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Abstract. Let G be a compactly generated, locally compact group, and let T be the operator
of convolution with a probability measure μ on G. Our main results give sufficient condi-
tions on μ for the operator T to be analytic in Lp(G), 1 < p < ∞, where analyticity means
that one has an estimate of form ‖(I − T )T n‖ ≤ cn−1 for all n = 1, 2, . . . in Lp operator
norm. Counterexamples show that analyticity may not hold if some of the conditions are not
satisfied.

1. Introduction and statement of results

Let L(X) be the space of bounded linear operators in a Banach space X.An operator
S ∈ L(X) is said to be analytic (cf. [7, 4]) if there exists c > 0 with ‖(I −S)Sn‖ ≤
cn−1 for all n ∈ N := {1, 2, 3, . . . }. This notion is an analogue, for the discrete
time semigroup (Sn)n∈N, of the usual notion of analyticity for a continuous time
semigroup (etH )t≥0 which corresponds to an estimate ‖HetH ‖ ≤ ct−1, t > 0.
Analyticity is a time regularity property which is highly useful for study of the
semigroup (Sn), especially in cases where S is not self-adjoint in Hilbert space so
that the spectral theorem is not available.

The aim of this paper is to obtain very general conditions under which the
Markov operators for random walks on groups are analytic in Lp spaces. More
precisely, we consider a locally compact, compactly generated group G and a
μ ∈ P(G) where P(G) denotes the set of regular Borel probability measures on G.
We are interested in analyticity of the (right-invariant) Markov operator T = Tμ

defined by the convolution

(Tf )(h) = (μ ∗ f )(h) =
∫

G

dμ(g) f (g−1h) (1)

for h ∈ G, f ∈ Lp := Lp(G; dg), where dg denotes a fixed left invariant Haar
measure on G. Most of our results deal with L2, though they usually extend to
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Lp when 1 < p < ∞. For some related studies of analytic Markov operators in
specific situations, see [4, 1, 2, 10, 11]. In particular, the present paper extends
results of [11] for locally compact groups.

Our results suggest that much of the theory of self-adjoint Markov operators on
groups could be extended to non-self-adjoint operators, and there may be possible
future applications of our results in this direction.

To state our main results we fix some notation (for background material see
[18, 12]). Since G is compactly generated, we may fix an open, relatively com-
pact neighborhood U of the identity e ∈ G which is symmetric (U = U−1) and
generates G. The standard modulus ρ = ρU : G → N is then defined by

ρ(g) = inf{n ∈ N : g ∈ Un}, g ∈ G,

where Un := {g1 · · · gn : g1, . . . , gn ∈ U}. A probability measure μ ∈ P(G) is
said to be adapted if the closed subgroup generated by its support supp(μ) equals
G, and is said to be spread out if there exists n ∈ N such that μ(n) is not singular
with respect to Haar measure dg, where μ(n) := μ ∗ · · · ∗ μ denotes the n-th con-
volution power of μ. For ν1, ν2 Borel measures on G, the notation ν1 ≥ ν2 will
mean that ν1 − ν2 is a positive measure. One sees that μ ∈ P(G) is spread out if
and only if there exist n ∈ N, a constant c > 0 and a non-empty open set V ⊆ G

such that μ(n) ≥ cχV . (Here, χV denotes the characteristic function of V ⊆ G or,
more precisely, the measure χV (g)dg.)

The following concept of centeredness (compare [1, 2, 17, 11]) plays a cru-
cial role in our results. Consider the canonical homomorphism π0 : G → G/G0
where G0 := [G, G] is the closure in G of the commutator subgroup [G, G]. Now
G/G0 is a compactly generated locally compact abelian group, so that by a stan-
dard theorem (see [13, Theorem II.9.8]) it is isomorphic with Z

q1 × R
q2 × M for

some q1, q2 ∈ N0 = {0, 1, 2, . . . } and some compact abelian group M . Define the
closed normal subgroup G1 := π−1

0 ({0} × M) of G, and consider the canonical
homomorphism π : G → G/G1 ∼= Z

q1 × R
q2 with components π(i) : G → R,

i ∈ {1, . . . , q1 + q2}. One says that μ ∈ P(G) is centered if
∫

G

dμ(g) π(i)(g) = 0

for all i ∈ {1, . . . , q1 + q2} where the integrals are assumed to be absolutely
convergent.

Finally, δg denotes the probability measure concentrated at g ∈ G, and for
μ ∈ P(G) the involute μ∗ ∈ P(G) is defined by μ∗(A) = μ(A−1) for Borel
sets A ⊆ G. We say μ is symmetric if μ = μ∗; any symmetric μ which satisfies∫

dμ(g) |π(i)(g)| < ∞, i ∈ {1, . . . , q1 + q2}, is centered, but centered measures
are not symmetric in general.

Our basic tool to study analyticity is the following abstract characterization due
to Nevanlinna (see [15, Theorem 4.5.4], [16, Theorem 2.1], and [4, 5]). Recall that
an operator S ∈ L(X) is said to be power-bounded if supn∈N ‖Sn‖ < ∞.
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Theorem 1.1 Let X be a complex Banach space and let S ∈ L(X). Put D := {z ∈
C : |z| < 1}. Then S is analytic and power-bounded if and only if the spectrum of
S is a subset of D ∪ {1} and the semigroup (e−t (I−S))t≥0 is bounded analytic.

We shall denote by σLp(S) the Lp spectrum of any operator S ∈ L(Lp).
The main theorem of this paper is the following (unless otherwise stated, in

the rest of the paper T will always denote the Markov operator (1) associated with
μ ∈ P(G)).

Theorem 1.2 Let μ ∈ P(G) be centered, adapted, spread out, and such that∫
G

dμ(g) ρ(g)2 < ∞. Suppose σL2(T ) ⊆ D ∪ {1}. Then T is analytic in L2.

The conclusion of Theorem 1.2 was obtained in [11] for a smaller class of
centered adapted measures (essentially, the compactly supported measures with
a bounded density with respect to Haar measure). See also [1, 2] for estimates
implying analyticity in the particular case of groups of polynomial volume growth.

We obtain Theorem 1.2 as an immediately corollary of Theorem 1.1 and the
following result.

Theorem 1.3 Let μ ∈ P(G) be centered, adapted, spread out, and such that∫
G

dμ(g) ρ(g)2 < ∞. Then the semigroup (e−t (I−T ))t≥0 is bounded analytic in L2.

Consider the left translation operators L(g) and the difference operators ∂g

defined by (L(g)f )(h) = f (g−1h), (∂gf )(h) = ((L(g) − I )f )(h) = f (g−1h) −
f (h) for all g, h ∈ G and f : G → C. For the proof of Theorem 1.3, an essential
ingredient is the “Dirichlet norm” 	2 defined by

	2(f ) :=
⎛
⎝
∫

U

du ‖∂uf ‖2
2

⎞
⎠

1/2

(2)

for all f ∈ L2. In fact, the proof depends on comparisons of 	2(f )2 with the real
and imaginary parts of the quadratic form f �→ ((I − T )f, f ), f ∈ L2. Note that
I − T may be called the “discrete Laplacian” associated with μ ∈ P(G) and can
be written in the form

(I − T )f = −
∫

G

dμ(g) ∂gf (3)

for any f ∈ Lp.
In Theorems 1.2 and 1.3, the “finite second moment” hypothesis that

∫
dμ ρ2 <

∞ can be slightly weakened to a condition on the “antisymmetric” part of μ; for
details, see the end of Sect. 3. The weakened condition holds, for example, for
arbitrary symmetric probability measures.

The next result, a corollary of Theorem 1.2, provides an interesting L2 spatial
regularity estimate. We write ‖ · ‖p→q to denote the norm of a bounded linear
operator from Lp to Lq .
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Corollary 1.4 Assume the hypotheses of Theorem 1.2. Then there exists c > 0
such that

‖∂gT
n‖2→2 ≤ cρ(g)n−1/2

for all n ∈ N and g ∈ G.

Theorems 1.3 and 1.2 have analogues in Lp for 1 < p < ∞, as follows.

Corollary 1.5 Under the hypotheses of Theorem 1.3, then the semigroup
(e−t (I−T ))t≥0 is bounded analytic in Lp for each p ∈ (1, ∞).

Moreover, under the hypotheses of Theorem 1.2, T is analytic in Lp for each
p ∈ (1, ∞).

Corollary 1.5 follows from Theorems 1.3 and 1.2 by interpolation methods.
Indeed, (e−t (I−T ))t≥0 is a contraction semigroup in Lp for all p ∈ [1, ∞],

that is, ‖e−t (I−T )‖p→p ≤ 1, and if it is bounded analytic in L2 then a standard
application of the Stein interpolation theorem (compare [9, Theorem 1.4.2]) shows
that it is bounded analytic in Lp for p ∈ (1, ∞). Similarly, since T is a contraction
in Lp for all p ∈ [1, ∞], the second statement of Corollary 1.5 follows by an
interpolation theorem of Blunck [5] for analytic operators. Blunck’s theorem states
that if S ∈ L(Lp1) ∩ L(Lp2) is power-bounded in Lp1 and Lp2 , and analytic in
Lp1 , then it is analytic in Lp for all p strictly between p1 and p2.

None of the hypotheses “centered”, “spread out” or “adapted” can be omit-
ted from Theorems 1.2 and 1.3. In Sect. 5 we shall give counterexamples, and also
obtain the following negative result for non-centered measures on amenable groups.

Theorem 1.6 Let G be amenable and μ ∈ P(G) such that
∫

dμ(g) |π(i)(g)| < ∞
for all i ∈ {1, . . . , q1+q2} and μ is not centered. Then the semigroup (e−t (I−T ))t≥0
is not bounded analytic in L2, hence T is not analytic in L2. If in addition

∫
dμ(g)

|π(i)(g)|2 < ∞ for all i, then there exists c > 0 such that

‖(I − T )e−t (I−T )‖2→2 ≥ ct−1/2

for all t ≥ 1.

The situation for non-amenable groups is as follows. If G is not amenable and
μ ∈ P(G) is any adapted probability measure, then it is known (see, for example,
[3]) that the spectral radius r(T ) = limn→∞ ‖T n‖1/n

2→2 is strictly less than 1; one
then has for some c, ω > 0 an estimate ‖T n‖2→2 ≤ ce−ωn, n ∈ N, and it follows
trivially that T is analytic in L2. For this reason, the L2 results of this paper are
chiefly of interest for amenable groups.

Our final result is the following simple sufficient criterion for the spectral con-
dition of Theorem 1.1, which generalizes criteria of [10, 11].

Theorem 1.7 Let μ ∈ P(G). If there exist ν ∈ P(G) and a constant α ∈ (0, 1)

such that μ ≥ α(ν∗ ∗ ν), then σL2(T ) ⊆ D ∪ {1}.
In particular, this result applies whenever μ satisfies either: (i) μ ≥ αδe, or (ii)

μ ≥ εχW for some ε > 0 and some neighborhood W of e in G.
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The paper is organized as follows. Since the proof of Theorem 1.7 is relatively
short, we give it first in Sect. 2. The proof of Theorem 1.3 is contained in Sects. 3
and 4. This proof depends crucially on a certain “Taylor expansion” estimate on G

(see (4)) which was established in [11]. In order to keep the present paper largely
self-contained, we give a proof of this estimate in an Appendix (Sect. 6) in the spe-
cial case where G is discrete. Finally, in Sect. 5 we prove Theorem 1.6 and discuss
counterexamples.

2. Proof of theorem 1.7

Fix μ, ν ∈ P(G) and α ∈ (0, 1) as in the statement of Theorem 1.7, and write
Tf := μ ∗ f , f ∈ Lp. We also set ν := ν∗ ∗ ν ∈ P(G) and let T ′f := α(ν ∗ f ).
Then ‖T ′‖2→2 ≤ α. Note that

(T − T ′)f = (μ − αν) ∗ f

where μ−αν is a positive measure by hypothesis, and (μ−αν)(G) = 1−α. It fol-
lows that ‖T −T ′‖2→2 ≤ 1−α. Next observe that (T ′f, f ) = α(ν ∗f, ν ∗f ) ≥ 0,
so that T ′ is a non-negative self-adjoint operator in L2.

For any A ⊆ C, z ∈ C, let d(z, A) = inf{|z − a| : a ∈ A} denote the distance
between z and A. Whenever ‖f ‖2 = 1, we have (T ′f, f ) ∈ [0, α] and

(Tf, f ) = ((T − T ′)f, f ) + (T ′f, f ) ∈ α

where α is the set defined by α = {z ∈ C : d(z, [0, α]) ≤ 1 −α}. By a standard
Hilbert space result (see [14, Corollary V.3.3]), σL2(T ) is contained in the closure
in C of the set {(Tf, f ) : ‖f ‖2 = 1}. We conclude that σL2(T ) ⊆ α ⊆ D ∪ {1}
where the last inclusion used that α ∈ (0, 1). This proves the first statement of the
theorem.

In case μ satisfies μ ≥ αδe, then since δ∗
e ∗ δe = δe we may apply the first

statement of the theorem with ν = δe.
Alternatively, if μ ≥ εχW where W is a neighborhood of e and ε > 0, then

choose a compact neighborhood V of e with V = V −1 and V V ⊆ W and consider
ν := |V |−1χV dg ∈ P(G) where |V | = dg(V ) > 0. It is then easy to see that
μ ≥ εχW ≥ α(ν∗ ∗ ν) for some sufficiently small α ∈ (0, 1), and again the first
statement of the theorem applies.

3. Proof of theorem 1.3

The proof of Theorem 1.3 is based on the following well known criterion for ana-
lyticity of semigroups in Hilbert space (see for example [14, Theorem IX.1.24]).

Proposition 3.1 Let H be a complex Hilbert space, let S ∈ L(H) and suppose
there exists c > 0 such that

| Im(Sf, f )| ≤ c Re(Sf, f )

for all f ∈ H. Then (e−tS)t≥0 is a bounded analytic semigroup in H; in fact, there
exist constants θ1 ∈ (0, π/2), c1 > 0, such that ‖e−zS‖ ≤ 1 whenever z ∈ C with
| arg(z)| < θ1, and ‖Se−tS‖ ≤ c1t

−1 for all t > 0.
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Theorem 1.3 will follow immediately from Proposition 3.1 together with the
following two propositions.

Proposition 3.2 Let μ ∈ P(G) be centered and satisfy
∫
G

dμ(g) ρ(g)2 < ∞.
Then there is c > 0 such that |((I − T )f, f )| ≤ c	2(f )2 for all f ∈ L2.

Proposition 3.3 Let μ ∈ P(G) be adapted and spread out. Then there exists c > 0
such that Re((I − T )f, f ) ≥ c−1	2(f )2 for all f ∈ L2.

In the rest of this section, we give the proof of Proposition 3.2. The proof of
Proposition 3.3 will be given in Sect. 4 below (and that will complete the proof of
Theorem 1.3).

The next theorem is the crucial tool in the proof of Proposition 3.2. It may be
thought of as a type of second order Taylor expansion for arbitrary locally compact,
compactly generated groups.

To state it, consider the homomorphism π : G → G/G1 defined as in Sect. 1
and identify G/G1 = Z

q1 × R
q2 ⊆ R

q , where q := q1 + q2, so that π(g) =
(π(1)(g), . . . , π(q)(g)) for all g ∈ G. Let e1, . . . , eq be the standard basis of R

q

(ej has a 1 in the j -th position and zeroes elsewhere). As shown in [11, Sect. 9], we
can find elements z1, . . . , zq ∈ G such that π(zj ) = ej and such that zq1+1, . . . , zq

are contained in one-parameter subgroups of G; more precisely, the latter condition
means that there exist continuous homomorphisms θ1, . . . , θq2 of R into G such
that zq1+j = θj (1) and π(θj (t)) = teq1+j for all t ∈ R and j ∈ {1, . . . , q2}.

Theorem 3.4 Let z1, . . . , zq be as above. There exists a c > 0 such that

∣∣∣∣
((

∂g −
q∑

i=1

π(i)(g)∂zi

)
f1, f2

) ∣∣∣∣ ≤ cρ(g)2	2(f1)	2(f2)

for all g ∈ G and f1, f2 ∈ L2.

Proof In [11, Sect. 9] this estimate is proved over compact subsets of G: that is,
given any relatively compact K ⊆ G one has

∣∣∣∣
((

∂g −
q∑

i=1

π(i)(g)∂zi

)
f1, f2

) ∣∣∣∣ ≤ c(K)	2(f1)	2(f2) (4)

for all g ∈ K , f1, f2 ∈ L2, where c(K) > 0 is a constant depending on K . (See the
Appendix, Sect. 6 below, for a simpler proof of (4) when G is discrete.) To extend
this result we need the standard estimate (cf. [18, Proposition VII.3.2]) that

‖∂gf ‖2 ≤ cUρ(g)	2(f ) (5)

for all f ∈ L2, where cU is a constant depending only on U , G and the choice of
Haar measure dg.
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Given any g ∈ G, let us set n = ρ(g) ∈ N and write g = g1 · · · gn where
g1, . . . , gn ∈ U . In what follows, c, c′ will denote positive constants independent
of g and of f1, f2 ∈ L2. A direct computation yields the general identity

∂g1g2···gn =
n∑

j=1

∂gj
+
∑
k<j

∂gk
L(gk+1 · · · gj−1)∂gj

(6)

where the second sum is over all j, k ∈ {1, . . . , n} satisfying k < j , and where we
set L(gk+1 · · · gj−1) := I in case j = k + 1. But

|(∂gk
L(h)∂gj

f1, f2)| = |(L(h)∂gj
f1, ∂g−1

k
f2)|

≤ ‖∂gj
f1‖2‖∂g−1

k
f2‖2 ≤ c	2(f1)	2(f2)

for all j, k ∈ {1, . . . , n} and h ∈ G, where the last step used (5) with gj , g
−1
k

replacing g. We deduce that

∣∣∣∣
⎛
⎝
⎛
⎝∂g −

n∑
j=1

∂gj

⎞
⎠ f1, f2

⎞
⎠
∣∣∣∣ ≤ c′n2	2(f1)	2(f2).

Then, since π(i)(g) = ∑n
j=1 π(i)(gj ) and applying (4) with K = U , we obtain

∣∣∣∣
((

∂g −
q∑

i=1

π(i)(g)∂zi

)
f1, f2

) ∣∣∣∣

≤
∣∣∣∣
((

∂g −
n∑

j=1

∂gj

)
f1, f2

)∣∣∣∣+
n∑

j=1

∣∣∣∣
((

∂gj
−

q∑
i=1

π(i)(gj )∂zi

)
f1, f2

) ∣∣∣∣
≤ (cn2 + cn)	2(f1)	2(f2) ≤ c′ρ(g)2	2(f1)	2(f2)

because n = ρ(g) ≤ ρ(g)2. ��

Proof of Proposition 3.2 From (3) and since μ is assumed centered we have

((I − T )f, f ) = −
∫

G

dμ(g)

([
∂g −

q∑
i=1

π(i)(g)∂zi

]
f, f

)
,

and by Theorem 3.4 then |((I − T )f, f )| ≤ c
∫
G

dμ(g) ρ(g)2	2(f )2 ≤ c′	2(f )2

for all f ∈ L2. ��

Remark The second moment hypothesis
∫

dμ(g) ρ(g)2 < ∞ in Theorems 1.2
and 1.3 can be slightly weakened, in the following way.

Given μ ∈ P(G) define the symmetric and antisymmetric parts μs := 2−1(μ+
μ∗) ∈ P(G) and μas := 2−1(μ − μ∗), so that μ = μs + μas. Note that μas is a
finite signed Borel measure, whose variation measure |μas| satisfies |μas| ≤ μs.
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We claim that the hypothesis
∫

dμ(g) ρ(g)2 < ∞ in the cited Theorems can be
weakened to ∫

G

d|μas |(g) ρ(g)2 < ∞. (7)

To see this, observe that for centered μ, writing i = (−1)1/2 we have

Im((I − T )f, f ) = (2i)−1 {(I − T )f, f ) − ((I − T ∗)f, f )
}

= i

∫

G

dμas(g) (∂gf, f )

= i

∫

G

dμas(g)

⎛
⎝
⎡
⎣∂g −

q∑
j=1

π(j)(g)∂zj

⎤
⎦ f, f

⎞
⎠ .

Assuming (7) we obtain | Im((I − T )f, f )| ≤ c	2(f )2, f ∈ L2. This variation of
the estimate of Proposition 3.2 leads, as before, to the conclusion of Theorem 1.3.

4. Further proofs

In this section we prove Proposition 3.3 and then Corollary 1.4.
We begin with a simple lemma whose proof is included for the reader’s conve-

nience.

Lemma 4.1 Let μ, ν ∈ P(G) and g0, h0 ∈ G. Suppose that g0 ∈ supp(μ) and
that ν ≥ cχV for some c > 0 and some relatively compact open set V with h0 ∈ V .
Then there exists c′ > 0 and a relatively compact open set W such that g0h0 ∈ W

and μ ∗ ν ≥ c′χW .

Proof Note that (μ∗χV )(g) = μ(gV −1) for all g ∈ G. By continuity of the group
multiplication, we can choose relatively compact open sets W, W ′ with g0h0 ∈ W ,
g0 ∈ W ′ and (W ′)−1W ⊆ V . It follows that gV −1 ⊇ W ′ for all g ∈ W , and setting
ε := μ(W ′) > 0 we have

(μ ∗ χV )(g) = μ(gV −1) ≥ ε

for all g ∈ W . Then μ ∗ ν ≥ c(μ ∗ χV ) ≥ cεχW . ��
We are ready to prove Proposition 3.3. Given μ ∈ P(G) which is adapted and

spread out, let μ := 2−1δe + 4−1(μ+μ∗) ∈ P(G) and consider the corresponding
Markov operators Tf := μ ∗ f and T f := μ ∗ f . Clearly μ is adapted, spread
out, symmetric, and μ ≥ 2−1δe, and an easy calculation gives

((I − T )f, f )=4−1((I − T )f, f ) + 4−1((f, (I − T )f ) = 2−1 Re((I − T )f, f )

for all f ∈ L2. Therefore by replacing μ by μ, without loss of generality we will
assume in the rest of the proof that μ is symmetric and μ ≥ 2−1δe.
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Let S be the set of all g ∈ G for which there exist n ∈ N, c > 0 and a relatively
compact open neighborhood V of g satisfying μ(n) ≥ cχV . Then S is non-empty
since μ is spread out; moreover, it is easy to check that S is an open, hence closed,
subgroup of G (that S = S−1 follows from the assumption that μ is symmetric).
One also sees that supp(μ) ⊆ S, by applying Lemma 4.1 with h0 = e. Since μ is
adapted and S is a closed subgroup of G, we must have S = G.

We can therefore cover the compact set U with a finite collection of open,
relatively compact sets Vk such that inequalities of form μ(nk) ≥ ckχVk

hold for
each k, with some nk ∈ N, ck > 0. But μ ≥ 2−1δe implies that μ(n+m) ≥ 2−mμ(n)

for all m, n ∈ N. Hence, setting N = maxk nk ∈ N we have

μ(N) ≥ cχU .

Since μ(N) is symmetric, a standard calculation then yields

((I − T N)f, f ) = 2−1
∫

G

dμ(N)(g) ‖∂gf ‖2
2 ≥ c′

∫

U

dg ‖∂gf ‖2
2 = c′	2(f )2

for f ∈ L2. But since T is a self-adjoint contraction in L2, the spectral theorem
easily shows that ((I −T N)f, f ) ≤ c′′((I −T )f, f ) for all f ∈ L2. Proposition 3.3
now follows.

Proof of Corollary 1.4 For all f ∈ L2, applying (5), Proposition 3.3 and then
Theorem 1.2 gives

‖∂gT
nf ‖2

2 ≤ cρ(g)2	2(T
nf )2

≤ c′ρ(g)2 Re((I − T )T nf, T nf ) ≤ c′′ρ(g)2n−1‖f ‖2
2,

which implies the Corollary. ��

5. Proof of theorem 1.6 and final remarks

To prove Theorem 1.6, we first examine the simplest case where G = R and μ ∈
P(R). The L2 spectral decomposition of the Markov operator T then comes from
the Fourier transform f �→ f̂ which maps L2(R) unitarily onto itself. Explicitly,

̂(Tf )(ξ) = μ̂(ξ)f̂ (ξ)

for all f ∈ L2 = L2(R), ξ ∈ R, where μ̂ ∈ C(R) is the Fourier transform of μ

given by

μ̂(ξ) =
∫

R

dμ(x) e−ixξ .

The spectrum σL2(T ) is the set {μ̂(ξ) : ξ ∈ R}, where in general A denotes the
closure of a set A ⊆ C.
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Lemma 5.1 For μ ∈ P(R) as above, the semigroup (e−t (I−T ))t≥0 is bounded
analytic in L2(R) if and only if there exists a c > 0 such that

| Im(1 − μ̂(ξ))| = | Im μ̂(ξ)| ≤ c Re(1 − μ̂(ξ)) (8)

for all ξ ∈ R.

Proof If (8) holds then | Im((I − T )f, f )| ≤ c Re((I − T )f, f ) for all f ∈ L2,
hence (e−t (I−T )) is bounded analytic by Proposition 3.1.

Conversely, suppose that (e−t (I−T )) is bounded analytic. By standard semi-
group theory (see [8, Theorem 2.33]) the spectrum σL2(I − T ) must then be con-
tained in a closed sector �(ω) := {z ∈ C : | arg(z)| ≤ ω} ∪ {0} for some ω ∈
(0, π/2). But σL2(I − T ) = {1 − μ̂(ξ) : ξ ∈ R}. Hence | arg(1 − μ̂(ξ))| ≤ ω,
which implies (8). ��
Proof of Theorem 1.6 First suppose G = R and consider μ ∈ P(R) with

∫
R

dμ(x) |x| < ∞ and which is non-centered, that is, a := ∫
R

dμ(x) x �= 0. Differ-
entiating μ̂(ξ) = ∫

R
dμ(x) e−ixξ with respect to ξ shows that μ̂ ∈ C1(R) and

μ̂′(0) = −ia. Since μ̂(0) = 1 we have

μ̂(ξ) = 1 − iaξ + o(|ξ |)
where o(|ξ |) denotes a function of ξ such that limξ→0 o(|ξ |)/|ξ | = 0. Since a �= 0,
for some small ε > 0 we have

|1 − μ̂(ξ)| ≥ ε|ξ |
for all ξ ∈ [−ε, ε], while Re(1 − μ̂(ξ)) = o(|ξ |). Thus (8) cannot hold, and by
Lemma 5.1, (e−t (I−T )) is not bounded analytic in L2(R).

If in addition
∫

dμ(x) x2 < ∞, then μ̂ ∈ C2(R) and we have a Taylor expansion

μ̂(ξ) = 1 − iaξ + O(ξ2)

where O(ξ2) denotes a function satisfying |O(ξ2)| ≤ cξ2 for all ξ sufficiently
close to 0. Then for some ε > 0 we have inequalities |1 − μ̂(ξ)| ≥ ε|ξ | and
Re(1 − μ̂(ξ)) ≤ ε−1ξ2 for all ξ ∈ [−ε, ε]. We find that

‖(I − T )e−t (I−T )‖2→2 = sup
ξ∈R

|(1 − μ̂(ξ))e−t (1−μ̂(ξ))|

≥ sup
ξ∈[−ε,ε]

ε|ξ | exp(−tε−1ξ2) ≥ c′t−1/2

for all t ≥ 1, where the last step followed by choosing ξ = εt−1/2. This proves
Theorem 1.6 for the case G = R.

Next, in case G is the discrete group Z of integers, we can prove Theorem 1.6
with a very similar analysis using the Z-Fourier transform defined by f̂ (ξ) :=∑

n∈Z
f (n)e−iξn, ξ ∈ [−π, π ], for f ∈ L2(Z). We leave the details to the reader.

Finally, for general G and a non-centered μ as in the hypothesis of the theorem,
we may fix a j ∈ {1, . . . , q1 + q2} such that

∫
G

dμ(g) π(j)(g) �= 0. The im-
age measure μ′ := π(j)(μ) is then a non-centered probability measure on the
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group G′ := π(j)(G) and G′ is either Z or R. We observe that
∫
G′ dμ′(y) |y|n =∫

G
dμ(g) |π(j)(g)|n for any n ∈ N.
Let Sf := μ′ ∗f for f ∈ L2(G′).A standard transference theorem for convolu-

tion operators on amenable locally compact groups (see [6, Theorem 2.4]) implies
that

‖(I − S)e−t (I−S)‖2→2 ≤ ‖(I − T )e−t (I−T )‖2→2

(here, the operator norms are taken with respect to L2(G′) and L2(G) respectively).
Then Theorem 1.6 on G follows easily from the cases R or Z already considered.

��
In the rest of this section, we give two examples demonstrating that the hypotheses
“spread out” or “adapted” cannot be omitted from Theorems 1.3 and 1.2.

Example We exhibit a probability measure which is centered and adapted but
not spread out, such that the corresponding semigroup (e−t (I−T )) is not bounded
analytic.

Let G = R, fix an irrational number β > 0 and consider the finitely supported
singular measure

μ := β

1 + β
δ−1 + 1

1 + β
δβ.

Then μ ∈ P(R) is centered and adapted but not spread out. Setting T := {z ∈ C :
|z| = 1}, we claim that

σL2(T ) = {μ̂(ξ) : ξ ∈ R} = {β(1 + β)−1z + (1 + β)−1w : z, w ∈ T}. (9)

Taking z = w in (9), it follows that σL2(T ) contains T and that (8) fails; therefore,
(e−t (I−T )) is not bounded analytic in L2(R).

To obtain the second equality of (9), just observe that

μ̂(ξ) = β(1 + β)−1eiξ + (1 + β)−1e−iβξ ,

and use the fact that for any z, w ∈ T we can find a sequence (ξk)
∞
k=1 of reals with

limk→∞ eiξk = z, limk→∞ e−iβξk = w.
Finally, let us remark that if we put μ′ := 2−1(μ+δ0) ∈ P(R) and consider the

associated Markov operator T ′ = 2−1(T + I ), then we obtain an example where
(e−t (I−T ′)) is not bounded analytic in L2(R) and in addition σL2(T ′) ⊆ D ∪ {1}.
Example In this example we describe a μ which is centered and spread out but
not adapted, such that (e−t (I−T )) is not bounded analytic.

Let G be the semidirect product of Z with Z2 = {0, 1} ∼= Z/(2Z), with respect
to the action γ : Z2 → Aut(Z) defined by

γ (0)m = m, γ (1)m = −m

for all m ∈ Z. Then G = {(m, z) : m ∈ Z, z ∈ Z2} is a discrete solvable group
with product given by (m, z)(m′, z′) = (m+γ (z)m′, z+Z2 z′). Set Z

′ := {(m, 0) :



440 N. Dungey

m ∈ Z}, so that Z
′ ∼= Z is a subgroup of index 2 in G. An easy calculation shows

that

[G, G] = {(2m, 0) : m ∈ Z};
therefore G/[G, G] is finite and G1 = G. Hence every element of P(G) is centered
in G.

Now fix a μ ∈ P(Z′) which is finitely supported and non-centered in Z
′, that

is,
∑

m∈Z
mμ((m, 0)) �= 0. We regard μ as a non-adapted element of P(G). We

can also identify L2(Z′) with the subspace of L2(G) consisting of functions with
support contained in Z

′. Since T ∈ L(L2(G)) maps L2(Z′) into itself and since μ

is not centered in Z
′, Theorem 1.6 implies that for some c > 0,

sup{‖(I − T )e−t (I−T )f ‖2 : f ∈ L2(Z′), ‖f ‖2 = 1} ≥ ct−1/2

for all t ≥ 1. In particular, (e−t (I−T )) is not bounded analytic in L2(G).

Remark The common element of both of the above examples is that μ, though
centered in G, is not centered in some subgroup H ⊆ G containing the support
of μ. In the first example, this remark holds with H = {m + nβ : m, n ∈ Z} ⊆ R,
where H is given the discrete topology making it isomorphic with Z

2.
By developing this observation, one might be able to obtain criteria for analy-

ticity for some classes of non-spread out singular measures (for example, finitely
supported measures on connected groups), but we will not pursue that here.

6. Appendix

The aim of this appendix is to give a straightforward proof of inequality (4) in the
special case of a discrete group. We follow essentially [10]. (On general groups,
topological difficulties occur - since, for example, [G, G] need not be closed in
G - and the proof of (4) is more elaborate: see [11].)

Let G be a finitely generated discrete group. Since G/G1 is discrete we can
then identify G/G1 = Z

q for some q ∈ N0. Consider the homomorphism π :
G → G/G1 = Z

q and fix elements z1, . . . , zq ∈ G such that π(zj ) = ej for
j ∈ {1, . . . , q}.

Let D2 denote the linear subspace of L(L2) consisting of all finite linear
combinations of the operators L(h)∂g1∂g2 for any h, g1, g2 ∈ G. The identity
L(h)∂g1∂g2 = ∂hg1h−1L(h)∂g2 implies that D2 is also equal to the linear space
spanned by all operators ∂g1L(h)∂g2 for h, g1, g2 ∈ G.

Since the compact subsets of G are just the finite subsets, we obtain (4) as an
immediate consequence of the following two results.

Lemma 6.1 For any W ∈ D2, there exists a c(W) > 0 such that

|(Wf1, f2)| ≤ c(W)	2(f1)	2(f2)

for all f1, f2 ∈ L2.

Proposition 6.2 One has ∂g −∑q
i=1 π(i)(g)∂zi

∈ D2 for all g ∈ G.
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Proof of Lemma 6.1. For any h, g1, g2 ∈ G, we have

|(∂g1L(h)∂g2f1, f2)| = |(L(h)∂g2f1, ∂g−1
1

f2)|
≤ ‖∂g2f1‖2‖∂g−1

1
f2‖2

≤ c2
Uρ(g2)ρ(g1)	2(f1)	2(f2)

where the last step used (5). The lemma follows by linearity. ��
For the proof of Proposition 6.2 we need a lemma.

Lemma 6.3 One has ∂g ∈ D2 for all g ∈ G1.

Proof of Lemma 6.3 The identity (6) implies that

∂g1...gn −
n∑

j=1

∂gj
∈ D2 (10)

for all n ∈ N and g1, . . . , gn ∈ G. In particular, setting n = 2, g2 = g−1
1 one sees

that ∂g + ∂g−1 ∈ D2, g ∈ G, and combining this with (10) shows that

∂gk − k∂g ∈ D2 (11)

for all g ∈ G and k ∈ Z. For the commutator [g1, g2] := g1g2g
−1
1 g−1

2 , we see from
(10) that ∂[g1,g2]−(∂g1 +∂

g−1
1

+∂g2 +∂
g−1

2
) ∈ D2 and then by (11) that ∂[g1,g2] ∈ D2,

for all g1, g2 ∈ G. Since the group [G, G] is generated by all elements [g1, g2],
from (10) it then follows that ∂g ∈ D2 for all g ∈ [G, G].

Next, the group G1/[G, G] ∼= M is both compact and discrete, hence finite.
For any g ∈ G1, we may therefore find m ∈ N such that gm ∈ [G, G] (one may
actually take m to be the cardinality of M). Since ∂gm ∈ D2, from (11) we deduce
that ∂g ∈ D2, as desired. ��
Proof of Proposition 6.2 Take an arbitrary g ∈ G. Set tj := π(j)(g) ∈ Z for

j ∈ {1, . . . , q}, and define g′ ∈ G by g = z
t1
1 · · · ztq

q g′. Use of (10) and (11) shows
that

∂g −
q∑

j=1

tj ∂zj
− ∂g′ ∈ D2.

Since π(g) = (t1, . . . , tq) = π(z
t1
1 · · · ztq

q ), we have π(g′) = 0, or in other words,
g′ ∈ G1. Thus ∂g′ ∈ D2 by Lemma 6.3, and it follows that ∂g −∑

j tj ∂zj
∈ D2 as

desired. ��
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