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Abstract We consider the 2D stochastic Ising model evolving according to the
Glauber dynamics at zero temperature. We compute the initial drift for drop-
lets which are suitable approximations of smooth domains. A specific spatial
average of the derivative at time 0 of the volume variation of a droplet close to
a boundary point is equal to its curvature multiplied by a direction dependent
coefficient. We compute the explicit value of this coefficient.

Keywords 2D Ising model · Glauber dynamics · Zero temperature ·
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1 Introduction

The phenomenological theory asserts that the evolution of the shape of a droplet
of one phase immersed in another phase is governed by the motion by mean
curvature. We are still far from being able to verify this assertion starting from a
genuine microscopic dynamics. Very interesting results have been obtained in a
series of works in the context of the Ising model with Kać potentials [4–7]. How-
ever, motion by mean curvature is recovered in some scaling limit where the
range of the interactions diverges to infinity: the model becomes somehow close
to a mean–field model and the ensuing motion is isotropic. For the true Ising
model with only nearest–neighbour interactions, it is expected that an inter-
face between the minus and the plus phase evolves according to an anisotropic
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Evolution of a square droplet

motion by mean curvature, that is, each point x of the interface has velocity

v(x) = −c(ν(x))ξν(x),

where ν(x) is the vector normal to the interface at x, ξ is the curvature of the
interface at x and c(ν) is a coefficient depending on the direction of ν. This
anisotropy stems from the anisotropy of the cubic lattice.

In this paper, we consider the zero temperature Glauber dynamics for the 2D
Ising model. Although we do not succeed in deriving the full motion by mean
curvature, we manage to compute the initial drift for droplets which approxi-
mate suitably smooth domains and we believe this is a crucial step. Four works
are directly relevant. Spohn [10] establishes the mean curvature motion in the
context of the 2D Ising model at zero temperature for interfaces which can
be represented as the graph of a function (but the fine details of his argument
are not written out). Although his results do not apply directly to the case of
a full droplet, he succeeds in particular in deriving an explicit formula for the
coefficient c(ν). We recover the same formula here with a different approach.
The computation we present here can be considered to be a refinement of the
observation of [3]. Chayes et al. [3] proved a Lifshitz law for the volume of a
two-dimensional droplet at zero temperature (for a technical reason, they work
with a slightly modified dynamics). Instead of looking at the total volume of the
droplet, we shall concentrate here on the volume variation of the droplet in a
small ball attached to its boundary. Chayes and Swindle [2] study the hydrody-
namical limit of the zero range process (we do not understand fully their proof);
by interpreting the interface as a one dimensional exclusion process, they con-
clude that the evolution of the shape of one corner of a square droplet should
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be described in the hydrodynamical limit by an appropriate Stefan problem.
Finally, Sowers [9] develops in a framework of geometric measure theory to
obtain the hydrodynamical limit. His convergence theorem is conditional on
the verification of several assumptions, some of them concerning the struc-
ture of the interface. It might be that these estimates are the missing pieces to
complete the picture.

Let us turn now to the description of our result. We work with the stochastic
Ising model evolving according to the Glauber dynamics at zero temperature.
We consider the diffusive limit where space is rescaled by a factor N and time is
speeded up by a factor N2. We start with a plus droplet immersed in the minus
phase, whose boundary is a C1 simple Jordan curve γ : the initial configuration at
step N is a suitable approximation of the smooth droplet, drawn on the square
lattice ZZ2/N. We consider two cases:
Deterministic initial condition The approximating set at step N consists of the
squares of the lattice ZZ2/N which intersect the interior of γ .
Initial local equilibrium The approximating set at step N is random. Its bound-
ary converges in probability towards γ as N goes to ∞ and its law µN is given
by the invariant measure of the associated zero range process.

The droplet is immersed in the minus phase, hence all the sites of the approx-
imating set are initially set to plus, while the other sites of the lattice are set to
minus. We then look at the process (σN2t, t ≥ 0) and we denote by AN

σ (t) the
plus droplet at time N2t starting from σ . Let x be a point of γ . We study the
variation of the magnetization inside the ball B(x, r) centered at x with radius r,
for r small. Equivalently, we look at the volume vol

(
B(x, r) ∩ AN

σ (t)
)

of the plus
droplet in this ball and we aim at computing its derivative

lim
t→0

1
t

(
vol
(
B(x, r) ∩ AN

σ (t)
)− vol

(
B(x, r) ∩ AN

σ (0)
))

.

Several problems arise. Since the dynamics proceeds by jumps, we have to take
the expectation to get a differentiable quantity. Next we wish to link the infin-
itesimal volume variation with the curvature of the droplet’s boundary at x.
To achieve this, we need to recover the slope of the continuous curve from its
approximation. We perform a spatial averaging. Letting x0, x1 be the two points
of γ which belong to the sphere ∂B(x, r), we consider the domain

S(x, r, α1, α2) = B(x, r) ∪ B(x0, α1) ∪ B(x1, α2),

and we denote by SN its discretization at step N. The quantity of primary
interest to link the volume variation and the curvature is

Aσ ,γ
N (x, r, δ) =
1
δ2

δ∫

0

δ∫

0

lim
t→0

1
t

IE
(
(vol(AN

σ (t) ∩ SN)) − vol(AN
σ (0) ∩ SN)

)
dα1 dα2.
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Let θ be the angle of the tangent to γ at x and let ξγ (x) be the curvature of γ

at x. Our main result states that, for the deterministic initial condition,

lim
r→0

lim
δ→0

lim inf
N→∞

1
2r

Aσ ,γ
N (x, r, δ) = lim

r→0
lim
δ→0

lim sup
N→∞

1
2r

Aσ ,γ
N (x, r, δ)

= −1
2
| cos (2θ)|ξγ (x)

while with the initial local equilibrium,

lim
r→0

lim
δ→0

lim inf
N→∞

1
2r

µN(Aσ ,γ
N (x, r, δ)) = lim

r→0
lim
δ→0

lim sup
N→∞

1
2r

µN(Aσ ,γ
N (x, r, δ))

= − ξγ (x)

2(| cos θ | + | sin θ |)2 .

In fact, we compute the above limits for a more general class of initial condi-
tions, which includes the two cases above. The natural case should be the one
studied by Spohn, where the configuration is locally in equilibrium. We expect
that, starting from any initial configuration, the law of a straight interface will
converge quickly to the equilibrium law of the associated zero range process.
This indicates that the limit (A(t), t ≥ 0) of any decently converging subse-
quence of the stochastic motion (AN(t), t ≥ 0) should satisfy the equation, for
any s > 0 and for any x ∈ ∂A(s),

lim
r→0

lim
δ→0

1
2rδ2

δ∫

0

δ∫

0

lim
t→s
t>s

1
t − s

IE (vol(A(t) ∩ S) − vol(A(s) ∩ S)) dα1 dα2

= − ξ∂A(s)(x)

2(| cos θ | + | sin θ |)2

or at least a weaker variant of it. Here (A(t), t ≥ 0) is a random process describ-
ing the evolution of the shape of the droplet. A standard computation shows
that the deterministic motion by mean curvature satisfies this equation. How-
ever we do not know whether it is the only solution to this equation; we have
not investigated the corresponding theory so far. For instance, can one get rid
of the expectation? Anyway, we are still far from establishing that the hydrody-
namical limit of the droplet process satisfies the above equation. An important
issue is to control dynamically the proportion of the corners in a microscopic
random interface when its average slope is known. This would probably require
some additional probabilistic input.

2 The model

We consider a zero-temperature 2D-stochastic Ising model. More precisely it
is a continuous time Markov process (σt)t≥0 taking values in {−1, +1}ZZ2

with
generator L which acts on each local function f : {−1, +1}ZZ2 → IR as
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(Lf )(σ ) =
∑

x∈ZZ2

c(x, σ)(f (σ x) − f (σ )).

Here, for σ ∈ {−1, +1}ZZ2
and x ∈ ZZ2, we define

∀y ∈ ZZ2 σ x(y) =
{

σ(y) if y �= x,
−σ(y) if y = x,

and c(x, σ) is the rate with which the spin at site x flips when the configuration
is σ . The rates c(x, σ) define the dynamics. For the zero-temperature 2D–Ising
model, the rates c(x, σ) are given by

c(x, σ) =






1 if more than two neighbors of x have a spin opposite to x,
α if exactly two neighbors of x have a spin opposite to x,
0 otherwise,

where 0 < α ≤ 1 is a fixed parameter. For technical reasons, we will take
α = 1/2 in the sequel.

3 Notation

Let N be a fixed positive integer. We denote by ZZ2
N the grid ZZ2/N. For x =

(x1, x2) ∈ ZZ2, 	x/N is the box defined as

A point u and the box 	uN (NuN ∈ ZZ2)

	x/N =
{
(u1, u2) ∈ IR2, − 1

2N
≤ u1 − x1

N
<

1
2N

;

− 1
2N

≤ u2 − x2

N
<

1
2N

}
. (1)

The family of boxes (	x, x ∈ ZZ2
N), as defined by (1), forms a partition of IR2:

IR2 =
⋃

x∈ZZ2
N

	x, ∀ x, y ∈ ZZ2
N x �= y ⇒ 	x ∩ 	y = ∅.
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Hence, for each u = (u1, u2) ∈ IR2 there exists a unique uN ∈ ZZ2
N such that

u ∈ 	uN . Moreover ‖u − uN‖∞ ≤ 1
2N , where ‖u‖∞ = max(|u1|, |u2|).

To each bounded set S of IR2, we associate the set SN defined by

SN =
⋃

x∈ZZ2
N : 	x∩S �=∅

	x.

The set S is included in the set SN with polygonal boundary

For σ ∈ {−1, +1}, we denote by s(σ , x), the number of the neighbors of x having
a spin opposite to x in the configuration σ :

s(σ , x) = 1
2

∑

y∈ZZ2, |x−y|=1

∣∣σ(x) − σ(y)
∣∣,

where |x| =
√

x2
1 + x2

2 for x = (x1, x2).
Let N be a fixed positive integer, we define the set

Aσ
N =

⋃

x ∈ ZZ2, σ(x)=+1

	x/N .

For x ∈ ZZ2, σ(x) = +1 if and only if x ∈ NAσ
N
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Let γ be a curve of IR2. We define for s ∈ γ and for r, α1, α2 positive real
numbers, the set

S(s, r, α1, α2) = B(s, r) ∪ B(x0, α1) ∪ B(x1, α2),

where B(s, r) is the closed ball centered at s with radius r chosen sufficiently
small, so that ∂B(s, r) ∩ γ contains exactly two points x0 and x1. We suppose
that x0, s and x1 are arranged counterclockwise.

Let

Lσ ,γ
N (s, r, α1, α2) = lim

t→0

1
t

(
IEσ (vol(AσtN2

N ∩ SN)) − vol(Aσ
N ∩ SN)

)
,

where SN = (S(s, r, α1, α2))N = (B(s, r) ∪ B(x0, α1) ∪ B(x1, α2))N and vol de-
notes the planar Lebesgue measure.

The set
(
B(s, r) ∪ B(x0, α1) ∪ B(x1, α2)

)
N

Finally, we define the average

Aσ ,γ
N (s, r, δ) = 1

δ2

δ∫

0

δ∫

0

Lσ ,γ
N (s, r, α1, α2) dα1 dα2.
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4 Results

We first control the quantity Aσ ,γ
N (s, r, δ) for deterministic sets Aσ

N defined as
follows.
Deterministic initial condition Let γ be a Jordan curve of IR2. Suppose that γ

encloses a connected, compact and bounded set 
 of IR2, so that γ = ∂
. Let
N be a fixed positive integer. We define the spin configuration σ at time 0 as:

∀x ∈ ZZ2 σ(x) =
{

+1 if 	x/N ∩ 
 �= ∅,
−1 otherwise,

where, for x ∈ ZZ2 and N ∈ IN∗, 	x/N is the box as defined by (1). We will say
that σ is the spin configuration associated to the curve γ at step N.

Having both the initial condition and the generator, the Markov process
(σt)t≥0 at step N is well defined.

The curve γ = ∂
 and the set Aσ
N

Proposition 1 Let γ be a Jordan curve of IR2 of class C2. Suppose that γ encloses
a connected, compact and bounded set 
 of IR2. Let s be a point of γ . Let σ be
the spin configuration associated to the curve γ at step N. Then,

lim
r→0

lim
δ→0

lim inf
N→+∞

1
2r

Aσ ,γ
N (s, r, δ) = lim

r→0
lim
δ→0

lim sup
N→+∞

1
2r

Aσ ,γ
N (s, r, δ)

= −1
2

|cos 2θ | ξγ (s),

where ξγ (s) is the curvature of γ at s and θ is the angle between the horizontal
axis and the tangent to the curve γ at s.

We suppose next that the sets Aσ
N are random and that locally the height func-

tion associated to ∂Aσ
N obeys to Spohn’s initial condition described as follows.

Initial local equilibrium Let γ be a Jordan curve of IR2. Suppose that γ encloses
a connected, compact and bounded set 
 of IR2, so that γ = ∂
. Let s be
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a point of γ . Suppose that, on a neighborhood Vs of s, the contour γ is the
graph of a monotone differentiable function f defined on a segment [a, b].
For each positive integer N, and for each random boundary ∂Aσ

N ∩ Vs, let
�N be the random height function associated to ∂Aσ

N ∩ Vs above ZZ
N ∩ [a, b],

defined by

∀u ∈ ZZ

N
∩ [a, b] �N(u) = sup{v : (u, v) ∈ ∂Aσ

N}.

Let µN be the initial distribution of �N . We suppose that, under µN , the incre-
ments

�N

(
k + 1

N

)
− �N

(
k
N

)
,

k
N

∈ [a, b] ∩ ZZ

N
,

are independent and their laws are such that

• If f is nondecreasing, then for l ∈ ZZ

µN

(
�N

(
k + 1

N

)
− �N

(
k
N

)
= l

N

)

=





(f ′( k
N ))l (1 + f ′( k

N ))−l−1 if l ≥ 0

0 if l < 0

• If f is nonincreasing, then for l ∈ ZZ

µN

(
�N

(
k + 1

N

)
− �N

(
k
N

)
= l

N

)

=





(|f ′|( k
N ))|l| (1 + |f ′|( k

N ))−|l|−1 if l ≤ 0

0 if l > 0

Proposition 2 Let γ be a Jordan curve of IR2 of class C2. Let s be a point of γ .
Suppose that, for any positive real numbers r and δ sufficiently small, the curve
γ ∩ S(s, r, δ, δ) is the graph of a monotone function f defined on a segment [a, b]
of IR. Let µN be the measure as defined above. Suppose that,

∀ε > 0 lim
N→+∞ µN (|�N(aN) − f (a)| ≥ ε) = 0, (2)
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where aN is a point of [a, b] ∩ ZZ
N such that |a − aN | ≤ 1

N . Then

lim
r→0

lim
δ→0

lim inf
N→+∞

1
2r

µN
(
Aσ ,γ

N (s, r, δ)
) = lim

r→0
lim
δ→0

lim sup
N→+∞

1
2r

µN
(
Aσ ,γ

N (s, r, δ)
)

= − 1
2(| cos θ | + | sin θ |)2 ξγ (s),

where ξγ (s) is the curvature of γ at s and θ is the angle between the horizontal
axis and the tangent to the curve γ at s.

The limits obtained in Propositions 1 and 2 are very different because the ini-
tial conditions differ. Spohn’s velocity is recovered in Proposition 2 [cf. (4.26) of
Spohn [10]]. The choice of the measure µN is the good one, since as noticed by
Spohn [10], the height differences are governed by the zero-range process with
rate function c(n) = In≥1. The product measure µN with geometric distribution
is invariant for the zero range process (cf. [1]). Motion by mean curvature for
the sets (AσN2t

N ) corresponds then to the hydrodynamic limit for the zero range
process.

Propositions 1 and 2 are consequences of the following Theorem 2, which
handles the initial conditions described thereafter. The distance between a point
a ∈ IR2 and a subset B of IR2 is d(a, B) = infb∈B |a − b|; the Hausdorff distance
dH between two subsets A and B of IR2 is

dH(A, B) = max

(
sup
a∈A

d(a, B), sup
b∈B

d(b, A)

)
.

Initial condition Let γ be a Jordan curve of IR2 of class C1. Suppose that γ

encloses a connected, compact and bounded set 
 of IR2. Let s be a point
of γ . Let r be a positive real number sufficiently small such that ∂B(s, r) ∩ γ

contains exactly two points x0 and x1. Suppose that x0, s and x1 are arranged
counterclockwise. Let θ1 ∈ [0, 2π ] (respectively θ0 ∈ [0, 2π ]) be the oriented
angle between the half horizontal axis [0, +∞[ and Tx1γ (respectively Tx0γ ).
We suppose that there exists a neighborhood Vs of s and a probability measure
νN such that

∀ ε > 0 lim
N→+∞ νN

(
dH(Aσ

N ∩ Vs, 
 ∩ Vs) ≥ ε
) = 0, (3)

and that, with probability one, the boundaries γ and ∂Aσ
N are, in Vs, either both

non-increasing or either both non-decreasing.



The initial drift of a 2D droplet at zero temperature 389

The polygonal curve ∂Aσ
N behaves in Vs as γ

Let, for x ∈ γ ∩ Vs and δ > 0,

CN(x, δ) =
∑

Iσ(y)=+1, s(σ ,y)=2,

where the sum is taken over all y ∈ ZZ2 for which y
N is a point of (B(x, δ))N \

B(s, |x − s|). The quantity CN(x, δ) is equal to half of the number of the corners
of the polygonal line ∂Aσ

N belonging to (B(x, δ))N \B(s, |x − s|).
We first suppose that γ is a polygon and that s is a corner point of γ . In this

case, the following theorem proves that, for r and δ sufficiently small, the limit
as N goes to infinity of νN(Aσ ,γ

N (s, r, δ)) exists under a suitable behavior of the
expected proportions of corners 1

N νN(CN(xk, δ)), for k ∈ {0, 1}.

Theorem 1 Let γ , s, r, δ and νN be as described in the previous initial condition.
Suppose that γ is a polygon and that for k = 0, 1 and for r, δ sufficiently small,
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the following limit holds:

lim
N→∞

1
N

νN(CN(xk, δ)) = δC(θk). (4)

Then, for r and δ sufficiently small, one has

lim
N→∞ νN(Aσ ,γ

N (s, r, δ)) = −1
2

sgn(tan θ0)
(

cos2 θ0 + C(θ0) (|sin θ0| − |cos θ0|)
)

+ 1
2

sgn(tan θ1)
(

cos 2θ1 + C(θ1) (|sin θ1| − |cos θ1|)
)

+ Isin θ0 sin θ1>0
(
sgn(θ1 − θ0)Icos θ0 cos θ1>0 + sgn(tan θ0)Icos θ0 cos θ1<0

)
. (5)

Suppose that C(θ) = f (| sin θ |, | cos θ |), where f is a positive function defined
on [0, 1] × [0, 1] and that s is not a corner point of the polygon γ . Theorem 1
then implies that, for r and δ sufficiently small, the limit as N goes to infinity of
νN(Aσ ,γ

N (s, r, δ)) vanishes (since in this case θ1 = θ0 ± π). This constatation is
not surprising since the inverse of the curvature of a straight line vanishes.

The following theorem extends Theorem 1 to Jordan curves.

Theorem 2 Let γ , s, r and νN be as described in the previous initial condition.
Suppose that for r sufficiently small and for k = 0, 1, the following limits exist:

lim
δ→0

lim inf
N→+∞

1
δN

νN(CN(xk, δ)) = lim
δ→0

lim sup
N→+∞

1
δN

νN(CN(xk, δ)) = C(θk). (6)

Then

lim
δ→0

lim inf
N→+∞ νN

(
Aσ ,γ

N (s, r, δ)
) = lim

δ→0
lim sup
N→+∞

νN
(
Aσ ,γ

N (s, r, δ)
)
,

the common value is as in (5) with the function C(·) given by (6).

5 Proofs

We first prove Theorems 1 and 2. Next, we prove the two propositions. For the
proof of the theorems, we need the following preliminary lemma.
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Lemma 1 Let S be a compact set of IR2. Let σ ∈ {−1, +1}ZZ2
be fixed. Then

lim
t→0

1
t

(
IEσ (vol(AσtN2

N ∩ SN)) − vol(Aσ
N ∩ SN)

)

=
∑

x∈ZZ2: 	 x
N

⊂SN

(
Iσ(x)=−1, s(σ ,x)≥3 − Iσ(x)=+1, s(σ ,x)≥3

)

+α
∑

x∈ZZ2: 	 x
N

⊂SN

(
Iσ(x)=−1, s(σ ,x)=2 − Iσ(x)=+1, s(σ ,x)=2

)
.

Proof of Lemma 1 Let fN(σ ) = vol(Aσ
N ∩ SN) and S(t)fN(σ ) = IEσ (vol(Aσt

N ∩
SN)). We deduce from

lim
t→0

1
t

(S(t)fN − fN) = LfN ,

that

lim
t→0

1
t

(S(t)fN(σ ) − fN(σ )) =
∑

x∈ZZ2

c(x, σ)(fN(σ x) − fN(σ )). (7)

Now,

fN(σ x) − fN(σ ) = 1
N2 I	 x

N
⊂SN

(
Iσ(x)=−1 − Iσ(x)=1

)
,

this fact together with (7) gives

lim
t→0

1
t

(
S(tN2)fN(σ ) − fN(σ )

)
=

∑

x∈ZZ2: 	 x
N

⊂SN

c(x, σ)
(
Iσ(x)=−1 − Iσ(x)=1

)
,

which proves Lemma 1 since c(x, σ) = Is(σ ,x)≥3 + αIs(σ ,x)=2. ��

5.1 Evaluation of νN
(
Lσ ,γ

N (s, r, α1, α2)
)

Throughout this step, we consider the set

SN = (S(s, r, α1, α2))N = (B(s, r) ∪ B(x0, α1) ∪ B(x1, α2))N , (8)
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where α1, α2 are positive real numbers less than δ, the positive real numbers
r and δ are small enough so that ∂B(s, r) ∩ γ contains exactly two points x0
and x1.

The boundary of Aσ
N which is included in SN can be described as a sequence

v1, . . . , vr of horizontal or vertical vectors of norm 1
N , enumerated counterclock-

wise. We denote by e1
N(α1), e2

N(α2) the two unit vectors defined by

e1
N(α1) = Nv1, e2

N(α2) = Nvr, (9)

and by Lσ
N the maximal subgraph of ∂Aσ

N included in SN :

Lσ
N = (v1, . . . , vr). (10)

The polygonal line Lσ
N = (v1, . . . , vr). Here SN = (B(s, r) ∪ B(x0, α1) ∪ B(x1, α2)

)
N

We now need the following definition and notation.

Definition 1 We say that LN is a path on ZZ2
N if LN is a finite sequence of con-

secutive vectors (vi)1≤i≤r (this means that the endpoint of vi is the starting point
of vi+1 for 1 ≤ i < r) of norm 1/N, drawn on the grid ZZ2

N, and such that the
endpoints of these vectors (resp. the starting points) are distinct.

The following family of vectors (v1, . . . , vr) is a path on the grid ZZ2
N
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Notation Let LN = (v1, v2, . . . , vr) be a path on ZZ2
N . We define

N+ (LN) = card
{

i : ̂(vi, vi+1) = −π

2

}
,

(11)
N− (LN) = card

{
i : ̂(vi, vi+1) = +π

2

}
,

where ̂(vi, vi+1) denotes the oriented angle between vi and vi+1.

The purpose of the following proposition is to establish the relation between
N−(Lσ

N) − N+(Lσ
N) and Lσ ,γ

N (s, r, α1, α2), for the path Lσ
N as defined by (10).

Proposition 3 Let N be a fixed positive integer. Let Lσ
N be the random path as

defined by (10). Then

νN
(
Lσ ,γ

N (s, r, α1, α2)
) = 1

2
νN
(
N−(Lσ

N) − N+(Lσ
N)
)

. (12)

Proof of Proposition 3 Let N ∈ IN∗ be fixed and SN = (B(s, r) ∪ B(x0, α1)

∪B(x1, α2))N . Let f be the function defined from {0, 1, . . . , 4} to {0, 1, 2} by

f (s(σ , x)) =






1 if s(σ , x) = 2
2 if s(σ , x) = 3
0 otherwise.

On the one hand, by definition of N−(Lσ
N) and N+(Lσ

N), we have

∑

x∈ZZ2 ∩ NSN

σ(x)f (s(σ , x)) = N+(Lσ
N) − N−(Lσ

N), (13)
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on the other hand, we deduce from the definition of the function f ,

∑

x∈ZZ2 ∩ NSN

σ(x)f (s(σ , x)) = −
∑

x∈ZZ2, 	x/N⊂SN

(
Iσ(x)=−1, s(σ ,x)=2 − Iσ(x)=+1, s(σ ,x)=2

)

− 2
∑

x∈ZZ2, 	x/N⊂SN

(
Iσ(x)=−1, s(σ ,x)=3 − Iσ(x)=+1, s(σ ,x)=3

)

We combine the last formula, Lemma 1 (with α = 1/2) together with the fact
that Is(σ ,x)=4 = 0, and we obtain

νN
(
Lσ ,γ

N (s, r, α1, α2)
) = −1

2
νN




∑

x∈ZZ2∩SN

σ(x)f (s(σ , x))



 . (14)

The statement of Proposition 3 follows from (13) and (14) by taking the expec-
tation with respect to νN . ��
In view of Proposition 3, in order to control νN

(
Lσ ,γ

N (s, r, α1, α2)
)
, it remains to

evaluate νN
(
N+
(Lσ

N

)− N−
(Lσ

N

))
. For this, we begin by controlling the quan-

tity N+ (LN)−N− (LN) for monotone deterministic paths LN defined as follows.

Definition 2 A path on ZZ2
N is said to be monotone if all its horizontal as well as

all its vertical vectors are oriented in the same sense.

A monotone path on the grid ZZ2
N

The following lemma evaluates N+ (LN)−N− (LN), whenever LN is a monotone
path on ZZ2

N .

Lemma 2 Let (vi)1≤i≤r be a sequence of r consecutive vectors drawn on the grid
ZZ2

N. These vectors are enumerated beginning from N−1ue := v1 until N−1us :=
vr. We suppose that they form a monotone path on ZZ2

N, say LN. Let [ue ∧ us] =
(ue · i)(us · j) − (ue · j)(us · i). Then

N+ (LN) − N− (LN) = [ue ∧ us].
Remark Let us note that for any path LN = (v1, . . . , vr), we have

̂(ue, us) = π

2
(N− (LN) − N+ (LN)) ,

where ue = Nv1 and us = Nvr.
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Proof of Lemma 2 We denote by LN(r) = (v1, . . . , vr) a monotone path on ZZ2
N .

The proof of Lemma 2 is done by induction on r.
For r = 1, we have N− (LN(1)) − N+ (LN(1)) = 0 which corresponds to

[ue ∧ us], since in this case N−1ue = N−1us = v1.
We suppose now that the property is true at step r ≥ 1 and we prove it at step
r + 1. We consider the path LN(r + 1). Since LN(r + 1) is monotone, we can
suppose without loss of generality that

(H) ∀ l ∈ {1, . . . , r + 1} (Nvl) · i ∈ {0, −1}, (Nvl) · j ∈ {0, −1}.

For this monotone path LN , we have ue = (−1, 0) and us = (0, −1),

hence [ue ∧ us] = 1. On the other hand N+(LN) − N−(LN) = 1 − 1 + 1 − 1 + 1 − 1 + 1 = 1

Once the hypothesis (H) is assumed, we have only three cases to discuss on the
expression of (vr, vr+1),
• If vr =vr+1, then N+ (LN(r + 1))−N− (LN(r + 1))=N+ (LN(r))−N− (LN(r)),

and the inductive assumption gives

N+ (LN(r + 1)) − N− (LN(r + 1)) = [Nv1 ∧ Nvr+1].

• If (Nvr) · j = −1 = (Nvr+1) · i, then ̂(vr, vr+1) = π
2 and N+ (LN(r + 1)) −

N− (LN(r + 1)) = N+ (LN(r)) − N− (LN(r)) − 1. Together with the inductive
assumption, this gives

N+ (LN(r + 1)) − N− (LN(r + 1)) = −(Nv1) · i − 1

= (Nv1) · j = [Nv1 ∧ Nvr+1].

• If (Nvr) · i = −1 = (Nvr+1) · j, then ̂(vr, vr+1) = −π
2 , N+ (LN(r + 1)) −

N− (LN(r + 1)) = N+ (LN(r)) − N− (LN(r)) + 1 and

N+ (LN(r + 1)) − N− (LN(r + 1)) = (Nv1) · j + 1

= −(Nv1) · i = [Nv1 ∧ Nvr+1].



396 R. Cerf, S. Louhichi

The equality N+ (LN(r + 1)) − N− (LN(r + 1)) = [Nv1 ∧ Nvr+1] is then always
valid and Lemma 2 is proved. ��

The following lemma generalizes Lemma 2. Its purpose is to evaluate
N+ (LN) − N− (LN) for a path LN constructed by concatenating two mono-
tone paths.

Lemma 3 Let LN = (v1, . . . , vr, w1, . . . , ws) be a path on ZZ2
N. Suppose that

(v1, . . . , vr) (respectively (w1, . . . , ws)) forms a monotone path on ZZ2
N and that

vr · w1 = 0. Let a1, a2, b1, b2 ∈ {−1, +1}. Suppose that for each 1 ≤ i ≤ r (resp.
1 ≤ j ≤ s), the vector Nvi (resp. Nwj) is either (a1, 0) (resp. (b1, 0)) or (0, a2)

(resp. (0, b2)). Then,

N− (LN) − N+ (LN) = −a2(Nv1) · i + b2(Nws) · i + f (a1, a2, b1, b2), (15)

where i is the unit vector (1, 0), · is the usual scalar product in IR2 and

f (a1, a2, b1, b2) =





2a1a2 if a2b2 = −1, ((Nvr) · i = a1 or a1b1 = 1)

2b1a2 if a2b2 = −1, (Nvr) · i = 0
0 if a2b2 = 1.

Proof of Lemma 3 We deduce, applying Lemma 2 to the monotone paths
(v1, . . . , vr), (w1, . . . , ws) and (vr, w1) that, for LN = (v1, . . . , vr, w1, . . . , ws),

N+ (LN) − N− (LN) = [Nv1 ∧ Nvr] + [Nvr ∧ Nw1] + [Nw1 ∧ Nws]. (16)

In the following picture, we have Nv1 = (1, 0), Nvr = (0, −1), Nw1 = (−1, 0),
Nws = (−1, 0). Hence [Nv1 ∧ Nvr] + [Nw1 ∧ Nws] + [Nvr ∧ Nw1] = −2. On the
other hand, we have N+(LN) − N−(LN) = −2.
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We deduce from

(Nvl) · i ∈ {0, a1}, and (Nvl) · j ∈ {0, a2},

for 1 ≤ l ≤ r, that

a1(Nvl) · i + a2(Nvl) · j = 1.

This fact gives

[Nv1 ∧ Nvr] = a2(Nv1) · i − a2(Nvr) · i. (17)

In the same way, we deduce that for any 1 ≤ l ≤ s,

b1(Nwl) · i + b2(Nwl) · j = 1, [Nw1 ∧ Nws] = b2(Nw1) · i − b2(Nws) · i.

(18)

We also have, since vr · w1 = 0,

[Nvr ∧ Nw1] = b2(Nvr) · i − a2(Nw1) · i. (19)

We obtain, collecting (17), (18), (19) and (16),

N+ (LN) − N− (LN)=a2(Nv1) · i − b2(Nws) · i + (b2 − a2)((Nvr) · i+(Nw1) · i).

From, the last equality we deduce the following,

• If a2 = b2 i.e. a2b2 = 1, then N− (LN)− N+ (LN) = −a2(Nv1) · i + b2(Nws) · i.
• If a2b2 = −1 then since vr · w1 = 0, (Nvr) · i + (Nw1) · i ∈ {a1, b1} and

N− (LN) − N+ (LN) + a2(Nv1) · i − b2(Nws) · i

is either 2a1a2 or 2b1a2. ��
The following corollary evaluates N− (LN)−N+ (LN) for a path LN behaving

like a polygonal line. It will be very useful for the control of Lσ ,γ
N (s, r, α1, α2).

Corollary 1 Let s0, s1 and s2 be three points in IR2. Let θ0 (resp. θ1) be the ori-
ented angle between the half horizontal axis [0, +∞[ and the segment [s1, s0[
(respectively [s1, s2[). Let LN = (v1, . . . , vr, w1, . . . , ws) be a path on ZZ2

N. Sup-
pose that the family (v1, . . . , vr) (respectively (w1, . . . , ws)) forms a monotone
path on ZZ2

N and that vr · w1 = 0. Suppose moreover that (v1, . . . , vr) and [s0, s1]
(respectively (w1, . . . , ws) and [s1, s2]) are either both non-increasing or either
both non-decreasing. Then
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N− (LN) − N+ (LN) = sgn(sin θ0)(Nv1) · i

+sgn(sin θ1)(Nws) · i + f (θ1, θ0), (20)

where

f (θ1, θ0) =






2sgn(θ1 − θ0) if sin θ0 sin θ1 > 0, cos θ0 cos θ1 > 0,

2sgn(tan θ0) if sin θ0 sin θ1 > 0, cos θ0 cos θ1 < 0,

0 otherwise.

We illustrate the conclusion of the previous corollary with the help of the
following pictures.

LN is the circuit (v1, . . . , vr, w1, . . . , ws).

Here, f (θ1, θ0) = 2sgn(θ1 − θ0) = 2

LN is the circuit (v1, . . . , vr, w1, . . . , ws).

Here, f (θ1, θ0) = 2sgn(tan θ0) = −2
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In this picture, f (θ1, θ0) = 0

Proof of Corollary 1 We first check that for any 1 ≤ l ≤ r, (Nvl) · i ∈
{0, −sgn(cos θ0)}, and (Nvl) · j ∈ {0, −sgn(sin θ0)}. In the same way, we have
for 1 ≤ l ≤ s,

(Nwl) · i ∈ {0, sgn(cos θ1)}, and (Nwl) · j ∈ {0, sgn(sin θ1)}.

Lemma 3 gives then

N− (LN) − N+ (LN) = sgn(sin θ0)(Nv1) · i + sgn(sin θ1)(Nws) · i + f (θ1, θ0),

where

• If a2b2 = −sgn(sin θ0)sgn(sin θ1) > 0, then f (θ1, θ0) = 0.
• If sgn(sin θ0)sgn(sin θ1) > 0 and sgn(cos θ0)sgn(cos θ1) < 0, then f (θ1, θ0) =

2sgn(tan θ0).
In fact this case corresponds to a2b2 = −1, a1 = −sgn(cos θ0) = sgn(cos θ1) =
b1.

Now we have to discuss the case sgn(sin θ0)sgn(sin θ1) > 0 and sgn(cos θ0)sgn
(cos θ1) > 0 i.e. when a2b2 = −1 and a1b1 = −1. We distinguish all the cases
on the possible values of (a1, a2) and we deduce the following: (Nvr) · i = 0 if
and only if (a1a2 < 0 and θ0 < θ1) or (a1a2 > 0 and θ0 > θ1). So (Nvr) · i = 0 if
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and only if a1a2sgn(θ0 − θ1) > 0. We apply again Lemma 3 and we deduce that
in this last case f (θ1, θ0) = 2sgn(θ1 − θ0). ��

We have now all the ingredients in order to evaluate νN
(
N−
(Lσ

N

)− N+
(Lσ

N

))

for the random path Lσ
N as defined by (10). The curve γ is of class C1, hence for

r small enough, the part of γ situated between x0 and s (resp. between s and x1)
is either nondecreasing or nonincreasing. We conclude from the assumptions
of Theorem 1 that, for N large enough and with probability one, the random
path Lσ

N respects the behavior of the curve γ , thus Lσ
N is either monotone or

it is constructed by concatenating two monotone paths, say Lσ
N = (Lσ

1,N , Lσ
2,N).

These monotone paths are such that, noting by s′ the point of Tx0γ ∩ Tx1γ ,
Lσ

1,N and [x0, s′] (resp. Lσ
2,N and [s′, x1]) are either both nondecreasing or both

nonincreasing. Corollary 1 applies and gives, for N large enough,

νN
(
N−
(Lσ

N

)− N+
(Lσ

N

)) = sgn(sin θ0) νN(e1
N(α1) · i)

+sgn(sin θ1) νN(e2
N(α2) · i) + f (θ1, θ0),

the function f (θ1, θ0) is defined in Corollary 1, the angles θ1, θ0 are those defined
by Theorem 1, the random vectors e1

N(α1), e2
N(α2) are the two unit vectors as

defined by (9). We then deduce from Proposition 3 that there exists N0 depend-
ing only on γ such that, for any N ≥ N0, we have,

νN
(
Lσ ,γ

N (s, r, α1, α2)
) = 1

2
sgn(sin θ0) νN

(
e1

N(α1) · i
)

+1
2

sgn(sin θ1) νN

(
e2

N(α2) · i
)

+ 1
2

f (θ1, θ0).

5.2 Evaluation of
∫ δ

0

∫ δ

0 νN
(
Lσ ,γ

N (s, r, α1, α2)
)

dα1 dα2

By the previous formula, in order to evaluate the quantity

δ∫

0

δ∫

0

νN
(
Lσ ,γ

N (s, r, α1, α2)
)

dα1 dα2,

for δ and r small enough, it suffices to evaluate the terms

νN




δ∫

0

e1
N(α) · i dα



 , νN




δ∫

0

e2
N(α) · i dα



 .

We begin by the first quantity, for this we need some further notations.

Notation For a vector v drawn on the grid ZZ2
N , we denote by R(v) the union of

the two boxes of the family (	x/N)x∈ZZ2 having v as an edge vector.
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The two blocks R(v) and R(w)

Let Lσ
N = (v1, . . . , vr) be the oriented path as defined by (10). Let Lσ

1,N =
(v1, . . . , vs) be the subgraph of Lσ

N included in ∂AN
σ ∩ (B(x0, δ))N such that the

vector vs is the entering vector in (B(s, r))N .
To each vector vl (1 ≤ l ≤ s), we associate the block Rs−l+1 := R(vl). These

blocks (Rl)1≤l≤s are enumerated according to their distances to x0, R1 being the
block containing vs. Let (al)1≤l≤s be the sequence of vertices such that

dl := d(x0, Rl) = |al − x0|,

then this sequence of vertices (al)1≤l≤s is L1 connected and the vector alal+1 is
either vertical or horizontal. Finally, let HN be the set of indices l ∈ {1, . . . , s}
for which vl is horizontal.

dl = d(x0, Rl) = |x0 − al|.
For N large enough, the vector alal+1 is either horizontal or vertical, and |al − al+1| = 1/N

With probability one, the path Lσ
1,N is monotone and behaves, on a neighbor-

hood of x0, as Tx0γ . This fact ensures that, with probability one, e1
N(α) · i ∈

{0, −sgn(cos θ0)}. Now, by construction e1
N(α) · i = −sgn(cos θ0) if and only if

there exists l ∈ HN such that α ∈]dl, dl+1] (such an index is necessarily unique).
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With probability one,

∣∣
∣∣∣∣

δ∫

0

e1
N(α) · i dα + sgn(cos θ0)

∑

l∈HN(x0,δ)

(
dl+1 − dl

)
∣∣
∣∣∣∣
≤ 2

N
, (21)

where HN(x0, δ) is the set of all the horizontal edges of ∂Aσ
N included in

(B(x0, δ))N \B(s, r). In order to evaluate dl+1 −dl, we need the following lemma.

Lemma 4 Let u and v be two vectors such that ‖u‖ ≤ ‖v‖. Then

‖u + v‖ − ‖v‖ = (u + v) · u
‖u + v‖ − ‖u‖2

‖v‖
sin 2θ

1 +
√

1 − ‖u‖2

‖v‖2 sin 2θ

,

where θ is the angle between u and u + v.

Proof of Lemma 4 Let u, v and θ be as defined in Lemma 4.

We have

‖u + v‖2 = L2 + H2

= cos 2θ‖u + v‖2 + ‖v‖2 − (cos θ‖u + v‖ − ‖u‖)2

= ‖v‖2 + 2 cos θ‖u‖ × ‖u + v‖ − ‖u‖2.

The quantity ‖u + v‖ is then a positive solution of an algebraic equation of
degree two. We deduce from ‖u‖ ≤ ‖v‖, that

‖u + v‖ = ‖u‖ cos θ +
√

‖v‖2 − sin 2θ‖u‖2.
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Hence

‖u + v‖ − ‖v‖ = ‖u‖ cos θ + ‖v‖




√

1 − sin 2θ
‖u‖2

‖v‖2 − 1





= ‖u‖ cos θ − ‖u‖2

‖v‖
sin 2θ

1 +
√

1 − ‖u‖2

‖v‖2 sin 2θ

.

The last equality together with the fact that ‖u‖ cos θ = (u + v) · u
‖u + v‖ proves

Lemma 4. ��
We continue the proofs of Theorems 1 and 2. We apply Lemma 4 with

u = alal+1, v = x0al and we get

(u + v) · u
‖u + v‖ = (x0al+1) · (alal+1)

|x0 − al+1| .

Moreover, we deduce from Lemma 4,

∣
∣∣∣dl+1 − dl − (x0al+1) · (alal+1)

|x0 − al+1|
∣
∣∣∣ ≤ min

( 1
N2|x0 − al| ,

2
N

)
. (22)

We first evaluate the sum over l ∈ HN(x0, δ) of the right hand side of the
last inequality. Let φ(l) be the cardinality of the set HN(x0, δ) ∩ {1, . . . , l}. For
l ∈ HN(x0, δ), we have |(x0al) · i| ≥ N−1(φ(l) − 1) , whence

∑

l∈HN(x0,δ)

min
( 1

N2|x0 − al| ,
2
N

)
≤ 1

N

∑

l∈HN

min
( 1
φ(l) − 1

, 2
)

≤ 2 + ln |HN |
N

.

(23)

With probability one, we have

sgn(cos θ0)(alal+1) · i + sgn(sin θ0)(alal+1) · j = 1
N

,

whence

∑

l∈HN(x0,δ)

(x0al+1) · (alal+1)

|x0 − al+1|

= sgn(cos θ0)

N

∑

l∈H1,N(x0,δ)

(x0al+1) · i
|x0 − al+1| + sgn(sin θ0)

N

∑

l∈H2,N(x0,δ)

(x0al+1) · j
|x0 − al+1| ,

(24)
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where

H1,N(x0, δ) = { l ∈ HN(x0, δ) : (alal+1) · j = 0
}
,

(25)
H2,N(x0, δ) = { l ∈ HN(x0, δ) : (alal+1) · i = 0

}
.

We now distinguish the case of the polygons and the case of the Jordan curves.

5.3 End of the proof for polygons (Theorem 1)

Lemma 5 For δ small enough, we have

lim
N→∞

∣∣∣∣νN

(
1
N

∑

l∈H1,N(x0,δ)

(x0al+1) · i
|x0 − al+1|

)
− νN

( |H1,N(x0, δ)|
N

)
cos θ0

∣∣∣∣ = 0,

lim
N→∞

∣∣∣
∣νN

(
1
N

∑

l∈H2,N(x0,δ)

(x0al+1) · j
|x0 − al+1|

)
− νN

( |H2,N(x0, δ)|
N

)
sin θ0

∣∣∣
∣ = 0.

Proof of Lemma 5 We only prove the first limit since the argument for the sec-
ond limit is similar. Let u be a unit vector tangent to γ at x0 and let v be such
that (u, v) is a direct basis. For ε > 0, let R(ε) be the strip of width 2ε centered
on the tangent line Tx0γ , i.e.,

R(ε) = { x ∈ IR2 : |x0x · v| ≤ ε }.

The condition (3) implies that for δ small enough,

∀ε > 0 lim
N→+∞ νN

(
∂Aσ

N ∩ B(x0, δ) ⊂ R(ε)
) = 1.

For δ small enough, limN→+∞ νN
(
∂Aσ

N ∩ B(x0, δ) ⊂ R(ε)
) = 1
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Let δ > 0 be small enough so that the above limit holds. Let δ0, ε such that
0 < ε < δ0 < δ and let x ∈ R(ε) \ B(x0, δ0). We have

x0x · i = (x0x · u) cos θ0 − (x0x · v) sin θ0,
|x0 − x|2 = (x0x · u)2 + (x0x · v)2,

whence

x0x · i
|x0 − x| =

(
1 − (x0x · v)2

|x0 − x|2
)1/2

cos θ0 − (x0x · v)

|x0 − x| sin θ0

and

∣∣∣∣
x0x · i

|x0 − x| − cos θ0

∣∣∣∣ ≤ 1 −
√

1 − ε2/δ2
0 + ε

δ0
≤ 2

ε

δ0
.

If the event { ∂Aσ
N ∩B(x0, δ) ⊂ R(ε) } occurs, then for l ∈ HN(x0, δ)\HN(x0, δ0),

we have al+1 ∈ R(ε) \ B(x0, δ0), and thus

lim sup
N→∞

νN

(

sup
l∈HN(x0,δ)\HN(x0,δ0)

∣∣∣∣
(x0al+1) · i
|x0 − al+1| − cos θ0

∣∣∣∣

)

≤ 2
ε

δ0
.

Moreover, we have
∣∣HN(x0, δ0)

∣∣ ≤ 2Nδ0, whence, by splitting the sum over
HN(x0, δ0) and HN(x0, δ) \ HN(x0, δ0), we obtain

lim sup
N→∞

∣∣∣∣νN

(
1
N

∑

l∈H1,N(x0,δ)

(x0al+1) · i
|x0 − al+1|

)
−νN

( |H1,N(x0, δ)|
N

)
cos θ0

∣∣∣∣ ≤ 4
δε

δ0
+4δ0.

We conclude by sending successively ε to 0 and δ0 to 0. ��
We obtain, combining (24) and lemma 5, that for δ small enough,

lim
N→∞

∣∣∣∣
∣∣
νN




∑

l∈HN(x0,δ)

(x0al+1) · (alal+1)

|x0 − al+1|





−
(

νN

( |H1,N(x0, δ)|
N

)
| cos θ0| + νN

( |H2,N(x0, δ)|
N

)
| sin θ0|

)
∣∣∣∣∣
∣
= 0.

(26)

Our purpose now is to evaluate, for N large enough, the expectations over
νN of |HN(x0, δ)|/N, |H1,N(x0, δ)|/N and |H2,N(x0, δ)|/N. For this, we prove the
following lemma.
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Lemma 6 For δ small enough, one has

lim
N→+∞ νN

( |HN(x0, δ)|
N

)
= δ| cos θ0|. (27)

Proof of Lemma 6 We denote by a and x′ the points of ∂B(x0, δ)\B(s, r) belong-
ing respectively to ∂Aσ

N and to Tx0γ . Let b be the point of ∂Aσ
N∩∂B(s, r)\B(x1, δ).

We suppose without loss of generality that (ba) · i ≥ 0.

In this case, γ is a polygon. The proportion of the horizontal edges of ∂Aσ
N which are

in B(x0, δ)\B(s, r) is controlled by δ| cos θ0|

We have, by definition of HN(x0, δ),

∣∣
∣∣
|HN(x0, δ)|

N
− |ba · i|

∣∣
∣∣ ≤

2
N

.

We use the same notation as in the proof of Lemma 5. We have

⋂

ε>0

R(ε) ∩ ∂B(x0, δ) \ B(s, r) = Tx0γ ∩ ∂B(x0, δ)\B(s, r) = {x′},

⋂

ε>0

R(ε) ∩ ∂B(s, r)\B(x1, δ) = Tx0γ ∩ ∂B(s, r) \ B(x1, δ) = {x0}.
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Let α > 0. By the above identities, there exists ε > 0 such that, if ∂Aσ
N ∩

B(x0, δ) ⊂ R(ε) , then |b − x0| < α and |a − x′| < α. Now, the condition (3)
implies that for δ small enough,

lim
N→+∞ νN

(
∂Aσ

N ∩ B(x0, δ) ⊂ R(ε)
) = 1.

Putting together the previous facts, we obtain that

lim sup
N→+∞

∣
∣∣∣νN

( |HN(x0, δ)|
N

)
− |x0x′ · i|

∣
∣∣∣ ≤ 2α.

Remarking that |x0x′ · i| = δ| cos θ0|, we conclude the proof by sending α to 0.
��

Now, let Lσ
1,N be the monotone path (v1, . . . , vs) as defined in the Sub-

Sect. 5.2. We obtain using the definition of H2,N(x0, δ), that |H2,N(x0, δ)| is
either N+(Lσ

1,N) or N−(Lσ
1,N). This fact together with the constatation that∣∣N+(L1,N) − N−(L1,N)

∣∣ ≤ 1, gives

∣∣∣∣∣
|H2,N(x0, δ)|

N
− N+(Lσ

1,N)

N

∣∣∣∣∣
≤ 1

N
.

Condition (4) together with the last inequality ensures, since
∣∣|H2,N(x0, δ)|

−CN(x0, δ)| ≤ 1,

lim
N→+∞ νN

( |H2,N(x0, δ)|
N

)
= δC(θ0). (28)

The two sets of indices H1,N(x0, δ) and H2,N(x0, δ) form a partition of HN(x0, δ),
hence

lim
N→+∞

∣∣∣
∣νN

( |H1,N(x0, δ)|
Nδ

)
− (|cos θ0| − C(θ0))

∣∣∣
∣ = 0. (29)

We obtain, collecting (21), (22), (23), (26), (28), (29) that

lim
N→∞

∣∣∣∣∣∣

1
δ
νN




δ∫

0

e1
N(α) · i dα





+sgn(cos θ0)
(

cos 2θ0 + C(θ0)
(∣∣ sin θ0

∣∣− ∣∣ cos θ0
∣∣))
∣∣∣∣∣∣
= 0.
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Using the same method, we prove that

lim
N→∞

∣∣∣∣∣
∣

1
δ
νN




δ∫

0

e2
N(α) · i d α





−sgn(cos θ1)
(

cos 2θ1 + C(θ1)
(∣∣ sin θ1

∣∣− ∣∣ cos θ1
∣∣))
∣∣∣∣∣
∣
= 0.

We finish the proof of Theorem 1 by combining Proposition 3 together with the
two last limits. ��

5.4 End of the proof for Jordan curves (Theorem 2)

To extend the proofs to Jordan curves, we have to generalize Lemmas 5 and 6
as follows.

Lemma 7 We have

lim
δ→0

lim sup
N→∞

∣∣∣∣νN

(
1

δN

∑

l∈H1,N(x0,δ)

(x0al+1) · i
|x0 − al+1|

)
− νN

( |H1,N(x0, δ)|
N

)
cos θ0

∣∣∣∣ = 0,

lim
δ→0

lim sup
N→∞

∣∣∣∣νN

(
1

δN

∑

l∈H2,N(x0,δ)

(x0al+1) · j
|x0 − al+1|

)
− νN

( |H2,N(x0, δ)|
N

)
sin θ0

∣∣∣∣ = 0.

Proof of Lemma 7 We only prove the first limit since the argument for the sec-
ond limit is similar. Let u be a unit vector tangent to γ at x0 and let v be such
that (u, v) is a direct basis. For ε > 0, let R(ε) be the strip of width 2ε centered
on the tangent line Tx0γ , i.e.,

R(ε) = { x ∈ IR2 : |x0x · v| ≤ ε }.

Since Tx0γ is the tangent to γ at x0, we have

lim
δ→0

1
δ

dH

(
γ ∩ B(x0, δ), Tx0γ ∩ B(x0, δ)

)
= 0. (30)

Let 0 < ε < 1, there exists δ0 > 0 such that, for δ < δ0,

dH

(
γ ∩ B(x0, δ), Tx0γ ∩ B(x0, δ)

)
≤ εδ/4.
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This fact together with condition (3) implies that there exists δ1 > 0 such that

∀δ < δ1 lim
N→+∞ νN

(
∂Aσ

N ∩ B(x0, δ) ⊂ R(εδ/2)
) = 1.

Let δ > 0 be such that δ < min(δ0, δ1). Let x ∈ R(εδ)\B(x0,
√

εδ). We have

x0x · i = (x0x · u) cos θ0 − (x0x · v) sin θ0,

|x0 − x|2 = (x0x · u)2 + (x0x · v)2,

whence

x0x · i
|x0 − x| =

(
1 − (x0x · v)2

|x0 − x|2
)1/2

cos θ0 − (x0x · v)

|x0 − x| sin θ0

and

∣
∣∣∣

x0x · i
|x0 − x| − cos θ0

∣
∣∣∣ ≤ 1 −

√
1 − ε + √

ε ≤ 2
√

ε.

If the event { ∂Aσ
N ∩ B(x0, δ) ⊂ R(εδ/2) } occurs, then al+1 ∈ R(εδ) \ B(x0,

√
εδ)

for l ∈ HN(x0, δ) \ HN(x0,
√

εδ), and thus

lim sup
N→∞

νN

(

sup
l∈HN(x0,δ)\HN(x0,

√
εδ)

∣∣∣∣
(x0al+1) · i
|x0 − al+1| − cos θ0

∣∣∣∣

)

≤ 2
√

ε.

Moreover, we have
∣∣HN(x0,

√
εδ)
∣∣ ≤ 2Nδ

√
ε, whence, by splitting the sum over

HN(x0,
√

εδ) and HN(x0, δ) \ HN(x0,
√

εδ), we obtain

lim sup
N→∞

∣∣∣∣νN

(
1

δN

∑

l∈H1,N(x0,δ)

(x0al+1) · i
|x0 − al+1|

)
− νN

( |H1,N(x0, δ)|
Nδ

)
cos θ0

∣∣∣∣ ≤ 8
√

ε.

This inequality being valid for all δ small enough, the proof is completed. ��

Lemma 8 We have

lim
δ→0

lim sup
N→+∞

∣
∣∣∣νN

( |HN(x0, δ)|
δN

)
− | cos θ0|

∣
∣∣∣ = 0 . (31)

Proof of Lemma 8 We denote, as in the proof of Lemma 6, by a and x′ the
points of ∂B(x0, δ)\B(s, r) belonging respectively to ∂Aσ

N and to γ . Let b be the
point of ∂Aσ

N ∩ ∂B(s, r)\B(x1, δ).
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The random points a and b are approximated, for N large enough,

respectively by x′ and x0

We have, by definition of HN(x0, δ),

∣∣∣∣
|HN(x0, δ)|

N
− |ba · i|

∣∣∣∣ ≤
2
N

.

We suppose that r is small enough so that Tx0γ is not tangent to the circle
∂B(s, r). Let α > 0. There exists ε > 0 depending on α and the angle of the
tangent Tx0γ with ∂B(s, r) such that

∀δ > 0 { ∂Aσ
N ∩ B(x0, δ) ⊂ R(εδ) } ⇒ |b − x0| < αδ, |a − x′| < αδ.

Now as in the proof of Lemma 7, the condition (3) together with (30) implies
that for δ small enough,

lim
N→+∞ νN

(
∂Aσ

N ∩ B(x0, δ) ⊂ R(εδ)
) = 1.

Putting together the previous facts, we obtain that

lim sup
N→+∞

∣∣∣
∣νN

( |HN(x0, δ)|
N

)
− |x0x′ · i|

∣∣∣
∣ ≤ 2αδ.
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Remarking that |x0 − x′| = δ, and that

lim
δ→0

|x0x′ · i|
|x0 − x′| = | cos θ0|,

we conclude the proof by sending α to 0. ��
Corollary 2 We have

lim
δ→0

lim sup
N→+∞

∣∣∣∣νN

( |H1,N(x0, δ)|
δN

)
− (| cos θ0| − C(θ0))

∣∣∣∣ = 0 . (32)

lim
δ→0

lim sup
N→+∞

∣∣∣∣νN

( |H2,N(x0, δ)|
δN

)
− C(θ0)

∣∣∣∣ = 0 . (33)

Proof of Corollary 2 The limit in (33) is deduced from the condition (6) since
by definition

∣∣|H2,N(x0, δ)| − CN(x0, δ)
∣∣ ≤ 1

N
.

The first limit is deduced by combining (33) and the result of Lemma 8, since
H2,N(x0, δ) and H1,N(x0, δ) form a partition of HN(x0, δ). ��

We obtain, collecting (21), (22), (23), (24), Lemma 7, (32) and (33) that

lim
δ→0

lim sup
N→∞

∣∣
∣∣∣∣

1
δ
νN




δ∫

0

e1
N(α) · i dα





+sgn(cos θ0)
(

cos2 θ0 + C(θ0)
(∣∣ sin θ0

∣∣− ∣∣ cos θ0
∣∣))
∣∣
∣∣∣∣
= 0.

Using the same method, we prove that

lim
δ→0

lim sup
N→∞

∣∣
∣∣∣∣

1
δ
νN




δ∫

0

e2
N(α) · i d α





−sgn(cos θ1)
(

cos 2θ1 + C(θ1)
(∣∣ sin θ1

∣∣− ∣∣ cos θ1
∣∣))
∣
∣∣∣∣∣
= 0.

We get the expression of limδ→0 lim supN→∞ νN
(
Aσ ,γ

N (s, r, δ)
)

of Theorem 2 by
combining Proposition 3 together with the two last limits. The lim inf can be
handled similarly. ��
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5.5 Proof of Proposition 1

In this case the condition 3 of Theorem 1 is satisfied and we have only to check
the limit in (6) and to precise the value of the function C defined there. For this,
we need the following lemma.

Lemma 9 Let A and B be two points of IR2. For each fixed integer N, let LN
denote one of the two maximal subpaths of ∂([AB]N) not crossing the line (AB).
Let N+(LN) be as defined in (11). Then

lim
N→+∞

N+(LN)

N
= |(AB) · i| ∧ |(AB) · j| ,

where a ∧ b = min(a, b).

Proof of Lemma 9 We suppose without loss of generality that AB · i and AB · j
are positive. Let θ denote the angle between AB and i. We consider only the
case 0 ≤ tan θ < 1, since the proofs for the cases tan θ > 1 and tan θ = 1 are
similar. We denote by AN and BN the extreme points of LN . Our task is to
prove that

(ANBN) · j = N+(LN)

N
. (34)

The identity (34) will prove Lemma 9 since limN→+∞(ANBN) · j = (AB) · j and
0 ≤ tan θ < 1.

We first prove the equality (34) for N+(LN) = 1. When N+(LN) = 1, the path
LN contains a unique monotone path L′

N = (v1, w1, . . . , wr) such that v1 · j = 0,
v1 · w1 = 0 and w1 · i = · · · = wr · i = 0. These vectors are drawn on the lattice
ZZ2

N and arranged according to the direct sense.
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Let C1, C2 be the two points of (AB) such that (C1C2) · i = 1/N and that the
path L′

N cover the segment [C1, C2]. By construction

(C1C2) · j >
r − 1

N
,

hence

tan θ = (C1C2) · j
(C1C2) · i

> r − 1.

Since 0 ≤ tan θ < 1, we deduce that r = 1. Now let B1, B2 be the two points of
(AB) belonging to the boundary of the box of [AB]N that contains the point B.
Since 0 ≤ tan θ < 1, we have

|(B1B2) · j| <
1
N

.

This fact together with r = 1 proves that the path LN is equal to (e1, . . . , em, w1, f1,
. . . , fn), where the vectors (ei) and (fi) are copies of the vector v1, so that they
are all horizontal. Hence (ANBN) · j = 1/N. The general case when N+(LN) > 1
is proved by induction on N+(LN). ��
Proof of polygons Lemma 9 together with Theorem 1 yield the control of Aσ ,�

N
(s, r, δ) for a class of regular polygons � defined as follows.
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m-smooth polygons Let s1, . . . , sm be m points of IR2. We denote by �(s1, . . . ,
sm) or by �, if there is no ambiguities, the polygon in IR2 linking the points
[s1, s2, . . . , sm, s1]; the points s1, s2, . . . , sm are then the corner points of �. We
suppose that the points s1, s2, . . . , sm are arranged counterclockwise. By conven-
tion, we set s0 = sm. To each site si, we associate two oriented angles θi(si) and
θi−1(si) such that θi−1(si) (respectively θi(si)) is the oriented angle between the
half horizontal axis [0, +∞[ and the segment [si, si−1[ (respectively [si, si+1[).

Finally, we suppose that � encloses a connected, compact, bounded set U of
IR2 i.e. � = ∂U and that � ∩ ZZ2/N = ∅ for all N ≥ 1.
Initial condition We will consider σ the spin configuration associated to the
polygon � at step N.

Γ

A polygon � and the configuration σ

Lemma 9 allows to apply Theorem 1 with C(θk) = | sin θk| ∧ | cos θk|. Doing so,
we get the following proposition.

Proposition 4 Let � be an m-smooth polygon in IR2 associated to the m points
s1, . . . , sm and let σ0 := σ0,N be the associated initial configuration at step N. Let
θi ∈ [0, 2π ] (respectively θi−1 ∈ [0, 2π ]) be the oriented angle between the half
horizontal axis [0, +∞[ and the segment [si, si+1[ (respectively [si, si−1[) with the
convention that s0 = sm. Then, for each i = 1, . . . , m, and for any positive real
numbers r, δ small enough, one has

lim
N→+∞ Aσ ,�

N (si, r, δ)= 1
4

sin 2θi−1
(
2I| sin θi−1|<| cos θi−1|−1

)

−1
4

sin 2θi
(
2I| sin θi|<| cos θi|−1

)+ 1
2

(
sgn(tan θi)I| sin θi|<| cos θi|
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−sgn(tan θi−1)I| sin θi−1|<| cos θi−1|
)+ Isin θi−1 sin θi>0

(
sgn(θi − θi−1)

×Icos θi−1 cos θi>0 + sgn(tan θi−1)Icos θi−1 cos θi<0
)

.

Hence,

• if (θi−1, θi) ∈ [(2k+1)π4 , (2k+3)π4 ]× [(2k+5)π4 , (2k+7)π4 ], with k ∈ {0, 2},
then

lim
N→+∞ Aσ ,�

N (si, r, δ) = 1
4

(
sin 2θi − sin 2θi−1

)
.

• if (θi−1, θi) ∈ [(2k+1)π4 , (2k+3)π4 ]× [(2k+5)π4 , (2k+7)π4 ], with k ∈ {1, 3},
then

lim
N→+∞ Aσ ,�

N (si, r, δ) = 1
4

(
sin 2θi−1 − sin 2θi

)
.

• if (θi−1, θi) ∈ [(2k + 1)π4 , (2k + 3)π4 ]2, with k ∈ {0, 2}, then

lim
N→+∞ Aσ ,�

N (si, r, δ) = 1
4

(
4 sgn(θi − θi−1) + sin 2θi − sin 2θi−1

)
.

• if (θi−1, θi) ∈ [(2k + 1)π4 , (2k + 3)π4 ]2, with k ∈ {1, 3}, then

lim
N→+∞ Aσ ,�

N (si, r, δ) = 1
4

(
4 sgn(sin (θi − θi−1)) + sin 2θi−1 − sin 2θi

)
.

• if (θi−1, θi) ∈ [(2k + 1)π4 , (2k + 3)π4 ] × [(2k + 3)π4 , (2k + 5)π4 ] ∪ [(2k + 3)π4 ,
(2k + 5)π4 ] × [(2k + 1)π4 , (2k + 3)π4 ], with k ∈ {0, 2}, then

lim
N→+∞ Aσ ,�

N (si, r, δ) =






1
4
(
2 − sin 2θi − sin 2θi−1

)
if | tan θi| ≤ 1, | tan θi−1| ≥ 1

1
4
(−2 + sin 2θi−1 + sin 2θi

)
if | tan θi| ≥ 1, | tan θi−1| ≤ 1.

• if (θi−1, θi) ∈ [(2k + 1)π4 , (2k + 3)π4 ] × [(2k + 3)π4 , (2k + 5)π4 ] ∪ [(2k + 3)π4 ,
(2k + 5)π4 ] × [(2k + 1)π4 , (2k + 3)π4 ], with k ∈ {1, 3}, then

lim
N→+∞ Aσ ,�

N (si, r, δ) =






1
4
(−2 − sin 2θi − sin 2θi−1

)
if | tan θi| ≤ 1, | tan θi−1| ≥ 1

1
4
(
2 + sin 2θi−1 + sin 2θi

)
if | tan θi| ≥ 1, | tan θi−1| ≤ 1.

Remark We denote by L�(si) = limN→+∞ Aσ ,�
N (si, r, δ), where � is a polygon

as described by Proposition 4. Then we can check the following comparison
criterion.
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If U ∩ B(si, r) ⊂ U′ ∩ B(si, r) for some r > 0 and si ∈ � ∩ �′,
then L�(si) ≤ L�′ (si)

We illustrate the results of Proposition 4 with the help of the following pictures.

Here limN→+∞ Aσ ,�
N (si, r, δ) = 1

4
(
sin 2θi − sin 2θi−1

)
.

In the first picture this limit is negative, while for the second one it is positive
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In the following picture, we have limN→+∞ Aσ ,�
N (si, r, δ) = 1

4
(
sin 2θi−1 − sin 2θi

)
.

This limit is negative
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Here limN→+∞ Aσ ,�
N (si, r, δ) = 1

4
(
4 + sin 2θi − sin 2θi−1

)
.

This limit is positive

In the following picture, we have limN→+∞ Aσ ,�
N (si, r, δ) = 1

4
(
2 − sin 2θi−1 − sin 2θi

)
.

This limit is positive
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Here limN→+∞ Aσ ,�
N (si, r, δ) = 1

4
(−2 − sin 2θi − sin 2θi−1

)
.

This limit is negative

Proof for Jordan curves We consider now the case of Jordan curves. In order
to apply Theorem 2, we have to check the condition (6). For this, we generalize
Lemma 9 as follows.

Lemma 10 Let f be a monotone function of class C1 defined on [a, b]. Let LN
denote one of the two maximal subpaths of ZZ2

N covering f . Let N+(LN) be as
defined in (11). Then

lim
N→+∞

N+(LN)

N
=

b∫

a

(|f ′(x)| ∧ 1
)

dx.

Proof of Lemma 10 We suppose without loss of generality that the function f is
nondecreasing on [a, b]. Let (Ii)i∈I be the collection of the open intervals where
f ′ − 1 is nonzero. Setting Ii =]xi−1, xi[ for i ∈ I, we have

(
f (xi) − f (xi−1)

xi − xi−1

)
∧ 1 = 1

xi − xi−1

xi∫

xi−1

(f ′(x) ∧ 1) dx. (35)

We denote by fi the restriction of f to [xi−1, xi[ and by L(i)
N the associated polyg-

onal line. We deduce from the suitable construction of the intervals (Ii)i∈I and
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arguing as in the proof of Lemma 9, that

lim
N→+∞

N+(L(i)
N )

N
= (xi − xi−1) ∧ (f (xi) − f (xi−1)).

Hence

lim
N→+∞

N+(LN)

N
=
∑

i∈I

(xi − xi−1) ∧ (f (xi) − f (xi−1)).

Lemma 10 is proved by collecting the last bound together with (35). ��
We define a monotone function f , such that the part of γ limited by x0 and

x0(δ) (where x0(δ) is the point of γ ∩ ∂B(x0, δ) \ B(s, r)) is equal to the graph
{(x, y) : y = f (x)} and we apply Lemma 10 to the monotone path LN covering
the part of γ limited by x0 and x0(δ). We deduce, since |N+(LN) − CN(x0, δ)| ≤ 1,
that

lim
N→+∞

CN(x0, δ)
Nδ

= 1
δ

∫

Iδ

(|f ′(x)| ∧ 1
)

dx

= | cos θ(δ)| 1
Iδ

∫

Iδ

(|f ′(x)| ∧ 1
)

dx,

where Iδ is the segment [x0 · i, x0(δ) · i]. We obtain, taking the limit over δ → 0
in the last equality,

lim
δ→0

lim
N→+∞

CN(x0, δ)
Nδ

= | cos θ0|
(|f ′(x0 · i)| ∧ 1

) = | cos θ0| ∧ | sin θ0|.

We then obtain from the conclusion of Theorem 2, that for r small enough,

lim
δ→0

lim inf
N→+∞ Aσ ,γ

N (s, r, δ) = lim
δ→0

lim sup
N→+∞

Aσ ,γ
N (s, r, δ) (36)

= 1
4

sin 2θ0

(
2I| sin θ0| < | cos θ0| − 1

)

−1
4

sin 2θ1

(
2I| sin θ1| < | cos θ1| − 1

)

+1
2

(
sgn(tan θ1)I| sin θ1| < | cos θ1|

−sgn(tan θ0)I| sin θ0| < | cos θ0|
)

+Isin θ0 sin θ1 > 0
(

sgn(θ1 − θ0)Icosθ0 cos θ1 > 0

+sgn(tan θ0)Icos θ0 cos θ1 < 0
)

. (37)
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End of the proof of Proposition 1 In order to prove Proposition 1, we suppose
first that θ takes a value different from (2k + 1)π4 , for k ∈ IN. Since the curve
γ admits a tangent at the point s, then for r small enough, (θ0, θ1) belongs to
[(2k + 1)π4 , (2k + 3)π4 ] × [(2k + 5)π4 , (2k + 7)π4 ], for some k ∈ IN. We then
deduce from (36) that,

• if (θ0, θ1) ∈ [(2k + 1)π4 , (2k + 3)π4 ] × [(2k + 5)π4 , (2k + 7)π4 ], with k ∈ {0, 2},
then

lim
δ→0

lim
ε→0

lim sup
N→+∞

Aσ ,γ
N (s, r, δ) = 1

4
(sin 2θ1 − sin 2θ0) .

• if (θ0, θ1) ∈ [(2k + 1)π4 , (2k + 3)π4 ] × [(2k + 5)π4 , (2k + 7)π4 ], with k ∈ {1, 3},
then

lim
δ→0

lim sup
N→+∞

Aσ ,γ
N (s, r, δ) = 1

4
(sin 2θ0 − sin 2θ1) .

We now need the following lemma.

Lemma 11 Let γ be a Jordan curve of IR2 of class C2. Let s be a fixed point
of γ . Let r be a positive real number sufficiently small such that ∂B(s, r) ∩ γ

contains exactly two points x0 and x1. Suppose that x0, s and x1 are arranged
counterclockwise. Let s′ be the common point to Tx0γ and Tx1γ . Let θ1 ∈ [0, 2π ]
(respectively θ0 ∈ [0, 2π ]) be the oriented angle between the half horizontal axis
[0, +∞[ and the segment [s′, x1[ (respectively [s′, x0[). Then

lim
r→0

sin (θ0 − θ1)

2r
= ξγ (s),

and

lim
r→0

cos (θ0 + θ1) = − cos 2θ ,

where θ is the angle between the half horizontal axis [0, +∞[ and Tsγ .

Lemma 11, together with the two equalities just above Lemma 11 and the
fact sin 2a − sin 2b = 2 sin (a − b) cos (a + b), gives

lim
r→0

lim
δ→0

lim sup
N→+∞

1
2r

Aσ ,γ
N (s, r, δ) =






1
2 (cos 2θ) ξγ (s) if θ ∈](1 + 4k) π

4 , (3 + 4k) π
4 [

− 1
2 (cos 2θ) ξγ (s) if θ ∈](3 + 4k) π

4 , (5 + 4k) π
4 [.

which proves Theorem 1 when θ is different from (2k+1)π4 , for k ∈ IN. Now, sup-
pose that θ = π

4 and that for any r small enough (θ0, θ1) ∈ [π4 , 3π
4 ] × [3π

4 , 5π
4 ]

(the arguments for the proof for the other values of θ and the corresponding
values of θ1, θ0 will be similar). We have in that case,
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lim
δ→0

lim sup
N→+∞

Aσ ,γ
N (s, r, δ) = 1

4
(2 − sin 2θ1 − sin 2θ0)

= 1
2

(
sin
(π

4
− θ1

)
cos
(π

4
+ θ1

)
+ sin

(π
4

− θ0

)

× cos
(π

4
+ θ0

))
. (38)

Now the method of the proof of Lemma 11 gives

lim
r→0

sin (θ − θ1)

r
= lim

r→0

sin (θ − θ0)

r
= −ξγ (s).

This fact, together with (38), leads to

lim
r→0

lim
δ→0

lim sup
N→+∞

1
r

Aσ ,γ
N (s, r, δ) = 0,

which is the conclusion of Theorem 1 for θ = π
4 .

Proof of Lemma 11 We begin by giving the definition of the curvature of γ at
any s ∈ γ .

Definition Let γ be a smooth Jordan curve of IR2. Suppose that (φ(t))t∈[−1,1] is
a parametrization of the curve γ . Let s = φ(t) = (x(t), y(t)) be a fixed point of γ .
The curvature of γ at the point s is defined by

ξγ (s) = x′(t)y′′(t) − x′′(t)y′(t)
(x′2(t) + y′2(t))3/2

.

Let s, x0 and x1 be as defined in Lemma 11. Let t, t0 and t1 be three real num-
bers of [−1, 1] such that s = φ(t) = (x(t), y(t)), and for i ∈ {0, 1}, xi = φ(ti) =
(x(ti), y(ti)). We have r2 = (x(ti) − x(t))2 + (y(ti) − y(t))2, for i ∈ {0, 1}. Hence

lim
t0→t, t0<t

r
t − t0

=
√

x′2(t) + y′2(t), lim
t1→t, t<t1

r
t1 − t

=
√

x′2(t) + y′2(t).

For any τ ∈ [−1, 1], define f (τ ) = x′(τ )√
x′2(τ ) + y′2(τ )

. We have

f ′(τ ) = x′′(τ )
√

x′2(τ ) + y′2(τ )
− x′(τ )

x′(τ )x′′(τ ) + y′(τ )y′′(τ )

(x′2(τ ) + y′2(τ ))3/2
.

Hence

cos θ0 = − x′(t0)√
x′2(t0) + y′2(t0)

= − x′(t)
√

x′2(t) + y′2(t)
+ (t − t0)f ′(t) + o (|t − t0|) . (39)
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cos θ1 = x′(t)
√

x′2(t) + y′2(t)
+ (t1 − t)f ′(t) + o (|t1 − t|) . (40)

We obtain, combining the last two equalities

lim
t1→t, t0→t, t0<t<t1

cos θ0 + cos θ1

r
= 2x′′(t)

x′2(t) + y′2(t)
− 2x′(t)x′(t)x′′(t) + y′(t)y′′(t)

(x′2(t) + y′2(t))2
.

The last limit together with

lim
t1→t, t<t1

sin θ1 = y′(t)
√

x′2(t) + y′2(t)
,

ensures

lim
t1→t, t0→t, t0<t<t1

1
r

sin θ1 (cos θ0 + cos θ1)

= 2x′′(t)y′(t)
(x′2(t) + y′2(t))3/2

− 2x′(t)y′(t)x′(t)x′′(t) + y′(t)y′′(t)
(x′2(t) + y′2(t))5/2

.

In the same way, we prove that

lim
t1→t, t0→t, t0<t<t1

1
r

cos θ1 (sin θ0 + sin θ1)

= 2x′(t)y′′(t)
(x′2(t) + y′2(t))3/2

− 2x′(t)y′(t)x′(t)x′′(t) + y′(t)y′′(t)
(x′2(t) + y′2(t))5/2

.

The last two limits together with

sin (θ0 − θ1) = cos θ1 (sin θ1 + sin θ0) − sin θ1 (cos θ0 + cos θ1) ,

prove that

lim
t1→t, t0→t, t0<t<t1

1
2r

sin (θ0 − θ1) = x′(t)y′′(t) − x′′(t)y′(t)
(x′2(t) + y′2(t))3/2

.

Now the equality

cos (θ0 + θ1) = cos θ0 cos θ1 − sin θ0 sin θ1,

together with the limits (39), (40), yields

lim
t1→t, t0→t, t0<t<t1

cos (θ0 + θ1) = y
′2(t) − x

′2(t)
x′2(t) + y′2(t)

.

The last limit is equal to − cos 2θ , where θ is the angle between the horizontal
axis and Tsγ . ��
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5.6 Proof of Proposition 2

Our purpose is to apply Theorem 2. So we have to check, the requirements of
Theorem 2. We first prove the condition (3). We claim that, for all ε > 0,

lim
N→∞ µN (sup |�N(xN) − f (xN)| ≥ ε) = 0, (41)

where the supremum is taken over xN ∈ [a, b] ∩ ZZ
N .

Proof of (41) For l ∈ ZZ, we denote by η( l
N ) the height difference η( l

N ) =
�N( l+1

N ) − �N( l
N ). Without loss of generality, we will take a = 0. We write, for

k
N ∈ [0, b] ∩ ZZ

N ,

�N

(
k
N

)
−f
(

k
N

)
=

k−1∑

l=0

(
η

(
l

N

)
−
(

f
(

l + 1
N

)
−f
(

l
N

)))
+ (�N(0) − f (0)) .

The last equality gives, since µN

(
η
(

k
N

))
= 1

N |f ′|
(

k
N

)
,

�N

(
k
N

)
− f
(

k
N

)

=
k−1∑

l=0

(
η

(
l

N

)
− µN

(
η

(
l

N

)))

−
k−1∑

l=0

((
f
(

l + 1
N

)
− f
(

l
N

))
− 1

N
|f ′|
(

l
N

))
+ (�N(0) − f (0)) .

We deduce from the last equality, assumption (2) of Proposition 2 and the fact

k−1∑

l=0

∣∣
∣∣f
(

l + 1
N

)
− f
(

l
N

)
− 1

N
|f ′|
(

l
N

)∣∣
∣∣ ≤

b
N

‖f ′′‖∞,

that (41) is proved as soon as,

lim
N→∞ µN



 sup
0≤k≤ Nb

∣∣∣∣∣
∣

k−1∑

l=0

(
η

(
l

N

)
− µN

(
η

(
l

N

)))
∣∣∣∣∣
∣
≥ ε



 = 0. (42)

For this, we use a Markov inequality, the independence of the random vari-
ables (η( l

N ))l∈ZZ and a Rosenthal inequality (cf. Sect. 2.6.19 and Theorem 2.9 of
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Petrov (1995)). We get, for an universal constant C,

µN



 sup
0≤k≤ Nb

∣
∣∣∣∣∣

k−1∑

l=0

(
η

(
l

N

)
− µN

(
η

(
l

N

)))
∣
∣∣∣∣∣
≥ ε





≤ 1
ε3 µN



 sup
0≤k≤ Nb

∣∣∣∣
∣∣

k−1∑

l=0

(
η(

l
N

) − µN

(
η(

l
N

)

))
∣∣∣∣
∣∣





3

≤ C
ε3









Nb∑

l=0

VarµN

(
η

(
l

N

))



3/2

+
Nb∑

l=0

µN

(∣∣∣∣η
(

l
N

)
− µN

(
η

(
l

N

))∣∣∣∣

3
)




.

The last estimations and the fact that, for some constant C depending on ‖f ′‖∞,

VarµN η

(
l

N

)
= 1

N2 |f ′|
(

l
N

)(
1 + |f ′|

(
l

N

))2

, µN

(∣∣∣∣η
(

l
N

)∣∣∣∣

3
)

≤ C
1

N3

give

µN



 sup
0≤k≤ Nb

∣∣∣∣
∣∣

k−1∑

l=0

(
η

(
l

N

)
− µN

(
η

(
l

N

)))
∣∣∣∣
∣∣
≥ ε



 = O
((

1
N

)3/2
)

,

which proves (42) and then (41). Now (41) allows to deduce the condition (3).
We deduce from the definition of µN , that for any N ∈ IN∗

∀k ∈ [Na, Nb] ∩ ZZ µN

(
sgn
(

η

(
k
N

)
f ′
(

k
N

))
< 0
)

= 0.

Since the graph of the monotone function f coincides with the restriction of
γ over [a, b], we conclude from the above formula that ∂AN

σ ∩ S(s, r, δ, δ) and
γ ∩ S(s, r, δ, δ) are both nondecreasing or both nonincreasing.

Our task now is to check the condition (6) and to precise the value of the cor-
responding function C. Recall that f and �N are both increasing or decreasing.
Therefore

CN(x0, δ) =
∑

x0·i≤k/N≤ δ| cos θ0|+x0·i
I
η( k

N ) �= 0,
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where the quantity CN(x0, δ) is defined just before Theorem 1. We have

1
Nδ

µN (CN(x0, δ)) = 1
Nδ

∑

x0·i ≤k/N≤ δ| cos θ0|+x0·i
µN

(
η

(
k
N

)
�= 0
)

= 1
Nδ

∑

x0·i≤k/N≤ δ| cos θ0|+x0·i

|f ′|
(

k
N

)

1 + |f ′|
(

k
N

) .

The last equality gives

lim
N→∞

1
Nδ

µN (CN(x0, δ)) = 1
δ

δ| cos θ0|+x0·i∫

x0·i

|f ′|(x)

1 + |f ′|(x)
d x.

Hence

lim
δ→0

lim
N→∞

1
Nδ

µN (CN(x0, δ)) = | cos θ0| |f ′|(x0 · i)
1 + |f ′|(x0 · i)

= | cos θ0| | tan θ0|
1 + | tan θ0|

= | sin (2θ0)|
2(| sin θ0| + | cos θ0|) = C(θ0).

We have assumed in Proposition 2 that the curve γ is monotone in B(s, r) ∪
B(x0, δ) ∪ B(x1, δ). This fact allows to deduce that,

sin θ0 sin θ1 ≤ 0, cos θ0 cos θ1 ≤ 0.

We use the last constatation together with the conclusion of Theorem 2 to
obtain,

lim
δ→0

lim sup
N→∞

µN
(
Aσ ,γ

N (s, r, δ)
) = lim

δ→0
lim inf
N→∞ µN

(
Aσ ,γ

N (s, r, δ)
)

(43)

= 1
2

sgn(tan θ0)
(

cos 2θ1 − cos 2θ0

)

+1
2

sgn(tan θ0)

( | sin (2θ1)|
2(| sin θ1| + | cos θ1|) (|sin θ1| − |cos θ1|)

− | sin (2θ0)|
2(| sin θ0| + | cos θ0|) (|sin θ0| − |cos θ0|)

)
.
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We have

sgn(tan θ0)

( | sin (2θ1)|
2(| sin θ1| + | cos θ1|) (|sin θ1| − |cos θ1|)

− | sin (2θ0)|
2(| sin θ0| + | cos θ0|) (|sin θ0| − |cos θ0|)

)

= sin θ1 cos θ1

(| sin θ1| + | cos θ1|) (|sin θ1| − |cos θ1|) − sin θ0 cos θ0

(| sin θ0| + | cos θ0|)

× (|sin θ0| − |cos θ0|) = − sin (θ0 − θ1)

(|sin θ1| + |cos θ1|)(| sin θ0| + | cos θ0|)

+
(cos 2θ1−cos 2θ0)(sin θ0 cos θ1+sin θ1 cos θ0+cos θ0 cos θ1sgn(tan θ0)+

sin θ0 sin θ1sgn(tan θ0))

(|sin θ1| + |cos θ1|)(| sin θ0| + | cos θ0|)

= − sin(θ0−θ1)

(|sin θ1|+|cos θ1|)(| sin θ0|+| cos θ0|) −sgn(tan θ0)(cos2 θ1−cos2 θ0).

We conclude from (43) together with the last equalities,

lim
δ→0

lim sup
N→∞

µN
(
Aσ ,γ

N (s, r, δ)
) = lim

δ→0
lim inf
N→∞ µN

(
Aσ ,γ

N (s, r, δ)
)

= − sin (θ0 − θ1)

2(|sin θ1| + |cos θ1|)(| sin θ0| + | cos θ0|) .

The last limit together with Lemma 11 completes the proof of Proposition 2. ��
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