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Abstract We consider the 2D stochastic Ising model evolving according to the
Glauber dynamics at zero temperature. We compute the initial drift for drop-
lets which are suitable approximations of smooth domains. A specific spatial
average of the derivative at time 0 of the volume variation of a droplet close to
a boundary point is equal to its curvature multiplied by a direction dependent
coefficient. We compute the explicit value of this coefficient.
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1 Introduction

The phenomenological theory asserts that the evolution of the shape of a droplet
of one phase immersed in another phase is governed by the motion by mean
curvature. We are still far from being able to verify this assertion starting from a
genuine microscopic dynamics. Very interesting results have been obtained in a
series of works in the context of the Ising model with Ka¢ potentials [4-7]. How-
ever, motion by mean curvature is recovered in some scaling limit where the
range of the interactions diverges to infinity: the model becomes somehow close
to a mean—field model and the ensuing motion is isotropic. For the true Ising
model with only nearest-neighbour interactions, it is expected that an inter-
face between the minus and the plus phase evolves according to an anisotropic
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380 R. Cerf, S. Louhichi

Evolution of a square droplet

motion by mean curvature, that is, each point x of the interface has velocity

V() = —c(vx)§v(x),
where v(x) is the vector normal to the interface at x, & is the curvature of the
interface at x and c(v) is a coefficient depending on the direction of v. This
anisotropy stems from the anisotropy of the cubic lattice.

In this paper, we consider the zero temperature Glauber dynamics for the 2D
Ising model. Although we do not succeed in deriving the full motion by mean
curvature, we manage to compute the initial drift for droplets which approxi-
mate suitably smooth domains and we believe this is a crucial step. Four works
are directly relevant. Spohn [10] establishes the mean curvature motion in the
context of the 2D Ising model at zero temperature for interfaces which can
be represented as the graph of a function (but the fine details of his argument
are not written out). Although his results do not apply directly to the case of
a full droplet, he succeeds in particular in deriving an explicit formula for the
coefficient c(v). We recover the same formula here with a different approach.
The computation we present here can be considered to be a refinement of the
observation of [3]. Chayes et al. [3] proved a Lifshitz law for the volume of a
two-dimensional droplet at zero temperature (for a technical reason, they work
with a slightly modified dynamics). Instead of looking at the total volume of the
droplet, we shall concentrate here on the volume variation of the droplet in a
small ball attached to its boundary. Chayes and Swindle [2] study the hydrody-
namical limit of the zero range process (we do not understand fully their proof);
by interpreting the interface as a one dimensional exclusion process, they con-
clude that the evolution of the shape of one corner of a square droplet should
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The initial drift of a 2D droplet at zero temperature 381

be described in the hydrodynamical limit by an appropriate Stefan problem.
Finally, Sowers [9] develops in a framework of geometric measure theory to
obtain the hydrodynamical limit. His convergence theorem is conditional on
the verification of several assumptions, some of them concerning the struc-
ture of the interface. It might be that these estimates are the missing pieces to
complete the picture.

Let us turn now to the description of our result. We work with the stochastic
Ising model evolving according to the Glauber dynamics at zero temperature.
We consider the diffusive limit where space is rescaled by a factor N and time is
speeded up by a factor N2. We start with a plus droplet immersed in the minus
phase, whose boundary is a C1 simple Jordan curve y: the initial configuration at
step N is a suitable approximation of the smooth droplet, drawn on the square
lattice Z2/N. We consider two cases:

Deterministic initial condition The approximating set at step N consists of the
squares of the lattice ZZ?/N which intersect the interior of y.

Initial local equilibrium The approximating set at step N is random. Its bound-
ary converges in probability towards y as N goes to co and its law up is given
by the invariant measure of the associated zero range process.

The droplet is immersed in the minus phase, hence all the sites of the approx-
imating set are initially set to plus, while the other sites of the lattice are set to
minus. We then look at the process (op2;,¢ > 0) and we denote by Ay () the
plus droplet at time N?¢ starting from o. Let x be a point of y. We study the
variation of the magnetization inside the ball B(x, r) centered at x with radius ,
for r small. Equivalently, we look at the volume vol(B(x,r) N AY (1)) of the plus
droplet in this ball and we aim at computing its derivative

lim % (vol(B(x, nNAY (@) —vol(B(x,r) N AY (0))).

Several problems arise. Since the dynamics proceeds by jumps, we have to take
the expectation to get a differentiable quantity. Next we wish to link the infin-
itesimal volume variation with the curvature of the droplet’s boundary at x.
To achieve this, we need to recover the slope of the continuous curve from its
approximation. We perform a spatial averaging. Letting x¢, x; be the two points
of y which belong to the sphere dB(x, ), we consider the domain

Sx,r,a1,00) = B(x,r) U B(xg,01) U B(x1,02),

and we denote by Sy its discretization at step N. The quantity of primary
interest to link the volume variation and the curvature is

AL (x,r,8) =

§ &
12 / / lim LE ((vol(AQV (1) N Sy)) — vol (AN (0) N SN)) doy doty.
) t—0

00
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Let 6 be the angle of the tangent to y at x and let &, (x) be the curvature of y
at x. Our main result states that, for the deterministic initial condition,

1 1
lim lim liminf — y(x r,8) = lim lim limsup — ;’y (x,7,6)
r—08—0 N—oo 2r =080 N_oo 2F

= _§| cos (20) 15y (x)
while with the initial local equilibrium,

1 1
lim lim hmmf 2—MN(AN (x,r,8)) = lim lim lim sup 2—,U,N(AN (x,1,6))
r

r—0486-0 N— r—06—0 N

_ &y (%)
2(]cos 6| + | sin 6])%°

In fact, we compute the above limits for a more general class of initial condi-
tions, which includes the two cases above. The natural case should be the one
studied by Spohn, where the configuration is locally in equilibrium. We expect
that, starting from any initial configuration, the law of a straight interface will
converge quickly to the equilibrium law of the associated zero range process.
This indicates that the limit (A(f),r > 0) of any decently converging subse-
quence of the stochastic motion (AN (f),¢ > 0) should satisfy the equation, for
any s > 0 and for any x € 3.A(s),

lim lim —= // im — ]E (vol(A(H) NS) — vol(A(s) N S)) daq day
r—0 §—0 2}’8 l—>b

_ gBA(s) (x)
2(| cos 6| + | sin 6])2

or at least a weaker variant of it. Here (A(¢),t > 0) is a random process describ-
ing the evolution of the shape of the droplet. A standard computation shows
that the deterministic motion by mean curvature satisfies this equation. How-
ever we do not know whether it is the only solution to this equation; we have
not investigated the corresponding theory so far. For instance, can one get rid
of the expectation? Anyway, we are still far from establishing that the hydrody-
namical limit of the droplet process satisfies the above equation. An important
issue is to control dynamically the proportion of the corners in a microscopic
random interface when its average slope is known. This would probably require
some additional probabilistic input.

2 The model

We consider a zero-temperature 2D-stochastic Ising model. More precisely it
is a continuous time Markov process (o7);>0 taking values in {—1, —|—1}le with
generator L which acts on each local function f : {—1, —1—1}Zz — R as
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(L) = D ctx,0)(f(0™) = f(o)).

xeZZ?
Here, for o € {—1,+1}% and x € Z2, we define

o(y) if y#x,

v ZZ X —
ve 7w {—o(y) if y=x,

and c(x, o) is the rate with which the spin at site x flips when the configuration
is 0. The rates c(x, o) define the dynamics. For the zero-temperature 2D-Ising
model, the rates c(x, o) are given by

1 if more than two neighbors of x have a spin opposite to x,
c(x,0) = 1 « if exactly two neighbors of x have a spin opposite to x,
0 otherwise,

where 0 < o« < 1 is a fixed parameter. For technical reasons, we will take
a = 1/2 in the sequel.

3 Notation

Let N be a fixed positive integer. We denote by Z%V the grid Z?/N. For x =
(x1,x2) € Z2, Ay/n is the box defined as

z|=
2
_2_ -_——

|
|
|
|
|
- 8
|
|
|
e ——
|
|
|
|

|

=

A point u and the box Ay, (Nuy € Z?)

2 1 x1 1
AyN = (g, u2) € R%, _ﬁiul_ﬁ<ﬁ;
1 - X2 1 ()

The family of boxes (Ay, x € ZIZ\,), as defined by (1), forms a partition of R?:

IR2=UAX, Vx,ye Zi x#y= A:NA, =0

2
XEZy
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384 R. Cerf, S. Louhichi

Hence, for each u = (uj,us) € R? there exists a unique uy € ZJZ\, such that
u € Ayy. Moreover [u — unlloo < ﬁ,where lt|loco = max(|uyq|, |uzl).
To each bounded set S of IR2, we associate the set Sy defined by

Sy = U Ay.

er%]: AxNSH#P

The set S is included in the set Sy with polygonal boundary

For o € {—1,+1}, we denote by s(o, x), the number of the neighbors of x having
a spin opposite to x in the configuration o:

s(a,x>=% > e -0
yeZZ?, |x—y|=1

where |x| = ,/x% +x% for x = (x1,x2).

Let N be a fixed positive integer, we define the set

A% = U Ax/N.

xeZ?, o (x)=+1

’

O

Forx € Z%, o (x) = +1 if and only if x € NAS,
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The initial drift of a 2D droplet at zero temperature 385

Let y be a curve of R2. We define for s € y and for r,a1,ap positive real
numbers, the set

S(s,r,01,00) = B(s,r) U B(xg, 1) U B(x1,2),

where B(s,r) is the closed ball centered at s with radius r chosen sufficiently
small, so that dB(s,r) N y contains exactly two points xg and x;. We suppose
that xo, s and x; are arranged counterclockwise.

Let

o .1
LY (s.rar,a) = lim — (I (vol(ARY N Sy)) = vol(A N Sw))
—

where Sy = (S(s,r,01,00))n = (B(s,r) U B(xp,a1) U B(x1,2))y and vol de-
notes the planar Lebesgue measure.

The set (B(s,r) U B(xp,a1) U B(x1,22)) 5

Finally, we define the average
. )
AL (s,r,8) = 3 / / LY (s,r,aq,02) day das.
00
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4 Results

We first control the quantity AZ’V (s,r,0) for deterministic sets A%, defined as
follows.

Deterministic initial condition Let y be a Jordan curve of IR?. Suppose that y
encloses a connected, compact and bounded set 2 of R2, so that y = 0Q. Let
N be a fixed positive integer. We define the spin configuration o at time 0 as:

e’ 0@ - [ 1T AgN Q£ 6,
—1  otherwise,
where, for x € Z? and N € IN*, A,/ is the box as defined by (1). We will say
that o is the spin configuration associated to the curve y at step V.
Having both the initial condition and the generator, the Markov process
(o1)=0 at step N is well defined.

O A%
H Q

The curve y = 9Q and the set A%,

Proposition 1 Let y be a Jordan curve of R? of class C. Suppose that y encloses
a connected, compact and bounded set Q of R2. Let s be a point of y. Let o be
the spin configuration associated to the curve y at step N. Then,

1 1
lim lim liminf —A%$Y(s,r,8) = lim lim limsup —A%Y (s, r, 8
r—0 §—0 N—+oo 2r N ( ) r—0 §—0 Nﬁﬁg 2r N ( )

1
= ) [cos 20| &, (s),

where £, (s) is the curvature of y at s and 0 is the angle between the horizontal
axis and the tangent to the curve y at s.

We suppose next that the sets A%, are random and that locally the height func-
tion associated to 9.A%; obeys to Spohn’s initial condition described as follows.

Initial local equilibrium Let y be a Jordan curve of R?. Suppose that y encloses
a connected, compact and bounded set Q2 of R2, so that y = 0Q. Let s be
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The initial drift of a 2D droplet at zero temperature 387

a point of y. Suppose that, on a neighborhood Vi of s, the contour y is the
graph of a monotone differentiable function f defined on a segment [a, b].

For each positive integer N, and for each random boundary 9.A3, N Vj, let

@y be the random height function associated to 9.43, N Vs above Z N a,b],

N
defined by
/4
Yu e N Nla,b]  Pn(u) =sup{v: (u,v) € JAY}.

Let uy be the initial distribution of ®. We suppose that, under uy, the incre-

ments
k+1 k k Z
on (B2 ) oy (£ X n%
N( N ) N(N)’ y €labing.

are independent and their laws are such that

e If f is nondecreasing, then for [ € Z

@ k+1 ® K\ 1
MN(N(—N)— N(N)—N)
FEN A+ ENT1 if1=0

0 if /<0

e If f is nonincreasing, then for / € Z

ANCERIOR

1D A+ 11Kyt if <0
0 if >0

Proposition 2 Let y be a Jordan curve of R? of class Cy. Let s be a point of y.
Suppose that, for any positive real numbers r and § sufficiently small, the curve
y NS(s,r1,8,98) is the graph of a monotone function f defined on a segment [a, b]
of R. Let un be the measure as defined above. Suppose that,

Ve >0 NETOO un (1Pn(ay) — f(a)] =€) =0, 2)
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where ay is a point of [a,b] N 5 Z such that la — an| < —. Then

lim lim liminf l,uN( A% (s,r,8)) = lim lim limsup l,uN( AL (s,1,9))
r—0 §—-0 N—+oo 2r N r—0 -0 N 400 2r N

1
= “2(cos ol + [smap?

where &, (s) is the curvature of y at s and 6 is the angle between the horizontal
axis and the tangent to the curve y at s.

The limits obtained in Propositions 1 and 2 are very different because the ini-
tial conditions differ. Spohn’s velocity is recovered in Proposition 2 [cf. (4.26) of
Spohn [10]]. The choice of the measure uy is the good one, since as noticed by
Spohn [10], the height differences are governed by the zero-range process with
rate function c(n) = I,,>1. The product measure p with geometric distribution
is invariant for the zero range process (cf. [1]). Motion by mean curvature for
the sets (A;,Nzt) corresponds then to the hydrodynamic limit for the zero range
process.

Propositions 1 and 2 are consequences of the following Theorem 2, which
handles the initial conditions described thereafter. The distance between a point
a € IR? and a subset B of R? is d(a, B) = infpcp |a — b|; the Hausdorff distance
dy between two subsets A and B of IR? is

dy (A, B) = max (sup d(a, B), sup d(b,A)) .
acA beB

Initial condition Let y be a Jordan curve of IR? of class C;. Suppose that y
encloses a connected, compact and bounded set  of IR%. Let s be a point
of y. Let r be a positive real number sufficiently small such that dB(s,r) Ny
contains exactly two points xo and x;. Suppose that xp, s and x; are arranged
counterclockwise. Let 6; € [0,27] (respectively 6y € [0,27]) be the oriented
angle between the half horizontal axis [0, +oo[ and Ty, y (respectively T,y ).
We suppose that there exists a neighborhood Vs of s and a probability measure
vy such that

Ve>0 lim vy (du(A$ N Vs, QN V) =€) =0, (3)
N—+o00

and that, with probability one, the boundaries y and 3.4%; are, in V, either both
non-increasing or either both non-decreasing.
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The initial drift of a 2D droplet at zero temperature 389

The polygonal curve 9.A%; behaves in Vs as y

Let,forx e y N Vgand § > 0,
Cn(x,0) = Zﬂo(y)zﬂ,s(o,y):z,

where the sum is taken over all y € Z? for which % is a point of (B(x,8))n \
B(s, |x — s|). The quantity Cy(x, §) is equal to half of the number of the corners
of the polygonal line 9.A%; belonging to (B(x,8))n\B(s, |x — s).

We first suppose that y is a polygon and that s is a corner point of y. In this
case, the following theorem proves that, for r and § sufficiently small, the limit
as N goes to infinity of vN(A;'v’y (s, r,8)) exists under a suitable behavior of the

expected proportions of corners %UN(CN(xk, 8)), for k € {0,1}.

Theorem 1 Let y,s,r,§ and vy be as described in the previous initial condition.
Suppose that y is a polygon and that for k = 0,1 and for r,$ sufficiently small,

@ Springer



390 R. Cerf, S. Louhichi

the following limit holds:
lim oy (Cv (xe.8)) = 8C(BR) 4)
im —v X = .
m VN (EN (X, k
Then, for r and § sufficiently small, one has

1
. a,y _ _ = 2 . _
Nh_r)rlo VN (AN (s,7,8)) = 5 sgn(tan 6p) (cos 6o + C(6p) (|sin 6| — |cos 90|))

1

+ 5 sgn(tan 07) (cos 20, + C(6;) (|sin 6;] — |cos 6 |))

+ Lsin gy sin 6,50 (Sgn(91 — 00)1lcos 6y cos6;>0 + sgn(tan 6p)leos g, cos6; <0) .
Suppose that C(9) = f(|sin 8], |cos 8]), where f is a positive function defined
on [0,1] x [0,1] and that s is not a corner point of the polygon y. Theorem 1
then implies that, for  and § sufficiently small, the limit as N goes to infinity of
vN(ASY (s,r,8)) vanishes (since in this case 6; = 6 & ). This constatation is

not surprising since the inverse of the curvature of a straight line vanishes.
The following theorem extends Theorem 1 to Jordan curves.

Theorem 2 Let y,s,r and vy be as described in the previous initial condition.
Suppose that for r sufficiently small and for k = 0,1, the following limits exist:

1 1
lim }\}rﬂf}i mvN(CN(Xk,f?)) = lim %Iiillg WVN(CN(X/@(S)) = C(k). (6)

Then

. .. (TJ/
lim lim inf v (AN (5,7, 8)) = lim griilig vy (AN (5,7,8)),

the common value is as in (5) with the function C(-) given by (6).

S Proofs

We first prove Theorems 1 and 2. Next, we prove the two propositions. For the
proof of the theorems, we need the following preliminary lemma.
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Lemma 1 Let S be a compact set of R%. Let o € {—1, —}-1}ZZZ be fixed. Then

tlil’l(l) % (]EU (VOl(.A%Aﬂ N Sn)) — vol(A N SN))

= Z (]L,(x)=,1, 50,023 ~ Lo (n=+1, S(G,X)Z3)

XeZ% A x CS
3 CSN

+a Z (Is=—1, se.)=2 — Ioy=+1, s(o.x)=2) -
xeZ?: A% CcSn

Proof of Lemma 1 Let fn(o) = vol(AJ, N Sy) and SO)fn(0) = E, (Vol(AXﬁ n
Sn)). We deduce from

1
lim — (S(Ofy — fn) = Lfn,
t—0 t
that

1
lim 7 (SOfn(0) —fn(o)) = z c(x,0)(fn(0™) — fn (o). ™)

xeZ?

Now,

. 1
n(@@®) —fn(o) = mHA%CSN (Isy=—1 — Lom=1) »

this fact together with (7) gives

o1
lim — (SINDf@) —fv@) = D o) (low=—1 = Low=1)
XeZ2%: A x CSy
N
which proves Lemma 1 since ¢(x,0) = Ly x)>3 + ¢l x)=2- O

5.1 Evaluation of vy (LY (s, 7, 01, 02))
Throughout this step, we consider the set
SN = (S(s,r,a1,02))y = (B(s,r) U B(xo,1) U B(x1,22))y , (8)

@ Springer



392 R. Cerf, S. Louhichi

where «q,ay are positive real numbers less than §, the positive real numbers
r and § are small enough so that dB(s,r) N y contains exactly two points xg
and x;.

The boundary of A%, which is included in Sy can be described as a sequence

vi,..., Vv, of horizontal or vertical vectors of norm %, enumerated counterclock-
wise. We denote by 611\/(061 ), ejzv(az) the two unit vectors defined by

ey(@) = Nvi,  ej(@) = Nvy, ©)
and by LS, the maximal subgraph of 9.4%; included in Sy:

=1, ). (10)

The polygonal line £, = (v1....,v;). Here Sy = (B(s,r) U B(xg, 1) U B(x1,@)) \

We now need the following definition and notation.

Definition 1 We say that Ly is a path on Z%V if Ln is a finite sequence of con-
secutive vectors (vi)1<i<, (this means that the endpoint of v; is the starting point
of viy1 for 1 < i < r) of norm 1/N, drawn on the grid ZZ3, and such that the
endpoints of these vectors (resp. the starting points) are distinct.

The following family of vectors (v1,...,v,) is a path on the grid Z%V
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The initial drift of a 2D droplet at zero temperature 393

..........................................................

Notation Let Ly = (v1,v2,...,V,) be a path on ZZJZV. We define

Ny (Ly) = card {i L (Vi Viel) = _Z} ,
(11)

T T
N_ (Ly) = card {l D (Vi,vig1) = +5} ,

where (v;,v;i1+1) denotes the oriented angle between v; and v; 1.

The purpose of the following proposition is to establish the relation between
N_(L3) — N+(£3) and LY (s, r, a1, 02), for the path £3, as defined by (10).

Proposition 3 Let N be a fixed positive integer. Let LS, be the random path as
defined by (10). Then

- 1
VN (L]\;y(s7r7a1>a2)) = EVN (N—(E%) _N+(‘C% ) (12)

Proof of Proposition 3 Let N € IN* be fixed and Sy = (B(s,r) U B(xp, o)
UB(x1,a2))n- Let f be the function defined from {0, 1,...,4} to {0, 1,2} by

1 ifs(o,x) =2
f(s(o,x)) =12 ifs(o,x) =3
0 otherwise.

On the one hand, by definition of N_ (L) and N (LY), we have

D oWf(s(0,x) = N+ (L) — N-(L3), (13)
x€Z?> N NSy
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394 R. Cerf, S. Louhichi

on the other hand, we deduce from the definition of the function f,

> cWfis(o.x) = - > (I (=—1.50. =2 = Lo @)=+1.500.0=2)

xeZ*NNSy X€ZP, AyNCSN

-2 > (Lo ()=—1.5(0.0)=3 = To(m)=+1,5(00=3)
XE€Z?, Ay/NCSN

We combine the last formula, Lemma 1 (with ¢ = 1/2) together with the fact
that Iy v)=4 = 0, and we obtain

- 1
VN (LN’V(S, r, al,az)) =5 Z o(X)f(s(o,x)) | . (14)

XEZZHSN

The statement of Proposition 3 follows from (13) and (14) by taking the expec-
tation with respect to vy. O

In view of Proposition 3, in order to control vy (L3 (s,r, a1, @2)), it remains to
evaluate vy (N4 (L) — N— (£%))- For this, we begin by controlling the quan-
tity N+ (Ln) —N_ (Ly) for monotone deterministic paths £y defined as follows.

Definition 2 A path on Zf\, is said to be monotone if all its horizontal as well as
all its vertical vectors are oriented in the same sense.

: 2
A monotone path on the grid ZZg,

The following lemma evaluates Ny (Ly)—N_ (Ly), whenever Ly is amonotone
path on Z3%,.

Lemma 2 Let (v;)1<i<, be a sequence of r consecutive vectors drawn on the grid
va. These vectors are enumerated beginning from N\, := vy until N~ 'ug =

vy. We suppose that they form a monotone path on ZJZV, say Ln. Let [ue A ug] =
(te - D) (s - J) — (Ue - ) (us - ©). Then

Ny (Ly) — N_(Ly) = [ue A ug].
Remark Let us note that for any path Ly = (vq,...,Vv,), we have
— b4
(ue»us) = E (N* (ﬁN) - N+ (‘CN)) )

where 1, = Nvq and uy = Nv,.
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The initial drift of a 2D droplet at zero temperature 395

Proof of Lemma 2 We denote by Ly(r) = (vq,...,V,) amonotone path on ZIZ\,.
The proof of Lemma 2 is done by induction on r.

For r = 1, we have N_ (Ly(1)) — N4 (Ln(1)) = 0 which corresponds to
[ue A ug], since in this case N 1w, = N~luy = v;.
We suppose now that the property is true at step » > 1 and we prove it at step
r + 1. We consider the path Ly (r + 1). Since Ly (r + 1) is monotone, we can
suppose without loss of generality that

(H) VYie{l,...,r+1} (Nv)-ie{0,—1}, (Nv)-je{0,~1}.

us/ N

For this monotone path £y, we have u, = (—1,0) and uy = (0,—1),
hence [ue A ug] = 1. On the other hand Ny (Ly) —N—(Ly)=1-1+1-141-14+1=1

Once the hypothesis () is assumed, we have only three cases to discuss on the
expression of (v, V,y1),

o Ifv,=v, q,then Ny (Ln(r +1)—N_ (Ly(r+1)=Ny (Ln(r)—N_ (Ln(r)),
and the inductive assumption gives

Ny (LN(r+1)) = No (Ln(r + 1)) = [Nvi A Nvpyq].
o If (Nvy) -j = —1 = (Nv,41) - ii then (v, vr41) = % and Ny (Ln(r+ 1)) —
N_(Ln(r+1)) = Ny (Ly(r)) — N_ (Ln(r)) — 1. Together with the inductive

assumption, this gives

Ny (Ly(r+1) = N_(Ly(r+1)) = —=(NNvy)-i—1
= (Nvy) -j=[Nvi ANv1].

o If (N\v) i = —1 = (Nvj4) -, then (V1) = =2, Ny (Ly(r+1)) —
N_ (Ln(r+ 1) = Ny (Ln () — N— (Cn () + 1 and

Ny (Ln(r+1) = N_(Ln(r+1)) = (Nvy) -j+1
= —(Nvy) -i = [Nvy A Nvyql.
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The equality Ny (LCy(r+ 1)) — N_ (Ly(r + 1)) = [Nvy A Nv,41] is then always
valid and Lemma 2 is proved. O

The following lemma generalizes Lemma 2. Its purpose is to evaluate
N4 (Lny) — N_ (Ly) for a path Ly constructed by concatenating two mono-
tone paths.

Lemma3 Let Ly = (Vi,...,Vr,W1,...,Ws) be a path on lev. Suppose that
V1,...,vp) (respectively (w1,...,ws)) forms a monotone path on ijv and that
vy -wq = 0. Let ay,a2,b1,by € {—1,+1}. Suppose that for each 1 < i < r (resp.
1 <j < s), the vector Nv; (resp. Nwj) is either (a;,0) (resp. (b1,0)) or (0,az)
(resp. (0,b2)). Then,

N_(LN) — Ny (LN) = —a2(Nvy) - i+ ba(Nwy) - i+ f(a1,a2,b1,b2),  (15)
where i is the unit vector (1,0), - is the usual scalar product in R2 and
2aiap if apby = -1, ((Nv;)-i=ajora1by =1)
fay,a2,b1,b2) = { 2b1ay if axby =—1, (Nv,)-i=0
0 if apby = 1.

Proof of Lemma 3 We deduce, applying Lemma 2 to the monotone paths
V1,..5v), (Wq,...,wy) and (v, wyq) that, for Ly = (v{,..., Ve, W1,..., Wy),

Ni (Ly) — N_ (LNn) = [Nvy A Nvi] + [Nvy A Nwi]l + [Nwy A Nwg].  (16)
In the following picture, we have Nvy = (1,0), Nv, = (0, —1), Nwy = (—1,0),

Nwg = (—1,0). Hence [Nv{ A Nv,] + [Nw1 A Nws] + [Nv, A Nwi] = —2. On the
other hand, we have N, (Ly) — N_(Ly) = —2.

@ Springer



The initial drift of a 2D droplet at zero temperature 397

We deduce from
(Nvp) -i€{0,a1}, and (Nv))-je {0,a2},
for1l </ <r, that
ai(Nvy) -i+ax(Nvy) -j=1.
This fact gives
[Nvi ANv,] =arx(Nvy) - i —ap(Nv,) - i. 17)
In the same way, we deduce that forany 1 </ <,

bi(Nwp) -i+bay(Nwy) -j=1, [Nwi ANwg| =ba(Nwy) - i — ba(Nwy) - .
(18)

We also have, since v, - wi = 0,

[Nv, A Nwi] = ba(Nv,) -i — ar(Nwq) - i. (19)
We obtain, collecting (17), (18), (19) and (16),
Ny (Ly) = N (Ly)=az(Nvy) - i — ba(Nwy) - i+ (ba — a2) (Nvy) - i4+(Nwy) - ).

From, the last equality we deduce the following,

o Ifay = byie.apby = 1,then N_ (Ly) — N4 (LN) = —a2(Nvy) - i+ b (Nwy) - i.
e If axby) = —1thensince v, -w; =0, (Nv,) - i+ (Nwq) - i € {a1,b1} and

N_(LN) — N4 (LN) + a2(Nvy) - i — ba(Nwy) - i

is either 2aya; or 2bqay. O

The following corollary evaluates N_ (Ln) — N+ (Ln) for a path £y behaving
like a polygonal line. It will be very useful for the control of L';V’y (8,7, 01, 00).

Corollary 1 Let so, s and s3 be three points in R%. Let 0y (resp. 61) be the ori-
ented angle between the half horizontal axis [0,400[ and the segment [s1, o[
(respectively [s1,52[). Let Ly = (V1,...,Vy,W1,...,Ws) be a path on Z]zv. Sup-
pose that the family (vi,...,v;) (respectively (wq,...,ws)) forms a monotone
path on Z]zv and that v, - wy = 0. Suppose moreover that (v1,...,v,) and [so,51]
(respectively (w1, ...,ws) and [s1,52]) are either both non-increasing or either
both non-decreasing. Then
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N_ (LN) — N4 (Ln) = sgn(sin 6p)(Nvy) - i
+sgn(sin 61)(Nws) - i + f(61,00), (20)

where
2sgn(6y — 6p) if sin Opsin 61 > 0, cos Oy cos 6 > 0,
f(01,60) = { 2sgn(tan 6p) if sin Hpsin 6 >0, cos Gy cos 6] <O,

0 otherwise.

We illustrate the conclusion of the previous corollary with the help of the
following pictures.

Ly is the circuit (v
Here, f(61,6p) = 2sgn(0; —6p) =2

Ly is the circuit (vq,..., Vi, Wi, .., We).
Here, f(61,60) = 2sgn(tan 6p) = —2
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In this picture, f(01,6p) =0

Proof of Corollary 1 We first check that forany 1 <[/ < r, (Nv)-i €
{0, —sgn(cos 6p)}, and (Nvy) - j € {0, —sgn(sin 6p)}. In the same way, we have
forl <[l <s,

(Nwy) -i € {0,sgn(cos 01)}, and (Nwy) -j € {0,sgn(sin 67)}.
Lemma 3 gives then
N_ (LN) — N4 (Ly) = sgn(sin6p) (Nvy) - i + sgn(sin 61) (Nws) - i + f(61,60),

where

e If apby = —sgn(sin 6p)sgn(sin 61) > 0, then f(61,6p) = 0.

e If sgn(sin Op)sgn(sin 61) > 0 and sgn(cos Op)sgn(cos 61) < 0, then f(0;,6p) =
2sgn(tan 6p).
In fact this case corresponds to ax b2 = —1,a; = —sgn(cos 6p) = sgn(cos 6;) =
by.

Now we have to discuss the case sgn(sin 6p)sgn(sin 8;) > 0 and sgn(cos 6p)sgn
(cos 01) > 0 i.e. when apbr, = —1 and a1b; = —1. We distinguish all the cases
on the possible values of (a1,a7) and we deduce the following: (Nv;,) -i = 0 if
and only if (aja2 < 0and 8y < 61) or (ajaz > 0and By > 61). So (Nv,) -i = 0 if
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and only if ajazsgn(6p — 61) > 0. We apply again Lemma 3 and we deduce that
in this last case f(61,600) = 2sgn(6; — 6p). O

We have now all the ingredients in order to evaluate vy (N— (L) — N+ (£%))
for the random path L, as defined by (10). The curve y is of class C, hence for
r small enough, the part of y situated between xg and s (resp. between s and x7)
is either nondecreasing or nonincreasing. We conclude from the assumptions
of Theorem 1 that, for N large enough and with probability one, the random
path L%, respects the behavior of the curve y, thus LY, is either monotone or
itis constructed by concatenating two monotone paths, say L, = (L] v, £3 y).

These monotone paths are such that, noting by s” the point of T,y N Ty, ,
L]y and [xo0,s'] (resp. £‘2”N and [s',x1]) are either both nondecreasing or both
nonincreasing. Corollary 1 applies and gives, for N large enough,

vn (NZ (£%) — N+ (£%)) = sgn(sin 6o) vy (el () - i)
+sgn(sin 6;) vy (ex (@) - i) + f(61,60),

the function f (61, 6p) is defined in Corollary 1, the angles 01, 6y are those defined
by Theorem 1, the random vectors e}\, (xp), 612v (o) are the two unit vectors as
defined by (9). We then deduce from Proposition 3 that there exists Ny depend-
ing only on y such that, for any N > Ny, we have,

. L .
o (LY (5, r.,00)) = Ssgn(sin 6) vy (ehen) - i)

1 . 2 . 1
+5sgn(sin 01) vy (eN(az) : 1) + 3£ (61,00

5.2 Evaluation of f(;s f(f v (LYY (s, 7,00, 02)) doy doa

By the previous formula, in order to evaluate the quantity

§ 6
//VN(LX;’V(S, r,aq,a2)) dog daz,
00

for § and r small enough, it suffices to evaluate the terms

) )

VN /e}v(a)oida , VN /612\;(()()~id0l
0 0

We begin by the first quantity, for this we need some further notations.

Notation For a vector v drawn on the grid Z%,, we denote by R(v) the union of
the two boxes of the family (Ay/n), .42 having v as an edge vector.
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(%

The two blocks R(v) and R(w)

Let L = (v1,...,v,) be the oriented path as defined by (10). Let LYy =

(v1,...,Vs) be the subgraph of £, included in BAg N (B(xop,8))n such that the
vector vy is the entering vector in (B(s,r))n.

To each vector v; (1 <[ < s), we associate the block R;_;,1 := R(v;). These
blocks (Rj)1</<s are enumerated according to their distances to xo, R being the
block containing vy. Let (a;)1</<s be the sequence of vertices such that

d; == d(xo, R)) = |la; — xol,

then this sequence of vertices (a;)1</<; 1S L! connected and the vector ajajyq is
either vertical or horizontal. Finally, let Hy be the set of indices / € {1,...,s}
for which v; is horizontal.

12

]
iR

dp = d(xo, Rp) = Ixo — ay.
For N large enough, the vector a;a; 1 is either horizontal or vertical, and |a; — a; 1| = 1/N

With probability one, the path L{ ,; is monotone and behaves, on a neighbor-

hood of x¢, as Ty,y. This fact ensures that, with probability one, e}v(a) NS
{0, —sgn(cos 6p)}. Now, by construction e}v(a) - i = —sgn(cos 6p) if and only if
there exists / € Hy such that « €]d;, d;;1] (such an index is necessarily unique).
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With probability one,

8

/ en(@) - ida +sgn(cos 6p) > (d1 —dj)| <
0 IEHN(XO,(S)

; ey

Z| ™

where Hy(xo,0) is the set of all the horizontal edges of 9.A%, included in
(B(x0,8))Nn \ B(s,r). In order to evaluate d; | —d;, we need the following lemma.

Lemma 4 Let u and v be two vectors such that ||u| < ||v|. Then

w+v)-u Jul? sin 26
lu+vl— vl = - = )
lu + vl vl lull®> . -
14+ ./1— o sin 26
1%

where 0 is the angle between u and u + v.

Proof of Lemma 4 Let u, v and 6 be as defined in Lemma 4.

We have

lu+v|?=L*+ H?
= cos 20|lu+vII”> + [V = (cos Olu+ v|| — [lu])?
= [[V[I* +2cos Olull x u+ v — [ul*.

The quantity |lu + v|| is then a positive solution of an algebraic equation of
degree two. We deduce from |ju| < |v||, that

lu+v| = |lul cos 6 + \/||V||2 — sin 20 ||u|?.
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Hence
2
u
llw + vl = [Ivll = llul cos 6 + [[v] [ /1 — sin 26 ||||v||||2 -
flue)? sin 26
= |lu|| cos 60 — vl = .
v [ _ lull” .
1 —+ 1 — W Sin 29
The last equality together with the fact that |u| cos 6 = ("ﬁ;TV)V”u proves
Lemma 4. O

We continue the proofs of Theorems 1 and 2. We apply Lemma 4 with
u = a1, v = xoa; and we get

(u+v)-u  (oar) - (@agr)
llu+ vl X0 — aj41l

Moreover, we deduce from Lemma 4,

(xoai+1) - (@ag41)
lxo — a1l

< min (; 2 ) (22)

iy —dy — i
1+1 i N2|X0 — a[' N

We first evaluate the sum over I € Hy(xp,d) of the right hand side of the
last inequality. Let ¢ (/) be the cardinality of the set Hy(xo,8) N {1,...,/}. For
I € Hn(xo,8), we have |(xoa)) - i| > N~Y(¢ () — 1) , whence

i ! 2y 1 . 1 2 +In |[Hy|
mn| ————:,+) = = min (——,2) < ——————21,
ZGH%;V(),S) (N2|x0 - all N) N IGZ{:N (¢(l) - 1 ) N

(23)
With probability one, we have
. . o1
sgn(cos 6p)(aja;y1) - i+ sgn(sin 6p)(aa1) - j = N
whence
Z (xoa1) - (qag1)
IeHn 0 6) lxo — a1l
_ sgn(cos 6p) Z (xoa;+1) -1 sgn(sin 6p) Z (xoa1+1) - J
leH nt0) [xo — a1l N IeHan o) [xo — a1l
(24)
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where

Hin(o,8) = {1 € Hy(x0,8) : (aais1) -j=0},

(25)
Hon(x0,8) = {1 € HN(x0,8) : (@az1) - i =0}

We now distinguish the case of the polygons and the case of the Jordan curves.

5.3 End of the proof for polygons (Theorem 1)

Lemma 5 For § small enough, we have

1 -1 H ,0
lim VN(N Z (xoa;41) l) B VN(| 1,N]$CO )|) cos fo| = 0,
N—oo IeH] n ) lxo — a1l
: 1 (xoai+1) -] [Ho N (x0, )Y .
1 _ 2 ) = _— 6yl = 0.
N [PV (N 2 o —aal )~ N ——

leH N (x0,8)
Proof of Lemma 5 We only prove the first limit since the argument for the sec-
ond limit is similar. Let u be a unit vector tangent to y at xo and let v be such

that (u,v) is a direct basis. For ¢ > 0, let R(¢) be the strip of width 2¢ centered
on the tangent line Ty,y,i.e.,

R(s):{xe]R2:|xox~v|§8}.

The condition (3) implies that for § small enough,

Ve >0 lim vy (0 A% N B(xp,8) C R(e)) = 1.

N—+o00

For § small enough, limpy_, o v (3.A%, N B(xp,8) C R(e)) =1
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Let § > 0 be small enough so that the above limit holds. Let §p, ¢ such that
0<e<dp<dandletx € R(e) \ B(xg,5p). We have

XoXx - I = (xox - 1) cos 8y — (xpx - v) sin 6y,
o — x|* = (xox - 1)* + (xox - )%,

whence
et i (1 — —(xox : V)Z)l/zc 6o — (rox - v) sin 6y
lxo — x| lxo — x/? lxo — x|
and
XoX - I g £
0 —cos 6 51—,/1—82/884——52—.
lxo — x| 80 8o

If the event { 9. A%, N B(xo,8) C R(e) } occurs, then for I € Hy (xo,8) \ Hn (xo,60),
we have a;11 € R(¢) \ B(xp,d0), and thus
< 2i.

Moreover, we have |Hy(xo,80)| < 2N&p, whence, by splitting the sum over
Hn (xo,80) and Hy (xo,8) \ Ha(xo,80), we obtain

i 5
UN(% z (xoar41) l)_UN(|H1,N](\jCO, )I)COS %

X0 —da
leH | tios) X0 Al

(xoary1) - i

— cos 6y
lxo — a1l

limsup vy sup
N—o0 leH N (x0,8)\H N (x0,50)

1)
lim sup < 4—8 +438.
30

N—o00

We conclude by sending successively ¢ to 0 and &g to 0. O

We obtain, combining (24) and lemma 5, that for § small enough,

lim vy Z (xoa1) - (qag1)
N—oco It 6) |xo — ar41l
H , 6 H , 6 .
— (vN (—| 1’N]$CO )l) | cos G| + vy (—| Z’N]E;CO )|) | sin 90|) =0.

(26)
Our purpose now is to evaluate, for N large enough, the expectations over
vy of [Hn(x0,8)|/N, [Hin(x0,8)|/N and |Ha n(x0,8)|/N. For this, we prove the

following lemma.
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Lemma 6 For § small enough, one has

(IHN(XO, 8|
N N

) = 8| cos Hp|. (27)

Proof of Lemma 6 We denote by a and x’ the points of d B(xg, §)\ B(s, ) belong-
ing respectively to d.A%, and to Ty, y. Let b be the point of .A$,Nd B(s, 1)\ B(x1, §).
We suppose without loss of generality that (ba) - i > 0.

In this case, y is a polygon. The proportion of the horizontal edges of 3.AS; which are
in B(xg,8)\B(s,r) is controlled by §| cos 0|

We have, by definition of Hy(xo, 5),

8 2
vl ol 2
N N

We use the same notation as in the proof of Lemma 5. We have

[ R(&) N9B(x0,8) \ Bls,r) = Teyy NIB(x0,8)\B(s,r) = {x'},

>0

m R(e) NOB(s,N\B(x1,8) = Tyyy N0B(s,r) \ B(x1,8) = {xo}.

>0
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Let o > 0. By the above identities, there exists ¢ > 0 such that, if d.AF, N
B(xp,8) C R(e), then |b — xg| < « and |a — x| < «a. Now, the condition (3)
implies that for § small enough,

lim vy (3.A% N B(x0,8) C R(e)) = 1.
N—+o00

Putting together the previous facts, we obtain that

(IHN(XO,S)I) ;.
wWl———— ) — |xox -]

N < 2a.

lim sup
N—+o00

Remarking that |xox’ - i| = §| cos 6|, we conclude the proof by sending & to 0.
]

Now, let L], be the monotone path (vy,...,vs) as defined in the Sub-
Sect. 5.2. We obtain using the definition of Hz n(xo,8), that [Ho n(x0,8)] is
either N4 (L] y) or N_(L] ). This fact together with the constatation that

INt(L1n) = N-(L13)| < 1, gives

1
<.
- N

[Hon (o, 8) N+ (L7 x)
N N

Condition (4) together with the last inequality ensures, since ||Hn(x0,8)]
—Cn(x0,9) =1,

y (|H2,N(x075)|
im vy | ————

N ) = 5C(6p). (28)

The two sets of indices Hj y(xo,8) and Ha v (xo, ) form a partition of Hy (xo, §),
hence

lim
N—+o0

’ (|H1,N(x0,5)|
w | ————

N3 ) — (|cos 6| — C(Qo))‘ =0. (29)

We obtain, collecting (21), (22), (23), (26), (28), (29) that

8

. 1 1 .
ngnoo EVN /eN(oz)-ldoc
0

+sgn(cos 60)(cos 290 + C(@o)(| sin 00| - |cos 90|)) =0.
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Using the same method, we prove that
8

1
li L 2 '.
Nl_r)nOO 81)]\1 /eN(a) ida

0

—sgn(cos 6;)( cos 20, + C(@)(| sin 61| — | cos 64]))| = 0.

We finish the proof of Theorem 1 by combining Proposition 3 together with the
two last limits. O

5.4 End of the proof for Jordan curves (Theorem 2)

To extend the proofs to Jordan curves, we have to generalize Lemmas 5 and 6
as follows.

Lemma 7 We have

1 - Hq n(x0,6
lin%) lim sup UN(W Z (xoal—ﬂ)l) — vN<W) cos 6| =0,
§—0 N oo M 0.8) |xo — azq1]

1 -J H , 68 .
lirrb lim sup UN(W Z M) — UN(%&CO)') sin 6g| = 0.
8—0 N oo IeHsm008) Ixo — a1l

Proof of Lemma 7 We only prove the first limit since the argument for the sec-
ond limit is similar. Let u be a unit vector tangent to y at xo and let v be such
that (u,v) is a direct basis. For ¢ > 0, let R(¢) be the strip of width 2¢ centered
on the tangent line Ty,y,i.e.,

R(e) = {x e R?: [xox-v| < e}
Since T,y is the tangent to y at xp, we have
o1
lim ~dy (y N B(xo,8), T,y N B(xo,(S)) —0. (30)
5—0 §
Let 0 < ¢ < 1, there exists §g > 0 such that, for § < &g,

di (v 0 B(xo0,8), Teyy N B(x0,8)) < eb/4
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This fact together with condition (3) implies that there exists §; > 0 such that

V8 < 8 Nlim vy (3AS N B(xo,8) C R(e8/2)) = 1.
—+00

Let § > 0 be such that § < min(8g, 81). Let x € R(&8)\ B(xo, /€5). We have

Xox - I = (xpx - u) cos 6y — (xgx - v) sin 6,

lxo — x> = (xox - w)* + (xox - )2,

whence
XoxX - i (xox-v)2 172 (xox -v) .
= 1——2 cos Oy — sin 6y
lxo — x| |xo — x| lxo — x|
and
X0X - I
|0 l—cos@g <1—+1—g+4c < 2./e.
X0 — X

If the event { A%, N B(xo,8) C R(e8/2)} occurs, then aj1 € R(e8) \ B(xo, /€8)
for I € Hy(xo0,8) \ Hn(x0,/€8), and thus

(xoar41) - i

— cos 6y
[xo — aj41l

lim sup vN( sup ) < 24/e.

N—o0 leHN (x0.8)\HN (X0,/€8)

Moreover, we have [Hn (xo, /28)| < 2N6./e, whence, by splitting the sum over
Hn (x0, 4/€8) and Hy (x0,8) \ Hn (x0, /€8), we obtain

1 (xoajy1) - i [H1 N (x0,0)]
VN((SN Z VN N cos 6y

X0 —a
leH 1 N (x0,0) o il

< 8./e.

lim sup
N—oo

This inequality being valid for all § small enough, the proof is completed. O

Lemma 8 We have

lim lim sup

=0. 31
=0 N 00 G

SN

[Hn (x0,0)|
VWl ————) — |cos 6|

Proof of Lemma 8 We denote, as in the proof of Lemma 6, by a and x’ the
points of dB(xo, )\ B(s, r) belonging respectively to 9.4%; and to y. Let b be the
point of A%, N dB(s,r)\ B(xy, d).
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The random points a and b are approximated, for N large enough,
respectively by x” and xq

We have, by definition of Hy (xo, §),

[Hn (x0,8)] . 2
- |ba- < —.

N batll =y
We suppose that r is small enough so that T,y is not tangent to the circle
9B(s,r). Let @ > 0. There exists ¢ > 0 depending on « and the angle of the
tangent 7,y with dB(s,r) such that

Vé >0 {3AYNB(xo,8) C R(ed)} = |b—xo| < b, la — x| < ab.

Now as in the proof of Lemma 7, the condition (3) together with (30) implies
that for § small enough,

Nl—i}}&-loo VN (BAX; N B(xp,8) C R(Eﬁ)) =1

Putting together the previous facts, we obtain that

5
vy (—WN(XO’ )l) — lxox’ - il| < 208

lim sup

N—+o00 N
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Remarking that |xg — x’| = §, and that

|xox” - i

lim = | cos Bp|,
5§—0 |xg — x|
we conclude the proof by sending o to 0. O
Corollary 2 We have
H ,8
lim lim sup |vy (M) — (Jcos 8| — C(60)) ‘ -0. (32)
=0 N 00 SN

( [Ho N (x0,0)]
W ————=

lim lim sup 5N

=0 N> 400

) - C(QO)‘ =0. (33)

Proof of Corollary 2 The limit in (33) is deduced from the condition (6) since
by definition

1
[IH2.8(x0,8)] = Cn(x0,8)| = -
The first limit is deduced by combining (33) and the result of Lemma 8, since

‘Ho n(x0,6) and H1 (xo,8) form a partition of Hy(xo, 5). O
We obtain, collecting (21), (22), (23), (24), Lemma 7, (32) and (33) that

)
1
lim lim sup | —vy (/ ejl\,(a) . idot)
60 Nooo |6
0

+sgn(cos 00)(0052 00 + C(80) (| sin bo| — | cos 6p]))| = 0.

Using the same method, we prove that
8

1
lim lim sup |-vy /ejzv(a)-ida
850 Nosoo |6
0

—sgn(cos 0;)( cos 26, + C(61)(| sin 61| — | cos 61]))| = 0.

We get the expression of lims_. lim supy_, o, VN (A% (s,7,8)) of Theorem 2 by
combining Proposition 3 together with the two last limits. The liminf can be
handled similarly. O
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5.5 Proof of Proposition 1

In this case the condition 3 of Theorem 1 is satisfied and we have only to check
the limit in (6) and to precise the value of the function C defined there. For this,
we need the following lemma.

Lemma9 Let A and B be two points of R%. For each fixed integer N, let Ly
denote one of the two maximal subpaths of 3([AB]n) not crossing the line (AB).
Let Ny (Ly) be as defined in (11). Then

lim

N4 (LN)
N—+o0 N

= |(AB) - il A |[(AB) - ]I,

where a A b = min(a, b).

Proof of Lemma 9 We suppose without loss of generality that AB -i and AB -j
are positive. Let 8 denote the angle between AB and i. We consider only the
case 0 < tan 6 < 1, since the proofs for the cases tan # > 1 and tan § = 1 are
similar. We denote by Ay and By the extreme points of Ly. Our task is to
prove that

N (LN)

(ANBN) -] = N

(34)

The identity (34) will prove Lemma 9 since limy—, 4o (ANBn) - j = (AB) - j and
O<tan 0 < 1.

We first prove the equality (34) for N. (Ly) = 1. When N4 (Ly) = 1, the path
Ly contains a unique monotone path £}, = (v{,w1,...,w,) such thatv; -j =0,
vi-wy=0andwy -i=---=w,-i=0.These vectors are drawn on the lattice
Z%V and arranged according to the direct sense.
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Let Cy, C; be the two points of (AB) such that (C;C;) -i = 1/N and that the
path E}\, cover the segment [Cy, C3]. By construction

or—1
(1) -j > N
hence
(C1Cy) -]
tan 0 = ————— —1.
(1) i

Since 0 < tan 6 < 1, we deduce that r = 1. Now let By, B, be the two points of
(AB) belonging to the boundary of the box of [AB]y that contains the point B.
Since 0 < tan 6 < 1, we have

) 1
I(B1B2) -]l < -

This fact together with r = 1 proves that the path Ly isequal to (eq, . . ., em, w1, f1,
...»fn), where the vectors (e;) and (f;) are copies of the vector vy, so that they
are all horizontal. Hence (AxyBy)-j = 1/N. The general case when N (Ly) > 1

is proved by induction on N4 (Ln). O

Proof of polygons Lemma 9 together with Theorem 1 yield the control of AIUV’F
(s,r,8) for a class of regular polygons I' defined as follows.
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m-smooth polygons Let sq,...,s, be m points of R2. We denote by I'(sq,. ..,
sm) or by T, if there is no ambiguities, the polygon in IR? linking the points
[51,52,-..,Sm,s1]; the points s1,s2,...,s, are then the corner points of I'. We
suppose that the points sy, 52, . . ., s, are arranged counterclockwise. By conven-
tion, we set sop = s,,. To each site s;, we associate two oriented angles 6;(s;) and
0;_1(s;) such that 6;_1 (s;) (respectively 6;(s;)) is the oriented angle between the
half horizontal axis [0, +oo[ and the segment [s;,s;_1[ (respectively [s;, s;11[)-
Finally, we suppose that I" encloses a connected, compact, bounded set U of
R%?ie. ' = 9U and that T N Z%/N = ¢ for all N > 1.
Initial condition We will consider o the spin configuration associated to the
polygon I at step N.

A polygon I" and the configuration o

Lemma 9 allows to apply Theorem 1 with C(6) = | sin 6| A | cos 6k|. Doing so,
we get the following proposition.

Proposition 4 Let T’ be an m-smooth polygon in IR? associated to the m points
S1,...,5m and let oy := oo N be the associated initial configuration at step N. Let
0; € [0,27] (respectively 6;_1 € [0,2r]) be the oriented angle between the half
horizontal axis [0, +oo[ and the segment [s;,s;11[ (respectively [s;,s;_1[) with the
convention that sy = Sy, Then, for eachi = 1,...,m, and for any positive real
numbers r, § small enough, one has

. 1 .
Nl_l)riloo AIUV’F (si,7,0) = 750 26,1 (2} in 6,1 <] cos ;1] —

1)
1 . 1
v sin 26; (2H| sin 0;|<| cos 6;] _1) + ) (Sgn(tan 01| sin 6;] < cos 1]
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—sgn(tan 6;_1)]|sin 6,_;|<|cos 6;_11) + Lsin 6,_, sin ;>0 (sgN(6; — 6;_1)

XTeos ;_; cos 6,0 + sgn(tan &;_1)lcos 6;_; cos 9,~<0) .

Hence,

o if 61,6 € [Ck+ DT, Qk+3TIx [2k+5)TF, Ck+TF 1, with k € (0,2)
then

. 1, . .
NLHEoo A;’F (s;,7,8) = 1 (sin 26; — sin 26,_1) .

o if 61,6 € [Ck+ DT, Qk+3TIx [2k+5)TF, Ck+7F 1, with k € (1,3)
then

. 1, . .
NLHEoo A%’F (s;,7,8) = 1 (sin 26;_1 — sin 26;).

o if (6;,_1,6) € [k + 1)%, Qk + 3)%]2, with k € {0,2}, then

lim A}'\,’F(si, r,8) =

(4sgn(®; — 6;_1) + sin 26; — sin 26,_1) .
N——+o0

FUIS,

o if (01,6 € [k + DT,k +3)F P, with k € {1,3), then
. o,I’ 1 . . .
1\,1_1)rJrr10o Ay (si,1,8) = 1 (4 sgn(sin (6; — 6;_1)) + sin 26;,_1 — sin 29,-) .

o if (6i-1,6) € [(Rk+ DT, Rk +3) T 1 x [k +3) T, Ck+5H T Uk +3) T,
2k + 5)%] x [k + 1)%, 2k + 3)%], with k € {0,2}, then

(2 —sin 26; —sin 26;_1) if [tan 6;] <1, [tan 6;_1] > 1

FNE

ylim AR i) =
(=2 +sin 26;_1 +sin 26;) if [tan 6;] > 1, [tan 6; 1] < 1.

FNTN

o if (6;-1.6) € [(Rk+ DT, Ck+3) 1 x [k +3) T, Rk +5)FIVICk+3) T,
2k + 5)%1 x [k + 1)%, 2k + 3)%1, with k € {1,3), then

% (=2 —sin 26; — sin 26; 1) if [tan 6;] <1, [tan 6;_1] > 1

ylim AL i,0) =
(2+sin 20;_1 +sin 20;) if [tan 6 > 1, |tan §;_1]| < 1.

FNE

Remark We denote by Lr(s;) = limy— 40 A;’V’F(si, r,8), where I' is a polygon
as described by Proposition 4. Then we can check the following comparison
criterion.
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I'=al’

I —ar

If UNB(sj,r) c U NB(sj,r) forsomer>0ands; e TN,
then L (sj) < Lp/(si)

We illustrate the results of Proposition 4 with the help of the following pictures.

Here limy_, oo A% (5i,7,8) = } (sin 26; — sin 26;_1).

In the first picture this limit is negative, while for the second one it is positive
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In the following picture, we have limy_, 4 A;’F(si, rd) = % (sin 26;_1 — sin 26;).

This limit is negative
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Here limy_, o0 A%’ (5i,7,8) = § (4 + sin 26; — sin 26, ;).

This limit is positive

In the following picture, we have limy_, 4 Ag’r(si, r8) = % (2 — sin 26;_1 — sin 26;).

This limit is positive
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Here limy_, oo A%’ (5i,7,8) = § (2 — sin 26; — sin 26;_1).

This limit is negative

Proof for Jordan curves We consider now the case of Jordan curves. In order
to apply Theorem 2, we have to check the condition (6). For this, we generalize
Lemma 9 as follows.

Lemma 10 Let f be a monotone function of class Cy defined on [a,b]. Let Ly
denote one of the two maximal subpaths of ZJZV covering f. Let Ny (Ly) be as
defined in (11). Then

b
. Ni(Ln) _ /
im S = [ ey

Proof of Lemma 10 We suppose without loss of generality that the function f is
nondecreasing on [a, b]. Let (I;);c; be the collection of the open intervals where
f" — 1is nonzero. Setting I; =]x;_1,x;[ for i € I, we have

f) — flxiz)
(=)

Xi — Xi—1 Xi — Xi—1
X

Al = _ / (f'(x) A1) dx. (35)
-1

1

We denote by f; the restriction of f to [x;_1,x;[ and by El(é,) the associated polyg-
onal line. We deduce from the suitable construction of the intervals (/;);c; and

@ Springer



420 R. Cerf, S. Louhichi

arguing as in the proof of Lemma 9, that

Ny

Jlim = = 0 = i) A (o) = fli).

Hence
. Ni(Ln)
lim — = xi) A () = fi).
N—+oo -
iel

Lemma 10 is proved by collecting the last bound together with (35). O

We define a monotone function f, such that the part of y limited by x¢ and
x0(8) (where xo(8) is the point of y N dB(xp,8) \ B(s,r)) is equal to the graph
{(x,y) : y = f(x)} and we apply Lemma 10 to the monotone path £y covering
the part of y limited by xp and xo(8). We deduce, since | N4 (Ly) — Cn(x0,8)| < 1,
that

_ Cn(x0,0) 1 /
Jim CN0D) E/(If (O] A1) dx
Is
1
= | cos 9(8)|E/ (|f/(x)| A 1)dx

Is

where I5 is the segment [xg - i, x0(d) - i]. We obtain, taking the limit over § — 0
in the last equality,

C ,8 . .
}i_r)rle_i)I}rloo % = | cos | (|f/(x0 S| A 1) = | cos Gp| A | sin Gp.
We then obtain from the conclusion of Theorem 2, that for r small enough,

lim liminf AY” (s,7,8) = lim lim sup A%” (s, 7, 8) (36)

5—0 N—+00 020N 4o
_ %sin 260 (21} sin o] < | cos 6ol — 1)
—% sin 26; (2]I| sin 6y| < |cos 61| — 1)
+% (sgn(tan 001 sin 6] < | cos 6]
—sgn(tan 60)I| gin gy < | cos 90|)
+Lgin O sin 61 > 0 (sgn(91 Bl GO)HCOSGO cos 1 >0

+sgn(tan 60)lcos gy cos 6 < 0) . (37)
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End of the proof of Proposition 1 In order to prove Proposition 1, we suppose
first that 6 takes a value different from (2k + 1)%, for k € IN. Since the curve
y admits a tangent at the point s, then for r small enough, (6y,6;) belongs to
[k + 1)%, 2k + 3)%] x [k + 5)%, 2k + 7)%], for some k € IN. We then
deduce from (36) that,

o if (60,0;) € [(2k+1)7—fr,(2k+3)7—fr] X [(2k+5)7-jr,(2k+7)%],withk € {0,2},
then

1
giil}) Slg% }\1/11_1)_5"_[1[3 A (s,r,8) = 1 (sin 26; — sin 26p) .

o if (00,01) € [(2k+ DT, @k +3)F1x [k +5)F, 2k +7) ], with k € (1,3},
then

1
lim li A% (s,r,8) = — (sin 26y — sin 26;) .
5%1\11121115 N (5,7,6) 4(sm o — sin 20;)

We now need the following lemma.

Lemma 11 Let y be a Jordan curve of R? of class Cp. Let s be a fixed point
of y. Let r be a positive real number sufficiently small such that 0B(s,r) Ny
contains exactly two points xo and x1. Suppose that xo, s and x| are arranged
counterclockwise. Let s’ be the common point to Tx,y and Ty, y. Let 0, € [0,27]
(respectively 6y € [0,2r]) be the oriented angle between the half horizontal axis
[0, +-o00[ and the segment [s', x1[ (respectively [s', xo[). Then

. sin (Bp — 07)
m e —

1 =
r]—>() 2r %-y ),
and
lirr(l)cos (6g + 61) = — cos 20,
r—

where 0 is the angle between the half horizontal axis [0, +oo[ and Ty .

Lemma 11, together with the two equalities just above Lemma 11 and the
fact sin 2a — sin 2b = 2sin (a — b) cos (a + b), gives

1, %(cos 20)6,(5)  if 0 €l +40T.G+40 T
lim lim limsup >~ A% (s.7.8) =
r—>08—->0 N 400 27 —%(cos 20)&y(s) ifo E](3+4k)%,(5+4k)%['

which proves Theorem 1 when 6 is different from (2k+1) %, for k € IN. Now, sup-
pose that 6 = % and that for any r small enough (6, 6,) € [%,3%] x [3%,5%]
(the arguments for the proof for the other values of # and the corresponding
values of 1, 6y will be similar). We have in that case,
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lim lim supA Y(s,r,8) = (2 — sin 2601 — sin 26p)

=0 N 400
= % (sin (% - 01) cos (% + 91) + sin (% - 90)
X €OS (% + 90)) . (38)
Now the method of the proof of Lemma 11 gives

in (6 —0 in (6 — 6
li SO0 —06) _ . sin (6 — 6o) = —£,(s).
r

r—0 r r—0

This fact, together with (38), leads to

lim lim lim sup — A N (s,r,8) =0,

r—>08—>0N_ 400 ¥

which is the conclusion of Theorem 1 for 6 = %

Proof of Lemma 11 We begin by giving the definition of the curvature of y at
any s € y.

Definition Let y be a smooth Jordan curve of R%. Suppose that (¢ (t)) re[—11] IS
a parametrization of the curve y. Lets = ¢ (t) = (x(t), y(t)) be a fixed point of y.
The curvature of y at the point s is defined by

X' @)y" () —x" @)y (1)

= T20 17207

Let s, xo and x; be as defined in Lemma 11. Let ¢, fp and #; be three real num-
bers of [—1,1] such that s = ¢(t) = (x(¢),y(¢t)), and for i € {0,1},x; = ¢(t;) =
(x(t), y(t;)). We have % = (x(t;) — x(£))% + (y(t;) — y(1))?, for i € {0,1}. Hence

lim —— = X200 +y20,  lim —— = \[¥20) +y20).
o=t o<t t — 1y T on—tia<ty t] —t

F —1,1], defi = —X0 __ wen
or any t € [—1,1], define f(7) ) 1770 e have
o X@ L YO+ Y @y (@)
fo= X2(0) +y2(1) x“)cﬂaﬂw%wwz
Hence
X' (to)
cos By = — - -
x2(to) + ¥ (10)
x' (1)

=+ =) (O +o(t—1o]). (39)

VX2(0) + y?(0)
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x'(1)

VX2(0) 4y ()

We obtain, combining the last two equalities

cos 0 = + @ —=0f ) +o(t —1)). (40)

cos fp+cos Oy 2x"(t) X OX" (0 + Y 0y (1)

fim S TS T

H—t,lg—1, fo<t<ly r T X200 +y20)

The last limit together with

/
t
lim sin 0] = y®

H—t,t<tf /x’Z(l«) + y’2 0 ’

ensures
. 1.
lim —sin 6y (cos 6y + cos 61)
H—ttg—t tg<t<t; |
2x" )y’ (1) x'(Ox" (@) + y' 1)y (1)
= 2 )'}2 3~ X OYO— 73 /); ); 2
(20 + y2 () (2@ +y2 (1)
In the same way, we prove that
. 1 . .
lim — cos 61 (sin 6y + sin 61)
h—ttg—~>tlp<t<ty r
2xX' (0y" (1) X' (Ox" () + Y Oy (1)

2x'(0)y' (1)

T 020+ Y20 2(0) + y2(1)32
The last two limits together with
sin (Bg — 61) = cos 91 (sin 01 + sin Gy) — sin 01 (cos Hy + cos 81),

prove that

y 1 . @ — 61) x'(0y" () — x"(0)y' ()
im — sin — =
=t ly—t lg<t<t] 2F 0 1 2@ _|_y’2([))3/2

Now the equality
cos (6p 4+ 01) = cos Gy cos O; — sin Gy sin by,

together with the limits (39), (40), yields

2 2
1) — t
lim cos (6p + 01) = M
>t tgp—t, tg<t<ty X2() + y Z(I)

The last limit is equal to — cos 26, where 6 is the angle between the horizontal
axis and Tyy. O
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5.6 Proof of Proposition 2

Our purpose is to apply Theorem 2. So we have to check, the requirements of
Theorem 2. We first prove the condition (3). We claim that, for all ¢ > 0,

A}i_f)noo un (sup [Py (xn) — f(xn)| = &) =0, (41)

where the supremum is taken over xy € [a,b] N Z
Proof of (41) For | € ZZ, we denote by n(%) the height difference n(%) =
CDN(HWl) - N(ﬁ)- Without loss of generality, we will take a = 0. We write, for
K el0,pIn%,
k—1

OO TR ICORG) pres

The last equality gives, since py (n (

()
S (6 ()

SR )@ v

We deduce from the last equality, assumption (2) of Proposition 2 and the fact

2>
N—"
N—
Il
Z|=
=
—~
2>
N—"

1)) 33

that (41) is proved as soon as,

b
N 1" oo
k-1

S () ()0 o

For this, we use a Markov inequality, the independence of the random vari-
ables (n( ﬁ))lez and a Rosenthal inequality (cf. Sect. 2.6.19 and Theorem 2.9 of

hm UN sup
N—oo 0<k<Nb
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Petrov (1995)). We get, for an universal constant C,

o (pm, B OR) - () =

1 o !
SN | sup Z(n(ﬁ)—m(n(ﬁ)))

0<k< Nb =

B () ) ()

The last estimations and the fact that, for some constant C depending on [|f”||co,

()0 (R (G ()

give

o (B0 - (0 =) o))

which proves (42) and then (41). Now (41) allows to deduce the condition (3).
We deduce from the definition of uy, that for any N € IN*

Vk € [Na,NbD]|NZ pun (sgn (n (%) f (%)) < 0) =0.

Since the graph of the monotone function f coincides with the restriction of
y over [a,b], we conclude from the above formula that BAy NS(s,r,8,8) and
y NS(s,r,8,8) are both nondecreasing or both nonincreasing.

Our task now is to check the condition (6) and to precise the value of the cor-
responding function C. Recall that f and & are both increasing or decreasing.
Therefore

=

IA

Cn(x0,8) = > L&) 20

x0-i<k/N<3|cos 0p|+xp-i
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where the quantity Cn(xo,§) is defined just before Theorem 1. We have

1 1 k
5 (Cy(x0.8) = 3 i (,7 (ﬁ) " 0)

x0-i <k/N<§|cos 6y|+xo-i

| 71(%) |

k
x0-i<k/N<§|cos Oy|+xo-i 1+ |f/| (N)

The last equality gives

8] cos Op|+xp-i

. 1 "1 ()
lim — uy (Cn(x0,8)) = = L g
Aim NSMN( N (x0,6)) 5 . T+ /100 X
X0l
Hence
. . 1 "I (xo - 0) | tan 6p

| 1 — C 8)) = oy ——— = | ———— 1

8%NE>nooN5MN( N(x0,8)) = | cos 0|1+|f/|(xo-i) | cos ol1Jr|tan ol
sin (26p)

| | = C(p).

= 2(I'sin 60| + | cos bol)

We have assumed in Proposition 2 that the curve y is monotone in B(s,r) U
B(xq,8) U B(x1,6). This fact allows to deduce that,

sin Ogsin 61 <0,  cos Hycos ) < 0.

We use the last constatation together with the conclusion of Theorem 2 to
obtain,

lim 1i A% 8)) = lim lim inf A7 B 43
lim lim sup un (AL (s,7,9)) Jim lim int un (AL (s,7,9)) (43)

-0 Nooo
= 1sgn(tan 6o) (cos 201 — cos 26())
2

+L senan o) [SIn@ODL__16in 1] — [cos 64)
— an Sin — |COS
2% O\ 2(I'sin 6] + | cos 61]) ! !

| sin (26p)|
2(| sin 6p| + | cos 6p|)

(|sin 6| — |cos 90|)).
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We have

sgn(tan 6p) ISR @OL__ 16in 01] — [cos 61])
an Sin — |COS
& O\ 2('sin 6y + | cos 1)) ! !

| sin (26p)|
2(] sin Bp| + | cos Gp|)

(|sin 6| — |cos 90|))

sin 6 cos 61 . sin 6y cos 6y
=— (Isin 61| — |cos 61]) — —
(I'sin 61] + | cos 61]) (I'sin B[ + | cos 6pl)

—sin (g — 61)
(|sin 61| 4 |cos O1])(| sin Bg| 4 | cos Gp|)

X (|sin 6g| — |cos Bp|) =

(cos 261 —cos 260)(sin B cos B +sin 6; cos By+cos by cos 61sgn(tan 6p)+
sin 6 sin fysgn(tan 6p))

(Isin 01| + [cos 61])(| sin Op| + | cos Opl)

B —sin(y—6;)
"~ (Isin 61|+ |cos 61 ])(| sin 6g|+| cos 6o |)

—sgn(tan 00)(0052 01 —cos 6o).

We conclude from (43) together with the last equalities,

lim li A% (s,r,8)) = lim lim inf ALY (s,1,8
lim ljsnﬁsropmv( N (5,7,8)) = lim lim inf oy (A% (s,7,8))
B —sin (g — 61)
"~ 2(|sin 6| + |cos 6;])(| sin Gg| + | cos Hp|)”

The last limit together with Lemma 11 completes the proof of Proposition2. O

Acknowledgements The authors wish to thank Patrice Assouad and Sophie Lemaire for useful
discussions. The first version of this work dealt only with the deterministic initial condition; we are
very grateful to Herbert Spohn for explaining to us the relevance of the randomness in the initial
condition.

References

1. Andjel, E.D.: Invariant measures for the zero range process. Ann. Probab. 10(3), 525-547
(1982)

2. Chayes, L., Swindle, G.: Hydrodynamic limits for one-dimensional particle systems with moving
boundaries. Ann. Probab. 24(2), 559-598 (1996)

3. Chayes, L., Schonmann, R.H., Swindle, G.: Lifshitz’ law for the volume of a two-dimensional
droplet at zero temperature. J. Stat. Phys. 79(5-6), 821-831 (1995)

4. De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Motion by curvature by scaling nonlocal
evolution equations. J. Stat. Phys. 73(3-4), 543-570 (1993)

5. De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with the Kac potentials. I.
Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7(3), 633-696 (1994)

6. Katsoulakis, M.A., Souganidis, P.E.: Generalized motion by mean curvature as a macroscopic
limit of stochastic Ising models with long range interactions and Glauber dynamics. Commun.
Math. Phys. 169(1), 61-97 (1995)

@ Springer



428 R. Cerf, S. Louhichi

7. Katsoulakis, M.A., Souganidis, P.E.: Stochastic Ising models and anisotropic front propagation.
J. Stat. Phys. 87(1-2), 63-89 (1997)

8. Petrov, V.V.: Limit theorems of probability theory: sequences of independent random variables.
Clarendon Press, Oxford (1995)

9. Sowers, R.B.: Hydrodynamical limits and geometric measure theory: mean curvature limits
from a threshold voter model. J. Funct. Anal. 169(2), 421-455 (1999)

10. Spohn, H.: Interface motion in models with stochastic dynamics. J. Stat. Phys. 71(5-6),

1081-1132 (1993)

@ Springer



