB > 0], which is clearly a sup-
porting measure of ξ . Letting f ≥ 0 be measurable on S × T and using the
disintegration theorem twice, we get

E
∫

B

f (s, η) ξ(ds) = Ef (τ , η) ξB =
∫

B

ν(ds)
∫

f (s, t) Qs(dt).

(ii) The supporting property of ν′
n may be verified as before. Letting f ≥ 0 be

measurable and supported by Bn × NS, we get by repeated use of the disinte-
gration theorem

E
∫

f (s, ξ − µs) ξ (n)(ds) = E (ξB)(n)f (β, ξ − µβ)

=
∫

ν′
n(ds)

∫
f (s, µ) Q′

s(dµ).

(iii) Using the definitions of ν, Q′, and ζ , and applying the disintegration
theorem twice, we get for any measurable function f ≥ 0 on N 2

S

∫
ν(dµ)

∫
Q′

µ(dm) f (µ, m) = E 2ξBf (ζ , ξ − ζ ) = E
∑

µ≤1Bξ

f (µ, ξ − µ),

as required. 
�

We need to examine when the various intensity and Campbell measures are
σ -finite or s-finite.

Lemma 4.2 Consider a random measure or point process ξ on S and a random
element η in T. Then

(i) the intensity measures Eξn and Eξ (n) are s-finite;
(ii) the Campbell measures Cn of the pairs (ξn, η) are s-finite, and when ξ is

η-measurable they are even σ -finite;
(iii) the reduced and compound Campbell measures C′

n and C∞ of ξ are
σ -finite.
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Proof (i) By the σ -finiteness of ξ , we may choose a measurable partition
B1, B2, . . . of S such that ξBk < ∞ a.s. for all k ∈ N. Introducing the ran-
dom measures ξn = ∑

k≤n(1Bkξ) 1{ξBk ≤ n}, n ∈ N, we note that EξnS ≤ n2 for
all n and ξn ↑ ξ . Since Eξn ↑ Eξ by monotone convergence, we conclude that
Eξ is s-finite. Applying this result to the random measures ξn and ξ (n) ≤ ξn, we
see that even Eξn and Eξ (n) are s-finite.

(ii) The first assertion follows from part (i), since Cn(· × T) = Eξn for all
n. Now let ξ be η-measurable. Introduce a measurable partition B1, B2, . . . of
S such that ξBn < ∞ a.s. for all n ∈ N. For every n we may next choose a
measurable partition An1, An2, . . . of T such that ξBn ≤ k a.s. on {η ∈ Ank} for
all k ∈ N. Then the sets Bn × Ank form a countable partition of S × T satisfying
C1(Bn × Ank) ≤ k for all n, k ∈ N, which shows that C1 is σ -finite. Applying this
result to ξn yields the corresponding result for Cn.

(iii) Let the sets Bn ↑ S be measurable and such that ξBn < ∞ a.s. for all n.
For any n, k ∈ N, define Ank = {µ; µBn ≤ k} and Dn = {µ; µBc

n = 0}, and note
that the sets Dn × Ank form a countable partition of N̂S × NS. Since

C∞(Dn × Ank) = E
[
2ξBn ; ξBn ≤ k

]
≤ 2k < ∞,

we see that C∞ is σ -finite. Hence, we may choose a measurable function f > 0 on
N̂S×NS such that C∞f < ∞. Putting gn(s; µ) = f (

∑
k δsk ; µ) for s = (s1, . . . , sn)

and using the formula C∞ = ∑
n C′

n/n!, we obtain

C′
ng = E

∫
f
(∑

k
δsk , ξ −

∑

k
δsk

)
ξ (n)(ds) < ∞,

which shows that even C′
n is σ -finite. 
�

The definitions of Gibbs and Papangelou kernels � and �1, associated with a
point process ξ on S, are based on and justified by the following result, implicit
in [11, pp. 121ff], and [14, p. 460]. To avoid obscuring complications, we restrict
our attention to simple point processes. Given a measure µ on S × T, we define
the reflected version µ̃ on T × S by µ̃f = µf̃ , where f̃ (s, t) = f (t, s).

Theorem 4.3 Let ξ be a simple point process on a Borel space S with compound
and reduced Campbell measures C∞ and C′

1. Then there exist some maximal
kernels � on NS and �1 from NS to S such that

L(ξ) ⊗ � ≤ C̃∞, L(ξ) ⊗ �1 ≤ C̃′
1. (15)

The random measures γ = � ◦ ξ on NS and γ1 = �1 ◦ ξ on S are given by

γ {µ; µ ∈ A, µBc = 0} = P[1Bξ ∈ A | 1Bcξ ]
P[ξB = 0 | 1Bcξ ] , (16)

γ1A = P[ξA = ξB = 1 | 1Bcξ ]
P[ξB = 0 | 1Bcξ ] , A ⊂ B, (17)
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a.s. on {ξB = 0} for any B ∈ S, along with the conditions

γ {µ; µ(supp ξ) > 0} = γ1(supp ξ) = 0 a.s.

Here the maximality of � means that, if �′ is any other kernel on NS satisfying
(15), then �′(ξ , ·) ≤ �(ξ , ·) a.s. The kernels � and �1 are related by

�1(µ, B) = �(µ, {ν; νB = νS = 1}), B ∈ S. (18)

The next result, implicit in Kallenberg [11, pp. 128ff] and [14, p. 460] gives
necessary and sufficient conditions for equality in (15). Condition (iii) below is
often denoted by (�).

Lemma 4.4 For ξ as in Theorem 4.3, these conditions are equivalent:

(i) C∞(N̂S × ·) � L(ξ),
(ii) C′

1(S × ·) � L(ξ),
(iii) P[ξB = 0 | 1Bcξ ] > 0, a.s. on {ξB = 1} for all B ∈ S.

In that case, (iii) remains true on {ξB < ∞}.

5 Stationarity and invariance

We turn to the case when ξ and η are jointly G-stationary, in the sense that

θr(ξ , η)
d= (ξ , η) for all r ∈ G, where θrµ = µ ◦ θ−1

r .

Lemma 5.1 Let G act measurably on S and T. Then for any jointly G-stationary
random measure ξ on S and random element η in T, the Campbell measure of
(ξ , η) is jointly G-invariant on S × T. The corresponding statement holds for the
reduced and compound Campbell measures of a point process ξ on S.

Proof For any r ∈ G and measurable f ≥ 0, we note that

(C ◦ θ−1
r )f = E

∫
f (s, rη) (θrξ)(ds),

(C′
1 ◦ θ−1

r )f = E
∫

f (θrξ − δs) (θrξ)(ds),

(C∞ ◦ θ−1
r )f = E

∑

µ
f (µ, θrξ − µ),

and similarly for general Cn and C′
n. 
�

The results of the previous sections yield invariant versions of the Palm and
supporting measures. First we consider the factorization approach, where the
underlying idea goes back to Matthes [18] for stationary point processes on R,
to Mecke [21] for random measures on locally compact Abelian groups, and to
Tortrat [34] for non-Abelian groups.
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Corollary 5.2 Let G act measurably on S and T, where T is Borel. Consider a
random measure ξ on G × S and a random element η in T, such that (ξ , η) is
G-stationary with a σ -finite Campbell measure. Then ξ has a G-invariant sup-
porting measure λ⊗ν and associated G-invariant Palm measures Qr,s of η, where
the kernels ν and Q are given, for any r ∈ G and s ∈ S, by

νr = ν̂ ◦ θ−1
r , Qr,s = Q̂r−1s ◦ θ−1

r , (19)

in terms of some measure ν̂ on S and kernel Q̂ from S to T. The measure ν̂ ⊗ Q̂
on S × T is then unique.

Proof Use Theorem 3.2 and Lemma 5.1. 
�
The situation of the last corollary arises naturally in the context of multivari-

ate Palm measures. Indeed, the n-th order Palm measures with respect to some
jointly stationary random measures ξ1, . . . , ξn on G may be regarded as univari-
ate Palm measures with respect to the stationary random measure ξ = ⊗

k ξk on
G×S, where S = Gn−1 with the group action on S defined componentwise. This
leads to invariant versions, as in (19), of the supporting measure and associated
Palm kernel.

More symmetric representations are available in special cases, such as when
G = R. Here let Hd denote the hyperplane {x ∈ R

d; x̄ = 0}, where x̄ =
d−1 ∑

k xk, and put x′ = x − x̄1 with 1 = (1, . . . , 1), so that x′ ∈ Hd. Also write
Lx = (x̄, x′) and ϕ = L−1, and let λ be Lebesgue measure on R.

Proposition 5.3 Let R act measurably on a Borel space T, and consider some
random measures ξ1, . . . , ξd on R and a random element η in T, all jointly sta-
tionary with a σ -finite Campbell measure C. Put ξ = ⊗

k ξk. Then (ξ , η) has the
invariant Palm and supporting measures

ν = (λ ⊗ ν̂) ◦ ϕ−1; Qx = Q̂x′ ◦ θ−1
x̄ , x ∈ R

d, (20)

for some measure ν̂ on Hd and kernel Q̂ from Hd to T.

Proof Noting that L ◦ θr = θ ′
r ◦ L for all r ∈ R with θ ′

r(p, s) = (p + r, s), we may
check that (ξ ◦ L−1, η) is stationary under shifts in R and T alone. Hence, Cor-
ollary 5.2 shows that ξ ◦L−1 has a supporting measure ν̃ = λ⊗ ν̂ and associated
Palm measures

Q̃r,s = Q̂s ◦ θ−1
r , r ∈ R, s ∈ Hd,

for some σ -finite measure ν̂ on Hd and a kernel Q̂ from Hd to T. Using the
relation L ◦ θr = θ ′

r ◦ L and its inversion θr ◦ ϕ = ϕ ◦ θ ′
r, we may verify that the

measure ν and kernel Q in (20) are invariant. Letting g ≥ 0 be a measurable
function on R × Hd × T and using the definitions of ν, ν̃, Q, Q̂, Q̃, and L, we
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obtain

E
∫

g(Lx, η) ξ(dx) =
∫ ∫

ν̃(dr ds)
∫

Q̃r,s(dt) g(r, s, t)

=
∫

ν(dx)

∫
Qx(dt) g(Lx, t).

Now substitute g(r, s, t) = f (ϕ(r, s), t) for any measurable function f ≥ 0 on
R

d × T to get Cf = (ν ⊗ Q)f , as required. 
�
We turn to the regularization approach, which goes back to Ryll-Nardzewski

(1961) for point processes on R, with an extension to homogeneous spaces due
to Papangelou (1974a).

Corollary 5.4 Let G act measurably on S and T, where T is Borel. Consider a
random measure ξ on S and a random element η in T such that (ξ , η) is G-station-
ary with a σ -finite Campbell measure C. Then for any G-invariant supporting
measure ν of ξ , the associated Palm kernel of η has a G-invariant version Q,
which is unique when G acts transitively on S.

Proof Note that C(·×T) � ν by the supporting property of ν, and use Theorem
3.5 and Lemma 5.1. 
�

The last result relies on the existence of an invariant supporting measure:

Corollary 5.5 Let G act measurably on S, and consider a G-stationary random
measure ξ on S. Then ξ has a G-invariant supporting measure ν, whenever Eξ

is σ -finite or G acts properly on S. In general, ν is unique up to a normalization
when G acts transitively on S, and a σ -finite, G-invariant measure ν on S is a
supporting measure of ξ iff ν ∼ Eξ on IS.

Proof If Eξ is σ -finite, we may choose ν = Eξ . In general, Eξ is s-finite by
Lemma 4.2, and so ν exists by Proposition 2.5 when G acts properly on S. If
instead G acts transitively on S, then the uniqueness holds by Corollary 2.6. The
final assertion holds by Lemma 2.2, since ν is supporting iff ν ∼ Eξ . 
�

We turn to the invariance of reduced Palm measures.

Proposition 5.6 Let G act properly on S, and let ξ be a G-stationary point pro-
cess on S. Then the reduced Palm kernel Q′ from N̂S to NS and the associated
supporting measure ν on N̂S have G-invariant versions.

Proof Since G acts properly on S, there exists a measurable function g > 0 on
S such that λ(g ◦ πs) < ∞ for every s ∈ S. Define g̃(µ) = µg for µ ∈ N̂S, and
note that 0 < g̃ < ∞ on N̂ ′

S. For any µ ∈ N̂S we have

λ(g̃ ◦ πµ) =
∫

λ(dr)
∫

µ(ds) g(rs) =
∫

µ(ds) λ(g ◦ πs) < ∞,

since µ has finite support. Thus, the induced group action on N̂ ′
S = N̂S \ {0} is

proper. Now use Corollary 3.6 and Lemmas 4.2 and 5.1. 
�
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Condition (�) of Lemma 4.4 simplifies in the stationary case:

Lemma 5.7 Let G act measurably on S. Then conditions (i) and (ii) of Lemma
4.4 are equivalent to the same conditions on INS .

Proof The measures C′
1 and C∞ are σ -finite by Lemma 4.2 and jointly G-invari-

ant by Lemma 5.1. Hence, their projections C′
1(S×·) and C∞(N̂S ×·) are s-finite

and G-invariant. The assertion now follows by Lemma 2.2. 
�

Let us now consider the invariance of Gibbs and Papangelou kernels.

Theorem 5.8 Let G act measurably on a Borel space S, and consider a
G-stationary, simple point process ξ on S. Then the associated Gibbs and Pap-
angelou kernels � and �1 have G-invariant versions, and the triple (ξ , γ , γ1) is
G-stationary, where γ = � ◦ ξ and γ1 = �1 ◦ ξ .

Proof The compound Campbell measure C∞ is jointly G-invariant by Lemma
5.1. For any r ∈ G and measurable f ≥ 0 on N 2

S , we may apply (15) to f ◦ θr and
use the G-invariance of C∞ and G-stationarity of ξ to get

C∞f = C∞(f ◦ θr) ≥ E
∫

f (θrµ, θrξ) �(ξ , dµ)

= E
∫

f (µ, ξ) �(θ−1
r ξ , θ−1

r (dµ)).

Hence, the maximality of � yields �(θ−1
r ξ , ·) ◦ θ−1

r ≤ �(ξ , ·) a.s. for all r ∈ G.
Replacing r by r−1 and using the G-stationarity of ξ gives the reverse inequal-
ity, and so in fact �(θrξ , ·) = �(ξ , ·) ◦ θ−1

r a.s. for each r ∈ G. In particular, the
measures L(ξ) and M = L(ξ) ⊗ � are both G-invariant, and so by Theorem 3.5
we may choose a version of � satisfying

�(θrµ, ·) = �(µ, ·) ◦ θ−1
r , µ ∈ NS, r ∈ G. (21)

To prove the corresponding relation for �1, we may apply (18) and (21) for any
r ∈ G and B ∈ S to get

�1(θrµ, B) = �(µ, θ−1
r {ν; νB = νS = 1}) = �1(µ, θ−1

r B),

which shows that �1(θrµ, ·) = �1(µ, ·) ◦ θ−1
r for all µ ∈ NS and r ∈ G. Finally,

we may use the G-stationarity of ξ and the G-invariance of � and �1 to obtain

θr(ξ , γ , γ1) = (θrξ , �(θrξ , ·), �1(θrξ , ·)) d= (ξ , γ , γ1),

which proves the joint G-stationarity of ξ , γ , and γ1. 
�
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6 Characterization and shift coupling

We begin with a characterization of Campbell measures.

Lemma 6.1 Let G act measurably on S and T, where S is Borel. Consider some
σ -finite, jointly G-invariant measures C on S × T and ν on T, where νT = 1.
Then these conditions are equivalent:

(i) C is the Campbell measure of a G-stationary pair (ξ , η) with L(η) = ν,
(ii) C(S × ·) � ν on IT.

Here (ii) extends to T , and in (i) we may choose ξ = µ ◦ η for a G-invariant
kernel µ from T to S, in which case µ is a.s. unique and C̃ = ν ⊗ µ.

Proof Clearly (i) implies (ii). Now assume (ii). Then Theorem 3.5 yields C̃ =
ν ⊗ µ for some G-invariant kernel µ from T to S. Letting L(η) = ν and putting
ξ = µ ◦ η, we get for measurable f ≥ 0

E
∫

ξ(ds) f (s, η) = (ν ⊗ µ)f̃ = Cf , (22)

which shows that (ξ , η) has Campbell measure C. The stationarity of (ξ , η) is
clear from the invariance of ν and µ. Thus, (ii) implies (i). If (i) holds with
ξ = µ ◦ η, we see as in (22) that C̃ = ν ⊗ µ, which yields the asserted ν-a.s.
uniqueness of µ. Finally, (ii) extends to T by Lemma 2.2, since ν and C(S × ·)
are both G-invariant and s-finite by Lemma 4.2. 
�

Next we extend a coupling result of Thorisson [31,33] (cf. [7] and [12, p. 209]).
Say that G acts injectively on S if all projections πs : G → S are injective.

Theorem 6.2 Let G act measurably on some Borel spaces S and T. Consider
some jointly G-stationary random measure ξ on S and G-ergodic random ele-
ment η in T, where Eξ is σ -finite with associated G-invariant Palm kernel Q.
Then under each of these conditions:

(i) G acts transitively on S,
(ii) G is compact,

we have Qs = L(γsη), s ∈ S a.e. Eξ , for some G-valued process γ on S. If G acts
injectively on S, we can arrange that γrs = rγs for all r ∈ G and s ∈ S.

Proof First assume (i), and fix any A ∈ IT . Using the invariance of Q, the
transitivity on S, and the ergodicity of η, we see that QsA is independent of s
and that P{η ∈ A} equals 0 or 1. Letting B ∈ S and s ∈ S, we get

(EξB) QsA = C(B × A) = E[ξB; η ∈ A] = (EξB) P{η ∈ A},

which implies Qs = L(η) on IT since A and B were arbitrary. Hence, the cou-
pling theorem of Thorisson [32,33] (cf. [12, p. 198]) yields Qs = L(γsη) for some
random elements γs in G.
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Next assume (ii). Here we may assume λG = 1 and take g ≡ 1 in Lemma
2.1, so that ϕs = λ ◦ π−1

s for all s in S or T. Since η is stationary and ergodic,
Theorem 2.4 yields L(η) = ϕt0 for some t0 ∈ T. Writing A = ϕ−1{ϕt0}, we see
from the same theorem (or from (6)) that

C(S × Ac) = E[ξS; η ∈ Ac] � P{η ∈ Ac} = ϕt0 Ac = 0.

Applying Theorem 2.4 to the σ -finite, invariant measure Eξ on S gives

0 = C(S × Ac) =
∫

Eξ(ds)
∫

λ(dr) QrsAc.

Since the integrals
∫

λ(dr) Qrs are invariant probability measures on T, Theo-
rem 2.4 yields

∫
λ(dr) Qrs = ϕt0 for s ∈ S a.e. Eξ . By the invariance of Q we

obtain Qs = ϕt0 = L(η) on IT for the same s ∈ S, and again the assertion follows
from Thorisson’s theorem.

For every orbit O in S, we may fix a point s ∈ O and choose a random element
γs in G with L(γsη) = Qs. If the maps πs are injective, any other point in O has
a unique representation rs, and we may define γrs = rγs. By the invariance of
Q we get for measurable f ≥ 0

Ef (γrsη) = Ef (rγsη) = Qs(f ◦ θr) = Qrsf ,

which shows that L(γrsη) = Qrs for all r. Also note that the defining relation
holds identically since γprs = pγrs for all p, r ∈ G. 
�

We proceed to characterize the Palm measures Qs of a random element η

with given distribution ν.

Theorem 6.3 Let G act measurably on some Borel spaces S and T. Fix some
σ -finite, G-invariant measures ρ on S and ν on T with νT = 1, along with a
G-invariant kernel Q from S to T. Then (ii) implies (i), where

(i) Q is the Palm kernel for ρ of a G-stationary pair (ξ , η) with L(η) = ν,
(ii) Qs � ν on IT, s ∈ S a.e. ρ,

and equivalence holds under each of these conditions:

(iii) G acts transitively on S or T,
(iv) G acts properly on S, and ρ is ergodic,
(v) G is compact, ν is ergodic, and Eξ is σ -finite.

In (i) we may choose ξ = µ ◦ η for some G-invariant kernel µ from T to S, and
(iii) allows us to replace (ii) by the same condition for a fixed s ∈ S.

For S = G = R and T = �, a related but more elaborate statement is proved
by Getoor [8, p. 110]. Typically, the absolute continuity in (ii) fails on T .
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Proof The measure C = ρ ⊗ Q on S × T is clearly σ -finite and jointly G-invari-
ant. Assuming (ii), we have C(S × ·) � ν on IT . Then by Lemma 6.1, C is the
Campbell measure of a G-stationary pair (ξ , η), where L(η) = ν and ξ = µ ◦ η

for some G-invariant kernel µ from T to S. Hence, Q is the associated Palm
kernel for the measure ρ. Putting B = {s ∈ S; Qs = 0}, we may replace ρ by the
supporting measure ρ′ = 1Bρ, which is again G-invariant by the invariance of
Q. This proves (i).

Now assume (i). Then C(S × ·) � ν on IT by Lemma 6.1. The G-invariance
of Q yields Qrs = Qs on IT for all r ∈ G and s ∈ S. If G acts transitively on S,
we obtain Qs = Qs′ on IT for all s, s′ ∈ S, which implies C = ρ ⊗ Qs on S × IT
for every s. Hence, the stated absolute continuity yields Qs � ν on IT for all s.
If instead G acts transitively on T, then IT = {∅, T}, and Qs � ν holds trivially.
This shows that (i) and (iii) together imply (ii) for any fixed s.

Next, assume (i) and (iv). Then Theorem 2.4 yields ρ = (ρg)ϕs for some
s ∈ S. By (3) we have

A ≡ {s ∈ S; ρ = (ρg) ϕs} = ϕ−1{ρ/ρg} ∈ IS.

Using (1) and the G-invariance of Q, we get for any s ∈ A

C(S × ·) = (ρg) λG
λ(g ◦ πs)

Qs on IT , s ∈ A,

and so by (i) and Lemma 6.1 we see that (ii) holds on A. To extend (ii) to Ac,
fix any s ∈ A, and use (1) and the invariance of A to get

ρAc = (ρg) ϕsAc = (ρg) λG
λ(g ◦ πs)

1Ac(s) = 0.

Finally, assume (i) and (v). Then QsT < ∞, s ∈ S a.e. ρ, and Theorem 6.2
yields Qs = (QsT)ν on IT , s ∈ S a.e. ρ, which implies (ii). 
�

7 Invariant representations

Interchanging the roles of S and T yields invariant representations of station-
ary random measures. Such representations are usually taken to be part of the
definition (as in [22, p. 309]). An exception is Getoor [18, pp. 108, 112], who
(referring to [5]) derives perfection results when S = G = R and T = �.

Theorem 7.1 Let G act measurably on S and T, where S is Borel, and consider
a random measure ξ on S and some random elements γ in G and η in T such
that (ξ , γ , η) is G-stationary with a σ -finite Campbell measure. Then

E[ξ | γ , η] = µ ◦ (γ , η) a.s., (23)
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for some G-invariant kernel µ from G × T to S of the form

µr,t = µ̂r−1t ◦ θ−1
r , r ∈ G, t ∈ T, (24)

where µ̂ is a kernel from T to S. Here µ̂ is unique a.e. L(γ −1η).

In particular, we get ξ = µ ◦ (γ , η) a.s. when ξ is (γ , η)-measurable.

Proof Note that λ = L(γ ) is a left and right Haar measure on G. By Lemmas
3.4 and 5.1, the Campbell measure C satisfies C̃ = (λ ⊗ Ĉ) ◦ ϑ−1 for some
σ -finite measure Ĉ on T × S, where ϑ(r, t, s) = (r, rs, rt) for r ∈ G, s ∈ S, and
t ∈ T. Writing ν̂ = L(γ −1η), we get on T

Ĉ(· × S) = E[ξS; γ −1η ∈ ·] � P{γ −1η ∈ ·} = ν̂,

which allows the further disintegration C̃ = (λ⊗ ν̂⊗µ̂)◦ϑ−1 in terms of a kernel
µ̂ from T to S. Now define a kernel ν from G to T by νr = ν̂ ◦ θ−1

r for r ∈ G.
Using the definitions of ν and ν̂, the substitution rule for integrals, Fubini’s
theorem, the right invariance and normalization of λ, and the G-stationarity of
(γ , η), we may easily verify that λ ⊗ ν = L(γ , η).

Next define a kernel µ from G×T to S by (24), and note that µ is G-invariant.
Expressing µ and ν in terms of µ̂ and ν̂ and using the definition of ϑ , we may
check that C̃ = λ ⊗ ν ⊗ µ. Hence, by the definition of C, we obtain for any
B ∈ S and measurable f ≥ 0 on G × T

E E[ξB | γ , η] f (γ , η) = E (ξB) f (γ , η) = E µ(γ , η, B) f (γ , η),

and (23) follows since S is Borel and B and f are arbitrary.
To prove the asserted uniqueness, consider another kernel µ̂′ from T to S,

such that the generated kernel µ′ from G × T to S, defined as in (24), satisfies
(23). Applying (23) to both µ and µ′ yields µ(γ , η, ·) = µ′(γ , η, ·) a.s., and so by
(24) for both µ and µ′ we have µ̂(γ

−1η, ·) = µ̂′(γ −1η, ·) a.s., which means that
µ̂ = µ̂′ a.s. L(γ −1η). 
�

We give another representation of this type, valid under different conditions
and reducing to ξ = µ ◦ η a.s. when ξ is η-measurable.

Theorem 7.2 Let G act measurably on S and T, where S is Borel. Consider
a random element η in T and a random measure ξ on S such that (ξ , η) is
G-stationary with a σ -finite Campbell measure. Then

E[ξ | η] = µ ◦ η a.s. (25)

for some a.s. unique, G-invariant kernel µ from T to S. The uniqueness holds
identically when G acts transitively on T.
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Proof The Campbell measure C is jointly G-invariant by Lemma 5.1, and the
measure ν = L(η) is G-invariant by stationarity and satisfies C(S × ·) � ν.
Hence, Theorem 3.5 yields a disintegration C̃ = ν ⊗ µ in terms of some G-
invariant kernel µ from T to S. Relation (25) now follows, as before, by the
definition of C. The a.s. uniqueness of µ is clear from (25), and it holds identically
in the transitive case by the G-invariance of µ. 
�

Under stronger assumptions, we may represent a G-stationary random mea-
sure ξ on S in terms of a stationary random measure µ ◦ ξ on G.

Theorem 7.3 Let G act properly and transitively on a Borel space S, and fix
an a ∈ S. Then for any G-stationary random measure ξ on S, there exists a
G-invariant kernel µ from MS to G such that

ξ = (µ ◦ ξ) ◦ π−1
a a.s.

Proof Using the properness and transitivity of the group action, we see from
Proposition 2.5 and Lemma 4.2 that ξ has supporting measure ν = λ ◦ π−1

a . By
Theorem 5.4 we may choose a G-invariant version Q of the associated Palm
kernel of ξ with respect to itself. Now define a G-invariant kernel Q̂ from G to
MS by Q̂r = Qra for all r ∈ G. Applying Theorem 6.3 with T = MS, first to Q
and then to Q̂, we see that the latter is the Palm kernel with respect to λ of a
pair (µ ◦ ξ , ξ), where µ is a G-invariant kernel from MS to G.

Next define a kernel µ̂ from MS to S by µ̂m = µm ◦ π−1
a for all m ∈ MS.

Using the G-invariance of µ and the fact that θr and πa commute on G for every
r ∈ G, we may check that µ̂ is again G-invariant. By the definitions of µ̂, µ, Q̂,
and ν, we get for any measurable function f ≥ 0 on S × MS,

E
∫

(µ̂ ◦ ξ)(ds) f (s, ξ) =
∫

λ(dr)
∫

Q̂r(dm) f (ra, m)

=
∫

ν(ds)
∫

Qs(dm) f (s, m),

which shows that Q is also the Palm kernel of (µ̂◦ξ , ξ) with respect to ν. Hence,
the uniqueness in Lemma 6.1 yields ξ = µ̂ ◦ ξ = (µ ◦ ξ) ◦ π−1

a a.s. 
�
The following dual result follows immediately from Theorem 3.7.

Corollary 7.4 Let G act measurably on S and T, where T is Borel and the action
on T is proper and transitive, and fix any a ∈ T. Consider a random measure ξ

on S and a random element η in T, such that (ξ , η) has the G-invariant supporting
measure ν and Palm kernel Q. Then there exists a G-invariant kernel µ from MT
to G such that

Qs = (µ ◦ Q)s ◦ π−1
a , s ∈ S a.e. ν.
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