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Abstract Suppose Z = (Z;);>0 is a normal martingale which satisfies the
structure equation

d[Z]; = (a() + B()Z;-) dZ; + dt.

By adapting and extending techniques due to Parthasarathy and to Kurtz, it is
shown that, if « is locally bounded and g has values in the interval [—2, 0], the
process Z is unique in law, possesses the chaotic-representation property and is
strongly Markovian (in an appropriate sense). If also 8 is bounded away from
the endpoints 0 and 2 on every compact subinterval of [0, oo[ then Z is shown to
have locally bounded trajectories, a variation on a result of Russo and Vallois.
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544 S. Attal, A. C. R. Belton

1 Introduction

A local martingale Z has the predictable representation property (henceforth
PRP) if for any local martingale M there exists a predictable, Z-integrable
process H such that

t
M[=M0+/Hsts Vi 0.
0

This concept is of considerable intrinsic interest; as is well known, it is equiv-
alent (when the initial filtration is trivial) to the law of Z being extremal [23].
The PRP is also important for many applications, in areas such as filtering,
control theory and mathematical finance; the ideas in [4] (which concerns the
former topics) and [1,7] (which concern the latter) may all be applied to the
martingales discussed below, for example.

A strictly stronger notion [9] than this is the chaotic-representation property
(henceforth CRP). Suppose Z is a normal martingale, i.e., Z and ¢ > Z7 —t are
both martingales, and recall that the iterated stochastic integrals

f(tla' .o ,tn) de] . .dZtn

(0t <<t}

are well defined for all # > 1 and deterministic, square-integrable functions f.
If these integrals, together with the constant functions, are dense in L(£2, F,P)
(where (£2, F,P) is the underlying probability space and F is generated by Z)
then Z has the CRP. It is simple to verify that this implies the PRP and so, if the
CRP holds, there exists a predictable process @ such that

d[Z); = &, dZ, + dt. (1)

This is known as the structure equation for Z. The following question now
presents itself: given a normal martingale Z which satisfies (1), does it have
the CRP?

If @ is deterministic then Dermoune [6] and Emery [8] have shown that the
CRP holds and Z has independent increments; conversely if Z is a martingale
with independent increments which satisfies (1) then the process @ may be
taken to be deterministic [22].

The next simplest case is when @ is affine: &; = «(t) + B(t)Z;— for allt > 0,
where « and g are real valued. Emery [8] proved that if « = a and 8 = b for
constants a and b then any martingale Z which satisfies (1) is unique in law and,
if b € [-2,0], has the CRP. Russo and Vallois [20] considered the case where
« and B are locally bounded and they established boundedness (which implies
the CRP) if @ = 0, (1) € [—2,0] and [; |B(s)| "' ds < oo for all ¢ > 0.
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The chaotic-representation property for a class of normal martingales 545

In this article, it is demonstrated that uniqueness in law and the CRP hold
whenever « is locally bounded and B(t) € [—2,0] for all £ > 0. This is estab-
lished by extending a comparison argument of Parthasarathy [13], to show that
certain vectors are analytic for certain associated multiplication operators, and
then by using an idea of Kurtz [11], which allows the CRP to be deduced from
the self-adjointness of these operators.

In fact, a stronger result is established, by letting Fo, the initial o-algebra
for Z, be non-trivial and working with structure equations where o and 8 are
L°°(Fp) valued. This allows proof of (an appropriate version of) the strong
Markov property for these martingales (called Azéma martingales, extending
terminology due to Emery).

A variant of the Russo-Vallois result [20, Proposition 4.4] is also obtained;
the requirement that « = 0 is removed but a stronger condition is imposed on
B, namely that

sup{|1 + B(s)| :s €[0,¢]} <1 V=0,

i.e., B is strictly bounded away from the endpoints of the interval [-2, 0] on any
compact subinterval of [0, oo[.

The working below takes place in the Guichardet interpretation of Boson
Fock space which, as Meyer observed, serves as a universal space for the inves-
tigation of normal martingales and is therefore a completely classical object.
Although many of the ideas leading to the results herein came from quantum
stochastic calculus, this article makes (almost) no explicit use of these tech-
niques and may be read by any probabilist. (The sole exception is the proof of
Proposition 29, for which a purely classical demonstration seems to be lacking.)

Section 2 describes Guichardet space and the chaotic-representation theo-
rem of Kurtz; some examples of Azéma martingales are given in Sect. 3. The
main results are in Sect. 4, together with two conjectures, and Sect. 5 is con-
cerned with the strong Markov property.

1.1 Notation and conventions

The expression 1p has the value 1 if the proposition P is true and O if it is
false. The symbol := is read as ‘is defined to equal’; the set Ry := [0, 0],
Z.+:=1{0,1,2,...},N:={1,2,3,.. .},

P:={c CR,:lo|]<oo} and P,:={c CRy:|lo|=n} VneZ;,

where |A| denotes the cardinality of the set A. Singleton sets are identified with
their elements, so s € Py foralls € Ry. If 5, t € Ry then s A ¢t := min{s, t},
0. = o N]s,t] and oy := o N [0,¢]. The quantity 0% has the value 1, as has
any empty product; an empty sum has the value 0. The L? spaces considered
herein are complex in general, with the notation L? (-; R) distinguishing the real
versions.
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546 S. Attal, A. C. R. Belton

2 Preliminaries

Definition 1 Let Z = (Z;),>( be a normal martingale defined on the probability
space (£2, F,P), i.e., a martingale with cadlag paths such that (Z2 —t);>0 is also
a martingale, both with respect to a filtration (F;);>0 which is right continu-
ous and such that Fy contains all P-null sets; it is assumed throughout that the
o-algebra F is generated by Z. For all n € N the linear map

Li: (A" L2(Fp) — LA(F); fr /f(tl, ooty dZy, - dZ,,
is a well-defined isometry, where A" := {(¢1,...,t;) € R} :#; < --- <t} and
I,,(f) is obtained by extending the obvious definition when
f(t17 tn)(a))—ltlealbl ltnea,,b,,fO(w) Vl]v"'a[l’leAnv (,()EQ,

where a; < by < --- < a, < by and fy € L*(Fy) (cf. [5, XXL.1]). Let &y :=
L%(Fy), let Iy: By — L%(F) be the inclusion map and let

Eno={I(f): f e L*(A%L*(Fp)} YneN and &:=(P

n=0

[I]

l’l’

~

the chaos space & is a closed subspace (indeed, an L°°(Fy) submodule) of
L?(F) (since &, is orthogonal to &, if m # n). If & = L?(F) then Z has the
chaotic-representation property (henceforth, CRP) conditional on Fy (or the
CRP at time 0, in Emery’s terminology [9]). If 7y is trivial then Z has the CRP
in the usual sense.

Notation 2 Recall Guichardet’s interpretation of @, the Boson Fock space over
L2(R,): @ = L?(P), where P is the class of all finite subsets of R and

IF1? = / f(0))* do = |f(®)|2+z / ... )P diy -
n= 1An
for all f € ®. (Each element of P, may be regarded as a point in R"” with
increasing coordinates, and P,, inherits its measurable structure from this; a set

A C Pis measurable if and only if ¢,,(A N P,) is measurable for all n > 1, where
the mapping ¢,,: P, > R {t1 < -+ < ty} > (t,...,tn).)

Let @ := L?(P; L?*(F9)) and note that
U: 8- &; (URH®) =fo, (UF)©)=(flsjote)0) Yo eP\Py, (2)
where F = > 7 I(f,), is an isometric isomorphism.
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The chaotic-representation property for a class of normal martingales 547

The exponential vector in & corresponding to u € L*(Ry) is the function
mu: P — C; my(0) =[], u(s) and U~ 'r, = Ew), the Doléans exponential:

£ =1+ [uOBEWIAIZ =1+ 3 L™,
0 n=1

where a predictable version is taken of ¢ — E[£ (u)|F;] and the function
U (11, .. ty) > u(ty) - ulty) € L2(A™Y)
for all u € L?(R, ). The linear span of the exponential vectors corresponding to

bounded functions with compact support is denoted &y and is dense in @.

Definition 3 Let Z be a normal martingale and, for all ¢ > 0, let
Z, D(Z[) ={Fe& . (Zi—Z)FeE})CE — E;, F~ (Z,— Zy)F.

Note | that Zt is symmetric and closed. (If (Fy,),>1 € D(Zt) is such that F,, — F
and Z[Fn — G then, passing to a subsequence, F,,, — Fand (Z; —Zg)F,, — G

almost everywhere, so (Z; — Zo)F = G. Hence F € D(Z,) and Z,Fn — ZF ,as
required.)

Lemma 4 [f(M, M, w) is a finite measure space and F: M — R is M measurable
then the operator

(G e L>(M): FG € L>(M)} € L*(M) — L*(M); G — FG

is self adjoint, and is bounded if and only if ess sup{|F(m)| : m € M} < oco.

Proof This follows from [17, Proposition VIIL.3.1] and, for the final statement,
the spectral-radius formula [17, Theorem V1.6]. O

The following theorem is due to Kurtz [11, Théoreme 8.1] (for trivial Fy and
Zy = 0; the extension is straightforward).

Theorem S (Kurtz) The martingale Z has the CRP conditional on Fq if and only
let, as given in Definition 3, is self adjoint for all t > 0.

Definition 6 The notation F: R, — L?*(G) (where G is a sub-o-algebra of F)
means that the process F : Ry x 2 — C is measurable with respect to the
product o-algebra B(R;+) ® G, where B(Ry) denotes the Borel o-algebra on
Ry, and F(f) : 2 — C; w — F(t,w) is such that E[|F(1)|?] < oo for all ¢ > 0.

Definition 7 The normal martingale Z is an Azéma martingale if there exist
processes A, B: R, — L%(Fo;R) such that the following structure equation is

satisfied:
t

(Z] = /(A(S) +B($)Zs-)dZ; +1 Vi =0, 3)
0
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548 S. Attal, A. C. R. Belton

where [Z] = ([Z]:);>0 is the quadratic variation of Z; the shorthand notation
d[Z]; = (A(t) + B()Z;—)dZ; + dt

is also used. Of most interest are structure equations of the form
d(Z]; = (a () + B Z,-) dZ, + dt, 4)

where «, 8: Ry — R are Borel measurable.

3 Examples

Let Z be an Azéma martingale with Zy = 0 which satisfies (4).

Example 8 If 8 = 0 and « is constant then either « = 0, in which case Z is
Brownian motion (a theorem due to Lévy [16, Theorem I1.38]), or « = a # 0,
so Z is a compensated Poisson process of the form

Zi=a(Ny —t/a®) Yi1>0,

where N is a Poisson process with intensity 1 and unit jumps [8, p. 69]. These
processes are well known to have the CRP.

Example 9 If B = 0 and « is any Borel-measurable function then Z has
independent increments and may be realised as follows: if W is a standard
Brownian motion and P an independent Poisson point process on R, with
intensity 1y()-0 dt/a(t)? then

t
Zi= [ LuodWe+- M, Vi,
0

where M is a purely discontinuous martingale with jumps at the points of P
such that AM; € {0, «(?)} for all t > 0. This explicit construction is due to Emery
[8, Proposition 4], who has demonstrated that uniqueness in law and the CRP
hold in this case. (See also work of Dermoune [6] and Utzet [22].)

Remark 10 1f Z has independent increments then, by [22, p. 409, Commentaires
du Séminaire], the process («(f) + () Z;—)r>0 is equal almost everywhere (with
respect to the product of Lebesgue measure on R, and IP) to some deterministic
process. From this, it is a straightforward exercise to show that 8 = 0 almost
everywhere on Ry.

Example 11 If a = a and B = b then Z is an Azéma martingale of the type
studied by Emery [8, Sect. (e)]; existence and uniqueness in law holds for all
a, b € R, and if b € [-2,0] then Z has the CRP. There are two important
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The chaotic-representation property for a class of normal martingales 549

examples (as well as those given above) with explicit descriptions: if « = 0 and
b = —2 then Z is the parabolic martingale, such that Z> = ¢ for all ¢ > 0; if
a = 0and b = —1 then Z is the first Azéma martingale, which may be realised
by taking a standard Brownian motion W and setting

Zt = Sign(Wt)\/ 2(t — Gt) Vit > 0,

where sign(x) := 1.0 — 1y<o for all x € R and G; := sup{s € [0,7] : B; = 0}.

Example 12 If a(t) = 1 —tforallt > 0 and 8 = —1 then Z is the classical
martingale associated to the monotone Poisson process [2]; this is unique in law
and has the CRP. The process Y = (Y; := Z; +1);>0 has many similarities to the
first Azéma martingale: it is determined by the level set U/ :={r > 0: Y, = 1}
(which is almost surely non-empty, compact, without isolated points, of zero
Lebesgue measure and of Hausdorff dimension no more than 1/2) together
with choices either to increase or to decrease after each time in &/. The sample
paths of this process have the explicit form

Y, = —W.(— exp(—1 —t+ Gt)) Vit >0,

where G; := sup{s € [0,f] : Y5 = 1} € {—o0} U]0,¢] and W, is one of the two
branches of the Lambert W function which take real values. (Recall that W is
the many-valued inverse to the complex function z — ze?.) More information
on this process may be found in [3].

Example 13 If « = 0 and 8: Ry — [-2,0] is Borel measurable and such that
fol |B(s)| "1 ds < oo for all # > 0 then Z has locally bounded trajectories and so
has the CRP; this is a result of Russo and Vallois [20, Proposition 4.4].

Example 14 Taviot[21, Théoréme 4.0.2] has proved an existence theorem which
gives a solution to (4) if « and B are cdglad, i.e., left continuous and with right
limits everywhere.

4 Results

When Fy is trivial, the following result may be derived from the chaotic Kabanov
formula of Privault et al. [15, Theorem 1].

Lemma 15 Let Z be an Azéma martingale such that Zy € L°°(Fy) which satisfies
(3) and suppose t > 0 is such that A and B are uniformly bounded on [0, 1], i.e.,

|Alloo, := ess sup{|A(s,w)| : s € [0,7], w € 2} <00 and ||Bllec; < 00

(where the essential supremum is with respect to the product of Lebesgue measure
on[0,f]and P). Ifn e Nand f € Lz(A”; L2(F)) then

(Zi — Z)In(f) = Lia (7)) + Li(f) + L (fFH) € &, (5)
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550 S. Attal, A. C. R. Belton

where ty == 0, A(s) 1= A(s) + ZoB(s), By(s) 1= Lsefo.qB(s),

Nt

n—1 n—1

ft_(l‘l, o tyq) = Z / H(l + Bt] (t[))f(tl, b1, Sty . 1) ds

k=ly, % nr 1=k
t

+ / f(tl""vtn—1>s)dsv

Nt

fn ) =D TyepaA@) [T (14 Ba@)f ... 0,

k=1 I=k+1
n+1 n+1

D) =D yeon [ 0+ Ba@)f ..l tagn)

k=1 I=k+1

and (tl,...,ﬁ,...,tnﬂ) is the n-tuple obtained by removing t; from the

n+ 1-tuple (t1,...,t,11).

Proof First, observe that f|7 € L2(A""1;L2(Fy)), f? € L?(A";L*(Fo)) and

fF e L2(a™ L2(F)), with

£ < n(+ 1Bl 211,
121 < nllAlloor (1 + 1Blloon)™ LIFI
and |If;T) < (n+ D(1 + |Blloon)™ L2l

Next, let I,(f) = fooo GydZs, i.e., G is a predictable version of

iy %)
In — / e /f(t17 v ,tn) lel e dZtnfl = nfl(f(th)tn])»
0 0

(6)
)
(8)

where gy (t1,...,t) = 1, cl08(t1, ..., 1) forall g e L2(A%),or G =fifn=1.

By the integration-by-parts formula for semimartingales,

t S o
@201 = [ [ 614z, a2+ [ - 2060z +
00 0

N t

t t
=//G,dZ,dZs+/A(s)GstS+/Gsds
0 0 0 0

o0
+ / (14 By() Zisnoy— — Z0)Gy dZy;
0
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The chaotic-representation property for a class of normal martingales 551

since (Z,_),>0 is predictable, the process s = (1 + By (5)) Z(sar— G s a predict-
able version of s > (1 + B(5))Zs:Gs. Thus, if n = 1 then

t
(Zi — Zo) 1 (f) = /f(S) ds+/1l1€[0,t]A(t1)f(zl)dZ[1
0 1

+ /(ltze[(),t]f(tl) + 1 ¢100 (1 + By (tz))f(lz)) dz, dz,,,
A2

as required. Now suppose that (5) holds as claimed for some n > 1; from the
above,

(Zi — Zo) 1 (f) = / 1, e0nf,. .ty dZy -+ dZy, dty g

An+l

+ / L, c00AUDf .ty dZy - dZy,

An+l

+ / 1y c0af Gl tys) dZe - dZ,

An+2
o

+ / (14 By() Zisno - — Zo)n(F(-.5)s7) dZs

0

and this final term is the sum of three integrals:

/ (14 By(S) Lot oy )sp) 4Zs
0

L A(SAL) -1
/ / Z / H (1 + Bs/\t] (t])) (1 + B[] (S))
0 an-1 k=1y_ Asan =K
X lln 1e[os]f(t1, b1 ey 1, 8) drdZ[l . dZtn—l dz,

SAL
/ / / 1+ By(s)
0 An=1t, {A(SAL)
X lre[Os]f(tl, R S A s) drdZtl dZtn_] dZS

e Nt n

Z / H 1+Bl](tl) f(t17-~-atk—17r7tk"-'stﬂ)drdztl"'dZtn’
An k=14 ar 1=k
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552 S. Attal, A. C. R. Belton

/ 14 By() (2 (- 5)sp) dZs
0

/ S tycnsnnA) [T (14 Bosy@) (1 + By(s)

0 A" k=1 I=k+1
X lt,,e[O s]f(tl, . tn,S) dZ[1 s dZt,, dZ
n+1
lekemﬂA(w [T 0+ Baw)ftrs....tas1)dZ,, -~ dZy,,
Antl k=1 I=k+1

and

/ (14 Biy(s) st (5, 5)sp) 4Z
0

n+1 n+1

Z | PN H + By (t) (1 + By (S))

0 gr1 k=1 I=k+1

X 1tn+1€[0,s]f(tla RN 7 PN tn+1,s) del s dZtn-H dZs
n+1 n+2

Z 1; 0. H + By (tl))f(fl, cees ln2)dZy - dZy, .
ez k=1 I=k+1

The result follows by induction. ]

Definition 16 A function f: P — C is a test vector if it is measurable and there
exist constants T, C, M > 0 such that [f(0)| < 1,c[0,jCM!°! for all o € P. The
collection of all such functions forms a vector space, denoted 7, which contains
&oo and is dense in @.

A generalised test vector is a measurable function f: P — L?(Fp) for which
there exist constants 7', C, M > 0 such that ||f(0)||Loc(f0) < oo, CM'°! for
allo € P. The set 7 of all generalised test vectors is a vector space which con-
tains {7, ® fo : 7y € E0o, fo € Aljoo(}—O)} where (7, ® fo)(0) = @ = m,(0)fo(w)
for all o € P, and is dense in @.

Theorem 17 Suppose Z is an Azéma martingale with Zy € L*>(Fy) which sat-
isfies (3) and t > 0 is such that A and B are uniformly bounded on [0,1]. If U is
the isomorphism (2) and Ziisasin Definition 3 then U~f € D(Z)) forallf € T
and, ifo € P,
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The chaotic-representation property for a class of normal martingales 553

t

WZU Py = [ [ @+BM)feusids+ D ] (1+B®)fe\9)

0 re€o(s1 SEO0Y FEOT(5 1)
+ > A [] @+BM)f©).
S€0oy re€o(s

Proof If there exists n € Z, such that f(o) = 0 for all 0 € P\ P, then
this claim is simply a translation of Lemma 15 (or is immediately verified, for
the case n = 0). Furthermore, the estimates (6-8) imply that if f € 7 and

U™lf = 3020 In(fo) then 302 IFi5 02 + 1f5, 17 + 11, II* is convergent, which
gives the result. O

Lemma 18 For ¢ > 0 let N = (N;);>0 be a compensated Poisson process with
jump size c and intensity ¢=2, defined on the probability space (22p,Fp,Pp),
and suppose that Fp is generated by N. There exists an isometric isomorphism
Up: L*(Fp) — <P such that the operator of multlpllcatlon by N, in L*(Fp) equals
Up IN,Up on UP (T), where the operator N; acts in @ so that

Nify(o) = / foUsds+ > fo\s)+cloylf@) Vo eP.

SE0Y]

Ifu € L>(Ry) then Uy 17'ru equals the stochastic exponential £ (u) and

o]

EW)EW) = exp /u(s)v(s) ds | Ew+v+cuv) 9)
0

forallu, v e L2(Ry) N L*(Ry).

Proof Tt is well known (cf. Example 8) that N satisfies the structure equation
d[N][ = CdNt + dr

and has the CRP; the claims about Up and (]Tlt),;o thus follow immediately
from Theorem 17. Yor’s formula [16, Theorem I11.37] implies the remark about
the product of stochastic exponentials. O

Remark 19 The operator N; of Lemma 18 extends to a self-adjoint operator in
@ by ampliation with the identity; this operator (denoted in the same manner)
acts in @ so that,ifo €e Pand w € £2,

(Nif) (@) (@) = /f(cI Us)(@)ds + > fo \9)() + clog|f (o) ().

seoy)

@ Springer



554 S. Attal, A. C. R. Belton

Definition 20 For processes A, B: Ry — L%(Fy:R) and a random variable
Zy € L®°(Fop;R), let

ARy — L>(Fo;R); t — A(t) + ZoB(@).

For all ¢ > 0, define linear operators X, f Y, and Z, in @ by setting, for all o € P,

t

o= [ ] 1+ Bo)eu9ds+ 3 [] 1+ B0)fe s,

0 reo(s 1 S€EOY FE0 (5 1]
YiHo) =D A [] (1+B0)f),
SEO0Y] F€o(s1)

and (Zf)(o) = ()?,f)(o) + (?,f)(o), with maximal domains

DWWy :={fed: /E[|(W,f)(a)|2] do <oco} VWelX,Y,Z)
P

note that X’, + ?t - Z.

Notation 21 The expression A = « means that «: Ry — R is such that
A(t,w) = a() for allt > 0 and w € £2, i.e., for all t > 0 the function A(¢)
is constant and equals «(¢); the same applies, mutatis mutandis, to B.

Remark 22 The decomposition of Z, as the sum of the operators X, and Y, is
a generalisation of Hudson and Parthasarathy’s method [10, Sect. 6] of obtain-
ing the Poisson process (as the perturbation of quantum Brownian motion
Q = A + AT by addition of the gauge process A). (Here, A represents the
annihilation process of quantum stochastic calculus and has nothing to do with
the structure equation (3).)

Proposition 23 [ft > 0 is such that B is uniformly bounded on [0, t] then T isan
invariant subspace for Xt, ie,T € DXy and X(T) C T; if A is also uniformly
bounded on [0, 1] then T is an invariant subspace for both Y; and Z, as well.

Proof For f € T let T, C, M > 0 satisty ||f(0) |l 1.7, < lycjo.rjCM! for all
o €P.If ¢ := [|Alloo, and d := | B, then

(X)) N L (7)
<t + DM 150 71+ 1011+ )1 CM 1™y 1o, max e 11

and
1Y D@y < loled +a)7'CM ociory Vo e P,
which gives the result as claimed. O
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The chaotic-representation property for a class of normal martingales 555

The proof of the following theorem is a generalisation of a technique used
by Parthasarathy [13, Sect. 2].

Theorem 24 Suppose t > 0 is such that A is uniformly bounded on (0,t] and
B(s,w) € [-2,0] for all s € [0,1] and w € $2. Every vector of the form m, ® fo,
where 1, € Ego and fy € L>®(Fy), is an analytic vector for Z;.

Proof Letting ¢ := ||A||oo,,, if o € Pand w € £2 then

1Zif () ()] < /If(d Us)(@)lds+ D" If (0 \ $)(@)] + clog| [f (o) ()]

NSl

= (Nzlfl)(o)(w),

where K’t is defined in Remark 19. Iff 0 (i.e., f(o)(w) > O for alloc € P and
w € 2) then N;f > 0, so if |Z” VRS N" 1f| then

\ZI'f| = 1Z«(ZP )| < NAZPHFL < N(NPYFD = NS,

hence induction yields the inequality |Z”f | < N" If| for all n € Z4. It follows
that if m, € &y and fy € L°°(Fp) then, by the Cauchy Schwarz-Bunyakovskii
inequality and Lemma 18,
1Z (e ® fo)I5 <INy @ Ifol 15
= 1(Up ' NeUp)" Uy g 17 2 I ol 172
= Ep[IN;E(uDP]ELfo ]
an11/2 471/2 2

< Ep[N"] 7 Ep[€(uD*] 7 E[Ifol].

Thus 7, ® fo is an analytic vector for Z if € (lul) € L*@Pp) and the power

series > > Ep [Nf‘"]l/ 42/n! has strictly positive radius of convergence. The
first follows from (9):

E(ul)? = exp(lul>)EQJul + clul®) € L*(Fp),

since 2|u| + clu|> € L*(Ry) if u is bounded and has compact support. For the

second, as ¢ 1 (N; + ¢ 1¢) has a Poisson distribution with mean ¢ ¢,
Ep[ (¢ (N, + ¢ '0) "]
et efc’zt(cf2t)kk4n
= k!
< 4 i tk(k + 1)2k -(k +4n) _ e*C_zle > ﬂ
c2kf den = 2k
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4 _
_ e_cfztim(ﬁnecfz,) _ e_cfztzn 4An\ d*n—k Ak dk o
den =\ k adn—k" ke
< (4n)! 2 ( ) = @)1 + 2™

Since

Ep[N{"1* = INl} an gy < (NG + € el pinppy + e el an o)
<2M(IN;t+ ¢l angp,y + (€10
< @)V +2¢7 " + ey

and Z;’fzo(4n)!1/ 4@2c 4 2¢71H)"z" /n! has radius of convergence (8c + 8c 11,
the result follows. |

Theorem 25 Let Z be an Azéma martingale with Zy € L* (Fo) which satisfies
(3), where A is locally uniformly bounded, i.e., [[A|loos < 00 forall t > 0, and
B(t,w) € [-2,0] forallt > 0 and w € 2. Conditional on Fy, the process Z is
unique in law and has the CRP.

Proof Theorem 24 implies that U~ Yz, ® fo) is an analytic vector for Z, when-
ever t > 0, where m,, € &y and fy € L*°(Fy), since Z; and U~ 1Z,U agree on T
by Theorem 17, which is invariant under their action, by Proposition 23. Hence
Z, is self adjoint, by Nelson’s theorem on analytic vectors [18, Theorem X.39],
and Theorem 5 gives the CRP conditional on Fy. Furthermore, Z, is determlned
by A and B, since it equals U~ 1Z,U on U™'T, which is a core for Z: by the
analytic-vector theorem,

Zlya3)' =Zilya7 CZi=Z=Z]
— 72 Zz|U 15 = (Zt|U P22 =2,
Hence the characteristic function

(Myeeoshn) > Elexp(imZy, + -+ + MZy,)) ]
= exp(i(r + - + M) Zo) (1, exp(iMi Zy,) - - - exp(irn Z;,)1)

is determined by Zy, A and B; thus Z is unique in law conditional on Fy. O

Corollary 26 An Azéma martingale Z which satisfies (4) is unique in law and
has the CRP if Zy is sure, « is locally bounded and B(t) € [—2,0] forallt > 0.

Proof This follows from Theorem 25 by taking Fy to be trivial. O
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Example 27 Parthasarathy demonstrated [14, Sect. 2] that if b € [—2,0[ and
x # 0 then there exists an Azéma martingale X?* such that

Xg*=x and d[X"'], = bXAXN 4+ de

and proved that X' bx and (xX 2),>0 are identical in law; for b = 0 this is just

the scaling property of Browman motion [19, 1.3.4]. Emery [8, Sect. (¢)] noted
that this identity is a consequence of uniqueness in law for solutions of such
a structure equation with the prescribed initial condition, which holds for all
b € R. The result established above implies that if X* is an Azéma martingale
such that

0=x#0 and dX']=BOXLdX; +dt,

where 8: Ry — [—2,0] is Borel measurable and satisfies (f) = ,3 (t/x?) for
almost every ¢ > 0, then, given that X I also exists, X* and (xX x 2)i=>0 are
identical in law. (Non-trivial examples of such g are readily found.)

Conjecture 28 1If B = 0 and A = « then the operators (Z),>0 correspond (at
least formally) to the process with independent increments described in Exam-
ple 9, which has the CRP. As this holds whether or not « is locally bounded, it
is conjectured that Z; is self adjoint for all > 0 and any processes A, B: Ry —
L2(Fo;R) with B(t,w) € [-2,0] for all > 0 and w € £2.

Proposition 29 If t > 0 is such that B(s,w) = B(s) € [-2,0] for all s € [0,] and
w € 82, where fo 1B(s)| "1 ds < oo, then X, is bounded.

Proof (Sketch) This is in imitation of a similar result given by Russo and
Vallois [20, Proposition 4.4] (which itself follows an idea of Emery); however,
their proof relies upon the existence of an Azéma martingale X = (X))o
such that

d[X]sy = B() X dX; + ds,

whereas the following demonstration uses only the operators X. $)0<s <t

These operators may be shown to satisfy the quantum stochastic differential
equation

dX; = B(s) Xy dAg + dA; + dA]

on 7, taking Fy to be trivial. (Here, similarly to Remark 22, dA; relates to the
quantum-stochastic annihilation process and has nothing to do with the coeffi-
cient function A.) It follows that d.X; 2 = 2X dX + d[X]; on T as well, by the
quantum It product formula, where d[X s = ,B(S)X dX + ds. Thus

4X = (B6) + DX (B0 o s+ dA; +dA]) + s
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and

IXf1% = (f, X2f)

[ B&+2
) B

t
2
<= [ 2= dsllf1?
o/ﬂ(s) s|If

for all f € &y, where the definition of the gradient operator, Vm, := u(s)my,, is
extended by linearity; the result follows. O

% 22 e
I1B)XsVsf +f11° — 56) I£11~ds

Proposition 30 If A is uniformly bounded on [0,t] and |1+ Blleos < 1 for some
t > 0then Y; is bounded.

Proof If ¢ := ||Allso, and q := |1 + B|loos < 1 then
Yif (@) (@) < D cqg"4N|f (o) (@) < c(1 — ) 'If(0) (@) Vo eP,
NSl
whence || Y| < c(1—q)". O
Corollary 31 If Z is an Azéma martingale such that Zy € L*° (Fo) which satisfies
(3), where A is locally uniformly bounded, B = B and
sup{|1+ (@) :s€[0,¢]} <1 Vt=0,

then Z has locally bounded trajectories.
Proof This follows by combining the two previous propositions. O

Conjecture 32 Since X, is bounded under weaker conditions than those required
in Corollary 31, it is tempting to conjecture that Y; is also, i.e., that if B(s,w) =
B(s) € [-2,0] for all s € [0,7] and w € §2 then uniform boundedness of A on
[0, 7] and the existence of fot |B ()|~ ds are sufficient for Y, (and so Z;) to be
bounded. It is possible that an ‘intrinsic’ proof of Proposition 29 (i.e., one that
relies directly upon the definition of X, rather than its interpretation as part of
a hypothetical Azéma martingale) would point the way to establishing such a
result.

S The strong Markov property

Definition 33 Let X = (X;);>0 be an R<-valued process with cadlag trajectories
which is adapted to the filtration (F);>0. If

Elf (Xit1)lo (X1)] = Elf (Xey )| FT] V20 (10)
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for any bounded, Borel-measurable function f: R — R and any finite stopping
time 7 then X has the strong Markov property.

Proposition 34 [f X satisfies (10) for any bounded, Borel-measurable function
f and any bounded stopping time T then X has the strong Markov property.

Proof Let T be a finite stopping time and let 7, := T An for all n > 1.
Lévy’s upward convergence theorem [19, Theorem I11.50.3] and the dominated-
convergence theorem, together with (10), imply (after some working) that if f
is a bounded, Borel-measurable function and ¢ > 0 then

Elf Xt F1] = nlggo Elf (Xi+1)lo (XT,)].

For all n > 1 there exists a bounded, Borel-measurable function g;,: RY > R
such that [|gullee := sup{g.(¥)| : x € R} < ||flloe and E[f (X1 7)o (X7,)] =
gn(XT,); since

El1gn(X1) — gn(X7,)11 < 2P(T > n)lignlloc < 2P(T > n)|flloc — 0

as n — oo, E[f(Xi+1)|Fr] = lim,— o g:(X7) is measurable with respect to
o (Xt). Furthermore, it is now simple to check that

E[E[f (XD FrIh(X1)] = Elf (Xi7)R(XT)]
for any bounded, Borel-measurable function #: R¢ — R; the result follows. O

Proposition 35 If X is an R%valued process as in Definition 33 then the
R4 yalued process (X, 0);>0 has the strong Markov property if and only if

Elf (Xiw1)lo (X7, T)] = E[f (Xey )| FT] V20 (11)

for any bounded, continuous function f: R® — R and any bounded stopping
time T.

Proof One direction is clear; the converse follows from an application of the
monotone-class theorem [16, Theorem 1.8] and Proposition 34. O

Lemma 36 If X is a normal martingale for the filtration (F;);>0 and T is a
bounded stopping time then Y = (Y, := X, 1):>0 is a normal martingale for the
filtration (Fiy1)i>0, and if t > O then

t t+T
/ FoopdY, = / F, dX, (12)
0 T

for any (Fy)s>o-predictable process F such that ]E[f}+T FS2 ds] < oco.
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Proof The optional-sampling theorem [16, Theorem 1.17] shows that Y is
normal; the rest may be obtained from results in [12, I1.2]. O

Theorem 37 If Z is an Azéma martingale which satisfies (4), with Zy sure, a
locally bounded and B(t) € [—2,0] for all t > 0, then (Z;,t);>0 has the strong
Markov property. In the special case when o = «(0) and 8 = B(0) then Z has the
strong Markov property.

Proof Let T be a bounded stopping time and let
T,:=TAninf{t >0:|Z;,— Zog| >n} VneN,

so that T}, is a bounded stopping with Z7, € L°°(F7,) and T,, 1+ T as n — oc;
to see the first claim, note that |Z7,_| < n + |Zp| and

|1AZ7,| < le(Tw)| + 1B(TWI 1 ZT,-| < sup{le(s)| : s € [0,r]} + 2n,

where r > 0 is such that T < r surely, since AZ,2 = (a(t) + B()Z,—)AZ, for all
t>0.

IEW = (W;:=Z;.1,)>0 then, by Lemma 36, W is a normal martingale with
respect to the filtration (F47,,)/>0 and

‘ 4T,
[W]l = Wtz - W(z) - 2/ Ws— dWS == Zt2+Tn - Z%‘n -2 / ZS— dZS
0 Tn
[+Tn
— Zlr, — 217, = 1+ / (@) + B($)Zs_) dZ,
Tn

t
=1+ /(A(S) + B(s)Ws_) dW,
0

where A(t) := a(t + T,) and B(t) := B(t + T,) for all t > 0; note that
Ry x 253 (o)~ A (w) and Ry x 2 3 (f,w) — B@)(w)

are measurable with respect to B(Ry) ® o(7},) (and so B(R;) ® Fr,). Ift > 0
then ||Allcos < 0t |loos+r < 00, Where r > 0 is as above, and B(f)(w) € [-2,0]
forallt > 0and w € S2.

Furthermore, W is also a normal martingale with respect to (G);>0, where
Gri=0Ws:s5€[0,t]) vo(Ty) forallt > 0, since G; € Fyy1, forallt > 0 and
therefore

E[Wt|gs] = E[E[Wt|-7:s+Tn]|gs] = E[Ws|gs] = Ws
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and
E[W? — t|Gs] = EIE[W? — 1| Fyr1,11Gs] = E[W? — 5|Gs] = W2 —s

if0<s <t As A1), B(t) € L*°(Gp) for all ¢ > 0, the uniqueness-in-law result
contained in Theorem 25 implies that, for all u € R,

Ele"#+Tn| Fr, ] = E[e"V!| Fr,] = E[e"V'|Go] = E[e"4+Tn |0 (Z1,, Tw)];
letting n — oo, the result follows:
E[[E[e“%+7n | Fr,] — E[e"#T| Fr, 1] < E[|e"#+Tn — e"ZT|] — 0,
by the dominated-convergence theorem, and
E[[E[e“%+7|Fr,] — E[¢“%+T|Fr]|] — 0,

by Lévy’s upward convergence theorem; the same working holds if Fr, and Fr
are replaced by o (T}, Z1,) and o (T, ZT), respectively.

As for the final claim, in this case A and B do not depend on T, so it suffices
to take G; := o (W : s € [0,¢]) for all t > 0. O
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