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Abstract Suppose Z = (Zt)t�0 is a normal martingale which satisfies the
structure equation

d[Z]t = (α(t) + β(t)Zt−) dZt + dt.

By adapting and extending techniques due to Parthasarathy and to Kurtz, it is
shown that, if α is locally bounded and β has values in the interval [−2, 0], the
process Z is unique in law, possesses the chaotic-representation property and is
strongly Markovian (in an appropriate sense). If also β is bounded away from
the endpoints 0 and 2 on every compact subinterval of [0, ∞[ then Z is shown to
have locally bounded trajectories, a variation on a result of Russo and Vallois.
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1 Introduction

A local martingale Z has the predictable representation property (henceforth
PRP) if for any local martingale M there exists a predictable, Z-integrable
process H such that

Mt = M0 +
t∫

0

Hs dZs ∀ t � 0.

This concept is of considerable intrinsic interest; as is well known, it is equiv-
alent (when the initial filtration is trivial) to the law of Z being extremal [23].
The PRP is also important for many applications, in areas such as filtering,
control theory and mathematical finance; the ideas in [4] (which concerns the
former topics) and [1,7] (which concern the latter) may all be applied to the
martingales discussed below, for example.

A strictly stronger notion [9] than this is the chaotic-representation property
(henceforth CRP). Suppose Z is a normal martingale, i.e., Z and t �→ Z2

t − t are
both martingales, and recall that the iterated stochastic integrals

∫

{0�t1<···<tn}
f (t1, . . . , tn) dZt1 · · · dZtn

are well defined for all n � 1 and deterministic, square-integrable functions f .
If these integrals, together with the constant functions, are dense in L2(Ω , F , P)

(where (Ω , F , P) is the underlying probability space and F is generated by Z)
then Z has the CRP. It is simple to verify that this implies the PRP and so, if the
CRP holds, there exists a predictable process Φ such that

d[Z]t = Φt dZt + dt. (1)

This is known as the structure equation for Z. The following question now
presents itself: given a normal martingale Z which satisfies (1), does it have
the CRP?

If Φ is deterministic then Dermoune [6] and Émery [8] have shown that the
CRP holds and Z has independent increments; conversely if Z is a martingale
with independent increments which satisfies (1) then the process Φ may be
taken to be deterministic [22].

The next simplest case is when Φ is affine: Φt = α(t) + β(t)Zt− for all t � 0,
where α and β are real valued. Émery [8] proved that if α ≡ a and β ≡ b for
constants a and b then any martingale Z which satisfies (1) is unique in law and,
if b ∈ [−2, 0], has the CRP. Russo and Vallois [20] considered the case where
α and β are locally bounded and they established boundedness (which implies
the CRP) if α ≡ 0, β(t) ∈ [−2, 0] and

∫ t
0 |β(s)|−1 ds < ∞ for all t � 0.
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In this article, it is demonstrated that uniqueness in law and the CRP hold
whenever α is locally bounded and β(t) ∈ [−2, 0] for all t � 0. This is estab-
lished by extending a comparison argument of Parthasarathy [13], to show that
certain vectors are analytic for certain associated multiplication operators, and
then by using an idea of Kurtz [11], which allows the CRP to be deduced from
the self-adjointness of these operators.

In fact, a stronger result is established, by letting F0, the initial σ -algebra
for Z, be non-trivial and working with structure equations where α and β are
L∞(F0) valued. This allows proof of (an appropriate version of) the strong
Markov property for these martingales (called Azéma martingales, extending
terminology due to Émery).

A variant of the Russo-Vallois result [20, Proposition 4.4] is also obtained;
the requirement that α ≡ 0 is removed but a stronger condition is imposed on
β, namely that

sup{|1 + β(s)| : s ∈ [0, t]} < 1 ∀ t � 0,

i.e., β is strictly bounded away from the endpoints of the interval [−2, 0] on any
compact subinterval of [0, ∞[.

The working below takes place in the Guichardet interpretation of Boson
Fock space which, as Meyer observed, serves as a universal space for the inves-
tigation of normal martingales and is therefore a completely classical object.
Although many of the ideas leading to the results herein came from quantum
stochastic calculus, this article makes (almost) no explicit use of these tech-
niques and may be read by any probabilist. (The sole exception is the proof of
Proposition 29, for which a purely classical demonstration seems to be lacking.)

Section 2 describes Guichardet space and the chaotic-representation theo-
rem of Kurtz; some examples of Azéma martingales are given in Sect. 3. The
main results are in Sect. 4, together with two conjectures, and Sect. 5 is con-
cerned with the strong Markov property.

1.1 Notation and conventions

The expression 1P has the value 1 if the proposition P is true and 0 if it is
false. The symbol := is read as ‘is defined to equal’; the set R+ := [0, ∞[,
Z+ := {0, 1, 2, . . .}, N := {1, 2, 3, . . .},

P := {σ ⊆ R+ : |σ | < ∞} and Pn := {σ ⊆ R+ : |σ | = n} ∀ n ∈ Z+,

where |A| denotes the cardinality of the set A. Singleton sets are identified with
their elements, so s ∈ P1 for all s ∈ R+. If s, t ∈ R+ then s ∧ t := min{s, t},
σ(s,t] := σ ∩ ]s, t] and σt] := σ ∩ [0, t]. The quantity 00 has the value 1, as has
any empty product; an empty sum has the value 0. The Lp spaces considered
herein are complex in general, with the notation Lp(·; R) distinguishing the real
versions.



546 S. Attal, A. C. R. Belton

2 Preliminaries

Definition 1 Let Z = (Zt)t�0 be a normal martingale defined on the probability
space (Ω , F , P), i.e., a martingale with càdlàg paths such that (Z2

t − t)t�0 is also
a martingale, both with respect to a filtration (Ft)t�0 which is right continu-
ous and such that F0 contains all P-null sets; it is assumed throughout that the
σ -algebra F is generated by Z. For all n ∈ N the linear map

In : L2(∆n; L2(F0)
) → L2(F); f �→

∫

∆n

f (t1, . . . , tn) dZt1 · · · dZtn

is a well-defined isometry, where ∆n := {(t1, . . . , tn) ∈ R
n+ : t1 < · · · < tn} and

In(f ) is obtained by extending the obvious definition when

f (t1, . . . , tn)(ω) = 1t1∈[a1,b1] · · · 1tn∈[an,bn]f0(ω) ∀ t1, . . . , tn ∈ ∆n, ω ∈ Ω ,

where a1 � b1 � · · · � an � bn and f0 ∈ L2(F0) (cf. [5, XXI.1]). Let Ξ0 :=
L2(F0), let I0 : Ξ0 → L2(F) be the inclusion map and let

Ξn := {
In(f ) : f ∈ L2(∆n; L2(F0)

)} ∀ n ∈ N and Ξ :=
∞⊕

n=0

Ξn;

the chaos space Ξ is a closed subspace (indeed, an L∞(F0) submodule) of
L2(F) (since Ξm is orthogonal to Ξn if m 
= n). If Ξ = L2(F) then Z has the
chaotic-representation property (henceforth, CRP) conditional on F0 (or the
CRP at time 0, in Émery’s terminology [9]). If F0 is trivial then Z has the CRP
in the usual sense.

Notation 2 Recall Guichardet’s interpretation of Φ, the Boson Fock space over
L2(R+): Φ = L2(P), where P is the class of all finite subsets of R+ and

‖f‖2 =
∫

P

|f (σ )|2 dσ = |f (∅)|2 +
∞∑

n=1

∫

∆n

|f (t1, . . . , tn)|2 dt1 · · · dtn

for all f ∈ Φ. (Each element of Pn may be regarded as a point in R
n with

increasing coordinates, and Pn inherits its measurable structure from this; a set
A ⊆ P is measurable if and only if ιn(A ∩ Pn) is measurable for all n � 1, where
the mapping ιn : Pn → R

n; {t1 < · · · < tn} �→ (t1, . . . , tn).)

Let Φ̃ := L2(P; L2(F0)
)

and note that

U : Ξ → Φ̃; (UF)(∅) = f0, (UF)(σ ) = (f|σ | ◦ ι|σ |)(σ ) ∀ σ ∈ P \ P0, (2)

where F = ∑∞
n=0 In(fn), is an isometric isomorphism.
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The exponential vector in Φ corresponding to u ∈ L2(R+) is the function
πu : P → C; πu(σ ) = ∏

s∈σ u(s) and U−1πu = E(u), the Doléans exponential:

E(u) = 1 +
∞∫

0

u(t)E[E(u)|Ft] dZt = 1 +
∞∑

n=1

In(u⊗n),

where a predictable version is taken of t �→ E[E(u)|Ft] and the function

u⊗n : (t1, . . . , tn) �→ u(t1) · · · u(tn) ∈ L2(∆n)

for all u ∈ L2(R+). The linear span of the exponential vectors corresponding to
bounded functions with compact support is denoted E00 and is dense in Φ.

Definition 3 Let Z be a normal martingale and, for all t � 0, let

Ẑt : D(Ẑt) := {F ∈ Ξ : (Zt − Z0)F ∈ Ξ} ⊆ Ξ → Ξ ; F �→ (Zt − Z0)F.

Note that Ẑt is symmetric and closed. (If (Fn)n�1 ⊆ D(Ẑt) is such that Fn → F
and ẐtFn → G then, passing to a subsequence, Fnk → F and (Zt −Z0)Fnk → G

almost everywhere, so (Zt − Z0)F = G. Hence F ∈ D(Ẑt) and ẐtFn → ẐtF, as
required.)

Lemma 4 If (M, M, µ) is a finite measure space and F : M → R is M measurable
then the operator

{G ∈ L2(M) : FG ∈ L2(M)} ⊆ L2(M) → L2(M); G �→ FG

is self adjoint, and is bounded if and only if ess sup{|F(m)| : m ∈ M} < ∞.

Proof This follows from [17, Proposition VIII.3.1] and, for the final statement,
the spectral-radius formula [17, Theorem VI.6]. ��

The following theorem is due to Kurtz [11, Théorème 8.1] (for trivial F0 and
Z0 = 0; the extension is straightforward).

Theorem 5 (Kurtz) The martingale Z has the CRP conditional on F0 if and only
if Ẑt, as given in Definition 3, is self adjoint for all t � 0.

Definition 6 The notation F : R+ → L2(G) (where G is a sub-σ -algebra of F)
means that the process F : R+ × Ω → C is measurable with respect to the
product σ -algebra B(R+) ⊗ G, where B(R+) denotes the Borel σ -algebra on
R+, and F(t) : Ω → C; ω �→ F(t, ω) is such that E[|F(t)|2] < ∞ for all t � 0.

Definition 7 The normal martingale Z is an Azéma martingale if there exist
processes A, B : R+ → L2(F0; R) such that the following structure equation is
satisfied:

[Z]t =
t∫

0

(A(s) + B(s)Zs−) dZs + t ∀ t � 0, (3)
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where [Z] = ([Z]t)t�0 is the quadratic variation of Z; the shorthand notation

d[Z]t = (A(t) + B(t)Zt−) dZt + dt

is also used. Of most interest are structure equations of the form

d[Z]t = (α(t) + β(t)Zt−) dZt + dt, (4)

where α, β : R+ → R are Borel measurable.

3 Examples

Let Z be an Azéma martingale with Z0 = 0 which satisfies (4).

Example 8 If β ≡ 0 and α is constant then either α ≡ 0, in which case Z is
Brownian motion (a theorem due to Lévy [16, Theorem II.38]), or α ≡ a 
= 0,
so Z is a compensated Poisson process of the form

Zt = a(Nt/a2 − t/a2) ∀ t � 0,

where N is a Poisson process with intensity 1 and unit jumps [8, p. 69]. These
processes are well known to have the CRP.

Example 9 If β ≡ 0 and α is any Borel-measurable function then Z has
independent increments and may be realised as follows: if W is a standard
Brownian motion and P an independent Poisson point process on R+ with
intensity 1α(t) 
=0 dt/α(t)2 then

Zt =
t∫

0

1α(s)=0 dWs + Mt ∀ t � 0,

where M is a purely discontinuous martingale with jumps at the points of P
such that ∆Mt ∈ {0, α(t)} for all t � 0. This explicit construction is due to Émery
[8, Proposition 4], who has demonstrated that uniqueness in law and the CRP
hold in this case. (See also work of Dermoune [6] and Utzet [22].)

Remark 10 If Z has independent increments then, by [22, p. 409, Commentaires
du Séminaire], the process (α(t)+β(t)Zt−)t�0 is equal almost everywhere (with
respect to the product of Lebesgue measure on R+ and P) to some deterministic
process. From this, it is a straightforward exercise to show that β = 0 almost
everywhere on R+.

Example 11 If α ≡ a and β ≡ b then Z is an Azéma martingale of the type
studied by Émery [8, Sect. (e)]; existence and uniqueness in law holds for all
a, b ∈ R, and if b ∈ [−2, 0] then Z has the CRP. There are two important
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examples (as well as those given above) with explicit descriptions: if a = 0 and
b = −2 then Z is the parabolic martingale, such that Z2

t = t for all t � 0; if
a = 0 and b = −1 then Z is the first Azéma martingale, which may be realised
by taking a standard Brownian motion W and setting

Zt = sign(Wt)
√

2(t − Gt) ∀ t � 0,

where sign(x) := 1x>0 − 1x<0 for all x ∈ R and Gt := sup{s ∈ [0, t] : Bs = 0}.
Example 12 If α(t) = 1 − t for all t � 0 and β ≡ −1 then Z is the classical
martingale associated to the monotone Poisson process [2]; this is unique in law
and has the CRP. The process Y = (Yt := Zt + t)t�0 has many similarities to the
first Azéma martingale: it is determined by the level set U := {t � 0 : Yt = 1}
(which is almost surely non-empty, compact, without isolated points, of zero
Lebesgue measure and of Hausdorff dimension no more than 1/2) together
with choices either to increase or to decrease after each time in U . The sample
paths of this process have the explicit form

Yt = −W•
(− exp(−1 − t + Gt)

) ∀ t � 0,

where Gt := sup{s ∈ [0, t] : Ys = 1} ∈ {−∞} ∪ ]0, t] and W• is one of the two
branches of the Lambert W function which take real values. (Recall that W is
the many-valued inverse to the complex function z �→ zez.) More information
on this process may be found in [3].

Example 13 If α ≡ 0 and β : R+ → [−2, 0] is Borel measurable and such that∫ t
0 |β(s)|−1 ds < ∞ for all t � 0 then Z has locally bounded trajectories and so

has the CRP; this is a result of Russo and Vallois [20, Proposition 4.4].

Example 14 Taviot [21, Théorème 4.0.2] has proved an existence theorem which
gives a solution to (4) if α and β are càglàd, i.e., left continuous and with right
limits everywhere.

4 Results

When F0 is trivial, the following result may be derived from the chaotic Kabanov
formula of Privault et al. [15, Theorem 1].

Lemma 15 Let Z be an Azéma martingale such that Z0 ∈ L∞(F0) which satisfies
(3) and suppose t � 0 is such that A and B are uniformly bounded on [0, t], i.e.,

‖A‖∞,t := ess sup{|A(s, ω)| : s ∈ [0, t], ω ∈ Ω} < ∞ and ‖B‖∞,t < ∞

(where the essential supremum is with respect to the product of Lebesgue measure
on [0, t] and P). If n ∈ N and f ∈ L2(∆n; L2(F0)

)
then

(Zt − Z0)In(f ) = In−1(f
−
t ) + In(f ◦

t ) + In+1(f
+
t ) ∈ Ξ , (5)
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where t0 := 0, Ã(s) := A(s) + Z0B(s), Bt](s) := 1s∈[0,t]B(s),

f −
t (t1, . . . , tn−1) :=

n−1∑
k=1

tk∧t∫

tk−1∧t

n−1∏
l=k

(
1 + Bt](tl)

)
f (t1, . . . , tk−1, s, tk, . . . , tn−1) ds

+
t∫

tn−1∧t

f (t1, . . . , tn−1, s) ds,

f ◦
t (t1, . . . , tn) :=

n∑
k=1

1tk∈[0,t]Ã(tk)

n∏
l=k+1

(
1 + Bt](tl)

)
f (t1, . . . , tn),

f +
t (t1, . . . , tn+1) :=

n+1∑
k=1

1tk∈[0,t]
n+1∏

l=k+1

(
1 + Bt](tl)

)
f (t1, . . . , t̂k, . . . , tn+1)

and (t1, . . . , t̂k, . . . , tn+1) is the n-tuple obtained by removing tk from the
n + 1-tuple (t1, . . . , tn+1).

Proof First, observe that f −
t ∈ L2(∆n−1; L2(F0)

)
, f ◦

t ∈ L2(∆n; L2(F0)
)

and
f +
t ∈ L2(∆n+1; L2(F0)

)
, with

‖f −
t ‖ � n(1 + ‖B‖∞,t)

n−1t1/2‖f‖, (6)

‖f ◦
t ‖ � n‖Ã‖∞,t(1 + ‖B‖∞,t)

n−1‖f‖ (7)

and ‖f +
t ‖ � (n + 1)(1 + ‖B‖∞,t)

n−1t1/2‖f‖. (8)

Next, let In(f ) = ∫ ∞
0 Gs dZs, i.e., G is a predictable version of

tn �→
tn∫

0

· · ·
t2∫

0

f (t1, . . . , tn) dZt1 · · · dZtn−1 = In−1(f (·, tn)tn]),

where gt](t1, . . . , tk) := 1tk∈[0,t]g(t1, . . . , tk) for all g ∈ L2(∆k), or G = f if n = 1.
By the integration-by-parts formula for semimartingales,

(Zt − Z0)In(f ) =
t∫

0

s∫

0

Gr dZr dZs +
∞∫

0

(Z(s∧t)− − Z0)Gs dZs +
t∫

0

Gs d[Z]s

=
t∫

0

s∫

0

Gr dZr dZs +
t∫

0

Ã(s)Gs dZs +
t∫

0

Gs ds

+
∞∫

0

(
1 + Bt](s)

)
(Z(s∧t)− − Z0)Gs dZs;
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since (Zr−)r�0 is predictable, the process s �→ (1 + Bt](s))Z(s∧t)−Gs is a predict-
able version of s �→ (1 + Bt](s))Zs∧tGs. Thus, if n = 1 then

(Zt − Z0)I1(f ) =
t∫

0

f (s) ds +
∫

∆1

1t1∈[0,t]Ã(t1)f (t1) dZt1

+
∫

∆2

(
1t2∈[0,t]f (t1) + 1t1∈[0,t]

(
1 + Bt](t2)

)
f (t2)

)
dZt1 dZt2 ,

as required. Now suppose that (5) holds as claimed for some n � 1; from the
above,

(Zt − Z0)In+1(f ) =
∫

∆n+1

1tn+1∈[0,t]f (t1, . . . , tn+1) dZt1 · · · dZtn dtn+1

+
∫

∆n+1

1tn+1∈[0,t]Ã(tn+1)f (t1, . . . , tn+1) dZt1 · · · dZtn+1

+
∫

∆n+2

1tn+2∈[0,t]f (t1, . . . , tn+1) dZt1 · · · dZtn+2

+
∞∫

0

(
1 + Bt](s)

)
(Z(s∧t)− − Z0)In(f (·, s)s]) dZs

and this final term is the sum of three integrals:

∞∫

0

(
1 + Bt](s)

)
In−1(f

−
s∧t(·, s)s]) dZs

=
∞∫

0

∫

∆n−1

n−1∑
k=1

tk∧(s∧t)∫

tk−1∧(s∧t)

n−1∏
l=k

(
1 + Bs∧t](tl)

)(
1 + Bt](s)

)

× 1tn−1∈[0,s]f (t1, . . . , tk−1, r, tk, . . . , tn−1, s) dr dZt1 · · · dZtn−1 dZs

+
∞∫

0

∫

∆n−1

s∧t∫

tn−1∧(s∧t)

(
1 + Bt](s)

)

× 1r∈[0,s]f (t1, . . . , tn−1, r, s) dr dZt1 · · · dZtn−1 dZs

=
∫

∆n

n∑
k=1

tk∧t∫

tk−1∧t

n∏
l=k

(
1 + Bt](tl)

)
f (t1, . . . , tk−1, r, tk, . . . , tn) dr dZt1 · · · dZtn ,
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∞∫

0

(
1 + Bt](s)

)
In(f ◦

s∧t(·, s)s]) dZs

=
∞∫

0

∫

∆n

n∑
k=1

1tk∈[0,s∧t]Ã(tk)

n∏
l=k+1

(
1 + Bs∧t](tl)

)(
1 + Bt](s)

)

× 1tn∈[0,s]f (t1, . . . , tn, s) dZt1 · · · dZtn dZs

=
∫

∆n+1

n∑
k=1

1tk∈[0,t]Ã(tk)

n+1∏
l=k+1

(
1 + Bt](tl)

)
f (t1, . . . , tn+1) dZt1 · · · dZtn+1

and

∞∫

0

(
1 + Bt](s)

)
In+1(f

+
s∧t(·, s)s]) dZs

=
∞∫

0

∫

∆n+1

n+1∑
k=1

1tk∈[0,s∧t]
n+1∏

l=k+1

(
1 + Bs∧t](tl)

)(
1 + Bt](s)

)

× 1tn+1∈[0,s]f (t1, . . . , t̂k, . . . , tn+1, s) dZt1 · · · dZtn+1 dZs

=
∫

∆n+2

n+1∑
k=1

1tk∈[0,t]
n+2∏

l=k+1

(
1 + Bt](tl)

)
f (t1, . . . , t̂k, . . . , tn+2) dZt1 · · · dZtn+2 .

The result follows by induction. ��

Definition 16 A function f : P → C is a test vector if it is measurable and there
exist constants T, C, M > 0 such that |f (σ )| � 1σ⊆[0,T]CM|σ | for all σ ∈ P. The
collection of all such functions forms a vector space, denoted T , which contains
E00 and is dense in Φ.

A generalised test vector is a measurable function f : P → L2(F0) for which
there exist constants T, C, M > 0 such that ‖f (σ )‖L∞(F0) � 1σ⊆[0,T]CM|σ | for
all σ ∈ P. The set T̃ of all generalised test vectors is a vector space which con-
tains {πu ⊗ f0 : πu ∈ E00, f0 ∈ L∞(F0)}, where (πu ⊗ f0)(σ ) := ω �→ πu(σ )f0(ω)

for all σ ∈ P, and is dense in Φ̃.

Theorem 17 Suppose Z is an Azéma martingale with Z0 ∈ L∞(F0) which sat-
isfies (3) and t � 0 is such that A and B are uniformly bounded on [0, t]. If U is
the isomorphism (2) and Ẑt is as in Definition 3 then U−1f ∈ D(Ẑt) for all f ∈ T̃
and, if σ ∈ P,



The chaotic-representation property for a class of normal martingales 553

(UẐtU−1f )(σ ) =
t∫

0

∏
r∈σ(s,t]

(
1 + B(r)

)
f (σ ∪ s) ds +

∑
s∈σt]

∏
r∈σ(s,t]

(
1 + B(r)

)
f (σ \ s)

+
∑
s∈σt]

Ã(s)
∏

r∈σ(s,t]

(
1 + B(r)

)
f (σ ).

Proof If there exists n ∈ Z+ such that f (σ ) ≡ 0 for all σ ∈ P \ Pn then
this claim is simply a translation of Lemma 15 (or is immediately verified, for
the case n = 0). Furthermore, the estimates (6–8) imply that if f ∈ T̃ and
U−1f = ∑∞

n=0 In(fn) then
∑∞

n=1 ‖f +
n,t‖2 + ‖f ◦

n,t‖2 + ‖f −
n,t‖2 is convergent, which

gives the result. ��
Lemma 18 For c > 0 let N = (Nt)t�0 be a compensated Poisson process with
jump size c and intensity c−2, defined on the probability space (ΩP, FP, PP),
and suppose that FP is generated by N. There exists an isometric isomorphism
UP : L2(FP) → Φ such that the operator of multiplication by Nt in L2(FP) equals
U−1

P ÑtUP on U−1
P (T ), where the operator Ñt acts in Φ so that

(Ñtf )(σ ) :=
t∫

0

f (σ ∪ s) ds +
∑
s∈σt]

f (σ \ s) + c|σt]|f (σ ) ∀ σ ∈ P.

If u ∈ L2(R+) then U−1
P πu equals the stochastic exponential E(u) and

E(u)E(v) = exp

⎛
⎝

∞∫

0

u(s)v(s) ds

⎞
⎠ E(u + v + cuv) (9)

for all u, v ∈ L2(R+) ∩ L4(R+).

Proof It is well known (cf. Example 8) that N satisfies the structure equation

d[N]t = c dNt + dt

and has the CRP; the claims about UP and (Ñt)t�0 thus follow immediately
from Theorem 17. Yor’s formula [16, Theorem II.37] implies the remark about
the product of stochastic exponentials. ��
Remark 19 The operator Ñt of Lemma 18 extends to a self-adjoint operator in
Φ̃ by ampliation with the identity; this operator (denoted in the same manner)
acts in Φ̃ so that, if σ ∈ P and ω ∈ Ω ,

(Ñtf )(σ )(ω) =
t∫

0

f (σ ∪ s)(ω) ds +
∑
s∈σt]

f (σ \ s)(ω) + c|σt]|f (σ )(ω).



554 S. Attal, A. C. R. Belton

Definition 20 For processes A, B : R+ → L2(F0; R) and a random variable
Z0 ∈ L∞(F0; R), let

Ã : R+ → L2(F0; R); t �→ A(t) + Z0B(t).

For all t � 0, define linear operators X̃t, Ỹt and Z̃t in Φ̃ by setting, for all σ ∈ P,

(X̃tf )(σ ) :=
t∫

0

∏
r∈σ(s,t]

(
1 + B(r)

)
f (σ ∪ s) ds +

∑
s∈σt]

∏
r∈σ(s,t]

(
1 + B(r)

)
f (σ \ s),

(Ỹtf )(σ ) :=
∑
s∈σt]

Ã(s)
∏

r∈σ(s,t]

(
1 + B(r)

)
f (σ ),

and (Z̃tf )(σ ) := (X̃tf )(σ ) + (Ỹtf )(σ ), with maximal domains

D(W̃t) :=
⎧⎨
⎩f ∈ Φ̃ :

∫

P

E
[|(W̃tf )(σ )|2] dσ < ∞

⎫⎬
⎭ ∀ W ∈ {X, Y, Z};

note that X̃t + Ỹt ⊆ Z̃t.

Notation 21 The expression A ≡ α means that α : R+ → R is such that
A(t, ω) = α(t) for all t � 0 and ω ∈ Ω , i.e., for all t � 0 the function A(t)
is constant and equals α(t); the same applies, mutatis mutandis, to B.

Remark 22 The decomposition of Z̃t as the sum of the operators X̃t and Ỹt is
a generalisation of Hudson and Parthasarathy’s method [10, Sect. 6] of obtain-
ing the Poisson process (as the perturbation of quantum Brownian motion
Q = A + A† by addition of the gauge process Λ). (Here, A represents the
annihilation process of quantum stochastic calculus and has nothing to do with
the structure equation (3).)

Proposition 23 If t � 0 is such that B is uniformly bounded on [0, t] then T̃ is an
invariant subspace for X̃t, i.e., T̃ ⊆ D(X̃t) and X̃t(T̃ ) ⊆ T̃ ; if A is also uniformly
bounded on [0, t] then T̃ is an invariant subspace for both Ỹt and Z̃t as well.

Proof For f ∈ T̃ let T, C, M > 0 satisfy ‖f (σ )‖L∞(F0) � 1σ⊆[0,T]CM|σ | for all
σ ∈ P. If c := ‖Ã‖∞,t and d := ‖B‖∞,t then

‖(X̃tf )(σ )‖L∞(F0)

� t(1 + d)|σ |CM|σ |+11σ⊆[0,T] + |σ |(1 + d)|σ |CM|σ |−11σ⊆[0,max{t,T}]

and

‖(Ỹtf )(σ )‖L∞(F0) � |σ |c(1 + d)|σ |CM|σ |1σ⊆[0,T] ∀ σ ∈ P,

which gives the result as claimed. ��
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The proof of the following theorem is a generalisation of a technique used
by Parthasarathy [13, Sect. 2].

Theorem 24 Suppose t � 0 is such that A is uniformly bounded on [0, t] and
B(s, ω) ∈ [−2, 0] for all s ∈ [0, t] and ω ∈ Ω . Every vector of the form πu ⊗ f0,
where πu ∈ E00 and f0 ∈ L∞(F0), is an analytic vector for Z̃t.

Proof Letting c := ‖Ã‖∞,t, if σ ∈ P and ω ∈ Ω then

|Z̃tf (σ )(ω)| �
t∫

0

|f (σ ∪ s)(ω)| ds +
∑
s∈σt]

|f (σ \ s)(ω)| + c|σt]| |f (σ )(ω)|

= (Ñt|f |)(σ )(ω),

where Ñt is defined in Remark 19. If f � 0 (i.e., f (σ )(ω) � 0 for all σ ∈ P and
ω ∈ Ω) then Ñtf � 0, so if |Z̃n−1

t f | � Ñn−1
t |f | then

|Z̃n
t f | = |Z̃t(Z̃

n−1
t f )| � Ñt|Z̃n−1

t f | � Ñt(Ñ
n−1
t |f |) = Ñn

t |f |,

hence induction yields the inequality |Z̃n
t f | � Ñn

t |f | for all n ∈ Z+. It follows
that if πu ∈ E00 and f0 ∈ L∞(F0) then, by the Cauchy-Schwarz-Bunyakovskii
inequality and Lemma 18,

‖Z̃n
t (πu ⊗ f0)‖2

Φ̃
� ‖Ñn

t π|u| ⊗ |f0| ‖2
Φ̃

= ‖(U−1
P ÑtUP)nU−1

P π|u|‖2
L2(FP)

‖ |f0| ‖2
L2(F0)

= EP
[|Nn

t E(|u|)|2]E[|f0|2]
� EP

[
N4n

t
]1/2

EP
[
E(|u|)4]1/2

E
[|f0|2

]
.

Thus πu ⊗ f0 is an analytic vector for Z̃t if E(|u|) ∈ L4(PP) and the power
series

∑∞
n=0 EP

[
N4n

t ]1/4zn/n! has strictly positive radius of convergence. The
first follows from (9):

E(|u|)2 = exp(‖u‖2)E(2|u| + c|u|2) ∈ L2(FP),

since 2|u| + c|u|2 ∈ L2(R+) if u is bounded and has compact support. For the
second, as c−1(Nt + c−1t) has a Poisson distribution with mean c−2t,

EP
[(

c−1(Nt + c−1t)
)4n]

=
∞∑

k=0

e−c−2t(c−2t)kk4n

k!

� e−c−2t
∞∑

k=0

tk(k + 1) · · · (k + 4n)

c2kk! = e−c−2t d4n

dt4n

∞∑
k=0

tk+4n

c2kk!
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= e−c−2t d4n

dt4n

(
t4nec−2t) = e−c−2t

4n∑
k=0

(
4n
k

)
d4n−k

dt4n−k
t4n dk

dtk
ec−2t

� (4n)!
4n∑

k=0

(
4n
k

)
(c−2t)k = (4n)!(1 + c−2t)4n.

Since

EP[N4n
t ]1/4 = ‖Nt‖n

L4n(PP)
� (‖Nt + c−1t‖L4n(PP) + ‖c−1t‖L4n(PP))

n

� 2n(‖Nt + c−1t‖n
L4n(PP)

+ (c−1t)n)

� (4n)!1/4(2c + 2c−1t)n + (2c−1t)n

and
∑∞

n=0(4n)!1/4(2c + 2c−1t)nzn/n! has radius of convergence (8c + 8c−1t)−1,
the result follows. ��
Theorem 25 Let Z be an Azéma martingale with Z0 ∈ L∞(F0) which satisfies
(3), where A is locally uniformly bounded, i.e., ‖A‖∞,t < ∞ for all t � 0, and
B(t, ω) ∈ [−2, 0] for all t � 0 and ω ∈ Ω . Conditional on F0, the process Z is
unique in law and has the CRP.

Proof Theorem 24 implies that U−1(πu ⊗ f0) is an analytic vector for Ẑt when-
ever t � 0, where πu ∈ E00 and f0 ∈ L∞(F0), since Z̃t and U−1ẐtU agree on T̃ ,
by Theorem 17, which is invariant under their action, by Proposition 23. Hence
Ẑt is self adjoint, by Nelson’s theorem on analytic vectors [18, Theorem X.39],
and Theorem 5 gives the CRP conditional on F0. Furthermore, Ẑt is determined
by Ã and B, since it equals U−1Z̃tU on U−1T̃ , which is a core for Ẑt: by the
analytic-vector theorem,

(Ẑt|U−1T̃ )∗ = Ẑt|U−1T̃ ⊆ Ẑt = Ẑt = Ẑ∗
t

�⇒ Ẑt ⊇ Ẑt|U−1T̃ = (Ẑt|U−1T̃ )∗∗ ⊇ Ẑ∗∗
t = Ẑt.

Hence the characteristic function

(λ1, . . . , λn) �→ E
[
exp

(
i(λ1Zt1 + · · · + λnZtn)

)]
= exp

(
i(λ1 + · · · + λn)Z0

)〈1, exp(iλ1Ẑt1) · · · exp(iλnẐtn)1〉

is determined by Z0, A and B; thus Z is unique in law conditional on F0. ��
Corollary 26 An Azéma martingale Z which satisfies (4) is unique in law and
has the CRP if Z0 is sure, α is locally bounded and β(t) ∈ [−2, 0] for all t � 0.

Proof This follows from Theorem 25 by taking F0 to be trivial. ��
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Example 27 Parthasarathy demonstrated [14, Sect. 2] that if b ∈ [−2, 0[ and
x 
= 0 then there exists an Azéma martingale Xb,x such that

Xb,x
0 = x and d[Xb,x]t = bXb,x

t− dXb,x
t + dt

and proved that Xb,x and (xXb,1
t/x2)t�0 are identical in law; for b = 0 this is just

the scaling property of Brownian motion [19, I.3.4]. Émery [8, Sect. (e)] noted
that this identity is a consequence of uniqueness in law for solutions of such
a structure equation with the prescribed initial condition, which holds for all
b ∈ R. The result established above implies that if Xx is an Azéma martingale
such that

Xx
0 = x 
= 0 and d[Xx]t = β(t)Xx

t− dXx
t + dt,

where β : R+ → [−2, 0] is Borel measurable and satisfies β(t) = β(t/x2) for
almost every t � 0, then, given that X1 also exists, Xx and (xX1

t/x2)t�0 are
identical in law. (Non-trivial examples of such β are readily found.)

Conjecture 28 If B ≡ 0 and A ≡ α then the operators (Z̃t)t�0 correspond (at
least formally) to the process with independent increments described in Exam-
ple 9, which has the CRP. As this holds whether or not α is locally bounded, it
is conjectured that Z̃t is self adjoint for all t � 0 and any processes A, B : R+ →
L2(F0; R) with B(t, ω) ∈ [−2, 0] for all t � 0 and ω ∈ Ω .

Proposition 29 If t � 0 is such that B(s, ω) = β(s) ∈ [−2, 0] for all s ∈ [0, t] and
ω ∈ Ω , where

∫ t
0 |β(s)|−1 ds < ∞, then X̃t is bounded.

Proof (Sketch) This is in imitation of a similar result given by Russo and
Vallois [20, Proposition 4.4] (which itself follows an idea of Émery); however,
their proof relies upon the existence of an Azéma martingale X = (Xs)0�s�t
such that

d[X]s = β(s)Xs− dXs + ds,

whereas the following demonstration uses only the operators (X̃s)0�s�t.
These operators may be shown to satisfy the quantum stochastic differential

equation

dX̃s = β(s)X̃s dΛs + dAs + dA†
s

on T , taking F0 to be trivial. (Here, similarly to Remark 22, dAs relates to the
quantum-stochastic annihilation process and has nothing to do with the coeffi-
cient function A.) It follows that dX̃2

s = 2X̃s dX̃s + d[X̃]s on T as well, by the
quantum Itô product formula, where d[X̃]s = β(s)X̃s dX̃s + ds. Thus

dX̃2
s = (β(s) + 2)X̃s(β(s)X̃s dΛs + dAs + dA†

s ) + ds
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and

‖X̃tf‖2 = 〈f , X̃2
t f 〉

=
t∫

0

β(s) + 2
β(s)

‖β(s)X̃s∇sf + f‖2 − 2
β(s)

‖f‖2 ds

� −
t∫

0

2
β(s)

ds‖f‖2

for all f ∈ E00, where the definition of the gradient operator, ∇sπu := u(s)πu, is
extended by linearity; the result follows. ��
Proposition 30 If A is uniformly bounded on [0, t] and ‖1 + B‖∞,t < 1 for some
t � 0 then Ỹt is bounded.

Proof If c := ‖Ã‖∞,t and q := ‖1 + B‖∞,t < 1 then

|Ỹtf (σ )(ω)| �
∑
s∈σt]

cq|σ(s,t]||f (σ )(ω)| � c(1 − q)−1|f (σ )(ω)| ∀ σ ∈ P,

whence ‖Ỹt‖ � c(1 − q)−1. ��
Corollary 31 If Z is an Azéma martingale such that Z0 ∈ L∞(F0) which satisfies
(3), where A is locally uniformly bounded, B ≡ β and

sup{|1 + β(s)| : s ∈ [0, t]} < 1 ∀ t � 0,

then Z has locally bounded trajectories.

Proof This follows by combining the two previous propositions. ��
Conjecture 32 Since X̃t is bounded under weaker conditions than those required
in Corollary 31, it is tempting to conjecture that Ỹt is also, i.e., that if B(s, ω) =
β(s) ∈ [−2, 0] for all s ∈ [0, t] and ω ∈ Ω then uniform boundedness of A on
[0, t] and the existence of

∫ t
0 |β(s)|−1 ds are sufficient for Ỹt (and so Z̃t) to be

bounded. It is possible that an ‘intrinsic’ proof of Proposition 29 (i.e., one that
relies directly upon the definition of X̃t, rather than its interpretation as part of
a hypothetical Azéma martingale) would point the way to establishing such a
result.

5 The strong Markov property

Definition 33 Let X = (Xt)t�0 be an R
d-valued process with càdlàg trajectories

which is adapted to the filtration (Ft)t�0. If

E[f (Xt+T)|σ(XT)] = E[f (Xt+T)|FT] ∀ t � 0 (10)
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for any bounded, Borel-measurable function f : R
d → R and any finite stopping

time T then X has the strong Markov property.

Proposition 34 If X satisfies (10) for any bounded, Borel-measurable function
f and any bounded stopping time T then X has the strong Markov property.

Proof Let T be a finite stopping time and let Tn := T ∧ n for all n � 1.
Lévy’s upward convergence theorem [19, Theorem II.50.3] and the dominated-
convergence theorem, together with (10), imply (after some working) that if f
is a bounded, Borel-measurable function and t � 0 then

E[f (Xt+T)|FT] = lim
n→∞ E[f (Xt+T)|σ(XTn)].

For all n � 1 there exists a bounded, Borel-measurable function gn : R
d → R

such that ‖gn‖∞ := sup{|gn(x)| : x ∈ R
d} � ‖f‖∞ and E[f (Xt+T)|σ(XTn)] =

gn(XTn); since

E[|gn(XT) − gn(XTn)|] � 2P(T > n)‖gn‖∞ � 2P(T > n)‖f‖∞ → 0

as n → ∞, E[f (Xt+T)|FT] = limn→∞ gn(XT) is measurable with respect to
σ(XT). Furthermore, it is now simple to check that

E[E[f (Xt+T)|FT]h(XT)] = E[f (Xt+T)h(XT)]

for any bounded, Borel-measurable function h : R
d → R; the result follows. ��

Proposition 35 If X is an R
d-valued process as in Definition 33 then the

R
d+1-valued process (Xt, t)t�0 has the strong Markov property if and only if

E[f (Xt+T)|σ(XT , T)] = E[f (Xt+T)|FT] ∀ t � 0 (11)

for any bounded, continuous function f : R
d → R and any bounded stopping

time T.

Proof One direction is clear; the converse follows from an application of the
monotone-class theorem [16, Theorem I.8] and Proposition 34. ��
Lemma 36 If X is a normal martingale for the filtration (Ft)t�0 and T is a
bounded stopping time then Y = (Yt := Xt+T)t�0 is a normal martingale for the
filtration (Ft+T)t�0, and if t � 0 then

t∫

0

Fs+T dYs =
t+T∫

T

Fs dXs (12)

for any (Fs)s�0-predictable process F such that E[∫ t+T
T F2

s ds] < ∞.
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Proof The optional-sampling theorem [16, Theorem I.17] shows that Y is
normal; the rest may be obtained from results in [12, II.2]. ��
Theorem 37 If Z is an Azéma martingale which satisfies (4), with Z0 sure, α

locally bounded and β(t) ∈ [−2, 0] for all t � 0, then (Zt, t)t�0 has the strong
Markov property. In the special case when α ≡ α(0) and β ≡ β(0) then Z has the
strong Markov property.

Proof Let T be a bounded stopping time and let

Tn := T ∧ inf{t > 0 : |Zt − Z0| > n} ∀ n ∈ N,

so that Tn is a bounded stopping with ZTn ∈ L∞(FTn) and Tn ↑ T as n → ∞;
to see the first claim, note that |ZTn−| � n + |Z0| and

|∆ZTn | � |α(Tn)| + |β(Tn)| |ZTn−| � sup{|α(s)| : s ∈ [0, r]} + 2n,

where r � 0 is such that T � r surely, since ∆Z2
t = (α(t) + β(t)Zt−)∆Zt for all

t � 0.
If W = (Wt := Zt+Tn)t�0 then, by Lemma 36, W is a normal martingale with

respect to the filtration (Ft+Tn)t�0 and

[W]t = W2
t − W2

0 − 2

t∫

0

Ws− dWs = Z2
t+Tn

− Z2
Tn

− 2

t+Tn∫

Tn

Zs− dZs

= [Z]t+Tn − [Z]Tn = t +
t+Tn∫

Tn

(α(s) + β(s)Zs−) dZs

= t +
t∫

0

(A(s) + B(s)Ws−) dWs,

where A(t) := α(t + Tn) and B(t) := β(t + Tn) for all t � 0; note that

R+ × Ω � (t, ω) �→ A(t)(ω) and R+ × Ω � (t, ω) �→ B(t)(ω)

are measurable with respect to B(R+) ⊗ σ(Tn) (and so B(R+) ⊗ FTn). If t � 0
then ‖A‖∞,t � ‖α‖∞,t+r < ∞, where r � 0 is as above, and B(t)(ω) ∈ [−2, 0]
for all t � 0 and ω ∈ Ω .

Furthermore, W is also a normal martingale with respect to (Gt)t�0, where
Gt := σ(Ws : s ∈ [0, t]) ∨ σ(Tn) for all t � 0, since Gt ⊆ Ft+Tn for all t � 0 and
therefore

E[Wt|Gs] = E[E[Wt|Fs+Tn ]|Gs] = E[Ws|Gs] = Ws
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and

E[W2
t − t|Gs] = E[E[W2

t − t|Fs+Tn]|Gs] = E[W2
s − s|Gs] = W2

s − s

if 0 � s � t. As A(t), B(t) ∈ L∞(G0) for all t � 0, the uniqueness-in-law result
contained in Theorem 25 implies that, for all u ∈ R,

E[eiuZt+Tn |FTn] = E[eiuWt |FTn] = E[eiuWt |G0] = E[eiuZt+Tn |σ(ZTn , Tn)];

letting n → ∞, the result follows:

E[|E[eiuZt+Tn |FTn] − E[eiuZt+T |FTn ]|] � E[|eiuZt+Tn − eiuZt+T |] → 0,

by the dominated-convergence theorem, and

E[|E[eiuZt+T |FTn] − E[eiuZt+T |FT]|] → 0,

by Lévy’s upward convergence theorem; the same working holds if FTn and FT
are replaced by σ(Tn, ZTn) and σ(T, ZT), respectively.

As for the final claim, in this case A and B do not depend on Tn, so it suffices
to take Gt := σ(Ws : s ∈ [0, t]) for all t � 0. ��
Acknowledgements The authors would like to thank the referee, whose thoughtful comments
allowed several infelicities to be corrected, and Professor Finbarr Holland, for a helpful remark
concerning Example 27.
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