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Abstract This paper is mainly devoted to a precise analysis of what kind of
penalties should be used in order to perform model selection via the minimiza-
tion of a penalized least-squares type criterion within some general Gaussian
framework including the classical ones. As compared to our previous paper on
this topic (Birgé and Massart in J. Eur. Math. Soc. 3, 203–268 (2001)), more
elaborate forms of the penalties are given which are shown to be, in some sense,
optimal. We indeed provide more precise upper bounds for the risk of the
penalized estimators and lower bounds for the penalty terms, showing that the
use of smaller penalties may lead to disastrous results. These lower bounds may
also be used to design a practical strategy that allows to estimate the penalty
from the data when the amount of noise is unknown. We provide an illustra-
tion of the method for the problem of estimating a piecewise constant signal in
Gaussian noise when neither the number, nor the location of the change points
are known.
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1 Introduction

In this paper, we pursue our study of model selection for Gaussian frameworks,
as described in Birgé and Massart [11]. We recall that, given some Hilbert space
H with scalar product 〈·, ·〉, a linear isonormal process indexed by a suitable
linear subspace S of H is a centered and linear Gaussian process with covari-
ance structure E[Z(t)Z(u)] = 〈t, u〉 (we have to introduce the subspace S since
one cannot warrant the existence of a linear isonormal process on an arbitrary
infinite dimensional Hilbert space).

We consider the statistical problem of estimating the unknown parameter
s ∈ H when one observes the Gaussian Linear process Y indexed by S defined by

Y(t) = 〈s, t〉 + εZ(t) for all t ∈ S, (1)

where Z denotes a linear isonormal process and ε is a known level of noise.

1.1 Model selection from a nonasymptotic point of view

We have at hand some countable (possibly finite) collection {Sm, m ∈ M} of
models, i.e. finite-dimensional linear subspaces of S with respective dimensions
Dm (possibly Dm = 0). On each model, we build the corresponding least squares
estimator ŝm, i.e. the minimizer, with respect to t ∈ Sm, of the least squares crite-
rion γ (t) = ‖t‖2−2Y(t). The quality of a model Sm (or alternatively an estimator
ŝm) is given by the corresponding risk

Rm(s) = Es

[
‖ŝm − s‖2

]
= d2(s, Sm) + ε2Dm, (2)

where ‖ · ‖ denotes the norm in H, d the corresponding distance and Es the
expectation of functions of the process Y(·) described by (1). An ideal model
for s is one which minimizes Rm(s). Unfortunately, we cannot choose this opti-
mal model from (2) since the bias term d2(s, Sm) is unknown. Model selection
consists in designing a data driven choice m̂ of a model Sm̂ for s. It is typically
impossible to choose an ideal model from the data, i.e. to design a model selec-
tion procedure m̂(Y) such that Es

[‖ŝm̂ − s‖2] = infm∈M
{
Es
[‖ŝm − s‖2]}, but

one can hope to build some m̂ satisfying

Es

[
‖ŝm̂ − s‖2

]
≤ C inf

m∈M

{
Es

[
‖ŝm − s‖2

]}
, (3)

with C > 1 independent of s. The penalization approach to model selection
consists of defining

m̂ = argmin
m∈M

{
pen(m) + γ (ŝm)

} = argmin
m∈M

{
pen(m) − ‖ŝm‖2

}
, (4)

where pen(·) denotes a suitable nonnegative function defined on M.



Minimal penalties for Gaussian model selection 35

As shown in Birgé and Massart [11], Sect. 2.1, this general Gaussian frame-
work allows to deal with various classical model selection problems within
one single framework. A typical example is the problem of variable selection
in Gaussian linear regression. We observe n independent variables Y1, . . . , Yn
with Yi ∼ N (

si, σ 2) which can be written in vector form as

Y = s + σξ with Y = (Yi), s = (si) ∈ R
n and ξ ∼ N (0, Idn). (5)

In this case Y can be identified by duality with a linear operator on the Hilbert
space R

n, or equivalently to the Gaussian Linear process Y(·) indexed by R
n

and defined by

Y(t) = 〈Y, t〉n = 〈s, t〉n + σ 〈ξ , t〉n = 〈s, t〉n + εZ(t), with ε = σ/
√

n, (6)

where Z is a linear isonormal process indexed by R
n and 〈·, ·〉n denotes the

scalar product corresponding to the normalized Euclidean norm ‖ · ‖n on R
n

defined by ‖t‖2
n = n−1∑n

i=1 t2i .
In order to estimate the unknown parameter s, one typically considers a set

of potential variables {Xλ, λ ∈ �N}, �N = {1, 2, . . . , N}, with Xλ ∈ R
n and N

possibly large. To each subset m of �N corresponds a linear regression model

Yi =
∑
λ∈m

βλXλ
i + σξi for 1 ≤ i ≤ n, with ξ1, . . . , ξn i.i.d. N (0, 1). (7)

Building a good model (7) amounts to select some influencial variables from
the set {Xλ, λ ∈ �N}. To be precise, we would like to select a subset m of
�N which minimizes (at least approximately) the risk E

[‖ŝm − s‖2
n
]

where ŝm
denotes the least squares estimator corresponding to the stochastic model (7).
Using the identification given by (6), assuming that σ is known and denoting by
Sm the |m|-dimensional linear space generated by the vectors Xλ, λ ∈ m, this
variable selection problem can be viewed as a model selection problem among
the collection {Sm, m ⊂ �N}, as previously defined.

1.2 Some historical remarks about model selection

Model selection via penalization is an old idea. It amounts to choosing m̂ as
a minimizer of a penalized criterion of the form γ (ŝm) + pen(m), where the
penalty pen(m) is usually proportional to the dimension Dm of Sm. In our Gauss-
ian framework, this penalized least squares criterion corresponds to penalized
maximum log-likelihood, a criterion which has been used for decades, not only
for Gaussian frameworks.

The first examples we know about of such criteria are due to Mallows [29]
and Akaike [[2] for FPE, [3] and [4] for AIC]. Mallows’ Cp, which, according
to Daniel and Wood [13] dates back to the early sixties, was designed to solve
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a problem of variable selection in a linear regression problem when the vari-
ance of the errors is known (or independently estimated). Translated into the
framework given by (1), Mallows’ Cp corresponds to setting pen(m) = 2ε2Dm.
Akaike’s AIC, which has a more general scope, consists in maximizing the
maximal log-likelihood on a model Sm minus the number of parameters of the
model. Both criteria are based on the idea of unbiased estimation of the risk
and aim at choosing a model which minimizes this risk: this is the efficiency
point of view. Mallows’ Cp has been proved by Shibata [37] to be asymptotically
efficient, i.e. satisfies asymptotically when ε → 0,

Es

[
‖ŝm̂ − s‖2

]
∼ inf

m∈M

{
Es

[
‖ŝm − s‖2

]}
, (8)

at the price of assuming that the true s does not belong to any model in the
list. Such a result has also been proved, under various assumptions, by Li [27],
Polyak and Tsybakov [33] or Kneip [24]. Coming back to our Gaussian frame-
work, this point of view amounts to define an optimal model Sm0 as indexed
by a minimizer m0 of the quadratic risk Es

[‖ŝm − s‖2] with respect to m. As a
consequence, an optimal model does not necessarily contain s as illustrated by
the example of Sect. 4.5.

Another point of view about model selection consists in assuming the exis-
tence of a true model of minimal size and to aim at finding it. In our framework,
this means that s belongs to some model Sm with minimal dimension that we
want to find: this is the consistency point of view. The following criteria have
been designed to find it with probability tending to one when ε goes to zero (and
the list of models remains fixed): BIC (Akaike, [5] or equivalently Schwarz, [35])
and Hannan and Quinn [20]. For a recent analysis of such criteria, see Guyon
and Yao [19].

The distinction between these points of view and the related criteria (with
many more explanations and historical references) has been discussed very
carefully and nicely in the first chapter of McQuarrie and Tsai [31] to which
we refer the interested reader since a more detailed discussion of the various
criteria would only be a weak copy of theirs. In any case, although both points
of view have their advantages, they suffer from the same drawback, which is
their definitely asymptotic nature. One attempt to solve this problem has been
the introduction of a modified version of AIC, namely AICc, by Hurvich and
Tsai [22], which definitely improves on AIC for small sample sizes.

In this paper, we focus on a nonasymptotic point of view. A first reason for
such a choice is that we neither want to assume that the true s does belong to one
of the models (which is required for the consistency approach), nor exclude this
case as requested for the asymptotic efficiency of Mallows’ Cp and related cri-
teria. Another reason is that we want to allow the list of models to depend on ε.
It is indeed of common practical use to introduce more explanatory variables
in a regression problem when one has more observations [which corresponds
to a smaller value of ε for the associated Gaussian linear process as shown by
(6)] while one would choose parsimonious models, which are likely to be only
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approximately true, when one has at hand a limited number of data. In any
case, the number and choice of the models depends heavily on the number of
observations. The nonasymptotic approach which is based on risk evaluations
allows to prove efficiency results but also leads to minimax bounds relative to
each model. Such minimax results are actually not compatible with the consis-
tency viewpoint. Indeed, it is shown in a recent paper by Yang [40] that one
cannot simultaneously achieve both aims: estimates which tend to find the true
model (assuming there is one) do not achieve the optimal minimax risk.

1.3 Choosing proper penalties

The main issue of this paper is what choices of penalty functions are suitable
for our purposes, namely getting bounds of the form (3) with an adequate value
of C. In Birgé and Massart [11], we proposed penalties of the form

pen(m) = Kε2Dm

(
1 +√2Lm

)2
for all m ∈ M and some K > 1, (9)

where the Lm are nonnegative weights indexed by M which satisfy the condition

� =
∑

{m∈M | Dm>0}
exp[−LmDm] < +∞. (10)

This condition, which resembles Kraft’s inequality in information theory, ap-
peared in various works devoted to the analysis of the performance of penalized
criteria, in particular connected to minimum description length or minimum
complexity principles. Some milestone references are Rissanen [34] and Bar-
ron and Cover [8]. It can also be interpreted in a Bayesian way as putting a
prior finite measure on the list of models.

In a typical model selection problem, there is only a finite number of models
of a given dimension D. Therefore, denoting by |A| the cardinality of a set A
and setting

MD = {m ∈ M | Dm = D} and H(D) = D−1 log |MD|, (11)

we see that one can fix Lm = H(Dm) + δ, with δ > 0 arbitrarily small. Such a
choice leads to the lower bound ε2Dm

(
1 + √

2H(Dm)
)2 for the penalty given by

(9) (corresponding to the limiting cases K = 1 and δ = 0). Our aim is to sharpen
the form of the penalty in order to define a “minimal” value of the penalty (in
a suitable sense) as well as an “optimal” one and to see how they are related.
This leads us to introduce a slightly different form of minimal penalty, namely

penmin(m) = ε2DmA(Dm) with A(D) = 1 + 2
√

H(D) + 2H(D). (12)

One major concern of this paper is to show that, for various types of behav-
iors of H(D) when D goes to infinity, (12) is actually a lower bound for an
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effective penalty in the sense that smaller penalties may lead to inconsistent
estimation procedures. In practice this means that penalties below this critical
value lead to procedures that systematically choose models of much too large
dimensions. Moreover, using penalties of the form pen(m) = Kε2DmA(Dm)

with K > 1, leads to improved risk bounds for Es
[‖ŝm̂ − s‖2] as compared

to Birgé and Massart [11]. In view of these new upper bounds, it turns out
that K = 2 is always a reasonable choice (non-asymptotically) and sometimes
an optimal one, asymptotically. Combining these negative and positive results
about the penalty allows us to propose a practical procedure for estimating ε

and therefore choosing a good penalty when ε is unknown.
In the next section we introduce the new penalties and the corresponding

risk bounds. Then Sect. 3 will be devoted to negative results: we show that (12)
is actually a lower bound for effective penalties in typical situations and we also
study the consequence of choosing too large penalties. We then deal with the
important practical issue of designing data driven penalties when ε is unknown
in Sect. 4 and apply the previous results to multiple change points detection in
Gaussian noise in Sect. 5. The remainder of the paper is devoted to the proofs.

2 New penalties and the corresponding risk bounds

We recall that our observation is a Gausian linear process Y(t) given by (1)
where Z is a linear isonormal process on the subset S of the Hilbert space H,
with norm ‖ · ‖ and corresponding distance d, and s is an unknown function
in H to be estimated. We have at disposal a countable (possibly finite) col-
lection {Sm, m ∈ M} of finite dimensional models with respective dimensions
Dm ≥ 0 and we may assume, without loss of generality, that S is the linear span
of ∪m∈MSm. In this context, we first give a general non-asymptotic risk bound
based on our new penalty structure.

Theorem 1 Given the collection of models {Sm}m∈M, let us consider a family
of nonnegative weights {Lm}m∈M satisfying (10), two numbers, θ ∈ (0, 1) and
κ > 2 − θ and let us assume that there exists a finite (possibly empty) subset M
of M such that the penalty function pen satisfies

pen(m) ≥ Qm for m ∈ M \ M, (13)

with

Qm = ε2Dm

(
κ + 2(2 − θ)

√
Lm + 2θ−1Lm

)
for all m ∈ M. (14)

Then the corresponding penalized projection estimator s̃ = ŝm̂ with m̂ given by
(4) exists a.s. and satisfies
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(1 − θ) Es

[
‖s−s̃‖2

]
≤ inf

m∈M

{
d2(s, Sm)+pen(m) − ε2Dm

}
+ sup

m∈M
{Qm−pen(m)}

+ε2�
[
(2 − θ)2(κ + θ − 2)−1 + 2θ−1

]
, (15)

where d(s, Sm) = inf t∈Sm ‖t − s‖ denotes the distance from s to the space Sm. If,
in particular, we fix

κ = 2 and pen(m) = Qm whatever m ∈ M, (16)

then

(1 − θ) Es

[
‖s − s̃‖2

]
≤ inf

m∈M

{
d2(s, Sm) + ε2Dm

[
1 + 2(2 − θ)

√
Lm+2θ−1Lm

]}

+ε2�θ−1
[
(2 − θ)2 + 2

]
, (17)

The proof of Theorem 1 being rather technical, it will be defered to Sect. 5.2.

Remarks i) A typical penalty choice would be (16). Allowing that M 
= ∅
will be useful in Sect. 3 for comparing upper and lower bounds for the
penalty.

ii) As a consequence of (17), if one can find a bounded family of weights
(supm Lm = L < +∞) satisfying (10) (which is possible when the number
of spaces Sm having the same dimension Dm = D is not too large) and if
the penalty is given by (16) with θ = 1/2, say, one derives from (2) that

Es

[
‖s̃ − s‖2

]
≤ 2

(
1 + 3

√
L + 4L

)
inf

m∈M
Es

[
‖ŝm − s‖2

]
+ 17ε2�. (18)

This means that, if no estimator in the family is close to perfect for estimat-
ing s, i.e. if infm∈M Es

[‖ŝm − s‖2] ≥ ε2, the penalized estimator s̃ satisfies

(3) with C = 2
(

1 + 3
√

L + 4L
)

+ 17� and therefore behaves as well as

the best least squares estimator in the family, up to the constant C.

iii) In Birgé and Massart [11], Theorem 2, we proved the following risk bound
for the penalized least squares estimator s̃ based on penalty (9):

Es

[
‖s̃ − s‖2

]
≤ 4K(K + 1)2

(K − 1)3 inf
m∈M

{
d2(s, Sm) + Kε2Dm

(
1 +√2Lm

)2
}

+4K(K + 1)3

(K − 1)3 ε2�. (19)

It is easy to see that, whatever K > 1, this upper bound is larger than

4 inf
m∈M

{
d2(s, Sm) + ε2Dm

[
1 + 2

√
2Lm + 2Lm

]}
+ 65ε2�

and therefore always worse than (17) with θ = 1/2.
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With our new risk bound, it is possible to define situations for which the penal-
ized estimator is asymptotically efficient. Looking at (17), we see that we can
hope to achieve this by letting θ tend to zero with ε and the Lm as well. We
consider here a family of model selection problems with a varying noise level
ε ∈ (0; ε0], a given collection of models independent of ε and we let ε go to
zero. The assumptions involving limits when D goes to infinity should be con-
sidered as automatically satisfied if the dimensions of the models are bounded
(i.e. supm∈M Dm < +∞).

Corollary 1 Let {Sm, m ∈ M} be a given collection of linear subspaces of some
Hilbert space H with respective finite dimensions Dm, MD = {m ∈ M | Dm = D}
and D = {D ≥ 0 | MD 
= ∅}. We assume that |MD| is finite for every D ∈ D, that
log |MD| = o(D) when D goes to infinity in D, that the true parameter s does
not belong to any model (i.e. d(s, Sm) > 0 for all m ∈ M) and that the penalty
function is given, for each noise level ε ∈ (0; ε0], by pen(m) = F(ε, Dm) with

lim
D→+∞ sup

0<ε≤ε0

∣∣∣∣
[
ε2D

]−1
F(ε, D) − 2

∣∣∣∣ = 0 (20)

and

lim
ε→0

F(ε, D) = 0 for all D ∈ D. (21)

Then the penalized least squares estimator s̃ satisfies

lim
ε→0

Es
[‖s − s̃‖2]

infm∈M Es
[‖s − ŝm‖2

] ≤ 1, (22)

where ŝm denotes the least squares estimator corresponding to the model Sm.

Proof Let us fix θ ∈ (0, 1) and set κ = 2 − (θ/2), L(D) = H(D) + D−1/2 for
D ≥ 1 and H given by (11) and Lm = L(Dm) with L(0) = 1. Here, and through-
out the proof, the values of D are restricted to the set D. The assumption on
log |MD| implies that L(D) tends to 0 when D goes to infinity. Therefore if

Q(ε, D) = ε2D
[
κ + 2(2 − θ)

√
L(D) + 2θ−1L(D)

]
,

then
[
ε2D

]−1
Q(ε, D) converges to κ < 2 when D tends to infinity and (20)

implies that there exists some integer Dθ , depending only on θ , such that for
every ε ∈ (0, ε0] and every D > Dθ ,

Q(ε, D) ≤ F(ε, D) ≤ (2 + θ)ε2D. (23)
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Setting Qm = Q(ε, Dm), we conclude that pen(m) = F(ε, Dm) ≥ Qm for every
m ∈ M \ M, with M = {m ∈ M | Dm ≤ Dθ }, which allows us to apply Theo-
rem 1 and derive from (15) the risk bound

(1 − θ)Es

[
‖s − s̃‖2

]
≤ inf

m∈M

{
d2(s, Sm) + F(ε, Dm) − ε2Dm

}

+ sup
D≤Dθ

Q(ε, D) + 10
θ

ε2�,

with

� =
∑

D∈D;D≥1

exp[DH(D) − DL(D)] ≤
∑
D≥1

exp
[
−√

D
]

< +∞.

Setting b(D)= infm∈MD d(s, Sm), we deduce from our assumptions (d(s, Sm) > 0
for all m and |MD| < +∞) that b(D) > 0 and derive from the previous risk
bound that there exists a positive constant Cθ , depending only on θ , such that

(1 − θ) Es

[
‖s − s̃‖2

]
≤ inf

D∈D

{
b2(D) + F(ε, D) − ε2D

}
+ Cθ ε

2. (24)

Then, on the one hand, it follows from (23) that F(ε, D)− ε2D ≤ (1+ θ)ε2D for
D > Dθ and, on the other hand, (20) implies that F(ε, D) ≤ θb2(D) for D ≤ Dθ

and ε ≤ ε1 for some small enough ε1 > 0. It follows that, when ε ≤ ε1,

b2(D) + F(ε, D) − ε2D ≤ (1 + θ)
[
b2(D) + ε2D

]
for all D ∈ D,

and by (24),

(1 − θ) Es

[
‖s − s̃‖2

]
≤ (1 + θ) inf

D∈D

{
b2(D) + ε2D

}
+ Cθ ε

2

= (1 + θ) inf
m∈M

Es

[
‖s − ŝm‖2

]
+ Cθ ε

2. (25)

Since b(D) > 0 for all D,

ε−2 inf
m∈M

Es

[
‖s − ŝm‖2

]
= inf

m∈M

{
ε−2d2(s, Sm) + Dm

}
= inf

D∈D

{
ε−2b2(D) + D

}

tends to infinity when ε → 0. Therefore the right-hand side of (25) is equivalent
to (1 + θ) infm∈M Es

[‖s − ŝm‖2] when ε → 0 and

lim
ε→0

Es
[‖s − s̃‖2]

infm∈M Es
[‖s − ŝm‖2

] ≤ 1 + θ

1 − θ
.

The conclusion follows by letting θ go to 0. ��
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Note that the choice F(ε, D) = 2ε2D corresponds to Mallows’Cp so recovering
the asymptotic efficiency results due to Shibata [37].

It is actually possible to prove a better result than (22), with
Es
[
infm∈M ‖s − ŝm‖2] in the denominator, at the price of a substantially more

complicated proof. We refer the interested reader to Birgé and Massart [12],
Proposition 1.

3 Some potential difficulties connected with bad penalty choices

It follows from Theorem 1 that a proper choice of the penalty should be of the
form

pen(m)=Kε2Dm

(
1 + a

√
Lm + bLm

)
with K>1, a > 2 and b>2,

and the limiting condition

pen(m) > ε2Dm

(
1 + 2

√
Lm + 2Lm

)
(26)

is required for our proof of Theorem 1 to work, which, of course, does not mean
that a smaller choice of the penalty should necessarily lead to a bad estimator.
Similarly, the choice of a large value of κ in (14) leads to larger upper bounds for
the risk in (15), but this does not mean that the risk itself is necessarily larger. It
is therefore desirable to know whether these restrictions which come out from
our proofs are indeed necessary or not. This section is devoted to showing that,
for some families of models, these restrictions are actually perfectly justified
in the sense that, if these conditions are violated, the penalized estimator can
behave quite poorly for some values of the unknown parameter s.

3.1 Lower bounds for the penalty term

3.1.1 Position of the problem

It is actually not obvious to give a precise formal meaning to what is a lower
bound on the penalty. If, for instance, (10) holds with Lm = L for all m ∈ M
whatever L > 0, and we choose Lm = 5 for all m, it is clear, from Theorem 1,
that a penalty violating (26) for all m, such as pen(m) = 2ε2Dm, still leads to a
good penalized estimator. This emphasizes the fact that the problem of showing
the necessity of (26) is ill-posed without further restrictions on the values of the
weights Lm.

In order to overcome this difficulty, we shall restrict our attention to some
particular, although quite common, situation, where the number of models such
that Dm = D is finite for each integer D. The Lm are of course allowed to be
very different from one m to another, but since they are chosen by the statisti-
cian, a typical choice, in this case, is Lm = L(Dm) for some positive function L.
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Many illustrations of this fact have been given in Birgé and Massart [11]. With
H(D) given by (11), we see that (10) requires that

∑
D≥1

exp[−D[L(D) − H(D)]] < +∞.

Choosing L(D) = H(D) + δ with 0 < δ ≤ 1/2, θ = 1 − δ and κ = 1 + 2δ, leads
to � ≤ (eδ − 1

)−1 and

Qm = ε2Dm

[
1 + 2δ + 2(1 + δ)

√
H(Dm) + δ + 2(1 − δ)−1[H(Dm) + δ]

]

≤
(

1 + 8
√

δ
)

ε2DmA(Dm),

with A(D) given by (12). This implies, by Theorem 1, that any penalty of the
form

pen(m) = (1 + η)ε2DmA(Dm), η > 0 for all m ∈ M such that Dm > D,

(27)

satisfies (13) provided that δ is small enough and results in a risk bound of the
form

Es

[
‖s − s̃‖2

]

≤ C(η)

(
inf

m∈M

{
d2(s, Sm) + ε2[DmA(Dm) + 1]

}
+ ε2 sup

1≤D≤D
{DA(D)}

)
.

(28)

Our purpose in the next three sections will be to prove that if (27) is violated, i.e.

pen(m) ≤ (1 − η)ε2DmA(Dm) (29)

for some η > 0 and Dm sufficiently large, then the risk Es
[‖s − s̃‖2] can be

arbitrarily large, even if s = 0 or the estimator s̃ may even be undefined. The
reason for focusing on large values of Dm only is that (29) is compatible with
(27) provided that Dm ≤ D and that the term sup1≤D≤D{DA(D)} can be con-
sidered as an additional constant if D is not large. It is only by letting D go to
infinity that we can make the bound (28) blow up.

The behaviour of A(D) when D is large actually depends on the size of H(D).
When going to practical examples (many of them can be found in Birgé and
Massart [11]), one typically encounters three different situations:

1. For each D ≥ 1 the number eDH(D) of those indices m such that Dm = D
is not large (bounded by a polynomial function of D, say),which means that
H(D) goes to zero when D goes to infinity;
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2. The number of indices m such that Dm = D is much larger, typically of order(N
D

)
where N is a large parameter and then H(D) is of order log(N/D);

3. The number of indices m such that Dm = D is moderate, which means that
H(D) remains bounded away from zero and infinity when D goes to infinity.

If H(D) is small, A(D) is close to one; if H(D) is large, then A(D) is equivalent
to 2H(D) while, for moderate values of H(D) none of the three terms defining
A(D) can be ignored. This will lead us to distinguish between those three cases
to prove the bad behaviour of some penalized estimators when (29) holds for
some m for which Dm is large enough.

3.1.2 A small number of models

In this section, and in the following one as well, we restrict ourselves to a quite
common situation: we are given an orthonormal system {ϕλ}λ∈�N such that
|�N | = N and {�m}m∈M is some family of subsets of �N which includes the
largest possible one �N (i.e. N ∈ M). Then we define Sm as the linear span of
{ϕλ}λ∈�m which gives Dm = |�m| and, in particular, DN = N.

We assume here that, for each D ≥ 1, the number of elements m ∈ M such
that Dm = D grows at most polynomially with respect to D which, in partic-
ular includes the case of nested models. More generally, we consider the case
when H(D) ≤ H(D) for some function H(j) converging to zero when j goes to
infinity, which implies that

∑
{m∈M | Dm>0} exp[−LDm] ≤ �L independently of

N, whatever L > 0. It is therefore possible, at the price of a large value of �,
to choose Lm = L for all m ∈ M with L arbitrary close to zero. It follows that
any penalty of the form pen(m) = (1 + η)ε2Dm with η > 0 satisfies (13) with
M = ∅, provided that L, 1 − θ and κ − 1 are small enough, depending on η,
which results, by Theorem 1, in a risk bound of the form

Es

[
‖s − s̃‖2

]
≤ C(η) inf

m∈M

{
d2(s, Sm) + ε2(Dm + 1)

}
,

where C(η) goes to infinity with η−1, but independently of N. On the other
hand, if η < 0, one could get inconsistent estimation when N goes to infinity.
Such a phenomenon is actually a consequence of the following proposition to
be proved in Sect. 5.3.

Proposition 1 Assume that there exists some positive number η such that

pen(N) − pen(m) ≤ (1 − η)ε2(N − Dm), (30)

for any m ∈ M and that the number of elements m ∈ M such that Dm = D is
finite and bounded by exp[DH(D)] with H(D) ≤ H(D) for some function H(j)
converging to zero when j goes to infinity. Then, given θ , δ ∈ (0, 1/2) there exists
a number N0 depending on η, θ , H and δ but neither on s nor on ε such that, for
N ≥ N0,
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Ps
[
Dm̂ > N(1 − θ) − 1

]≥1 − δ and Es

[
‖s − s̃‖2

]
≥d2(s, SN) + C(θ , δ) ε2N,

where C depends only on θ and δ.

It is now easy to understand why choosing a penalty of the form (1 −η)ε2Dm
with η > 0 leads to a bad procedure. In order to illustrate the argument, assume
that we are given some orthonormal basis {ϕj}j≥1 in H (the trigonometric sys-
tem or a wavelet basis on [0, 1], for instance) and that Sm is the linear span of
{ϕ1, . . . , ϕm} for m ∈ N, with S0 = {0}. Then Dm = m. For M we have the choice
among any of the sets {m ≤ N} with 1 ≤ N < ∞. If we set pen(m) = 2ε2m,
for all m, it follows from Theorem 1 that, whatever s, the risk will be bounded
independently of N by

Es

[
‖s − ŝ‖2

]
≤ C inf

m∈M

{
d2(s, Sm) + ε2(m + 1)

}
, (31)

for a suitable constant C. In this case one would choose N to be as large as is
computationally feasible (in practice, the number of models is always finite!)
and get the optimal bias versus variance trade-off, apart from the constant C.
The situation becomes completely different if we set pen(m) = (1 − η)ε2m. In
this case, Proposition 1 shows that the risk becomes larger than C′Nε2 for N
large enough. Large values of N therefore lead to terrible results if, for instance,
s = 0. Alternatively, if we choose a moderate value of N, in order to avoid this
phenomenon there is a serious possibility that d2(s, SN) be quite large because
even the largest model is grossly wrong, resulting in an exceedingly large risk
as compared to the bound given by (31) for a larger value of N.

3.1.3 A large number of models: variable selection

We consider the same framework as in the previous section but now assume
that the number of models having the same dimension D grows much faster
with D. More precisely, we take for M the set of all subsets of �N , set �m = m
and we assume that N = |�N | is large. This actually corresponds to the situation
of variable selection in Gaussian linear regression described in Sect. 1.3. We
also assume that the penalty function pen(m) only depends on m through its
cardinality |m| which is the dimension Dm of Sm.

Proposition 2 Let s be the true unknown function to estimate and set �1 = {λ ∈
�N | 〈s, ϕλ〉 
= 0}. Assume that there exist numbers δ, α, A and η with

0 ≤ δ < 1, 0 ≤ α < 1, A > 0, and 0 < η < 2(1 − α),

and some m ∈ M with

|�1| ≤ δ|m|, |m| ≤ ANα and pen(m) ≤ (2 − 2α − η)(1 − δ)ε2|m| log N.
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Then one can find two positive constants κ and N0, depending on δ, α, A and η,
such that

Es

[
‖s − s̃‖2

]
≥ κε2 |m| log N for all N ≥ N0.

The proof is given in Sect. 5.4. Let us now consider what are the consequences
of this result. In the present framework, a suitable choice of weights is Lm =
log(N/Dm) + 1 + 2(log Dm)/Dm since then

∑
{m∈M | Dm>0}

exp [−LmDm] =
N∑

D=1

(
N
D

)
1

D2 exp[−D log(N/D) − D]

<

N∑
D=1

1
D2 (eN/D)D exp[−D log(N/D) − D]

< π2/6 − 1.

It then follows from Theorem 1 that, if the penalty takes the form

pen(m) = (1 + η)ε2Dm

(
1 + 2

√
Lm + 2Lm

)
with η > 0, (32)

then

Es

[
‖s − s̃‖2

]
≤ C(η) inf

m∈M

{
d2(s, Sm) + ε2Dm[1 + log(N/Dm)]

}
,

whatever s. In particular, if s satisfies the assumptions of Proposition 2 with
|�1| ≥ 3,

Es

[
‖s − s̃‖2

]
≤ C(η)ε2|�1| log N.

On the other hand, by Proposition 2, under the same assumptions, if

pen(m) ≤ (2 − 2α − η)(1 − δ)ε2|m| log N

= (1 − δ)(1 − α − η/2)

1 − α
ε2|m|[2(1 − α) log N], (33)

then

Es

[
‖s − s̃‖2

]
≥ κε2|m| log N,

when N is large enough. This implies that, for large values of N, the estimator
associated to some too small value of the penalty of the form (1 − η′)2(1 − α)

ε2Dm log N with η′ > 0, will have a risk which is much larger than one would get
with a larger penalty, the ratio tending to infinity with N. It suffices to assume
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that |�1| = o(|m|) when N → +∞ to see it. Comparing (32) with m = m and
|m| ∼ Nα together with (33), we see that

pen(m) = ε2Dm[1 + 2 log(N/Dm)] (34)

is the borderline formula for the penalty, at least when N is very large and Dm
of order Nα with 0 < α < 1. Of course, such a phenomenon is definitely of an
asymptotic nature. Further consequences of the choice of too small penalties
in connection with threshold estimators are given in Birgé and Massart [11],
Sect. 6.3.4. Penalties of the same order of magnitude as the one given in (34)
have been introduced recently by several authors among which George and
Foster [17], Barron, Birgé and Massart [7], Birgé and Massart [11], Efron, Has-
tie, Johnstone and Tibshirani [15] — see the discussion by Loubes and Massart
[28] following the paper—and Abramovich, Benjamini, Donoho and Johnstone
[1]. We refer to Sect. 1.9 of the latter paper for a detailed discussion on this
matter.

We are now in a position to explain to what extent classical criteria like Mal-
lows’ Cp are or are not suitable for particular situations. In order to make our
discussion simple, let us focus on the problem of variable selection in the Gauss-
ian linear regression set up (7) of Sect. 1.3. Deciding which variables pertaining
to a given set {Xλ, λ ∈ �N}, with �N = {1, 2, . . . , N}, should enter a regression
model is an important problem in Econometrics, and, in order to make our dis-
cussion precise, we should distinguish between two situations: ordered variable
selection amounts to select only sets of variables of the form {Xλ}1≤λ≤k with
k ≤ N, while complete variable selection corresponds to select any subset of �N .
Although many Econometrics books do deal with this subject, most of them
become indeed rather elusive (see for instance Chapter 2 of Amemiya, [6]) as to
the choice of a suitable penalty for the second situation and some ([14] p. 299)
even suggest that one could then use Mallows’ Cp (or Akaike’s AIC) in this
case. Even the careful study of McQuarrie and Tsai [31] does not distinguish
quite explicitely between the two situations of ordered and unordered variable
selection. They do explain (p. 64) that the multiplicity of competing models of
the same dimension makes a difference but do not persue their analysis further.

It follows from Proposition 2 that the use of Mallows’ Cp (or more gener-
ally of underpenalized criteria) can lead to terrible results when the number of
available variables is large and that a heavier penalty should be used in such a
case. Even for small sample sizes and number of variables, simulation studies
such as those proposed by McQuarrie and Tsai ([31], p. 62) show that stronger
penalties should be prefered to Cp. This suggests that although our lower bound
(34) for the penalty follows from asymptotic considerations, it seems to be quite
relevant for practical nonasymptotic use.

3.1.4 The intermediate case

In order to deal with the intermediate case corresponding to H(D) being nei-
ther small nor large when D is large, we have to introduce a more complicated
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set up: we have at hand a family of models {Sm}m∈M such that M = ∪D∈NMD.
We assume that M0 has only one element denoted by ∅ and that S∅ = {0}. For
each D ≥ 1, MD is finite and nonempty and all the models Sm with m ∈ MD
are orthogonal to each other with the same dimension Dm = D. Moreover,

exp(αD) − 1 < |MD| ≤ exp(αD) for some α > 0. (35)

In such a case, a suitable choice of the weights is

Lm = L(Dm) with L(D) = α + βD−1 log(D + 1) for some β > 1, (36)

which implies that � ≤ 2
∑+∞

n=2 n−β < +∞.
If s = 0, the ideal estimator is obviously ŝ∅ = 0 since its risk is zero and it

immediately follows from Theorem 1 that the risk of a suitably tuned penalized
estimator will be bounded by 17�ε2. On the other hand, if (26) is violated for
large values of Dm, the corresponding estimator may behave very badly in the
sense that its risk may be arbitrarily large. More precisely, we shall prove the
following in Sect. 5.5.

Proposition 3 Assume that the family of models at hand is as described just
before, that Lm is given by (36) and that s = 0. Let 0 < λ < F(α) where F
denotes some specific function defined on (0, +∞) which satisfies 5/6 < F(x) < 1
for x > 0 and F(x) converges to one when x converges either to 0 or to infin-
ity. Let D be some large enough integer depending on α, β and λ and M ⊂{

m ∈ M
∣∣∣Dm ≥ D

}
. Assume that

pen(m) ≤ λε2Dm

(
1 + 2

√
Lm + 2Lm

)
for all m ∈ M. (37)

• If M is infinite, then, with a probability larger than 1/2, infm∈M{γ̂ (m) +
pen(m)} = −∞ and m̂ is not defined.

• If M is nonempty, finite and the function pen satisfies the assumptions of The-
orem 1, i.e. pen(m) ≥ Qm for m ∈ M \ M with Qm given by (14), then there
exists a constant C > 0, depending only on α and λ, such that

Es

[
‖s − s̃‖2

]
≥ Cε2

(
sup

m∈M
Dm

)
. (38)

This proposition says that (up to some factor) the lower bound (26) is tight if
the only assumption we have on the family of models is that |MD| behaves as
an exponential function of D. This holds for some examples of interest like the
parsimonious variable selection strategy connected with adaptive estimation in
Besov balls described in Birgé and Massart [11], Sect. 6.4, or with the histogram
selection pruning procedure associated with CART (see Gey and Nédélec [18]).
Unfortunately we were unable to prove an analogue of Proposition 3 for these
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motivating examples. Instead, we have considered a somehow artificial family
of models which has the virtue to provide a proveable counter-example.

The comparison between the lower bound (26) and (37) shows that (26) is
tight up to a factor F(α) ∈ (5/6, 1). The suboptimal factor F(α) (instead of one)
is due to the fact that the proof of Theorem 1 relies on some large deviation
inequalities based on approximations of Laplace transforms, rather than the
true ones. Such approximations are justified by the fact that they lead to simple
inversion formulas while the use of the true Laplace transforms would lead
to untractable inversions. This is at the price of some lack of tightness in our
deviation formulas which explains this loss (compare, for instance, Corollary 2
and (74) with ρ = 0 and b = 2).

3.2 The effect of choosing too large penalties

It follows from the preceding results that the choice κ > 1 in (14) is perfectly
justified. Moreover the risk bounds in Theorem 1 suggest to choose penalties
of the form pen(m) = Qm with a moderate value of κ like in (16). In order to
analyze what would be the effect of choosing a substantially larger penalty we
can use the next theorem which covers many typical examples. Its proof is given
in Sect. 5.6.

Theorem 2 Let us assume that the set M contains two specific elements 0 and 1
such that S0 = {0} and D1 = 1 and that the weights Lm satisfy (10) with � < 1.
Let s̃ be the penalized least squares estimator corresponding to a penalty such
that pen(0) = 0 and

pen(m) ≥ ε2[(3/2)Dm + 4LmDm + 2A] for all m ∈ M� = M \ {0}. (39)

Then

sup
s∈S1

Es

[
‖s − s̃‖2

]
≥ A(1 − �)ε2, (40)

while, if the penalty is given by (16),

sup
s∈S1

Es

[
‖s − s̃‖2

]
≤ ε2

[
2
(

1 + 3
√

L1 + 4L1

)
+ 17�

]
. (41)

Remark The theorem assumes the existence of a model S0 with dimension 0 in
the family. It would of course be possible to prove an analogous result without
this assumption, provided that there exist some 1 and 2 dimensional models and
choosing a suitable s in the two-dimensional space. The proof would be quite
similar.

It immediately follows from a comparison between (40) and (41) that a value
of A substantially larger that 1 ∨ L1 would lead to a large increase of the
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risk for some parameters s. Two specific applications of such a result are as
follows. First assume that M = N, S0 = {0} and for m ≥ 1, Sm is the lin-
ear span of {ϕ1, . . . , ϕm} where {ϕj | j ≥ 1} is an orthonormal system. We can
then choose Lm = 1 for m ≥ 1 which implies that � = (e − 1)−1 and that
sups∈S1

Es
[‖s − s̃‖2] ≤ ε2[16 + 17/(e − 1)] if the penalty is given by (16), i.e.

pen(m) = 9ε2Dm. On the other hand, (40) immediately shows that penalties of
the form pen(m) = Cε2Dm with a too large value of C should be avoided.

Another interesting illustration is connected to the variable selection prob-
lem of Sect. 1.3 and 3.1.3 where Sm is the linear span of {ϕj | j ∈ m} for m
some arbitrary nonempty subset of {1, . . . , N} and {ϕ1, . . . , ϕN} some orthogo-
nal system in H. By convention S∅ = {0}. If Lm = 2 + log(N/Dm) for m 
= ∅,
then � ≤ (e − 1)−1 < 1 (see Birgé and Massart [11], Sect. 5.1.2) and the
assumptions of Theorem 2 are satisfied. Let s = λϕj for some j. If we choose
pen(m) = 5ε2Dm[3+ log(N/Dm)], we derive from Theorem 1 with θ = 1/2 and
κ = 2 that

Es

[
‖s − s̃‖2

]
< 10ε2[4 + log N].

On the other hand, if we set pen(m) = Cε2Dm[3 + log(N/Dm)] with C > 4,
then, for m 
= ∅,

ε−2 pen(m) − (3/2)Dm − 4LmDm = Dm[3C − 9.5 + (C − 4) log(N/Dm)]
≥ (C − 4)Dm[3 + log(N/Dm)]
≥ (C − 4)[3 + log N],

which corresponds to 2A = (C − 4)[3 + log N] in (39). We conclude from (40)
that Es

[‖s − s̃‖2] ≥ (C − 4)[3 + log N]ε2/5 for some s of the required form.
Once again, this shows that too large values of C should be avoided.

4 Introducing estimated penalties

Up to now we have considered the theoretical approach to penalization in
regression since we always assumed that the noise level ε was known and used
it freely to build our penalties. Of course, for a practical implementation of
the method, we have to estimate it somehow since, in practice, it is typically
unknown. One could try to estimate it independently from the model selection
procedure and plug the resulting estimator in the penalty term. This will work
in simple situations like selection of some variables among a set of cardinality
substantially smaller than the number of observations. In more complicated
situations, such an estimator may be difficult to find or grossly overestimate the
true level of noise ε because of a high bias (think of the case of more variables
than observations). We propose here a method to solve this problem which
is based on a mixture of theoretical and heuristic ideas: rather than estimat-
ing ε, we shall actually try to estimate the penalty itself, or calibrate it using
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the data at hand. This clearly results in a data-based choice of the penalty. The
introduction of data-driven penalties has been considered in several papers
based on different types of arguments and motivations. A Bayesian point of
view appears in George and Foster [17] using hierarchical Bayesian models
introduced by Mitchell and Beauchamp [32]. Their prior measures depend on
some hyperparameters which are estimated by the empirical Bayes principle,
which results in a random penalty. Another approach is developed in Shen and
Ye [36] who consider penalties of the form λε2D and estimate λ by the mini-
mization of some estimated risk. In their paper, Efron, Hastie, Johnstone and
Tibshirani [15] introduce the algorithm of least angle regression and propose
some Cp-type model selection criterion, which can be interpreted, as shown by
Loubes and Massart [28], as a randomly penalized least squares criterion. In all
these papers, the resulting penalty takes the form Ĉ(ε, Dm) and since the level
of noise is unknown, it has to be estimated separately by a plug-in method.
On the contrary, our method consists in calibrating the penalty directly without
estimating ε.

4.1 Minimal penalties

We consider a family of models {Sm}m∈M which contains some models of large
dimension, which is not a practical restriction, since one can always add some
artificial models of high dimension to those of interest. We assume that the
number of models of a given dimension D is finite and restrict ourselves to
penalties which depend on the dimension only. The results of Sect. 3.1 justify
the introduction of the minimal penalty given by (12), minimal meaning here
that if we choose pen(m) = K penmin(m) with K < 1, then Dm̂ tends to be close
to the dimension of the largest models. This phenomenon, which emerges from
the theoretical results of Sect. 3.1, is also strikingly visible on simulated data.

4.2 Optimal penalties

On the other hand, if K > 1, the model selection procedure based on the
penalty pen = K penmin works in the sense that one can apply Theorem 1
which leads to the risk bound (28). This results in a value of Dm̂ which is
substantially smaller than the dimension of the largest models, at least when
argminm∈M Es

[‖s − ŝm‖2] corresponds to a model of moderate dimension.
Moreover, choosing K = 2 (or close to two) appears to be a reasonable and in
some cases optimal strategy. Indeed, in the situation described by Corollary 1,
where there are only few models of a given dimension, choosing K = 2 leads
to an asymptotically optimal penalty. Another extremal case occurs when the
function H is constant with a large value L. If we fix K > 1 and apply Theorem 1,
the risk bound (15) becomes when L goes to infinity

Es

[
‖s − s̃‖2

]
≤ K

K − 1

[
inf

m∈M

{
d2(s, Sm) + 2KLε2Dm

}
+ ε2OL(1)

]
.
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If we try to minimize this upper bound with respect to K, which amounts,
when L goes to infinity, to minimize K2/(K − 1), we find the solution K = 2.
In any case, it follows from Theorem 1 that the choice K = 2, which means
pen = 2 penmin, is always reasonable. Therefore, finding a reasonable penalty
essentially amounts to estimate penmin from the data when ε is unknown.

4.3 Data driven penalties

We shall retain from the preceding theoretical results the following facts: there
exists a minimal penalty of the form penmin(m) = ε2DmF(Dm) and, if we con-
sider the continuous family of penalties penα(m) = αDmF(Dm) for α > 0, the
choice α < ε2 leads to an explosion of the model selection procedure, while
α = 2ε2 provides a good (sometimes nearly optimal) penalty. Therefore, to
design a good penalty, we shall proceed in two steps. First fix a basic functional
form for F(Dm). The theory tells us that F(Dm) = 1 + 2

√
H(Dm) + 2H(Dm) is

adequate but we do not pretend that it is the only reasonable choice. In par-
ticular, taking F(Dm) as a constant may be a more attractive choice because of
its simplicity, or one could think of optimizing the shape of F from simulation
studies with a known value of ε.

The second step consists in varying the parameter α and computing the cor-
responding model choices m̂α where m̂α denotes the minimizer with respect to
m ∈ M of penα(m)−‖ŝm‖2. Considering the values of Dm̂α

for slowly increasing
values of α starting from α = 0, one typically observes that, for small values of
α, those values stay very large and they suddenly jump to a much smaller value
when α reaches some threshold α̂. In other words the explosion phenomenon
occurs for α < α̂, which suggests to retain α̂ as our estimator for ε2 and to define
our final data driven penalty as pen(m) = 2α̂DmF(Dm).

In this context, it is important, in order to evaluate the quality of a given pro-
cedure with a data driven penalty, to define a proper benchmark for the risk of a
penalized estimator. From this point of view, infm∈M Es

[‖ŝm − s‖2] is not ade-
quate when the function H is such that H(D) becomes large with D. We indeed
know (see Birgé and Massart [11], Sect. 5.2) that (3) can then only hold with a
large value of C that we cannot evaluate sharply. Since our penalization strat-
egy gives the same penalty to all models of a given dimension D, the selection
procedure actually selects an estimator of the form ŝD = argmint∈∪m∈MD Sm

γ (t),
with MD as in (11). Hence, a natural benchmark for a selection procedure of
that kind, which aims at choosing the best ŝD, is

inf
D∈D

Es

[
‖ŝD − s‖2

]
, with D = {Dm, m ∈ M}. (42)

Now, one can hope that a properly designed penalty will lead to an estimator
ŝD̂ with a risk close to (42). This is helpful when one wants to calibrate penal-
ized procedures from simulated data since the benchmark (42) can then be
approximated by Monte-Carlo.
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4.4 Application: change points in a Gaussian signal

In order to illustrate the results of the previous section, we shall consider the
following change points problem: we observe an unknown signal s at times
x1 < x2 < · · · < xn, (n ≥ 2) with homoscedastic Gaussian errors assuming that
the signal is piecewise constant on the interval [x1, xn], i.e. s =∑p

j=0 βj1lJj where
{J0, . . . , Jp} is a partition of [x1, xn] into p + 1 ≥ 1 successive intervals. Neither
the levels βj nor the location and number of the change points are known.
Equivalently, we observe a Gaussian vector Y with n independent coordinates
Y1, . . . , Yn given by

Yi =
p∑

j=0

βj1lJj(xi) + σξi for 1 ≤ i ≤ n, with ξ1, . . . , ξn i.i.d. N (0, 1). (43)

This corresponds to the regression framework (5) with si = s(xi). As explained
in Sect. 1.3, it can be turned to a Gaussian Linear process Y(t) = 〈Y, t〉n =
n−1∑n

i=1 Yiti indexed by H = R
n with its normalized Euclidean norm given by

‖t‖2
n = n−1∑n

i=1 t2i . Our aim is now to estimate the vector (si)1≤i≤n ∈ R
n that

we shall again denote by s.
The problem of detecting the change points in a piecewise constant signal

has already been considered by Yao [41] and more recently by Lavielle and
Moulines [25] but their point of view was quite different since it was asymptotic
and they assumed a fixed number of change points. Their purpose was then
to detect and estimate consistently all those change points while our aim is to
estimate the vector s with a small quadratic risk for a given value of σ and n in
(43). This is a situation where it might be better to ignore some of the change
points corresponding to small jumps of s.

Given a number D of change points, 0 ≤ D ≤ n − 1 and a subset m =
{i1 < i2 < · · · < iD} of {2; . . . ; n} (with m = ∅ if D = 0) and setting i0 = 1,
iD+1 = n+1, we consider the associated Dm-dimensional linear subspace of R

n

defined by

Sm =






D∑
j=0

βj1lIj(xi)




1≤i≤n

∣∣∣∣∣∣
β = (β0, . . . , βD)t ∈ R

D


 with Ij = [xij , xij+1−1].

Hence Dm = |m| + 1. Defining by M the set of all subsets m of {2; . . . ; n}, we
use the family {Sm}m∈M to define a penalized least squares estimator of s. If we
denote by MD the set of all m ∈ M such that Dm = D + 1, we get

log |MD| = log

(
D

n − 1

)
≤ D[1 + log(n − 1) − log D],
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with the usual convention 0 log 0 = 0. Setting L∅ = 2 and Lm = 2+ log(n−1)−
log |m| for m ∈ M, m 
= ∅, we get

∑
m∈M

exp(−LmDm) = e−2 +
n−1∑
D=1

|MD| exp[−(D + 1)(2 + log(n − 1) − log D)]

< e−2 +
n−1∑
D=1

exp[−D − 1] < e−2
[

1 +
(

1 − e−1
)−1
]

.

An application of Theorem 1 shows that, if the weights and penalty function are
given by (16), the penalized least squares estimator s̃ associated to the models
Sm satisfies a risk bound of the form

Es

[
‖s − s̃‖2

]

≤C
[

inf
m∈M\∅

{
d2(s, Sm)+ε2|m|

[
1+log

n − 1
|m|

]}∧(
d2(s, S∅)+ε2

)]
. (44)

The presence of the log((n − 1/|m|) factor in the risk when |m| ≥ 1 is indeed
necessary, from the minimax point of view. This could be proved by the same
arguments we used for Proposition 2 of Birgé and Massart [10] or Theorem 5
of Birgé and Massart [11].

4.5 A simulation study

In this context of multiple change points detection our data driven procedure
with a calibration based on the comparison with (42) has been successfully
implemented by Lebarbier [26] with a resulting risk indeed close to the bench-
mark. Let us now give below a brief account of her results. In a first step
she performed many simulations on various signals in order to determine a
proper shape for the F function involved in the data driven penalty choice
described in Sect. 4.3. She ended with F(D) = 2 log(n/D) + 5. With her kind
permission we present here a toy example illustrating the performance of the
method based on this value of F. The observation points xi ∈ [0; 1] are i/n with
n = 100 and 1 ≤ i ≤ 100. She had at hand one noisy test sample Y1, . . . , Yn with
Yi = s(i/n)+ξi where the signal and the noise variance are given respectively by

s(x) = 0.51l(0.2,0.5] + 21l(0.5,1] and σ 2 = 1.

It is possible here to evaluate by Monte-Carlo the partition m0 which minimizes
the risk Es

[‖ŝm − s‖2] for these particular values of n, s and σ 2. It has a unique
change point at 0.5 and the resulting ŝm0 based on the test sample Y1, . . . , Yn is
shown in Fig. 1 (black line) together with the corresponding noisy signal (the
set of points). Note that sm0 differs from s illustrating the fact that the “true”
model (with two change points) does not necessarily minimize the risk. Our
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Fig. 1 Estimator based on the data driven penalty

estimator built according to the recipe of Sect. 4.3 actually leads, on this test
sample, to m̂ = m0, resulting in exactly the same figure. Finally Lebarbier has
computed the estimator of s based on Mallows’ Cp which is given in Fig. 2. It
is clear that Mallows’ Cp does not work, leading to a rather erratic behaviour
of the estimator. As for the example of variable selection that we analyzed in

Fig. 2 Estimator based on Mallows’ Cp
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Sect. 3.1.3, the number of models with the same dimension is too large so that
the selected dimension Dm̂ blows up when the penalty is not heavy enough.

5 Proofs

5.1 Proving the existence of s̃

We recall that our observation is the process Y(t) given by (1) where Z is a
linear isonormal process on S and s an unknown function in H. To each m ∈ M,
we associate some orthonormal basis {ϕλ}λ∈�m of Sm with |�m| = Dm. Then
the restriction to Sm of the process Z can be written by linearity as

Z(t) =
∑

λ∈�m

〈t, ϕλ〉Z(ϕλ) = 〈t, ζm〉 with ζm =
∑

λ∈�m

Z(ϕλ)ϕλ ∈ Sm,

from which it follows that

ζm ∼ N (0, Im) and Vm = ‖ζm‖2 ∼ χ2(Dm), (45)

where N (0, Im) denotes the Dm-dimensional standard Gaussian distribution
and χ2(Dm) the chi-square distribution with Dm degrees of freedom. Recalling
that sm denotes the orthogonal projection of s onto Sm, we derive that the least
squares estimator ŝm on Sm is the minimizer, with respect to t ∈ Sm of

γ (t) = ‖t‖2 − 2Y(t) = ‖s − t‖2 − ‖s‖2 − 2εZ(t)

= ‖s − sm‖2 + ‖t − sm‖2 − ‖s‖2 − 2ε〈t, ζm〉. (46)

Therefore ŝm is the minimizer with respect to t ∈ Sm of ‖t−sm‖2 −2ε〈t−sm, ζm〉,
which leads to

ŝm = sm + εζm = sm + ε
∑

λ∈�m

Z(ϕλ)ϕλ,

hence

γ (ŝm) = ‖s − sm‖2 − ‖s‖2 − ε2Vm − 2εZ(sm) (47)

and

‖ŝm − s‖2 = ‖s − sm‖2 + ε2Vm. (48)

Since

2ε|Z(sm)| = 2|〈sm, εζm〉| ≤ η−1‖sm‖2 + ηε2Vm whatever η > 0,
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it follows from (47) that

γ (ŝm) ≥ −‖s‖2 − η−1‖sm‖2 − ε2(1 + η)Vm ≥ −
(

1 + η−1
)

‖s‖2 − ε2(1 + η)Vm

and from Lemma 1 in the Appendix with ρ = 0, b = 2 and x = LmDm + ξ that

P

[
Vm ≥ Dm

(
1 + 2

√
Lm + ξ/Dm + 2Lm + 2ξ/Dm

)]
≤ exp(−LmDm − ξ).

Under the assumption (10), we derive that, on some set �ξ of probability larger
than 1 − �e−ξ , for all m simultaneously,

γ (ŝm) ≥ −
(

1 + η−1
)

‖s‖2 − ε2(1 + η)Dm

(
1 + 2

√
Lm + 2Lm

)
[1 + ξ/(LmDm)].

Consequently, if (13) holds and η is small enough, depending on K and θ , one
gets

γ (ŝm) + pen(m) ≥ −
(

1 + η−1
)

‖s‖2 + ηε2Dm

(
1 + 2

√
Lm + 2Lm

)
,

for all m /∈ M such that LmDm ≥ ξη−1. Since M is finite, this implies that
γn(ŝm) + pen(m) tends to infinity with LmDm. By (10), there is only a finite
number of m such that LmDm ≤ n, whatever the integer n. One therefore con-
cludes that (10) and (13) imply that there exists a minimizer m̂ of γ (ŝm)+pen(m)

on the set �ξ and therefore a.s. since ξ is arbitrary.

5.2 Proof of Theorem 1

Since s̃ = ŝm̂ exists a.s., it follows from the definition of m̂ that

‖s‖2 + 2εZ(s) + γ
(
ŝm̂
)+ pen(m̂) = inf

m∈M

{
‖s‖2 + 2εZ(s) + γ (ŝm) + pen(m)

}

(49)

and from (47) and (48) that

‖s‖2 + γ
(
ŝm̂
)+ 2εZ(s) = ‖s − s̃‖2 − 2ε2Vm̂ − 2εZ

(
sm̂ − s

)
.

Using (47) again to evaluate γ (ŝm̂) we derive from (49) that

‖s − s̃‖2 = 2ε2Vm̂ + 2εZ
(
sm̂ − s

)− pen(m̂)

+ inf
m∈M

{
‖s − sm‖2 − 2εZ

(
sm − s

)− ε2Vm + pen(m)
}

.
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Setting dm = ‖s−sm‖, Um = d−1
m Z(sm−s) and noticing that ‖s−s̃‖2 = ε2Vm̂+d2

m̂
by (48), we finally get

(1 − θ)‖s − s̃‖2 = (2 − θ)ε2Vm̂ − θd2
m̂ + 2εdm̂Um̂ − pen(m̂)

+ inf
m∈M

{
d2

m − 2εdmUm − ε2Vm + pen(m)
}

,

or equivalently,

‖s − s̃‖2 = (1 − θ)−1
(

�m̂ + inf
m∈M

Rm

)
, (50)

where

�m = (2 − θ)ε2Vm + 2εdmUm − θd2
m − pen(m) (51)

and

Rm = d2
m + pen(m) − ε2Vm − 2εdmUm. (52)

Since m̂ can, in principle, take any value in M, we need, in order to control
‖s − s̃‖2, to control �m uniformly with respect to m. To do this, we fix some
positive number ξ and set Am = Vm + 2dmUm[ε(2 − θ)]−1, xm = LmDm + ξ ,

�ξ ,m =
{

Am < Dm+ θd2
m

ε2(2−θ)
+2
√

Dmxm+ 2xm

θ(2 − θ)

}
and �ξ =

⋂
m∈M

�ξ ,m.

Since 〈ϕλ, s − sm〉 = 0 for any λ ∈ �m, ζm and Z(s − sm) are independent and
the random variables Vm and Um are also independent with respective distri-
butions χ2(Dm) and N (0, 1). It then follows from Lemma 1 in the Appendix

with ρ = 2dm[ε(2 − θ)]−1 and b = 2[θ(2 − θ)]−1 > 2 that P

[
�c

ξ ,m

]
≤ exp(−xm)

and therefore

P

[
�c

ξ

]
≤
∑

m∈M
exp(−LmDm − ξ) = � exp(−ξ). (53)

Using the inequalities
√

a + b ≤ √
a + √

b and 2ab ≤ δa2 + δ−1b2, we derive
that

2
√

Dm(LmDm + ξ) ≤ 2Dm
√

Lm + αDm + α−1ξ , for α > 0.

It therefore follows from the definition of �ξ that, whatever m ∈ M, on the
set �ξ ,

Am ≤ (1 + α)Dm + θd2
m

ε2(2 − θ)
+ 2Dm

√
Lm +

(
α−1 + 2

θ(2 − θ)

)
ξ + 2LmDm

θ(2 − θ)
.
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If we define α by K = (1 + α)(2 − θ), then α > 0 since K > 2 − θ and

(2 − θ)ε2Am ≤ Qm + θd2
m + ε2ξ

[
(2 − θ)α−1 + 2θ−1

]
.

It then follows from (51) and our definition of the penalty function that

�m1l�ξ =
[
(2 − θ)ε2Am − θd2

m − pen(m)
]

1l�ξ

≤
(

Qm − pen(m) + ε2ξ
[
(2 − θ)α−1 + 2θ−1

])
1l�ξ .

Since this inequality holds whatever m ∈ M one can conclude from (13) that

�m̂1l�ξ ≤
(

ε2ξ
[
(2 − θ)α−1 + 2θ−1

]
+ sup

m∈M
{Qm − pen(m)}

)
1l�ξ (54)

and therefore, by (53), for all ξ > 0,

P

[
�m̂ > ε2

(
(2 − θ)α−1 + 2θ−1

)
ξ + sup

m∈M
{Qm − pen(m)}

]
≤ � exp(−ξ).

Integrating with respect to ξ , we get

Es[�m̂] ≤ �ε2
[
(2 − θ)α−1 + 2θ−1

]
+ sup

m∈M
{Qm − pen(m)}. (55)

Since it follows from (52) that

Es

[
inf

m∈M
Rm

]
≤ inf

m∈M
Es[Rm] = inf

m∈M

(
d2

m + pen(m) − ε2Dm

)
,

we conclude from (50) and (55) that (15) holds.

5.3 Proof of Proposition 1

Let m be given in M. It follows from (30) that

�(m, N) = ‖ŝN‖2 − ‖ŝm‖2 + pen(m) − pen(N)

≥ ‖ŝN − ŝm‖2 − ε2(1 − η)(N − Dm),

with

ŝN − ŝm = sN − sm + ε(ζN − ζm),
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where ζN −ζm is a standard normal vector with dimension N −Dm. This implies
that U = ‖ε−1(ŝN − ŝm)‖2 has the distribution of a non-central chi-square with
N − Dm degrees of freedom and noncentrality parameter µ = ε−1‖sN − sm‖.
Then

�(m, N) ≥ ε2 [U − (1 − η)Em
]

with Em = N − Dm,

and by (75) (with ρ = 0 and D = Em) and the fact that U is stochastically larger
than a chi-square variable with Em degrees of freedom,

P

[
U ≤ Em − 2

√
xEm

]
≤ e−x for x > 0.

Setting x = η2Em/4, we conclude that �(m, N) > 0 with probability at least
1 − exp

[−η2Em/4
]
. Defining the integer D by N(1 − θ) − 1 < D ≤ N(1 − θ),

we get

P

[
inf

m∈Mn | Dm≤D
�(m, N) ≤ 0

]
≤

D∑
j=0

exp

[
jH(j) − η2

4
(N − j)

]

≤ exp

[
−θη2N

4

] D∑
j=0

exp[jH(j)].

By assumption, there exists some integer k depending on H, θ and η such that
H(j) ≤ H(j) ≤ η2θ/[8(1 − θ)] as soon as j ≥ k. Assuming that D ≥ k, we then
derive that

D∑
j=0

exp[jH(j)] ≤
k−1∑
j=0

exp[jH(j)] +
D∑

j=k

exp

[
θη2j

8(1 − θ)

]

≤ C1 + C2 exp

[
θη2N

8

]
,

with constants C1 and C2 depending only on H, θ and η. Therefore for N large
enough (depending on H, θ , η and δ), �(m, N) > 0 for all m such that Dm ≤ D
with probability at least 1 − δ. In view of the definition of �, we conclude that
P[Dm̂ > D] ≥ 1 − δ.

Let us now prove the second part of the proposition. We first recall from (48)
that

‖s − s̃‖2 = ε2Vm̂ + ‖s − sm̂‖2 ≥ ε2Vm̂ + ‖s − sN‖2 (56)

and set

M =
∑

λ∈�N

1l[0,τ)

(
[Z(ϕλ)]

2
)

with P

[
χ2(1) < τ

]
= θ/2.
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Noticing that the variables [Z(ϕλ)]2 for λ ∈ �N are i.i.d. with distribution χ2(1),
we derive that M is binomial with parameters N and θ/2 and get, using a classical
binomial inequality (see Hoeffding, [21])

P [M ≥ Nθ ] = P [M − Nθ/2 ≥ Nθ/2] ≤ exp
[
−Nθ2/8

]
.

Once again, this is bounded by δ for N large enough and therefore, except on
a set of probability bounded by 2δ we get simultaneously Dm̂ > N(1 − θ) − 1
and M < Nθ , which implies that

Vm̂ =
∑

λ∈�m̂

[Z(ϕλ)]
2 ≥ [N(1 − 2θ) − 1]τ .

The conclusion follows from (56) since �
(√

τ
) = (θ + 2)/4 and therefore

Es[Vm̂] ≥ (1 − 2δ)[N(1 − 2θ) − 1]
[
�−1

(
θ + 2

4

)]2

.

5.4 Proof of Proposition 2

Setting �2 = � \ �1, we recall that the variables Wλ = [Y(ϕλ)]2 for λ ∈ �2 are
i.i.d. with distribution χ2(1). We denote by W(1) < · · · < W(n) with n = N −|�1|
the corresponding order statistics and, as usual, by m̂ the minimizer with respect
to m ∈ M of

γ (ŝm) + pen(m) = −‖ŝm∩�1‖2 − ‖ŝm∩�2‖2 + pen(m)

= −‖ŝm∩�1‖2 − ε2
∑

λ∈m∩�2

Wλ + pen(m).

Since pen(m) only depends on |m|, we deduce that

γ (ŝm̂) = −‖ŝm̂∩�1
‖2 − ε2

k∑
j=1

W(n+1−j) with k = |m̂ ∩ �2| (57)

and that

‖s − ŝm̂‖2 = ‖s − ŝm̂∩�1
‖2 + ε2

k∑
j=1

W(n+1−j). (58)

Now, let us consider the subset m′ of � defined by

m′ = (m̂ ∩ �1) ∪ {λ ∈ �2 | Wλ = W(n+1−j)

for some j, 1 ≤ j ≤ J = |m| − |m̂ ∩ �1|}.



62 L. Birgé, P. Massart

Since |m′| = |m|, pen(m′) = pen(m) and

γ (ŝm̂) ≤ γ (ŝm′) + pen(m′)

≤ −‖ŝm̂∩�1
‖2 − ε2

J∑
j=1

W(n+1−j) + (2 − 2α − η)(1 − δ)ε2|m| log N,

then from (57)

k∑
j=1

W(n+1−j) ≥
J∑

j=1

W(n+1−j) − (2 − 2α − η)(1 − δ)|m| log N. (59)

Since

n ≥ N
(

1 − δANα−1
)

and (1 − δ)|m| ≤ J ≤ |m| ≤ ANα , (60)

we derive that n/J goes to infinity with N. It then follows from Lemma 3 with
θ = 3 that there exists a set �′ with

P[�′] ≥ 1 −
[

exp

(
9
8

)
− 1
]−1

> 1/2, (61)

such that on �′ and uniformly for 1 ≤ j ≤ J,

W(n+1−j) ≥ −2 log(2j/n)[1 + o(1)] ≥ [2 log(n/J)][1 + o(1)],

since n/j ≥ n/J goes to infinity with N. Therefore by (59) and (60), when
N → +∞,

k∑
j=1

W(n+1−j) ≥ 2J
[
log N − log J

] [1 + o(1)] − (2 − 2α − η)J log N

≥ ηJ log N[1 + o(1)].

It then follows from (58) and (61) that

Es

[
‖s − s̃‖2

]
≥ ε2

Es


1l�′

k∑
j=1

W(n+1−j)


 ≥ (η/2)Jε2 log N[1 + o(1)]

≥ (η/2)(1 − δ)|m|ε2 log N[1 + o(1)],

which concludes the proof.
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5.5 Proof of Proposition 3

For D ≥ 1, the variables Vm, defined by (45), for m ∈ MD, are i.i.d. with a
chi-square distribution with D degrees of freedom, in view of the orthogonality
of the spaces Sm. Therefore, if we denote by χ2(D) a random variable with such
a distribution, for any z > 0,

log

(
P

[
sup

m∈MD

Vm < z

])
= |MD| log

(
1 − P

[
χ2(D) ≥ z

])
. (62)

An application of (74) with x = αD + 2 log(D + 3), ρ = 0 and b = 2 gives,

P

[
χ2(D) ≥ (1 + 2α)D + 2D

√
α

√
1 + 2 log(D + 3)

αD
+ 4 log(D + 3)

]

≤ exp(−αD)

(D + 3)2 .

Setting

G(α) = 1 + 2
√

α + 2α, z = G(α)D + 2
(

2 + α−1/2
)

log(D + 3)

and using
√

1 + u ≤ 1 + u/2, we derive that

P

[
χ2(D) ≥ z

]
≤ exp(−αD)

(D + 3)2 ≤ 1
16

.

For u ≤ 1/16, u−1 log(1 − u) ≥ 16 log(1 − 1/16) > −1.033. It then follows from
(62) and (35), that

log

(
P

[
sup

m∈MD

Vm < z

])
≥ exp(αD) log

(
1 − exp(−αD)

(D + 3)2

)
≥ − 1.033

(D + 3)2

and therefore,

P

[
sup

m∈MD

Vm ≥ z

]
≤ 1 − exp

(
− 1.033

(D + 3)2

)
≤ 1.033

(D + 3)2 .

Finally,

P

[
sup

m∈M\∅

{
Vm − G(α)Dm − 2

(
2 + α−1/2

)
log(Dm + 3)

}
≥ 0

]

≤ 1.033
∑
D≥1

(D + 3)−2 < 0.3. (63)
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We now want to prove an inequality in the opposite direction. In order to do
this, we set

θ(x) = 1 + x−1/2 − log[G(x)]
2x

, g(x) =
{

5/6 if 0 < x < 3,[
θ(5x/12)

]−1 if x ≥ 3,

a = αg(α)/2 and define D(α) to be the smallest integer n ≥ 3 such that

αn
4

≥ log n≥ 1
2

log(4π) + log
(

2a + √
2a
)

+ 1
n

[
1
6

+ 1

2
(
a + √

a
)2 + 1

a + √
a

]
,

(64)

∑
j≥n

exp
(
−√j

(
1 − e−αj

))
≤ 0.2 and G(α) ≥ 8

(
1 + (2/3)α−1/2

) log n
n

.

(65)

If D ≥ D(α), then by (64) y = g(α)(αD − 2 log D) ≥ aD,

√
D
(
a + √

a
) ≤

(
y/

√
D
)

+ √
y ≤ √

D
(

2a + √
2a
)

and Corollary 2 below together with (64) imply that if z = D + 2
√

Dy + 2y,

log
(
P

[
χ2(D) ≥ z

])
≥ −yθ

( y
D

)
− 1

2
log(4πD) − log

(
2a + √

2a
)

− 1
D

[
1
6

+ 1

2
(
a + √

a
)2 + 1

a + √
a

]

≥ −yθ
( y

D

)
− 3

2
log D.

It follows from Proposition 4 below that the function x �→ θ(x) is bounded by
6/5 and decreasing for x ≥ 5/4. Consequently θ(y/D) ≤ 1/g(α) for α < 3 and
if α ≥ 3, then y/D ≥ a > 5α/12 ≥ 5/4 hence θ(y/D) ≤ θ(5α/12) = 1/g(α).
Therefore yθ(y/D) ≤ αD−2 log D, log

(
P
[
χ2(D) ≥ z

]) ≥ −αD+(log D)/2 and
it follows from (62) and (35) that

log

(
P

[
sup

m∈MD

Vm < z

])
≤ −|MD|P

[
χ2(D) ≥ z

]
≤ −√

D
(

1 − e−αD
)

.

(66)
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Since
√

1 − u > 1 − 0.6u for u ≤ 1/2, we derive from (64) that

√
y = √αg(α)D

√
1 − 2 log D/(αD) >

√
αg(α)D − 1.2(log D)

√
g(α)/(αD),

which implies that

z > DG[αg(α)] −
(

2.4
√

g(α)/α + 4g(α)
)

log D.

Setting F(α) = G[αg(α)]/G(α), we easily derive from the properties of θ that
F(α) converges to one when α converges to zero or to infinity and that 1 >

F(α) > g(α) ≥ 5/6 for all α > 0. It follows that

z > G(α)F(α)D − 4F(α) log D
(

1 + (2/3)α−1/2
)

and we conclude from (66) and (65) that

P

[
sup

{m∈M | Dm≥D(α)}

{
Vm−G(α)F(α)Dm−4F(α) log Dm

(
1 + (2/3)α−1/2

)}
<0

]

≤
∑

j≥D(α)

exp
[
−√j

(
1 − e−αj

)]
≤ 0.2.

Together with (63), this means that P[�] ≥ 1/2, if we denote by � the event
defined by the set of inequalities

Vm < G(α)Dm + 2
(

2 + α−1/2
)

log(Dm + 3), for all m ∈ M, (67)

since V∅ = 0 and

Vm ≥ G(α)F(α)Dm − 4F(α)
(

1 + (2/3)α−1/2
)

log Dm if Dm ≥ D(α). (68)

Let us now analyze what happens on the event �, provided that D satisfies

D[F(α) − λ] ≥ 4D(α) (69)

and

DG(α)[F(α) − λ] ≥ 2 log(D + 1)
[
4F(α)

(
1 + (2/3)α−1/2

)
+ λβ

(
α−1/2 + 2

)]
.

(70)

For any m ∈ M, it follows from (69) that Dm ≥ D > 4D(α). Moreover, by (37)
and (36),

pen(m) ≤ λε2
[
DmG(α) + β

(
α−1/2 + 2

)
log(Dm + 1)

]
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and, since s = sm = 0, γ (ŝm) = −ε2Vm by (47). Therefore, by (68) and (70),

γ (ŝm) + pen(m) ≤ −ε2DmG(α)[F(α) − λ]
+ε2 log(Dm + 1)

[
4F(α)

(
1 + (2/3)α−1/2

)
+λβ

(
α−1/2+2

)]

≤ −(ε2/2)DmG(α)[F(α) − λ]. (71)

– If M is infinite, then Dm can be taken arbitrarily large and

P

[
inf

m∈M
{γ (ŝm + pen(m)} = −∞

]
≥ P[�] ≥ 1/2.

– If M is finite, Theorem 1 applies, implying that s̃ exists. On the other hand,
if D′ = �(F(α) − λ)Dm/4�, where �x� denotes the integer part of x and
m ∈ M, then D′ ≥ D(α) ≥ 3 by (69) and it follows from (67) and (65) that,

inf
D≤D′ inf

m∈MD

(
γ (ŝm) + pen(m)

) ≥ −ε2 sup
D≤D′

sup
m∈MD

Vm

> −ε2
[
G(α)D′ + 2

(
2 + α−1/2

)
log(D′ + 3)

]

> −2ε2G(α)D′

> −ε2G(α)[F(α) − λ]Dm/2. (72)

Comparing (71) with (72) and taking into account (69), one concludes, since m
is arbitrary in M, that, on the set �,

Dm̂ >
1
4
[F(α) − λ]

(
sup

m∈M
Dm

)
≥ D(α).

Since, by (48), ‖s − s̃‖2 = ε2Vm̂, it follows from (68) and (65) that

ε−2‖s − s̃‖2 ≥Dm̂G(α)F(α) − 4F(α)
(

1 + (2/3)α−1/2
)

log Dm̂ ≥Dm̂G(α)F(α)/2

and (38) follows since P[�] ≥ 1/2.

5.6 Proof of Theorem 2

Let S1 be any one-dimensional model in the family and s an element of S1 such
that ‖s‖ = ε

√
A. If m̂ = 0, then s̃ = 0, hence

Es

[
‖s − s̃‖2

]
≥ Aε2

P[m̂ = 0].

Since ŝ0 = 0 and pen(0) = 0, it follows from (4) that m̂ = 0 if pen(m) > ‖ŝm‖2

for all m 
= 0. Setting Um = ε−2‖ŝm‖2, we know that Um has the distribution of
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a non-central chi-square with parameters Dm and ‖sm‖/ε and by Lemma 1 of
Birgé [9], since ‖sm‖ is either ε

√
A or 0,

P

[
Um ≥ Dm + A + 2

√
(Dm + 2A)xm + 2xm

]
≤ exp(−xm) for all m ∈ M.

Setting xm = LmDm, we derive that if

� =
{

Um < Dm + A + 2
√

(Dm + 2A)LmDm + 2LmDm for all m ∈ M�
}

,

then

P[�] ≥ 1 −
∑

m∈M�

exp(−LmDm) = 1 − �.

Putting everything together we can conclude that if

ε−2 pen(m) ≥ Dm + A + 2
√

(Dm + 2A)LmDm + 2LmDm for all m ∈ M�,

(73)

then

Es

[
‖s − s̃‖2

]
≥ Aε2

P[�] ≥ Aε2(1 − �).

Since (73) is an immediate consequence of (39), (40) holds while the upper
bound for the risk of s̃ when pen(m) is given by (16) follows from (17).

Appendix

Lemma 1 Let V and U be independent random variables with respective distri-
butions χ2(D) and N (0, 1) and ρ be some real number. Then, for any positive x,
the following probability bounds hold

P

[
V + ρU ≥ D + ρ2/(2b) + 2

√
Dx + bx

]
≤ exp(−x) for any b ≥ 2

(74)

and

P

[
V + ρU ≤ D − 2

√
(D + ρ2/2)x

]
≤ exp(−x).

(75)
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Proof of Lemma 1 Let us first observe that the Laplace transform of a centered
χ2(1) variable U2 − 1 satisfies

log Es

[
ey(U2−1)

]
= −1

2
log(1 − 2y) − y ≤ y2

1 − 2y
for y <

1
2

,

which implies by independence that

log Es

[
ey(V−D+ρU)

]
≤ Dy2

1 − 2y
+ y2ρ2

2
, (76)

since Es[tU] = exp(t2/2). If b ≥ 2 the right-hand side of (76) can be bounded
by Dy2/(1 − by) + yρ2/(2b) for 0 < y < b−1 which implies that

log Es

[
ey
[
V−D+ρU−ρ2/(2b)

]]
≤ Dy2

1 − by
for 0 < y < b−1.

Inequality (74) then follows from Lemma 2 below with a2 = D. Its proof is part
of the proof of Lemma 8 of Birgé and Massart [10].

On the other hand, setting a2 = D + ρ2/2 and A2 = 4a2x, we get

P[V + ρU ≤ D − A] = P[−V − ρU + D − A ≥ 0]
≤ inf

t≥0
Es[exp(t(−V − ρU + D − A))]

= inf
y≤0

eAy
Es[exp(y(V + ρU − D))]

≤ inf
y≤0

exp
(

Ay + a2y2
)

= exp
(
−A2a−2/4

)
,

and (75) follows. ��
Lemma 2 Let X be a random variable such that

log (Es[exp(yX)]) ≤ (ay)2

1 − by
for 0 < y < b−1,

where a and b are positive constants. Then

P[X ≥ 2a
√

x + bx] ≤ exp(−x) for all x > 0.

Lemma 3 Let W(1) < · · · < W(n) be an ordered sample of size n from the chi-
square distribution with one degree of freedom, j be a positive integer, θ a positive
number such that j(1 + θ) ≤ n and � the standard normal c.d.f. Then

P

[
W(n+1−j) ≤

[
�−1

(
1 − j(1 + θ)

2n

)]2
]

≤ exp

[
− jθ2

2(1 + θ)

]
, (77)
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and consequently if θ ≥ 2.06

W(n+1−j) >

[
�−1

(
1 − j(1 + θ)

2n

)]2

for 1 ≤ j ≤ n
(1 + θ)

, (78)

apart from a set of probability bounded by

[
exp

(
θ2

2(1 + θ)

)
− 1
]−1

< 1.

Moreover, uniformly for 0 < y ≤ x,

[
�−1 (1 − y)

]2 = −(2 log y)[1 + o(1)] when x → 0.

Proof Let us first observe that if F(t) is the cumulative distribution function
of the absolute value of a normal variable and U is uniform on [0, 1], then
W = [

F−1(U)
]2

has the chi-square distribution with one degree of freedom. It

follows that W(j) can be written as
[
F−1(U(j))

]2
where U(1) < · · · < U(n) is an

ordered sample of size n of the uniform distribution. Now set x = j(1 + θ)/n.
Since (77) clearly holds when x = 1, we may assume that x < 1. Denoting by
B(n, p) a binomial random variable with parameters n and p we notice that

P[U(n+1−j) ≤ 1 − x] = P[U(n+1−j) < 1 − x]
= P[B(n, x) < j]
= P[B(n, x) < nx − jθ ]. (79)

Recalling from Massart ([30], Theorem 2) that, for 0 < y ≤ p,

P[B(n, p) − np < −ny] ≤ exp

[
− ny2

2(p − y/3)(1 − p + y/3)

]
< exp

[
−ny2

2p

]
,

(80)

we derive from (79) that

P

[
W(n+1−j) ≤ [F−1(1 − x)]2

]
= P

[
U(n+1−j) ≤ 1 − x

] ≤ exp

[
− jθ2

2(1 + θ)

]

(81)

and (77) follows since F(t) = 2�(t) − 1. Summing the different probabilities
gives (78). The last result follows from Feller ([16], Lemma 2, p. 175). ��
Proposition 3, which is our most general result concerning lower bounds for
the penalty, is based on some corollary of the following proposition which is
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of interest by itself since it evaluates rather precisely the probabilities of large
deviations of gamma random variables from their mean. Results of this type
are definitely not new and one can find quite precise evaluations in Wallace
[38] but in a form (comparison with Gaussian tails) which is not suitable for
our needs. A more adequate approach appeared as Lemma 6.1 in Johnstone
[23] and our proof follows the same lines as his. In particular, the upper bound
part in the next lemma is implicit in its proof. Unfortunately, we cannot use his
result since we do need a lower bound for the deviations of chi-square variables,
while he only established upper bounds. Moreover, his result is only valid for
x + √

x ≤ 1/4 which is not enough for our purpose.

Proposition 4 Let X be a random variable with gamma distribution �(t, 1). If
x > 0 then

log
(
P
[
X ≥ t

(
1 + 2x + 2

√
x
)]) = −2txθ(x) − (1/2) log(2π/λ) − �, (82)

with

θ(x) = 1 + x−1/2 − (2x)−1 log
(
1 + 2x + 2

√
x
)

; (83)

λ = t
[
2t
(
x + √

x
)+ 1

]−2
and 0 < � < 1/(12t) + log(1 + λ).

Moreover θ(x) is decreasing for x ≥ 5/4,

1 < θ(x) < 1.196 and lim
x→0

θ(x) = lim
x→+∞ θ(x) = 1. (84)

Remark Bound (82) is only useful for λ < 2π . Otherwise, since 2txθ(x) <

1.2/(2λ), (82) becomes non significant since � is not precisely known.

The proof of this proposition is mainly based on the following elementary
lemma which controls the tails of gamma integrals (see Johnstone, [23], proof
of Lemma 6.1).

Lemma 4 The following inequality holds for all z > t > 0:

zt+1e−z

z − t
> I(z) =

+∞∫

z

xte−x dx >

(
1 + t

(z − t)2

)−1 zt+1e−z

z − t
.

Proof One merely notices that the derivative of the function −xt+1e−x/(x − t)
is xte−x

(
1 + t(x − t)−2), which implies, for z > t, that

I(z) <

+∞∫

z

xte−x
(

1 + t
(x − t)2

)
dx = zt+1e−z

z − t
<

(
1 + t

(z − t)2

)
I(z).

��
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Proof of Proposition 4 Given u > 0, it follows from the preceding lemma that

P[X ≥ t + u] = 1
�(t)

+∞∫

t+u

xt−1e−x dx = (t + u)te−(t+u)

(u + 1)�(t)
�′,

with 1 > �′ >
[
1 + t(u + 1)−2]−1. Since by Stirling’s Formula (see Whittaker

and Watson, [39] p. 258),

�(t) = tt−1/2e−t
√

2π exp[θt/(12t)] with 0 < θt < 1,

it follows that

P[X ≥ t + u] = �
(

1 + ut−1
)t

e−u
√

δ/(2π), (85)

with

δ = t(u + 1)−2 and
[
(1 + δ)e1/(12t)

]−1
< � < 1.

Applying this result with u = 2t
(
x + √

x
)
, we derive that

log
(
P
[
X ≥ t

(
1 + 2x + 2

√
x
)]) = t

[
log
(
1 + 2x + 2

√
x
)− 2

(
x + √

x
)]

−(1/2) log[2π/λ] − �,

with 0 < � < (12t)−1+log(1+λ), which proves (82). As to (84), it can be derived
from some elementary analytical considerations and numerical computations.

��
Corollary 2 Let Y be a chi-square random variable with D degrees of freedom
and y > 0. Then

log
(
P

[
Y ≥D + 2

√
Dy + 2y

])
=−yθ

( y
D

)
−log

(
y√
D

+√
y
)

− 1
2

log(4π)−�,

where the function θ defined by (83) satisfies (84) and

0 < � <
1

6D
+ 1

2

[
y√
D

+ √
y
]−2

+
(

y +√Dy
)−1

.

Proof Since Y has a distribution �(D/2, 1/2), X = Y/2 has a distribution
�(D/2, 1). Applying Proposition 4 with t = D/2 and x = y/D, we get

log
(
P

[
Y ≥ D + 2

√
Dy + 2y

])
= log

(
P
[
X ≥ (D/2)

(
1 + 2x + 2

√
x
)])

= −Dxθ(x) − (1/2) log(2π/λ) − �

= −yθ(y/D)+(1/2) log(2λ)−(1/2) log(4π)−�,
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with 0 < � < 1/(6D) + λ and λ = (D/2)
[
y +√Dy + 1

]−2
. Moreover

2λ =
(

1

1 + (y +√Dy)−1

)2 [
y/

√
D + √

y
]−2

<
[
y/

√
D + √

y
]−2

,

and therefore

−
(

y +√Dy
)−1 − log

(
y/

√
D + √

y
)

< (1/2) log(2λ) < − log
(

y/
√

D + √
y
)

,

hence our result. ��
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