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Abstract It is shown that the law of an SDE driven by fractional Brownian
motion with Hurst parameter greater than 1/2 has a smooth density with respect
to Lebesgue measure, provided that the driving vector fields satisfy Hörmand-
er’s condition. The main new ingredient of the proof is an extension of Norris’
lemma to this situation.

1 Introduction

In the celebrated paper [10], L. Hörmander gave in 1967 a sufficient (and nec-
essary in the analytic case) condition for the hypoellipticity of second order
differential operators. The original proof of Hörmander was rather compli-
cated and has been since then considerably simplified in using the theory of
pseudo-differential operators.

In 1976, P. Malliavin used the deep connection between the theory of second
order differential operators and Itô’s theory of stochastic differential equations
to point out the probabilistic counterpart of Hörmander’s theorem. The prob-
lem of the hypoellipticity is closely related to the problem of the existence of
a smooth density with respect to the Lebesgue measure for the solution of the
corresponding stochastic differential equation. The idea of Malliavin’s proof of
Hörmander’s theorem is to show that the Itô’s map associated with a stochastic
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differential equation is differentiable in a weak sense and then to show that,
under Hörmander’s conditions, this derivative is non-degenerate. The stochas-
tic calculus of variations that has been developed in [15] precisely in order to
obtain a probabilistic proof of Hörmander’s theorem is now known as Malliavin
calculus and has since then found numerous applications (see for example [20]).

In the last few years, there have been numerous attempts to define a notion
of solution for differential equations driven by a fractional Brownian motion.
When the Hurst parameter of the fractional Brownian motion is greater than
1/2, existence and uniqueness of the solution are obtained by Lyons in [14],
Zähle in [26], or Nualart–Rascânu in [17]. Let us note that, as a consequence of
the work of Coutin and Qian [7], a notion of solution can actually be well defined
for H > 1

4 . The problem of the existence and smoothness of the density with
respect to Lebesgue measure for solutions of stochastic differential equations
that are driven by a fractional Brownian motion with Hurst parameter greater
than 1/2 is solved in some special cases. In [19] the existence and smoothness
of the density has been shown in the one-dimensional case by using Doss-
Süssman methods. In [18], the authors prove the existence of a density under
ellipticity assumptions. Finally, in [9], always under an ellipticity assumption,
the smoothness of the density is proved.

In the present work we prove a version of Hörmander’s theorem for solu-
tions of differential equations driven by a fractional Brownian motion. More
precisely, we prove that as soon as the usual Hörmander conditions are sat-
isfied, there exists a smooth density for the law of the solutions. One of the
major difficulties that arise is to obtain a lemma that quantifies in which way the
integrand of a stochastic integral with respect to fractional Brownian motion
has to be small if the result of the stochastic integral is small. Such a result
was first obtained in the case of Brownian motion by Kusuoka and Stroock in
[11,12] and its proof has subsequently been simplified considerably by Norris
in [16]. We will follow here the commonly adopted terminology and refer to it
as Norris’ lemma.

This article is organised as follows. In a first section we recall the basics of
Malliavin calculus in the context of fractional Brownian motion, which is the
main tool used in this article. We then prove a version of Norris’ lemma for
stochastic integrals with respect to fractional Brownian motion. This lemma
is then used to prove the main result of this work, that is the existence and
the smoothness of the density under Hörmander’s conditions. Finally, in a last
section, we apply this result to the analysis of the behaviour in small times of
this density on the diagonal.

2 Malliavin calculus with respect to fractional Brownian motion

Let us first recall some basic facts about Malliavin calculus with respect to the
fractional Brownian motion (for further details, we refer for instance to [9] or
[18]).
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We consider the Wiener space of continuous paths:

W
⊗d =

(
C
(
[0, 1], Rd

)
, (Bt)0≤t≤1, P

)

where:

1. C([0, 1], Rd) is the space of continuous functions [0, 1] → R
d;

2. (βt)t≥0 is the coordinate process defined by βt(f ) = f (t), f ∈ C([0, 1], Rd);
3. P is the Wiener measure;
4. (Bt)0≤t≤1 is the (P-completed) natural filtration of (βt)0≤t≤1.

A d-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1)
is a Gaussian process

Bt = (B1
t , . . . , Bd

t ), t ≥ 0,

where B1, . . . , Bd are d independent centred Gaussian processes with covari-
ance function

R(t, s) = 1
2

(
s2H + t2H − |t − s|2H

)
.

It can be shown that such a process admits a continuous version whose paths are
Hölder p continuous, p < H. Throughout this paper, we will always consider
the ‘regular’ case, i.e. H > 1/2. In this case, the fractional Brownian motion can
be constructed on the Wiener space by a Volterra type representation. Namely,
the process

Bt =
t∫

0

K(t, s)dβs, t ≥ 0, (2.1)

is a fractional Brownian motion with Hurst parameter H, where

K(t, s) = cHs
1
2 −H

t∫

s

(u − s)H− 3
2 uH− 1

2 du, t > s.

and cH is a suitable constant. Let E be the space of R
d-valued step functions on

[0, 1]. We denote by H the closure of E for the scalar product:

〈(1[0,t1], . . . , 1[0,td]), (1[0,s1], . . . , 1[0,sd])〉H =
d∑

i=1

R(ti, si).

It can be shown that L1/H([0, 1], Rd) ⊂ H but that H also contains distributions
(see for example [21]).
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For ϕ,ψ ∈ L1/H([0, 1], Rd), we have

〈ϕ,ψ〉H = H(2H − 1)

1∫

0

1∫

0

| s − t |2H−2 〈ϕ(s),ψ(t)〉
Rd dsdt.

For our purposes, the following representation of the H-scalar product is useful.
Let Iαϕ denote the fractional integral of order α of ϕ, defined by

Iαϕ(t) = 1
�(α)

t∫

0

(t − s)α−1ϕ(s)ds. (2.2)

If one extends ϕ and ψ to R+ by setting ϕ(t) = ψ(t) = 0 for t ≥ 1, a straightfor-
ward application of Fubini’s theorem shows that one has the identity

〈ϕ,ψ〉H = 〈IH−1/2ϕ, IH−1/2ψ〉L2(R+) . (2.3)

Note that the integral on the right hand side extends to +∞ and not just to 1.
A B1-measurable real valued random variable F is said to be cylindrical if it

can be written as

F = f

⎛
⎝

1∫

0

〈h1
s , dBs〉, . . . ,

1∫

0

〈hn
s , dBs〉

⎞
⎠ ,

where hi ∈ H and f : R
n → R is a C∞ bounded function with bounded deriv-

atives. The set of cylindrical random variables is denoted S. The Malliavin
derivative of F ∈ S is the R

d valued stochastic process (DtF)0≤t≤1 given by

DtF =
n∑

i=1

hi(t)
∂f
∂xi

⎛
⎝

1∫

0

〈h1
s , dBs〉, . . . ,

1∫

0

〈hn
s , dBs〉

⎞
⎠.

More generally, we can introduce iterated derivatives. If F ∈ S, we set

Dk
t1,...,tk F = Dt1 . . .Dtk F.

For any p ≥ 1, the operator Dk is closable from S into Lp
(C([0, 1], Rd), H⊗k

)
.

We denote by D
k,p(H) the closure of the class of cylindrical random variables

with respect to the norm

‖F‖k,p =
⎛
⎝E

(
Fp)+

k∑
j=1

E

(∥∥∥DjF
∥∥∥

p

H⊗j

)
⎞
⎠

1
p

,
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and

D
∞(H) =

⋂
p≥1

⋂
k≥1

D
k,p(H).

We also introduce the localised spaces D
k,p
loc (H) by saying that a random variable

F belongs to D
k,p
loc (H) if there exists a sequence of sets �n ⊂ B1 and random

variables Fn ∈ D
k,p(H) such that �n ↑ C([0, 1], Rd) almost surely and such that

F = Fn on �n.
We then have the following key result which stems from Theorem 2.1.2 and

Corollary 2.1.2. in [20]:

Theorem 2.1 Let F = (F1, . . . , Fn) be a B1-measurable random vector such that:

1. For every i = 1, . . . , n, Fi ∈ D
1,2
loc(H);

2. The matrix � = (〈DFi, DFj〉H
)

1≤i,j≤n is invertible almost surely.

Then the law of F has a density with respect to the Lebesgue measure on R
n. If

moreover Fi ∈ D
∞(H) for every i and, for every p > 1,

E

(
1

| det � |p
)
< +∞,

then this density is smooth.

Remark 2.2 The matrix � is called the Malliavin matrix of the random vector F.

3 Norris’ lemma for integrals with respect to fractional Brownian motion

A main ingredient in many probabilistic proofs of Hörmander’s theorem (see
for example [20]) is Norris’ lemma [16]. Loosely speaking, it is a more quantita-
tive version of the uniqueness property of the semimartingale decomposition,
stating that if a semimartingale is small, then both its bounded variation part and
its martingale part must be small. In other words, the martingale part and the
bounded variation part cannot compensate each other. This section is devoted
to the proof of Propsition 3.4, which is a version of Norris’ lemma formulated
in a framework suitable for the purposes of this article.

Since classical tools of stochastic calculus are not available in our situation
(note that the fractional Brownian motion is not a semimartingale for H �= 1/2),
a completely new proof is required. In particular, the main ingredient of the
proof presented here is the use of a concentration inequality for Gaussian
measures.

We start by stating a minor variant of a well-known concentration result for
Gaussian measures.
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Lemma 3.1 Let µ be a Gaussian measure on a separable Hilbert space H with
covariance operator � and write T = √

tr� and λ = √‖�‖. Then, there exists a
constant C independent of � such that one has the bound

µ
(∣∣‖x‖ − T

∣∣ ≥ h
) ≤ C exp

(
− h2

4λ2

)

for every h ≥ 0.

Proof We can assume H to be finite-dimensional; the general case follows from
a simple approximation argument since none of the constants depends on the
dimension of H. Define T̃ = ∫ ‖x‖µ(dx). It follows from the isoperimetric
inequality for Gaussian measures [6,24] that

µ
(∣∣‖x‖ − T̃

∣∣ ≥ h
)

≤ C exp
(

− h2

2λ2

)
, (3.4)

for every h ∈ R. Furthermore, it follows from [5, Theorem 1.7.1] that

T2 − T̃2 ≤ π2

4
λ2 , and thus T − T̃ ≤ π2λ2

4T
≤ π2λ

4
.

The claim follows at once. ��

We now define the class of Gaussian processes that are of interest to us. For
H ∈ ( 1

2 , 1], we say that a Gaussian process B is of type H if it is centred and the
function f defined by

f (s, t) = E(B(t)− B(s))2

is C2 outside the diagonal and satisfies

c1|t − s|2H ≤ f (s, t) ≤ c2|t − s|2H , |∂s∂tf (s, t)| ≤ c3|t − s|2H−2, (3.5)

for every pair of times s, t ∈ (0, 1) with s �= t. The following is a direct conse-
quence of (3.5) combined with 3.1.

Lemma 3.2 Let Bi be i.i.d. Gaussian processes of type H > 1
2 and let δ, N > 0

be such that δN < 1. Define the R
N-valued random variables Xi = (Xi

1, . . . , Xi
N)

and the number T by

Xi
n = Bi(nδ)− Bi((n − 1)δ) , T2 =

N∑
n=1

f (nδ, (n − 1)δ).
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Then, there exist constants C1, C2 such that one has the bound

P
(∣∣|Xi| − T

∣∣ ≥ h
) ≤ C1 exp

(
−C2

Nh2

(δN)2H

)
, (3.6)

P

(∣∣∣〈Xi, Xj〉
∣∣∣ ≥ h2

)
≤ C1 exp

(
−C2

Nh2

(δN)2H

)
, (3.7)

for every h ≥ 0 and every pair (i, j) with i �= j.

Proof Denote by� the covariance of Xi (this is independent of i). Then, one has

�mn = 1
2

mδ∫

(m−1)δ

nδ∫

(n−1)δ

∂s∂tf (s, t)ds dt ,

so that |�mn| ≤ Cδ2H(1 + |m − n|)2H−2. This implies that

‖�‖2
HS =

N∑
m,n=1

|�mn|2 ≤ CNδ4H
N∑

k=1

|k|4H−4 ≤ Cδ4HN4H−2. (3.8)

Since this is a bound on ‖�‖2, the first inequality follows from Lemma 3.1. Fix
now an arbitrary pair of indices i �= j. Note that conditional on the value of Xj,
the random variable 〈Xi, Xj〉 is normal with variance 〈Xj,�Xj〉. This motivates
the introduction of the random vector X̄j = �1/2Xj which is Gaussian with
covariance �2. Note also that E‖X̄j‖2 = tr(�2) = ‖�‖2

HS. We thus have, for any
v > 0, the bound

P

(∣∣∣〈Xi, Xj〉
∣∣∣ ≥ h2

)
= E

(
P

(∣∣∣〈Xi, Xj〉
∣∣∣ ≥ h2 | Xj

))
≤ E

(
C exp(−h4/‖X̄j‖2)

)

≤ C exp
(

− h4

4(‖�‖HS + v)2

)
+ P

(
|‖X̄j‖ − ‖�‖HS| ≥ v

)

≤ C exp

(
− h4

8(‖�‖2
HS + v2)

)
+ C exp

(
− v2

4‖�2‖
)

≤ C exp

(
− h4

8(‖�‖2
HS + v2)

)
+ C exp

(
− v2

4‖�‖2
HS

)
.

Note now that the second inequality is non-trivial only for h2 ≥ ‖�‖HS, so that
we assume that we are in this situation from now on. Choosing v2 = h2‖�‖HS,
we get

P

(∣∣∣〈Xi, Xj〉
∣∣∣ ≥ h2

)
≤ C exp

(
−h2/(16‖�‖HS)

)
(3.9)

which, together with (3.8), implies the required bound. ��
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Remark 3.3 The bounds in Lemma 3.2 can be interpreted as saying that the
‘coarse-grained quadratic variation’ of B on a scale δ and over a time interval
t behaves like δ2H−1t to within an error of order δHtH . Note that the relative
magnitude of the error to the average value always tends to 0 as δ → 0, but that
this ratio becomes ‘worse’ as H → 1.

We now have the main tools in place to prove the following version of Norris’
lemma. Note that here and in the sequel, we denote by ‖ ·‖α the α-Hölder norm
of a function and by ‖ · ‖L∞ its supremum norm.

Proposition 3.4 Let H ∈ ( 1
2 , 1) and let a and b be processes taking values in

R and R
m respectively such that E

(
‖a‖p

H̃
+∑

i ‖bi‖p
H̃

)
< ∞ for every p ≥ 1 and

every H̃ ∈ ( 1
2 , H). Let

yt =
t∫

0

a(s)ds +
t∫

0

〈b(s), dB(s)〉 ,

where the Bi are m i.i.d. Gaussian process of type H. Then there exists q > 0 such
that, for every p > 0, the estimate

P
(‖y‖L∞ < ε and ‖a‖L∞ + ‖b‖L∞ > εq) < Cpε

p (3.10)

holds. The constant Cp depends on a, b, and p but not on ε.

Remark 3.5 Note that we do not require the Bi to be independent of the pro-
cesses a and b. We also do not require any adaptedness at this stage. The reason
why we will require adaptedness later on is that Eq. (4.21) for the Malliavin
derivative of the solution does not hold otherwise.

Remark 3.6 The bound (3.10) actually implies the bound

P(‖y‖L∞ < ε) ≤ Cpε
p + min

{
P(‖a‖L∞ < εq), P(‖b‖L∞ < εq)

}
, (3.11)

which will be used repeatedly in the sequel.

Proof of Proposition 3.4 The proof consists of two parts. In the first part, we
show that one has a bound of the type

P
(‖y‖L∞ < ε and ‖b‖L∞ > εq) < Cpε

p . (3.12)

In the second part, we use this information to show that one has also

P
(‖y‖L∞ < ε and ‖a‖L∞ > εq) < Cpε

p . (3.13)

Combining both bounds then yields (3.10).
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The key idea to the proof of (3.12), which should be translated to ‘if y is
small then b must also be small’ is the following. Choose two small length
scales δ �  � 1. Since we assume some regularity on b, it is easy to control
the error made by assuming that b is constant on intervals of length . One
then considers the square root of the coarse-grained quadratic variation of y
on a scale δ over an interval of size  around t. This is of course bounded by
‖y‖L∞δ−1/21/2. By Remark 3.5, the contribution of the term including b to
this expression is approximately equal to δH−1/21/2|b(t)|. The contribution of
the term including a on the other hand is bounded by ‖a‖L∞δ1/21/2. Summing
over all intervals of size  yields a bound of the type

‖b‖L1 � δ−H‖y‖L∞ + δ1−H‖a‖L∞ ,

from which it is then straightforward to deduce (3.12) by making use of the
a priori bounds on the Hölder norms of a and b.

This argument is of course extremely sloppy, since we have not justified in
any way some of the approximations made and we have not addressed the fact
that b takes values in R

m. Fix some small value of ε > 0 and fix two small num-
bers δ and  such that 1/δ and 1/ are integers, 1/ divides 1/δ, and such that
δ �  � 1. We also fix H̃ ∈ ( 1

2 , H) to be determined later. We define b̄(t) as the
stepfunction with steps of length  approximating b(t), b̄(t) = b([t/]) and
we write β(t) = b(t)− b̄(t). The stochastic integral of β is bounded as follows.

Lemma 3.7 There exists a constant C depending only on H̃ such that, for every
t ≥ 0 and every s ∈ [0,], one has

∣∣∣∣∣∣

t+s∫

t

〈β(r), dB(r)〉
∣∣∣∣∣∣
≤ C‖b‖H̃‖B‖H̃

H̃sH̃ .

Proof Since s ≤ , we can assume without loss of generality that b̄ is constant
on the interval [t, t + s]. It follows from [25] that there exists a constant C such
that

∣∣∣∣∣∣

t+s∫

t

〈β(r), dB(r)〉 − 〈β(t), B(t + s)− B(t)〉
∣∣∣∣∣∣
≤ C‖b‖H̃‖B‖H̃s2H̃ .

Furthermore, one has |〈β(t), B(t + s)− B(t)〉| ≤ ‖b‖H̃‖B‖H̃
H̃sH̃ , so that the

result follows at once. ��
Denote by r the (integer) ratio/δ, set tn = δn and define for N = 1, . . . ,−1

and for i, j = 1, . . . , m the random variable

Xij
N =

Nr−1∑
n=(N−1)r

(
Bi(tn+1)− Bi(tn)

)(
Bj(tn+1)− Bj(tn)

)
.
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Note that T2 := EXii
N = rf (δ) ≈ δ2H−1. With these notations and using

Lemma 3.7, we have, for n ∈ [(N − 1)r, Nr − 1], the relation

|〈b(N), B(tn+1)− B(tn)〉| ≤ |ytn+1 − ytn | + ‖a‖L∞δ +
∣∣∣∣∣∣

tn+1∫

tn

〈β(s), dB(s)〉
∣∣∣∣∣∣

≤ 2‖y‖L∞ + ‖a‖L∞δ + C‖b‖H̃‖B‖H̃
H̃δH̃ .

Taking squares on both sides, summing from n = (N − 1)r to n = Nr − 1 and
taking square roots, we get

√∑
i,j

bi(N)bj(N)X
ij
N

≤ 1/2δ−1/2
(

2‖y‖L∞ + ‖a‖L∞δ + C‖b‖H̃‖B‖H̃
H̃δH̃

)
. (3.14)

At this point, it is convenient to introduce quantities Yi
N = (Xii

N)
1/2 and Yij

N =
|Xij

N |1/2. With this notation, we get

m∑
i=1

|bi(N)|Yi
N ≤ C

∑
i �=j Yij

N

√|bi(N)bj(N)| + C1/2δ−1/2‖y‖L∞

+C1/2δ1/2‖a‖L∞ + CH̃+1/2δH̃−1/2‖b‖H̃‖B‖H̃ .

Summing over N yields

m∑
i=1

−1∑
N=1

|bi(N)|Yi
N ≤ C

∑
i �=j

−1∑
N=1

Yij
N

√
|bi(N)bj(N)|

+C−1/2δ−1/2‖y‖L∞ (3.15)

+C−1/2δ1/2‖a‖L∞

+CH̃−1/2δH̃−1/2‖b‖H̃‖B‖H̃ . (3.16)

Note now that by Lemma 3.1 one can hope that Yi
N ≈ T for every i and N.

Therefore, the left hand side is very close to T/ times the sum of the L1 norms
of the bi. More precisely, one has for every i, the bound

∣∣∣∣∣∣


−1∑
N=1

|bi(N)| − ‖bi‖L1

∣∣∣∣∣∣
≤ ‖bi‖H̃

H̃ ,
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so that, multiplying (3.15) by /T, we get the bound

m∑
i=1

‖bi‖L1 ≤ CH̃‖b‖H̃ + Cδ−H‖y‖L∞ + CH̃δH̃−H‖b‖H̃‖B‖H̃

+Cδ1−H‖a‖L∞ + C1/2δ1/2−H
m∑

i=1

−1∑
N=1

|bi(N)||Yi
N − T|

+C1/2δ1/2−H
∑
i �=j

−1∑
N=1

Yij
N

√
|bi(N)bj(N)|

≤ CH̃‖b‖H̃ + Cδ−H‖y‖L∞ + CH̃δH̃−H‖b‖H̃‖B‖H̃

+Cδ1−H‖a‖L∞ + C1/2δ1/2−H‖b‖H̃

m∑
i,j=1

−1∑
N=1

|Yij
N − Tδij|,

where we used δij to denote the Kronecker delta. At this point, we note that,
for every γ ≤ 1, one has the interpolation inequality

‖b‖L∞ ≤ C
(
γ ‖b‖H̃ + γ−1/H̃‖b‖L1

)
. (3.17)

Therefore

‖b‖L∞ ≤ Cγ−1/H̃H̃‖b‖H̃ + Cγ−1/H̃δ−H‖y‖L∞ + Cγ−1/H̃δ1−H‖a‖L∞

+Cγ−1/H̃H̃δH̃−H‖b‖H̃‖B‖H̃ + Cγ ‖b‖H̃

+Cγ−1/H̃1/2δ1/2−H‖b‖H̃

m∑
i,j=1

−1∑
N=1

|Yij
N − Tδij|.

We now make the following choices for γ , δ, and :

γ ≈ ε
H(1−H)

(1+H)(2−H) , δ ≈ ε
1

H(2−H) ,  ≈ ε
1−H

H(2−H) .

Note that, provided ε is small, one has indeed δ �  � 1. With these choices,
and by choosing H̃ sufficiently close to H, we see that there exists a constant
α > 0 and a constant C > 0 such that

‖b‖L∞ ≤ Cεα

⎛
⎝‖b‖H̃

⎛
⎝1 + ‖B‖H̃ +

∑
i,j,N

|Yij
N − Tδij|

δ1/2H−3/2

⎞
⎠+ ε−1‖y‖L∞ + ‖a‖L∞

⎞
⎠

≤ Cεα

⎛
⎜⎝1 + ‖b‖2

H̃
+ ‖B‖2

H̃
+
⎛
⎝∑

i,j,N

|Yij
N − Tδij|

δ1/2H−3/2

⎞
⎠

2

+ ‖y‖L∞

ε
+ ‖a‖L∞

⎞
⎟⎠.
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Actually, the constant α can be brought arbitrarily close to H(1−H)
(1+H)(2−H) ≥ 2

9 (1 −
H). Note that Lemma 3.2 yields the bound

P

(
|Yij

N − Tδij| > h
)

≤ C exp
(

−c
h2

δ2H−1

)
,

for every possible value of i, j, and N. This immediately implies

P

⎛
⎝∑

i,j,N

|Yij
N − Tδij|

δ1/2H−3/2
> h

⎞
⎠ ≤ C


exp

(
−ch2

)
. (3.18)

Therefore, there exists a constant c such that, for ε small enough, one has the
bound

P

(
‖b‖L∞>εα/2 and ‖y‖L∞<ε

)
≤ P

⎛
⎝∑

i,j,N

|Yij
N − Tδij|

δ1/2H−3/2
>cε−α/4

⎞
⎠

+ P

(
‖b‖2

H̃
+ ‖B‖2

H̃
+ ‖a‖L∞ > cε−α/2

)

≤ Cpε
p. (3.19)

The last inequality is obtained by combining (3.18) with the a priori bounds on
the processes a, b, and B. We now turn to the proof of (3.13). Fix again some
small value of  to be determined later. We then have for every t ∈ [0, 1 −]
the inequality

∣∣∣∣∣∣

t+∫

t

a(s)ds

∣∣∣∣∣∣
≤ 2‖y‖L∞ + |〈b(t), B(t +)− B(t)〉| + C‖b‖H̃‖B‖H̃

2H̃

≤ 2‖y‖L∞ + ‖b‖L∞‖B‖H̃
H̃ + C‖b‖H̃‖B‖H̃

2H̃ .

It is easy to show that, similarly to (3.17) one has the inequality

‖a‖L∞ ≤ 2−1 sup
t∈[0,1−]

∣∣∣∣∣∣

t+∫

t

a(s)ds

∣∣∣∣∣∣
+ 2H̃‖a‖H̃ ,

so that

‖a‖L∞ ≤ 2−1‖y‖L∞ + C‖b‖L∞‖B‖H̃
H̃−1 + C‖b‖H̃‖B‖H̃

2H̃−1 + 2H̃‖a‖H̃

≤ C
(
−1

(
‖y‖L∞ + ‖b‖2

L∞
)

+2H̃−1
(
‖B‖2

H̃
+ ‖b‖2

H̃
+ ‖a‖H̃

))
.



Hörmander’s theorem for the fractional Brownian motion 385

At this point, we choose ≈ εα/H with α as in (3.19). This implies (by choosing
as before H̃ sufficiently close to H) that there exists β > 0 such that

‖a‖L∞ ≤ Cεβ
(

‖y‖L∞

ε
+ ‖b‖2

L∞
εα

+ ‖B‖2
H̃

+ ‖b‖2
H̃

+ ‖a‖H̃

)
.

Therefore, for ε small enough, there exists a constant c such that

P

(
‖a‖L∞ > εβ/2 and ‖y‖L∞ < ε

)
≤ P

(
‖b‖L∞ > εα/2 and ‖y‖L∞ < ε

)

+ P

(
‖B‖2

H̃
+ ‖b‖2

H̃
+ ‖a‖H̃ > cε−β/2

)

≤ Cpε
p

for arbitrary values of p. The last inequality is obtained by combining (3.19)
with the a priori bounds on the processes a, b, and B. This concludes the proof
of (3.13) and thus of Proposition 3.4. ��

4 Existence and smoothness of the density under Hörmander’s type
assumptions for solutions of SDEs driven by a fractional Brownian motion

We now arrive to the heart of our study and are interested in the study of the
existence and regularity for the density of solutions of stochastic differential
equations on R

n:

Xx
t = x +

t∫

0

V0(Xx
s )ds +

d∑
i=1

t∫

0

Vi(Xx
s )dBi

s (4.20)

where the Vi’s are C∞-bounded vector fields on R
n and B is the d dimensional

fractional Brownian motion defined by (2.1). For this type of equations, exis-
tence and uniqueness of the solution have been investigated by many authors
(for instance in [17]). It has also been shown very recently in [9] that the law of
the solution to (4.20) possesses a smooth density with respect to the Lebesgue
measure in the elliptic case. Recall first the following a priori bound on the
solutions to (4.20). (See for example [17] for a proof.)

Lemma 4.1 For every γ < H and every p > 0, E
(‖X‖p

γ

)
< +∞.

Let us now denote by � the stochastic flow associated with Eq. (4.20), that
is �t(x) = Xx

t . From [9], we can deduce:

Lemma 4.2 The map �t is C1 and the first variation process defined by

J0→t = ∂�t

∂x
,
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satisfies the following equation:

J0→t = IdRn +
t∫

0

DV0(Xx
s )J0→sds +

d∑
i=1

t∫

0

DVi(Xx
s )J0→sdBi

s.

and, for every p > 1,

E

(
‖ J−1

0→1 ‖p
)
< +∞.

Furthermore, for every i = 1, . . . , n, t > 0, and x ∈ R
n, Xx,i

t ∈ D
∞(H). Moreover,

D j
sXx

t = J0→tJ−1
0→sVj(Xs), j = 1, . . . , d, 0 ≤ s ≤ t, (4.21)

where D j
sXx,i

t is the jth component of DsX
x,i
t .

We can now turn to our version of Hörmander’s theorem for stochastic differ-
ential equations that are driven by a fractional Brownian motion with Hurst
parameter H > 1/2. If I = (i1, . . . , ik) ∈ {0, . . . , d}k, we denote by VI the Lie
commutator defined by

VI = [Vi1 , [Vi2 , . . . , [Vik−1 , Vik ] . . .].

We also define the sets of vector fields

Vn =
{

VI , I ∈ {1, . . . , d} × {0, . . . , d}n−1
}

, V̄n =
n⋃

k=0

Vk.

With these notations, the main result of this article is the following:

Theorem 4.3 Assume that, at some x0 ∈ R
n, there exists N such that

span{V(x0), V ∈ V̄N} = R
n. (4.22)

Then, for any t > 0, the law of the random variable Xx0
t has a smooth density

with respect to the Lebesgue measure on R
n.

Given the results from the previous sections, the proof of this theorem is by
now quite standard and follows closely the argument given for instance in [4],
[16] or [20]. The main difference is that it is not a priori obvious how to relate
the L∞ bounds obtained in Proposition 3.4 to the fractional Sobolev norms
appearing in the statement of Theorem 2.1.
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Lemma 4.4 Let H > 1/2 and let H be defined as above. Then, for every γ >

H − 1/2 there exists a constant C such that

‖f‖H ≥ C
‖f‖3+1/γ

L∞

‖f‖2+1/γ
γ

,

for every continuous function f ∈ H. Here, ‖f‖γ denotes as before the γ -Hölder
norm of f .

Proof Let Dαf denote the fractional derivative of order α of f , defined by

Dαf (t) = 1
�(1 − α)

d
dt

t∫

0

(t − s)−αf (s)ds. (4.23)

We also introduce the operator Dα− defined by

Dα−f (t) = − α

�(1 − α)

∞∫

t

(s − t)−α−1(f (s)− f (t))ds,

which is nothing but the adjoint of Dα in L2(R+).
Since Iα and Dα are each other’s inverse [23], (2.3) implies by Cauchy–

Schwartz that

∣∣〈f , g〉L2

∣∣ =
∣∣∣〈IH−1/2f , DH−1/2

− g〉L2

∣∣∣ ≤ ‖f‖H‖DH−1/2
− g‖L2 . (4.24)

The problem with (4.24) is that we would like to apply it to a function f which
is γ -Hölder continuous on [0, 1], but does not necessarily vanish at either 0
or 1, so that DH−1/2

− f does in general not belong to L2. If we define however
h(t) = tγ (1 − t)γ for t ∈ [0, 1] and h(t) = 0 for t ≥ 1, then ‖fh‖γ ≤ C‖f‖γ , but fh

vanishes at 0 and at 1. In particular, this implies that ‖DH−1/2
− fh‖ ≤ C‖f‖γ , so

that

‖f‖H ≥ C

∫ 1
0 tγ (1 − t)γ f 2(t)dt

‖f‖γ ,

for some constant C. On the other hand, it is a straightforward calculation to
check that

1∫

0

tγ (1 − t)γ f 2(t)dt ≥ C
‖f‖3+1/γ∞
‖f‖1+1/γ

γ

,

which implies the desired result. ��
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Corollary 4.5 Let y be a random process with sample paths that are almost surely
γ -Hölder continuous for some γ > H−1/2. Then, there exists an exponent α > 0
such that

P(‖y‖H < ε) ≤ P
(‖y‖L∞ < εα

)+ P
(‖y‖γ > ε−α

)
,

for every ε sufficiently small.

Proof It follows from Lemma 4.4 that

P(‖y‖H < ε) ≤ P

(
C‖y‖3+1/γ

L∞ ‖y‖−2−1/γ
γ < ε

)
.

For an arbitrary pair of positive random variables X and Y, one always has

P(X/Y < ε) ≤ P

(
X < ε1−α)+ P

(
Y > ε−α

)
,

so that the claim follows by taking α small enough. ��
This provides us with the necessary tools to complete the

Proof of Theorem 4.3 We shall show that Xx0
1 admits a smooth density with

respect to the Lebesgue measure, by using the Malliavin covariance matrix �1
associated with Xx0

1 . Note that we can consider the case t = 1 without any loss
of generality by rescaling the vector fields Vi appropriately.

Let �1 be the Malliavin covariance matrix associated with Xx0
1 . By definition,

we have

�1 =
(
〈DXi,x0

1 , DXj,x0
1 〉H

)
1≤i,j≤n

.

To show that Xx0
1 has a a smooth density, it suffices to show that with proba-

bility one �1 is invertible and that for every p > 1,

E

(
1

| det �1 |p
)
< +∞.

From Lemma 4.2,

Dj
sX

x0
1 = J0→1J−1

0→sVj(Xs), j = 1, . . . , d, 0 ≤ s ≤ 1.

Therefore,

�1 = H(2H − 1)J0→1

1∫

0

1∫

0

J−1
0→uV(Xx0

u )V(X
x0
v )

T
(

J−1
0→v

)T

× | u − v |2H−2 du dv JT
0→1,
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where V denotes the n × d matrix (V1 . . .Vd). Since J0→1 is almost surely
invertible with inverse in Lp, p > 1, in order to show that �1 is invertible with
probability one, it is enough to check that with probability one, the matrix

C1 =
1∫

0

1∫

0

J−1
0→uV(Xx0

u )V(X
x0
v )

T
(

J−1
0→v

)T | u − v |2H−2 dudv

is invertible and satisfies for every p > 1,

E

(
1

| det C1 |p
)
< +∞. (4.25)

By using Proposition 3.4, the idea is now to control the smallest eigenvalue of
C1 by showing that it can not be too small. More precisely, recall (Lemma 2.3.1.
in [20]) that if for any p ≥ 2, there exists ε0(p) such that for every ε ≤ ε0(p),

sup
‖v‖=1

P(〈v, C1v〉 ≤ ε) ≤ εp,

then C1 is invertible with probability one and (4.25) holds for every p > 1. We
thus want to estimate P(〈v, C1v〉 ≤ ε). Let us observe that

〈v, C1v〉 =
d∑

j=1

1∫

0

1∫

0

| s − t |2H−2 〈v, (�∗
s Vj)(x0)〉〈v, (�∗

t Vj)(x0)〉 ds dt

=
d∑

j=1

‖〈v, (�∗· Vi)(x0)〉‖2
H .

Here, �∗
t V is the pullback of the vector field V by �t, that is

�∗
t V(x) = D(�−1

t )(�t(x))V(�t(x)).

Fix now an (arbitrarily large) value p > 0. It follows from Lemma 4.1 and
Corollary 4.5 that there exists α > 0 such that

P(〈v, C1v〉 ≤ ε) ≤ Cεp + min
i=1,...,d

P
(∥∥〈v, (�∗· Vi)(x0)

〉∥∥
L∞ ≤ εα

)
. (4.26)

Note now that if V is an arbitrary bounded vector field with bounded derivatives,
the chain rule reads

(�∗
t V)(x0) =

t∫

0

〈
y,
(
�∗

s [V0, V])(x0)
〉
ds +

d∑
j=1

t∫

0

〈
y,
(
�∗

s [Vj, V])(x0)
〉
dBj

s.
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Note that the chain rule applies to our situation since all the integrals are
standard Riemann-Stieltjes integrals. It thus follows from Proposition 3.4 and
Corollary 4.5 that there exists α such that

P
(‖〈v, (�∗· V)(x0)〉‖L∞ < ε

)

≤ Cεp + min
i=0,...,d

P
(‖〈v, (�∗· [Vi, V])(x0)〉‖L∞ < εα

)
(4.27)

Consider now the integer N from the assumption. Combining (4.26) with (4.27),
we see that there exists α > 0 such that

P(〈v, C1v〉 ≤ ε) ≤ Cεp + min
V∈V̄N

P
(∥∥〈v, (�∗· V)(x0)

〉∥∥
L∞ ≤ εα

)
.

for all ε small enough. On the other hand, we know by assumption that
{V(x0) , V ∈ V̄N} spans all of R

n, so that there exists some V ∈ V̄N such that
〈v, V(x0)〉 �= 0. Therefore, one has P(〈v, C1v〉 ≤ ε) ≤ Cεp for all ε sufficiently
small, which is the required bound. ��

5 Asymptotics of the density in small times

In order to obtain asymptotics of the density of hypoelliptic diffusions on the
diagonal in small times, one method consists to approximate the diffusion by the
lift of the Brownian motion in a nilpotent Lie group that is called a Carnot group
(see [22], [1], or [2]). In a recent work [3], Baudoin and Coutin have introduced
and studied fractional Brownian motions on Carnot groups. We shall see that
the solution of a stochastic differential equation driven by fractional Brownian
motions can, under Hörmander’s type assumptions, be approximated by frac-
tional Brownian motions on Carnot groups. From this approximation, we will
deduce an asymptotic development of the density in small times.

We recall first the notion of Carnot group (see e.g. [2]) and the main results
that are obtained in [3].

Definition 5.1 A Carnot group of step (or depth) N is a simply connected Lie
group G whose Lie algebra can be decomposed as

V1 ⊕ · · · ⊕ VN ,

where

[Vi, Vj] = Vi+j

and

Vs = 0 for s > N.
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Notice that the vector space V1, which is called the basis of G, Lie generates
g, where g denotes the Lie algebra of G. It is possible to show that for every
N ≥ 1, up to an isomorphism, there exists exactly one N-step nilpotent Carnot
group with basis R

d. This group shall be denoted by GN(R
d).

Since a Carnot group G is N-step nilpotent and simply connected, the expo-
nential map is a diffeomorphism. On g we can consider the family of linear
operators δt : g → g, t ≥ 0 which act by scalar multiplication ti on Vi. These
operators are Lie algebra automorphisms due to the grading. The maps δt induce
Lie group automorphisms t : G → G which are called the canonical dilations
of G. Let us now take a basis U1, . . . , Ud of the vector space V1. The vectors
Ui can be seen as left invariant vector fields on G so that we can consider the
following stochastic differential equation on G:

dXt =
d∑

i=1

t∫

0

Ui(Xs)dBi
s, t ≥ 0, (5.28)

which is easily seen to have a unique solution associated with the initial condi-
tion X0 = 1G. The driving process (Bt)t≥0 is here a fractional Brownian motion
with Hurst parameter H > 1/2. The process (Xt)t≥0 is called the lift of (Bt)t≥0 in
the group G. For this equation, the assumptions of Theorem 4.3 are obviously
satisfied, so that we have a smooth density for Xt, t > 0, with respect to the
Haar measure of G.

We have then the global scaling property

(Xct)t≥0
law= (cH Xt)t≥0.

(See [3] for a proof.) This scaling property leads directly to the following value
at 1G of the density p̃t of Xt with respect to the Haar measure of G:

p̃t(1G) = C
tDH , t > 0, (5.29)

where C > 0 and D = ∑N
i=1 i dim Vi. From this, we will see how to deduce

asymptotics in small times for any hypoelliptic stochastic differential equation
driven by fractional Brownian motions.

From now on, we consider d vector fields Vi : R
n → R

n which are C∞
bounded and shall always assume that the following assumption is satisfied.
Strong Hörmander’s Condition: For every x ∈ R

n, we have:

span{VI(x), I ∈ ∪k≥1{1, . . . , d}k} = R
n.

We recall that if I = (i1, . . . , ik) ∈ {1, . . . , d}k is a word, we denote by VI the
commutator defined by

VI = [Vi1 , [Vi2 , . . . , [Vik−1 , Vik ] . . .].
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Let us introduce some concepts of differential geometry. The set of linear
combinations with smooth coefficients of the vector fields V1, . . . , Vd is called
the differential system (or sheaf) generated by these vector fields. It shall be
denoted by D in the sequel. Notice that D is naturally endowed with a C∞(Rn, R)-
module structure. For x ∈ R

n, we denote

D(x) = {X(x), X ∈ D}.

If the integer dim D(x) does not depend on x, then D is said to be a distribution.
The Lie brackets of vector fields in V generate a flag of differential systems,

D ≡ D1 ⊂ D2 ⊂ · · · ⊂ Dk ⊂ · · · ,

where Dk is recursively defined by the formula

Dk = Dk−1 + [D, Dk−1].

As a module, Dk is generated by the set of vector fields VI , where I describes
the set of words with length k. Moreover, due to Jacobi identity, we have
[Di, Dj] ⊂ Di+j. This flag is called the canonical flag associated with the differ-
ential system D. Hörmander’s strong condition, which we supposed to hold,
states that for each x ∈ R

n, there is a smallest integer r(x) such that Dr(x) = R
n.

For each x ∈ R
n, the canonical flag induces a flag of vector subspaces,

D(x) ⊂ D2(x) ⊂ · · · ⊂ Dr(x)(x) = R
n.

The integer list
(
dim Dk(x)

)
1≤k≤r(x) is called the growth vector of V at x. The

point x is said to be a regular point of V if the growth vector is constant in a
neighbourhood of x. Otherwise, we say that x is a singular point. On a Carnot
group, due to the homogeneity, all points are regular.

Let Vi = Di/Di−1 denote the quotient differential systems, and define

N (D) = V1 ⊕ · · · ⊕ Vk ⊕ · · · .

The Lie bracket of vector fields induces a bilinear map on N (D) which
respects the grading: [Vi, Vj] ⊂ Vi+j. Actually, N (D) inherits the structure
of a sheaf of Lie algebras. Moreover, if x is a regular point of D, then this
bracket induces a r(x)-step nilpotent graded Lie algebra structure on N (D)(x).
Observe that the dimension of N (D)(x) is equal to n and that from the defini-
tion, (V1(x), . . . , Vd(x)) Lie generates N (D)(x).
Definition 5.2 If x is a regular point of D, the r(x)-step nilpotent graded Lie alge-
bra N (D)(x) is called the nilpotentisation of D at x. This Lie algebra is the Lie
algebra of a unique Carnot group which shall be denoted Gr(D)(x) and called
the tangent space to D at x. The integer D = ∑r(x)

k=1 k dim Dk(x) is called the
homogeneous dimension of Gr(D)(x).
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Proposition 5.3 Let x be a regular point of D. Let pt, t > 0, denote the density
with respect to the Lebesgue measure of the solution of the stochastic differential
equation

Xx
t = x +

d∑
i=1

t∫

0

Vi(Xx
s )dBi

s, (5.30)

where (Bt)t≥0 is a d-dimensional fractional Brownian motion with Hurst para-
meter H > 1/2. We have,

pt(x) ∼t→0
C(x)

tHD(x) , (5.31)

where C(x) is a strictly positive constant and D(x) the homogeneous dimension
of the tangent space Gr(D)(x).

Proof Let us first introduce some notations: For k ≥ 1, we denote by k[0, t]
the simplex of ordered k-tuples with values in [0, t], i.e.

k[0, t] = {(t1, . . . , tk) ∈ [0, t]k, t1 < · · · < tk};

If I = (i1, . . . , ik) ∈ {1, . . . , d}k is a word with length k, we define the corre-
sponding iterated integral of B by

∫

k[0,t]
dBI =

∫

0<t1<···<tk<t

dBi1
t1 · · · dBik

tk ,

where the right-hand side consists of nested Riemann–Stieltjes integrals.
We denote Sk the group of the permutations of the index set {1, . . . , k}

and if σ ∈ Sk and I is a word I = (i1, . . . , ik), we denote by σ · I the word
(iσ(1), . . . , iσ(k)).

If σ ∈ Sk, we denote e(σ ) the cardinality of the set

{j ∈ {1, . . . , k − 1}, σ(j) > σ(j + 1)},

i.e. e(σ ) is the number of raising sequences of σ . Finally, if I = (i1, . . . , ik) ∈
{1, . . . , d}k is a word

�I(B)t =
∑
σ∈Sk

(−1)e(σ )

k2
(

k − 1
e(σ )

)
∫

k[0,t]
dBσ

−1·I .
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As a consequence of Proposition 23 in [8], we get the following approxima-
tion result:

Xx
t =

⎡
⎣exp

⎛
⎝

r(x)∑
k=1

∑
I=(i1,...,ik)

�I(B)tVI

⎞
⎠
⎤
⎦(x)+ tH(r(x)+1)R(t), t ≥ 0.

Here, the remainder term R(t) is bounded in probability as t → 0. Actually, it
is commonly admitted that one has the following Castell-type estimate: there
exist α, c > 0 such that, for all A > c,

lim sup
t→0

P

(
sup

0≤s≤t
sH(N+1) | RN(s) |≥ AtH(N+1)

)
≤ exp

(
−Aα

c

)
.

We deduce therefore

pt(x) ∼t→0 qt(0),

where qt is the density of

⎡
⎣exp

⎛
⎝

r(x)∑
k=1

∑
I=(i1,...,ik)

�I(B)tVI

⎞
⎠
⎤
⎦(x).

We can now conclude with (5.29). ��
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