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Abstract. Let ξ(n, x) be the local time at x for a recurrent one-dimensional random walk
in random environment after n steps, and consider the maximum ξ ∗(n) = maxx ξ(n, x). It is
known that lim supn ξ ∗(n)/n is a positive constant a.s. We prove that lim infn(log log log n)
ξ ∗(n)/n is a positive constant a.s.; this answers a question of P. Révész [5]. The proof is based
on an analysis of the valleys in the environment, defined as the potential wells of record
depth. In particular, we show that almost surely, at any time n large enough, the random
walker has spent almost all of its lifetime in the two deepest valleys of the environment it has
encountered. We also prove a uniform exponential tail bound for the ratio of the expected
total occupation time of a valley and the expected local time at its bottom.

1. Introduction

Let ω = (ωx)x∈Z+ be a collection of i.i.d. random variables taking values in (0, 1).
We will denote the distribution of ω by P . For each ω, we define the random walk
in random environment (RWRE) (Xn)n=0,1,2,... as the Markov chain taking values
in Z+ with X0 = 0 and transition probabilities Pω(Xn+1 = 1|Xn = 0) = 1,
Pω(Xn+1 = x + 1|Xn = x) = ωx = 1 − Pω(Xn+1 = x − 1|Xn = x) for x > 0.
For fixed ω, we denote the distribution of the Markov chain (X0, X1, . . . ) with Pω.
As usual, we denote by P the joint distribution of (ω, (Xn)). Throughout the paper,
we make the following assumptions on the distribution of the environment ω. Let
ρi := (1 − ωi)/ωi , i = 1, 2, . . .
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E( log ρ1 ) =
∫

log ρ1(ω)P (dω) = 0, (1.1)

Var( log ρ1 ) > 0; (1.2)

there is δ ∈ (0, 1) such that

P(δ ≤ ω1 ≤ 1 − δ) = 1. (1.3)

Assumption (1.1) guarantees that for P -almost all ω, the Markov chain is recurrent;
(1.2) excludes the deterministic case of a simple random walk on the positive inte-
gers, and (1.3) is a technical assumption which could possibly be relaxed but is used
extensively. Usually, one defines in the same way the RWRE on the integer axis, but
for the questions we will consider, there is no difference between the two models,
so we restrict attention to the RWRE on the positive integers for simplicity. A key
property of recurrent RWRE is its strong localization: under our assumptions, Sinai
[9] showed that that Xn/(log n)2 converges in distribution. A lot more is known
about this model; we refer to the survey by Zeitouni [10] for limit theorems, large
deviations results, and for further references.

Let ξ(n, x) := |{0 ≤ j ≤ n : Xj = x}| denote the local time of the RWRE in
x at time n and ξ∗(n) := supx∈Z+ ξ(n, x) the maximal local time at time n. It was
proved in [3] that for each non-decreasing function ϕ, lim supn→∞ ξ∗(n)/ϕ(n) and
lim infn→∞ ξ∗(n)/ϕ(n) are P-almost surely (possibly degenerate) constants. For
the lim sup behavior of ξ∗(n), it was shown in [5] and [7] that

lim sup
n→∞

ξ∗(n)

n
> 0 P-a.s.

(Clearly this lim sup is at most 1/2.) In his book, Révész [5] raised the problem of
determining the lim inf behavior of ξ∗(n). Our main result is the following.

Theorem 1.1. There exists a constant c ∈ (0, ∞) such that

lim inf
n→∞

ξ∗(n)

n/ log log log n
= c, P-a.s. (1.4)

In particular, (1.4) disproves the conjecture on page 303 of Révész [5]. We will
shortly give a heuristic argument which explains why the three logarithms appear.

The potential corresponding to the RWRE is V (x) = ∑x
i=1 log ρi , x ∈ Z+. As

is well known, the potential governs the behavior of the RWRE in several senses,
e.g.

• In an excursion starting from any site b, the logarithm of the expected number
of visits to a site x before returning to b is roughly the potential difference
V (b) − V (x), see (3.5).

• Starting from the origin, the logarithm of the expected time to reach a site x is
roughly maxy≤x V (y); see (3.1) for an upper bound, and observe that a similar
lower bound follows from (3.5).
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The proof of Theorem 1.1 is based on an analysis of the valleys in the potential,
which is of independent interest. By a “valley” we mean a potential well of record
depth; see Section 2.1 for a precise definition.

We will partition the environment into valleys, and show that at any time n,
the particle performing RWRE has almost surely spent almost all of its lifetime in
the two deepest valleys it has encountered. This almost sure localization theorem
(Theorem 3.4) can be considered as the second main result of the paper. Further-
more, we define in (4.1) the effective width of a valley as the ratio of the expected
total occupation time of the valley and the expected local time at its bottom, and
prove a uniform exponential tail bound (4.28) for the effective width of valleys. The
reason for the term “effective width” is that most of the occupation time in a valley
is spent at sites where the potential is within an additive constant from its minimum
in the valley; the number of these sites is the effective width, up to a multiplicative
constant.

Theorem 1.1 is then established as follows:
Due to scaling properties of the potential, the depths of successive valleys grow

at a geometric rate, whence the distance between bottoms of successive valleys
also exhibit geometric growth, resulting with O(log R) valleys in a large interval
[0, R]. By time n the random walker reaches a distance of order (log n)2 from the
origin, thus visiting an order of log log n valleys. The exponential tail bounds on
effective widths imply that a.s., for all k, the kth valley encountered has effective
width at most O(log k); conversely, a.s. for infinitely many k the effective width
is at least c log k. Hence, a.s. the maximal effective width of valleys seen by the
walker up to time n is at most of order log log log n, and up to a constant factor,
this effective width is realized infinitely often.

The paper is organized as follows. In Section 2, we introduce the notion of
valleys, and describe some scaling properties of such valleys. Section 3 is devoted
to the study of the behavior of the RWRE within the valleys. We first give some
background on hitting times and excursions. We then compare the occupation time
of different valleys and prove that the RWRE spends most of its time in the last
two visited valleys: Theorem 3.4 is the main result of this section. In Section 4,
we compare the occupation time of valleys with the local time in sites. Our main
tool here is to average over excursions of the RWRE. This comparison motivates
our definition of the “effective width” of the valleys, whose asymptotic growth is
studied in the second part of Section 4. Similarly to Section 2 this part does not
concern the random walk, but only the environment. Finally, Theorem 1.1 is proved
in Section 5.

2. Valleys

Recall that the potential V is a function of the environment, defined as follows:

V (x) :=
{∑x

i=1 log ρi, x = 1, 2, . . . ,

0, x = 0.

Note that V is itself a sum of i.i.d. random variables, which are bounded by C :=
| log δ − log(1 − δ)|, see (1.3). For fixed ω, Pω is a reversible Markov chain, hence
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an electrical network in the sense of [2]. The conductance of the bonds is

C(x,x+1) = e−V (x), x = 0, 1, 2, . . . (2.1)

and the reversible measure μ (which is unique up to multiplication by a constant),
is given by

μ(x) =
{

e−V (x) + e−V (x−1), x = 1, 2, . . . ,

1, x = 0.
(2.2)

For background on reversible Markov chains, we refer to [2].

2.1. Definition of valleys

Fix a constant K0 > 0. We set θ0 := 0 and

η0 := inf
{
i > 0 : V (i) − min

0≤j≤i
V (j) ≥ K0

}
,

b0 := sup
{
i < η0 : V (i) = min

0≤j≤η0
V (j)

}
.

We now define, for k ≥ 1, inductively:

θk := inf
{
i > ηk−1 : V (i) ≤ V (bk−1)

}
,

H+
k−1 := max

ηk−1≤j≤θk

V (j) − V (bk−1),

ηk := inf
{
i > θk : V (i) − min

0≤j≤i
V (j) ≥ H+

k−1

}
,

bk := sup
{
i < ηk : V (i) = min

θk≤j≤ηk

V (j)
}
,

H−
k := max

ηk−1≤j≤θk

V (j) − V (bk).

Let now

mk := inf
{
i > ηk−1 : V (i) = max

ηk−1≤j≤θk

V (j)
}

. (2.3)

The piece (V (i), mk ≤ i < mk+1) is the k-th valley, H−
k the left height of this

valley, and H+
k the right height. We call

Hk := min
{
H−

k , H+
k

}
,

the height of the k-th valley. Also, bk is called the bottom of the k-th valley.
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Remark.

1. In words, mk is the beginning of the k-th valley. Note that (θk)k ≥ 0 and (ηk)k ≥ 0
are sequences of stopping times (with respect to the natural filtration of the
potential V ), whereas (bk)k ≥ 1 and (mk)k ≥ 1 are not.

2. Our definition of valleys is not exactly the standard definition of valleys in the
sense of Sinai [9]. However, it follows from our definition that almost surely
the heights (Hk, k ≥ 1) are increasing.

3. Here is a (very) rough description of the asymptotic behavior of the RWRE.
When k is large, the time needed for the RWRE to exit from the kth valley is of
order eHk [see (3.1) and Lemma 3.2]; and since Hk is of order ek (Lemma 2.1),
we have: n ≈ eHNn , where Nn is the number of valleys visited by the RWRE
in the first n steps. This leads to: HNn ≈ log n. On the other hand, V being the

partial sum process of i.i.d. bounded mean-zero random variables, Hk ≈ x
1/2
k

for any site xk in the kth valley. Therefore, xNn is of order (log n)2; i.e., the
maximal distance to the origin of the RWRE in the first n steps is of order
(log n)2. In fact, a famous result of Sinai [9] says that Xn/(log n)2 converges
in distribution (under P) to a non-degenerate limit.

2.2. Heights of valleys

We now consider the asymptotic growth of the heights of the valleys.

Lemma 2.1. We have, P -almost surely,

log Hk ∼ log H+
k ∼ log H−

k ∼ k, k → ∞. (2.4)

Proof. Assume for a moment that V is a Brownian motion. Then, the strong Markov
property at θk and scaling properties imply that (H+

k−1/H
+
k , k ≥ 2) is a sequence

of i.i.d. random variables with common uniform distribution on (0, 1). In partic-
ular, E(log(H+

k /H+
k−1)) = 1. More precisely, since (ηk, k ≥ 1) is a sequence of

stopping times, the random variables H+
k−1/H

+
k , k ≥ 2, are independent, and the

probability of the event {H+
k ≥ (1 + c)H+

k−1} is the probability that a standard
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Brownian motion hits c before hitting −1. By the law of large numbers, P -almost
surely,

log H+
k = log H+

1 +
k∑

i = 2

log
H+

i

H+
i−1

∼ k, k → ∞. (2.5)

Further, the strong Markov property at the stopping time θk implies that (H−
k −

H+
k−1)/H

+
k−1 is an exponential random variable with mean 1. More precisely, the

conditional distribution of (H−
k − H+

k−1)/H
+
k−1, given H+

k−1 = a, is the distribu-
tion of | inf t<σ(a) Bt | ·a−1, where (Bt ) is a standard Brownian motion and σ(a) :=
inf{s : Bs − infu<s Bu = a}. By scaling, this distribution does not depend on a,
hence equals the distribution of | inf t<σ(1) Bt |. Lévy’s identity tells us that (Bt −
infs<t Bs, | infs<t Bs |) has the same distribution as (|Bt |, Lt ) where (Lt ) is the
local time of (Bt ) at 0 (cf. [6, Theorem VI.2.3]). Therefore, | inf t<σ(1) Bt | has the
same distribution as Lτ , where τ := inf{t : |Bt | = 1}, and the distribution of Lτ is
known to be exponential with mean 1 (for example, see Formula 3.3.2, page 213
of [1]). Using the Borel–Cantelli lemma, we see that P -almost surely,

log

(
H−

k

H+
k−1

)
= O(log log k), k → ∞, (2.6)

and thus (2.5) yields log H−
k ∼ k, P -almost surely. This would prove the lemma if

V was a Brownian motion.
In our case, V is the partial sum process associated with a sequence of i.i.d.

bounded mean-zero random variables, so we have to be more careful. Let k ≥ 1.
We look at the random walk (V (i + θk) − V (θk), i ≥ 0), which is independent of
(V (i), i ≤ θk) (thus of H−

k−1 and H+
k−1). This random walk can be embedded into

a Brownian motion, say (Bk(t), t ≥ 0), in the sense of Skorokhod embedding,
making V (i + θk) − V (θk) = Bk(ti), i ≥ 0, a random sequence of points on the
path of t 
→ Bk(t), such that the maximum of the height differences |Bk(t)−Bk(ti)|
for t ∈ [ti , ti+1] is at most C. For any r > 0, let

σk(r) := inf

{
t > 0 : Bk(t) − inf

s∈[0,t]
Bk(s) = r

}
,

and

H̃−
k (r) := r +

∣∣∣∣ inf
0≤t≤σk(r)

Bk(t)

∣∣∣∣ .

Note that with V (bk−1) − C ≤ V (θk) ≤ V (bk−1), given H+
k−1 = a > 0, we have

that

a + V (θk) − V (bk) ≤ H−
k ≤ a + C + V (θk) − V (bk) .
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Further,V (bk)−V (θk) is the minimum ofBk(ti) for those i such that ti ∈ [0, tηk−θk
],

and since the Brownian increments between Bk(ti) are of height at most C, we have
that

V (bk) − V (θk) − C ≤ inf
0≤t≤tηk−θk

Bk(t) ≤ V (bk) − V (θk) .

We thus conclude that if H+
k−1 = a > 2C, then

H̃−
k (a − 2C) ≤ H−

k ≤ H̃−
k (a + 2C) . (2.7)

More precisely, by the time σk(a + 2C) the Brownian motion made an increment
of a + 2C over its minimal value and by the time σk(a − 2C) it made an increment
of a − 2C over its minimal value. Since ηk − θk corresponds to the first value of i

where Bk(ti) makes an increment of at least a from its minimum, and the Brownian
increments between the points Bk(ti) are at most of height C, a fortiori,

σk(a − 2C) ≤ tηk−θk
≤ σk(a + 2C) ,

which by the monotonicity of u 
→ inf0≤t≤u Bk(t) yields the inequality (2.7).
Similarly, we embed the random walk (V (j +ηk)−V (ηk), j ≥ 0) as a random

sequence of points Wk(sj ) on the path of an independent Brownian motion denoted
(Wk(s), s ≥ 0), such that the maximum of the height differences |Wk(s)−Wk(sj )|
for s ∈ [sj , sj+1] is at most C, and without loss of generality, we assume that we
are still working on the same probability space. Note that V (ηk) − V (bk) is within
distance C of H+

k−1 and that

H+
k = max

0≤j≤θk+1−ηk

Wk(sj ) + V (ηk) − V (bk) ,

where θk+1 − ηk corresponds to the first value of j such that Wk(sj ) ≤ V (bk) −
V (ηk). Therefore, by a similar line of reasoning as before, given H+

k−1 = a > 2C,
we have that

Sk(−(a − 2C)) ≤ sθk+1−ηk
≤ Sk(−(a + 2C)) ,

where Sk(r) := inf{s ≥ 0 : Wk(s) = r}. Consequently, then also

H̃+
k (a − 2C) ≤ H+

k ≤ H̃+
k (a + 2C) , (2.8)

where for any r > 0,

H̃+
k (r) := r + sup

0≤s≤Sk(−r)

Wk(s) .

Recall that H+
k = V (mk+1) − V (bk), is non-decreasing, and further

H+
k − H+

k−1 ≥ V (bk−1) − V (bk) ≥ V (θk) − V (bk) ,

which is non-negative, and dominates the law of the negative part of log ρ0. Thus,
by (1.2) we see that H+

k → ∞, P -almost surely. Fixing ε > 0, we thus have that
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P -almost surely, εH+
k−1 ≥ 2C for all k large enough, in which case we have from

(2.7) and (2.8) that

H̃±
k ((1 − ε)H+

k−1) ≤ H±
k ≤ H̃±

k ((1 + ε)H+
k−1) . (2.9)

Without loss of generality we take the Brownian motionsBk(·),Wk(·), k = 1, 2, . . . ,
to be independent, and consequently, so are H̃±

k (·). Further, by the scaling proper-
ties of the Brownian motion, the law of r−1H̃±

k (r) is independent of r > 0 and k,
resulting with i.i.d. random variables

Z±
k : = H̃±

k (uH+
k−1)

uH+
k−1

,

whose law is independent of u > 0. As we have already seen, −1 + Z−
k has the

exponential distribution of mean 1 (being the same as | inf t<σ(1) Bt |) while 1/Z+
k

has the uniform law on (0, 1). Consequently, E(log Z+
1 ) = 1 and

k−1
k∑

i = 1

log Z+
i → 1

P -almost surely. Since (2.9) holds for all but finitely many values of k and log(1±ε)

can be arbitrarily small, it follows that also

k−1
k∑

i = 2

log
H+

i

H+
i−1

→ 1 ,

P -almost surely. That is, log H+
k ∼ k, P -almost surely.

A Borel–Cantelli argument as in the proof of (2.6), using (2.9), easily implies
that log(H−

k /H+
k−1) = O(log log k), P -almost surely. Thus log H−

k ∼ k, P -
almost surely. This completes the proof of Lemma 2.1. ��
Lemma 2.2. Let ε > 0. We have, P -almost surely for all sufficiently large k,

Hk − H+
k−1 ≥ (H+

k−1)
1−ε. (2.10)

Proof. Observe that

P

(
Hk

H+
k−1

<1 + e−εk/2

)
≤P

(
H+

k

H+
k−1

< 1 + e−εk/2

)
+ P

(
H−

k

H+
k−1

< 1 + e−εk/2

)
.

The distributions of H+
k /H+

k−1 and H−
k /H+

k−1 have already been mentioned in
the case of a Brownian potential V : H+

k−1/H
+
k is uniformly distributed on (0, 1),

whereas (H−
k − H+

k−1)/H
+
k−1 is an exponential random variable with mean 1.

Therefore,
∑

kP
(
H+

k /H+
k−1<1+e−εk/2

)
< ∞ and

∑
kP
(
H−

k /H+
k−1 <1+e−εk/2

)
< ∞. As a consequence,

∑
k P

(
Hk

H+
k−1

< 1 + e−εk/2
)

< ∞.

For our partial sum potential, we can easily use (2.9) to see that
∑

kP
(
Hk/H

+
k−1<

1 + e−εk/2
)

< ∞ still holds. By the Borel–Cantelli lemma, P -almost surely for
k large enough, Hk − H+

k−1 ≥ H+
k−1e−εk/2. This yields (2.10), as we know from

Lemma 2.1 that log H+
k−1 ∼ k, P -almost surely. ��
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2.3. Other facts about valleys

Throughout the paper, we will subsequently use some asymptotic properties of the
valleys. First, note that

K0 +
k∑

i=1

(H−
i + H+

i ) ≥ max
0≤x, y≤mk+1

|V (x) − V (y)| ≥ max
x∈[0, mk+1]

|V (x)| ≥ 1

2
H−

k .

Hence, with mk → ∞, applying Chung’s law of the iterated logarithm for the
potential V , we have for each ε ∈ (0, 1/4), that P -almost surely for all sufficiently
large k,

K0 +
k∑

i = 1

(H−
i + H+

i ) ≥ m
(1−0.5ε)/2
k+1 ≥ (H−

k )1−ε. (2.11)

In view of Lemma 2.1 the first inequality in (2.11) implies that P -almost surely,

mk ≤ bk ≤ mk+1 ≤ H 2+ε
k , (2.12)

for all sufficiently large k. Further, by the same reasoning we have that P -almost
surely,

log log mk ∼ log k, for k → ∞ . (2.13)

We will also make use of the following: for each ε ∈ (0, 1), we have P -almost
surely for all k large enough,

max
mk≤y≤z<bk

(V (z) − V (y)) ≤ H+
k−1 − (H+

k−1)
1−ε, (2.14)

max
bk≤y≤z<mk+1

(V (y) − V (z)) ≤ H+
k − (H+

k )1−ε. (2.15)

Moreover,

min
x∈[ηk, mk+1)

V (x) ≥ V (bk) + (H+
k−1)

1−ε, (2.16)

max
bk≤y≤z<ηk

(V (y) − V (z)) ≤ H+
k−1 − (H+

k−1)
1−ε. (2.17)

We next outline the proof of (2.14) in case V is a Brownian motion. A sim-
ilar argument as in the proof of Lemma 2.1 will then confirm that (2.14) holds
also when V is a partial sum process. With H+

k−2 measurable on the stopped σ -
field at θk−1 < ηk−1, for V (·) a Brownian motion we have by the strong Mar-
kov property at ηk−1 that conditionally on H+

k−2 = a > 0 the process U(s) :=
(V (s + ηk−1) − V (ηk−1) + a, 0 ≤ s ≤ θk − ηk−1) is also a Brownian motion,
starting from U(0) = a and killed upon first hitting 0 (at time θk − ηk−1 =: S(0)).
Of course, in this case also H+

k−1 = sup0≤s≤S(0) U(s) =: H and mk − ηk−1 =
inf{s ≥ 0 : U(s) = H } =: mH . Thus, denoting by Px the probability law of a
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Brownian motion U(·) starting at U(0) = x and by S(y) := inf{t ≥ 0 : U(t) = y}
the corresponding first hitting time of y, it follows that for any a > 0 and k ≥ 2,

P

(
max

mk≤y≤z<θk

(V (z) − V (y)) > H+
k−1 − (H+

k−1)
1−ε | H+

k−2 = a

)

≤ Pa(H < 
a�) +
∞∑

h=
a�
J (a, h)

where for integer h ≥ 1,

J (a, h) = Pa

(
h ≤ H < h + 1, max

mH ≤y≤z<S(0)
(U(z) − U(y)) > H − H 1−ε

)
.

Since H ≥ U(z) and U(y) ≥ 0, the event whose probability is J (a, h) requires
the existence of random times mH < y < z < S(0) with U(mH ) ≥ h, U(y) <

(h+1)1−ε =: u, U(z) > h−(h+1)1−ε =: v and U(S(0)) = 0, while 0 < U(s) <

h + 1 for all s < S(0). It is easy to see that h > 2(h + 1)1−ε for any h ≥ a ≥ 31/ε,
in which case by continuity of the Brownian path and the preceding reasoning,

J (a, h) ≤ Pa(S(h) < S(0))Ph(S(u) < S(h + 1))Pu(S(v) < S(0))Pv(S(0)

< S(h + 1)) = au(h + 1 − v)

h(h + 1 − u)v(h + 1)
≤ 8ah−(2+2ε) .

Hence,
∑

h≥a J (a, h) ≤ Ca−2ε for a finite constant C = C(ε) ≥ 1. Further,
Pa(H < 
a�) ≤ a−1, so we conclude that

P

(
max

mk≤y≤z<θk

(V (z) − V (y)) > H+
k−1 − (H+

k−1)
1−ε

)

≤ P(H+
k−2 ≤ 31/ε) + 2CE((H+

k−2)
−ε)

which is summable in k (recall that H+
1 ≥ K0 and H+

i−1/H
+
i , i ≥ 2, are i.i.d.

uniform (0, 1) random variables). Thus, P -almost surely for all large k,

max
mk≤y≤z<θk

(V (z) − V (y)) ≤ H+
k−1 − (H+

k−1)
1−ε .

A similar (and easier) argument shows that, P -almost surely for all large k

max
θk≤y≤z<bk

(V (z) − V (y)) ≤ H+
k−1 − (H+

k−1)
1−ε ,

yielding (2.14) when V is a Brownian motion.
The proof of (2.15) is very similar. The proofs of (2.16) and (2.17) are even

easier since H+
k−1 is measurable on the stopped σ -field at ηk and θk , which is where

we apply the strong Markov property when proving (2.16) and (2.17), respectively.

3. Particle in the valleys

In this section, we will consider the RWRE and give estimates on hitting times, exit
times and excursions.
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3.1. Hitting time

For any x ∈ Z+, define

T (x) := inf {n ≥ 1 : Xn = x} ,

the first hitting time of x by the particle. The inequality [4, (A.1)] states that for
any x ≥ 1,

Eω( T (x) ) ≤ x2 exp

(
max

0≤i≤j<x
(V (j) − V (i))

)
. (3.1)

A consequence of (3.1) is that for any k ≥ 2 and any λ ≥ 1,

Pω (T (bk) ≥ λ) ≤ b2
k

λ
eH+

k−1 . (3.2)

Another result we will be frequently using concerns the almost sure asymptotic
behavior of T (x) when x → ∞. The following is a consequence of the law of the
iterated logarithm for RWRE, stated in Theorems 27.8 and 27.9 of Révész [5].

Fact 3.1. (Révész [5]). We have,

lim
x→∞

log log T (x)

log x
= 1

2
, P-a.s.

Consider the k-th valley (V (i), mk ≤ i < mk+1). Let a particle (Xn, n ≥ 0)

start from the bottom X0 = bk of the valley. We are interested in

τk := inf {n > 0 : Xn /∈ (mk, mk+1)} ,

the first exit time of the particle from the valley.

Lemma 3.2. For some c0 < ∞, any k ≥ 1 and m ≥ 1,

Pω (τk < m | X0 = bk) ≤ c0me−Hk . (3.3)

Proof. Considering the side from which the particle exits the valley, we see that

Pω(τk <m | X0 =bk) ≤ Pω(T (mk)<m | X0 =bk)+Pω(T (mk+1) < m | X0 =bk) ,

hence (3.3) is just a consequence of [4, Lemma 7], the definition of Hk , and the
fact that increments of V are bounded by C. ��

Corollary 3.3. For any k ≥ 1 and a > 0,

Eω

(
e−aτk | X0 = bk

) ≤ 2c0e−a

(1 − e−a)
e−Hk ≤ 2c0

a
e−Hk .
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Proof. By changing the order of summation,

Eω

(
e−aτk | X0 = bk

) = (1 − e−a)

∞∑
m=1

e−amPω (τk ≤ m | X0 = bk) .

Replacing Pω (τk ≤ m | X0 = bk) by Pω (τk < m + 1 | X0 = bk) and using
(3.3), the corollary follows easily. ��

We note for further reference that for b < x < i,

Pω (T (b) < T (i)|X0 = x) =
i−1∑
j = x

eV (j)

⎛
⎝ i−1∑

j = b

eV (j)

⎞
⎠

−1

. (3.4)

This follows from direct computation, using (2.1), see also [10], formula (2.1.4).

3.2. Excursions

We collect here some elementary facts about reversible Markov chains on Z+ which
will later be used to give estimates for excursions of the RWRE. Let b ∈ Z+, b > 0.
Consider an excursion from b to b. Let x ∈ Z+, x > 0, x �= b and denote by Yb,x

the number of visits to x before returning to b. The distribution of Yb,x is “almost
geometric”: we have

Pω(Yb,x = m) =
{

α(1 − β)m−1β m = 1, 2, 3, . . . ,

1 − α, m = 0,

where α = αb,x = Pω(T (x) < T (b) | X0 = b), β = βb,x = Pω(T (b) <

T (x)|X0 = x). In particular,

Eω(Yb,x) = α

β
= μ(x)

μ(b)
= e−V (x) + e−V (x−1)

e−V (b) + e−V (b−1)
, (3.5)

where μ is the reversible measure for the Markov chain, see (2.2). Further,

Varω(Yb,x) = α(2 − β − α)

β2 ≤ 2

β

μ(x)

μ(b)
.

For x > b + 1,

β = (1 − ωx)Pω(T (b) < T (x)|X0 = x − 1)

= (1 − ωx)

⎛
⎝ x−1∑

y = b

eV (y)−V (x−1)

⎞
⎠

−1

,
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where the last formula follows from (3.4), and applies also for x = b + 1. Hence,
for some c1 = c1(δ) > 0, by (1.3) and (2.2),

Varω(Yb,x) ≤ c1 e−[ V (x)−V (b) ]
x−1∑
y=b

eV (y)−V (x−1)

≤ c1 e−[ V (x)−V (b) ](x − b) exp

(
max

b≤y≤x−1
(V (y) − V (x − 1))

)
. (3.6)

In the same way, one obtains, for x < b,

Varω(Yb,x) ≤ c1 e−[ V (x)−V (b) ](b − x) exp

(
max

x≤y≤b−1
(V (y) − V (x))

)
. (3.7)

3.3. Number of valleys seen by the particle

Let Nn denote the number of valleys “seen” by the particle in the first n steps. More
precisely,

Nn := sup

{
k : max

0≤i≤n
Xi ≥ mk

}
.

Recall that as k → ∞,

1

2
log mk ∼ 1

2
log mk+1 ∼ log Hk ∼ k

[compare (2.11) with (2.12) and use (2.4)]. In combination with Fact 3.1 this implies
that P-almost surely,

log log T (mk) ∼ log log T (mk+1) ∼ log Hk ∼ k , k → ∞ .

Since T (mNn) ≤ n < T (mNn+1), it follows that

HNn = (log n)1+o(1) , P-a.s. (3.8)

and further

Nn ∼ log log n, for n → ∞ P-a.s. (3.9)

3.4. The particle spends most of its time in the last two valleys

Recall that ξ(n, x) denotes the local time of the RWRE in x at time n, and mk is
the beginning of the k-th valley as in (2.3). Let

L(n, k) :=
∑

x∈[mk, mk+1)

ξ(n, x), (3.10)

which is the total time the particle spends in the k-th valley during the first n steps.
The next theorem shows that the particle spends most time in the two deepest

valleys, which are the two right-most valleys.
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Theorem 3.4. We have, for any δ < 1,

lim
n→∞

exp
(
(log n)δ

)
n

∑
1 ≤ k < Nn−1

L(n, k) = 0 , P-a.s. (3.11)

In particular,

lim inf
n→∞

1

n
sup
k≥1

L(n, k) ≥ 1

2
, P-a.s. (3.12)

Proof. It is clear that (3.12) follows from (3.11) by taking δ = 0. Further, clearly
(3.11) is a consequence of (3.8) and

lim
N→∞

e(H+
N−2)

δ

max
n∈[T (mN), T (mN+1))

1

n

∑
1≤k < N−1

L(n, k) = 0 , P-a.s. (3.13)

holding for any δ < 1.
In order to prove (3.13), we decompose the time interval [T (mN), T (mN+1))

into excursions of the particle away from bN−1 and mN−1.
Let ε = εN > 0. Later, we will take εN = exp(−(H+

N−2)
δ). Let

n∗ = n∗(N) := inf

⎧⎨
⎩n ≥ T (mN) :

∑
1≤k < N−1

L(n, k) ≥ ε n

⎫⎬
⎭ ,

with the notation inf ∅ := ∞. We are interested in the case n∗ < T (mN+1); thus
n∗ ∈ [T (i), T (i + 1)) for some i ∈ [mN, mN+1).

We define T 1(bN−1) := T (bN−1) and inductively,

T j (mN−1) := inf
{
n > T j (bN−1) : Xn = mN−1

}
,

T j+1(bN−1) := inf
{
n > T j (mN−1) : Xn = bN−1

}
, j ≥ 1.

For any i ∈ [mN, mN+1), let Mi := sup{j : T j (mN−1) < T (i + 1)} (notation:
sup ∅ := 0), be the total number of excursions from bN−1 to mN−1, before reaching
i + 1.

If n∗ ∈ [T (i), T (i+1)) and Mi = 0, we have
∑

1≤k < N−1 L(n∗, k) ≤ T (bN−1)

and n∗ ≥ T (i) − T (bN−1) so that

T (bN−1) ≥ ε(T (i) − T (bN−1)); (3.14)

whereas if n∗ ∈ [T (i), T (i + 1)) and Mi ≥ 1, then
∑

1≤k < N−1 L(n∗, k) ≤
T 1(bN−1) + ∑Mi

j=1[ T j+1(bN−1) − T j (mN−1) ] and n∗ ≥ ∑Mi

j=1[ T j (mN−1) −
T j (bN−1) ] so that

T 1(bN−1) +
Mi∑
j=1

[ T j+1(bN−1) − T j (mN−1)]

≥ ε

Mi∑
j=1

[
T j (mN−1) − T j (bN−1)

]
. (3.15)
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We first treat the case Mi = 0, i.e., there is no excursion (before time T (i + 1))
back to mN−1 after reaching bN−1. In this case, (3.14) holds. Let

pi,N := Pω (T (bN−1) ≥ ε(T (i) − T (bN−1)))

= Pω

(
T (bN−1) ≥ ε

1 + ε
T (i)

)

≤ Pω (T (bN−1) ≥ λ ) + Pω

(
T (i) <

(1 + ε)λ

ε

)
, (3.16)

for any λ ≥ 1. Considering the first term in (3.16), we have, by (3.2),

Pω (T (bN−1) ≥ λ ) ≤ b2
N−1

λ
exp(H+

N−2).

Turning to the second term in (3.16), we have

Pω

(
T (i) <

(1 + ε)λ

ε

)
≤ Pω

(
T (mN) <

(1 + ε)λ

ε

∣∣∣ X0 = bN−1

)

≤ Pω

(
τN−1 <

(1 + ε)λ

ε

)

≤ c0(1 + ε)λ

ε
e−HN−1 ,

where we used (3.3) for the last inequality. Hence, plugging in the value of ε =
e−(H+

N−2)
δ

,

pi,N ≤ b2
N−1

λ
exp(H+

N−2) + c0(1 + ε)λ

ε
exp(−HN−1)

≤ b2
N−1

λ
exp(H+

N−2) + 2c0λ exp((H+
N−2)

δ) exp(−HN−1).

We choose λ = λN := exp((1/2)HN−1 + (1/2)H+
N−2). Then,

pi,N ≤ (b2
N−1 + 2c0) exp

(
−1

2
HN−1 + 1

2
H+

N−2 + (H+
N−2)

δ

)
.

Due to (2.12) and Lemma 2.1, bN−1 ≤ (H+
N−1)

3 and mN+1 ≤ (HN−1)
3 for

N → ∞, so that by Lemmas 2.2 and 2.1,∑
N

∑
mN≤i < mN+1

Pω

(
n∗ ∈ [T (i), T (i + 1)), Mi = 0

)
< ∞, P -a.s. (3.17)

Turning to consider n∗ ∈ [T (i), T (i + 1)) and Mi ≥ 1, for λ = λN > 0 to be
chosen later, and each m ≥ 1 let

A(m) :=
{
T 1(bN−1) +

m∑
j=1

[
T j+1(bN−1) − T j (mN−1)

]
≥ mλ

}

B(m) :=
{ m∑

j=1

[
T j (mN−1) − T j (bN−1)

]
<

mλ

ε

}
.
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Note that if n∗ ∈ [T (i), T (i+1)) for some i ≥ mN with Mi ≥ 1, then (3.15) holds,
and hence either A(Mi) or B(Mi) holds as well. Consequently, decomposing the
event A(Mi) according to i and the event B(Mi) according to the value m of Mi ,
we get that

Pω

(
n∗ ∈ [T (i), T (i + 1)), for some i ∈ [mN, mN+1) and Mi ≥ 1

)

≤
mN+1∑
i = mN

Pω (A(Mi), Mi ≥ 1) + Pω

(
B(Mj) for some j ≥ mN and Mj ≥ 1

)

≤ mN+1 sup
i≥bN−1

Pω (A(Mi), Mi ≥ 1) +
∞∑

m=1

Pω (B(m))

=: mN+1I
(1) +

∞∑
m = 1

I (2)
m . (3.18)

By the strong Markov property, conditionally on ω both T 1(bN−1) and the identi-
cally distributed random variables T j+1(bN−1) − T j (mN−1), j ≥ 1, are indepen-
dent of the value of Mi for i ≥ bN−1. Hence, by Markov’s inequality

I (1)≤ sup
m≥1

Pω (A(m)) ≤ sup
m≥1

1

mλ
Eω (T (bN−1)) + 1

λ
Eω (T (bN−1) | X0 = mN−1)

≤ 2

λ
Eω (T (bN−1)) ≤ 2b2

N−1

λ
exp

(
H+

N−2

)
, (3.19)

where the last inequality is due to (3.1).
Further, since T j (mN−1) − T j (bN−1), j ≥ 1, are i.i.d. random variables, each

having the law of T (mN−1) when starting at bN−1, by Corollary 3.3, for any a > 0,

I (2)
m ≤ eamλ/ε

(
Eω

(
e−aT (mN−1)

∣∣ X0 = bN−1

))m ≤
(

eaλ/ε 2c0e−HN−1

a

)m
.

We choose λ = λN := exp
(
HN−1 − 2(H+

N−2)
δ
)
, a = aN := exp ( −HN−1+

(H+
N−2)

δ
)

and as stated before ε = εN := exp
(−(H+

N−2)
δ
)
. Since aλε−1 = 1

these choices result with

∞∑
m = 1

I (2)
m ≤

∞∑
m = 1

(
2ec0 exp(−(H+

N−2)
δ)
)m ≤ c2 exp(−(H+

N−2)
δ) . (3.20)

In view of (3.19), these choices also lead to

mN+1I
(1) ≤ 2mN+1b

2
N−1 exp(−HN−1 + 2(H+

N−2)
δ + H+

N−2) ,

where P -almost surely, for all large N

−HN−1 + 2(H+
N−2)

δ + H+
N−2 ≤ −(H+

N−2)
2δ
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(see Lemma 2.2). Further, due to (2.12) and Lemma 2.1, P -almost surely, for all
large N ,

2mN+1b
2
N−1 ≤ (H+

N−2)
7 ,

yielding that

mN+1I
(1) ≤ exp(−(H+

N−2)
δ) .

Combining this with (3.20) and (3.18) yields, together with (3.17), that
∑
N

Pω

(
n∗ ∈ [T (mN), T (mN+1))

)
< ∞.

By the Borel–Cantelli lemma, we obtain that for any δ < 1,

lim sup
N→∞

e(H+
N−2)

δ

max
n∈[T (mN), T (mN+1))

1

n

∑
1 ≤ k < N−1

L(n, k) ≤ 1 , P-a.s.

Since δ < 1 is arbitrary, this implies (3.13), and completes the proof of Theorem
3.4. ��

4. Occupation time and local time

We have so far proved in Theorem 3.4 that (P-almost surely for n large enough)
the particle spends at least (1/2 + o(1))n time in a certain valley. The goal of this
section is to prove that the time spent by the particle at the bottom of this or a
neighbor valley is at least a constant multiple of n/ log log log n.

There are two main points in the proof: (a) We need to investigate the ratio
between the time spent in a valley (occupation time) and the time spent in the
bottom of the same (or a neighbor) valley (local time). This is the main part of
this section; (b) Since the valley where the particle spends at least (1/2 + o(1))n

time has a random number (namely, Nn or Nn − 1, see Section 3) and this random
number depends on the environment as well as on the movement of the particle,
we need a result which holds uniformly for a whole collection of valleys.

4.1. Comparison between occupation time and local time

Recall that Nn is the number of valleys seen by the particle in the first n steps.
Define, for any k ≥ 1,

�k :=
mk+1−1∑
i = mk

e−[ V (i)−V (bk) ] . (4.1)

Note that (�k, k ≥ 1) depends only on the environment, and that

inf
k≥1

�k ≥ 1. (4.2)
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Here are the main estimates of this subsection, which relate occupation time with
local time. In particular note that �k measures the effective width of the kth valley
as reflected by the ratio between the expected occupation time and the maximal
expected local time among its sites (at the appropriate time n = T (mk+1) of the
particle just reaching the beginning of the next valley).

Proposition 4.1. There exist c3 and c4 such that P-almost surely for n large enough,

L(n, Nn − 1) ≤ c3 �Nn−1 ξ(n, bNn−1), (4.3)

L(n, Nn) ≤ c4 �Nn

[
ξ(n, bNn−1) + ξ(n, bNn)

]
, (4.4)

where L(n, k) is the time spent in the k-th valley as in (3.10).

Proposition 4.2. There exists c5 such that P-almost surely for all large N ,

L(T (mN), N − 1) ≥ c5 �N−1 max
x∈[mN−1,mN )

ξ(T (mN), x). (4.5)

Remark on the proof. The basic idea of the proof of the propositions can be de-
scribed as follows. For (4.5), we consider excursions of the walk away from bN−1
during the time interval [T (bN−1), T (mN)], and let M = M(N) denote the num-
ber of completed excursions (M can be 0). The random variable M , which is
ξ(T (mN), bN−1)−1, has a geometric distribution (under Pω) and Eω(M) is approxi-

matively eH+
N−1 . By the strong Markov property, all completed excursions make i.i.d.

contributions to ξ(T (mN), x), for any x, hence also to L(T (mN), N − 1). The law
of large numbers says that, with ρ denoting the lifetime of an excursion,

ξ(T (mN), x) � M Eω(ξ(ρ, x)) � ξ(T (mN), bN−1)e
−[V (x)−V (bN−1)],

(it was proved in Subsection 3.2 that Eω(ξ(ρ, x)) � e−[V (x)−V (bN−1)]), and simi-
larly,

L(T (mN), N − 1) � M
∑

x∈[mN−1,mN )

Eω( ξ(ρ, x) ) � ξ(T (mN), bN−1) �N−1. (4.6)

This would yield (4.5) if we take c5 to be sufficiently small. In order to give a
rigorous proof of (4.5), we need to estimate deviation probabilities for M (which
is easy), and for the number of visits during a single excursion (which is done via
a second moment argument).

The proof of Proposition 4.1 needs slightly more care since it involves an arbi-
trary time n, instead of the first hitting times T (mN) in Proposition 4.2. Both proofs
go along the lines described in the preceding remark, but require certain technical
adjustments. We start with a few preliminary estimates. The first is a rigorous state-
ment of (4.6). For further needs we now provide such a statement uniformly over
all n ≥ T (mN), instead of just for T (mN).

Lemma 4.3. There exist 0 < c6 < c3 < ∞ such that, for any ε > 0, P -almost
surely for all N large enough,

Pω (∃n ≥ T (ηN), L(n, N) ≥ c3 �Nξ(n, bN)) ≤ e−(HN )1−ε

, (4.7)

Pω (∃n ≥ T (mN+1), L(n, N) ≤ c6 �Nξ(n, bN)) ≤ e−(HN )1−ε

. (4.8)
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Proof of Lemma 4.3. We decompose the random walk into excursions away from
b = bN . That is, T −1 = 0, T 0 := T (b) and

T j := inf
{
k > T j−1 : Xk = b

}
, (4.9)

are the times of consecutive visits to b, which are P-almost surely finite on account
of (1.1). Fixing i ∈ [ηN, mN+1), consider the corresponding occupation times of
the interval [mN, i], that is,

Zj = Zj (i) :=
i∑

x = mN

ξ(T j , x) − ξ(T j−1, x) .

Note that, by the strong Markov property of the walk, Zj , j ≥ 1, are independent
non-negative random variables (under Pω), and are also identically distributed and
of finite second moment (cf. (4.22) in the sequel). Observe that

M := ξ(n, b) = inf
{
j : T j > n

}
,

and M ≥ 1 whenever n ≥ T (b) (which is always the case here). Further, for
i = mN+1 − 1,

L(n, N) ≤ Z0 +
M∑

j = 1

Zj , (4.10)

and (4.10) applies also for i < mN+1 − 1 provided n < T (i + 1).
Since Zj ≥ 0, it follows that for any i ∈ [ηN, mN+1), c7 > 0, � ≥ 1 and

kr = �2r ,

Pω

(∃n ∈ [T (i), T (i + 1)), L(n, N) ≥ (2c7 + 1)M�N

)

≤ Pω(∃n ≥ T (i), M ≤ �) + Pω(Z0 ≥ ��N)+
∞∑

r = 0

Pω

⎛
⎝ kr∑

j = 1

Zj ≥ c7kr�N

⎞
⎠

=: I1(i) + I2 + I3(i) .

(4.11)

Further, as the inequality (4.11) holds for i = mN+1 −1 even without the condition
n < T (i + 1), we have for c3 = 2c7 + 1 that

Pω

(∃n ≥ T (ηN), L(n, N) ≥ c3M�N

) ≤
mN+1−1∑
i = ηN

(I1(i) + I2 + I3(i)) . (4.12)

To estimate the term I1(i) in (4.11), let K(b, i) denote the number of excursions
from b to b made by the walk during the time interval [T (b), T (i)], which has a
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geometric distribution of parameter p = p(b, i), that is, Pω(K = k) = (1 −p)kp,
k = 0, 1, 2, . . . , where due to (3.4), for any i > b,

p(b, i) := ωbPω(T (i) < T (b) | X0 = b + 1)=ωb

eV (b)

∑i−1
y=b eV (y)

≤ e−W(b,i),

(4.13)

for W(b, i) := maxb≤y<i V (y) − V (b). In particular, for i ≥ ηN we have that

p(bN, i) ≤ e−W(bN ,ηN ) ≤ eV (bN )−V (ηN )+C ≤ c8e−H+
N−1 . (4.14)

For any i > b, the event {n ≥ T (i)} implies that M > K(b, i). Hence, fixing
ε > 0 and � := 
p(b, i)−1 exp(−(1/3)(H+

N−1)
1−ε)�, we have that

I1(i) ≤ Pω(K(b, i) < �) = 1 − (1 − p)� ≤ p � ≤ c8e−(1/3)(H+
N−1)

1−ε

. (4.15)

Proceeding to deal with I2, since the steps of the random walk within [0, mN −1]
do not matter to Z0(i) = Z0(bN), the latter has under Pω the same law as that of
the occupation time of [1, bN − mN + 1] till T (bN − mN + 1) under Pω̃, where
ω̃x = ωx+mN−1. Consequently, by (3.1) we have that P -almost surely, for all N

large enough,

Eω(Z0) ≤ Eω̃(T (bN − mN + 1)) ≤ b2
N exp

(
max

mN−1≤y≤z<bN

(V (z) − V (y))

)

≤ b2
N eH+

N−1−(H+
N−1)

1−ε

,

with the last inequality due to (2.14). It follows that for our choice of � = �(i, N, ε),

I2 ≤ Pω(Z0 ≥ �) ≤ �−1Eω(Z0) ≤ c8b
2
N e−(2/3)(H+

N−1)
1−ε

(4.16)

(where the first inequality is due to (4.2) and the last one due to (4.14)).
As for the term I3(i) of (4.11), observe that in the notations of Subsection 3.2,

Z1 =
i∑

x = mN

[ ξ(T 1, x) − ξ(T 0, x) ] =
i∑

x = mN

Yb,x ,

where, by (3.5),

Eω

(
ξ(T 1, x) − ξ(T 0, x)

)
= Eω

(
Yb,x

) = ωb

ωx

e−[V (x)−V (b)] . (4.17)

It follows, in view of assumption (1.3), that

Eω(Z1) ≤ δ−1 �N. (4.18)

Consequently, by the independence of Zj we get for c7 ≥ δ−1 + 1 and kr = �2r ,
the bound

I3(i)≤
∞∑

r = 0

Pω

⎛
⎝ kr∑

j = 1

(Zj − Eω(Zj ))≥kr�N

⎞
⎠≤ Varω(Z1)

�2
N

∞∑
r=0

1

kr

≤ 2Varω(Z1)

�

(4.19)
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using (4.2) in the last inequality. Observe that

Varω(Z1) = Varω

(
i∑

x = mN

Yb,x

)
≤ mN+1

i∑
x = mN

Varω(Yb,x) .

Since V (x) ≥ V (b) for all x ∈ [mN, mN+1), we have from (3.6) that for b = bN

and any x ∈ (b, mN+1),

Varω(Yb,x) ≤ c1mN+1 exp

(
max

b≤y<x
(V (y) − V (x − 1))

)
. (4.20)

Similarly, applying (3.7) instead of (3.6), we obtain that for all x ∈ [mN, b),

Varω(Yb,x) ≤ c1 mN+1 exp

(
max

x≤z<b
(V (z) − V (x))

)
, (4.21)

and of course Varω(Yb,b) = 0. Summing over x ∈ [mN, i] we find by means of
(4.20) and (4.21) that

Varω(Z1(i)) ≤ c9 m3
N+1eU(b,i) , (4.22)

where

U(b, i) := max

{
max

mN≤y≤z<b
(V (z) − V (y)), max

b≤y≤z<i
(V (y) − V (z))

}
.

Let

�N := max
i∈[ηN ,mN+1)

{U(b, i) − W(b, i)} .

Combining (4.19) and (4.22) we see that by (4.13), for our choice of � = �(i, N, ε),

I3(i)≤2p(bN, i)Varω(Z1(i))e
(1/3)(H+

N−1)
1−ε ≤ c10m

3
N+1e(�N+1/3)(H+

N−1)
1−ε

. (4.23)

Combining (2.14) and (2.17), we deduce that P -almost surely, for all N large
enough,

U(b, ηN) ≤ H+
N−1 − (H+

N−1)
1−ε .

Likewise, note that if i ∈ (ηN , mN+1) then combining the preceding with (2.16)
we have that

U(b, i) ≤ max{U(b, ηN), W(b, i) − (H+
N−1)

1−ε} ≤ W(b, i) − (H+
N−1)

1−ε ,

using in the last inequality the fact that if i > ηN then

W(b, i) = max
b≤y<i

V (y) − V (b) ≥ V (ηN) − V (b) ≥ H+
N−1 .

Consequently, P -almost surely, for all N large enough

�N ≤ C − (H+
N−1)

1−ε ,
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and thus, plugging (4.15), (4.16) and (4.23) into (4.12), we obtain that P -almost
surely, for all N large

Pω

(∃n ≥ T (ηN), L(n, N) ≥ c3M�N

) ≤ c11m
4
N+1e− 1

3 (H+
N−1)

1−ε

.

Noting that ε > 0 is arbitrary, in view of (2.12) and Lemma 2.1, this implies (4.7).
Moving next to the proof of (4.8), since we are not considering n < T (mN+1)

in this inequality, we set i = mN+1 − 1 for the remainder of the proof, in which
case we have from (4.17) that

Eω(Z1) =
mN+1−1∑
x = mN

ωbN

ωx

e−[V (x)−V (bN )] ≥ δ

mN+1−1∑
x = mN

e−[V (x)−V (bN )] ≥ δ�N .

Since further L(n, N) ≥ ∑M−1
j=1 Zj in this case (regardless of n), we have similarly

to (4.11), that for any c6 > 0 and kr = �2r , � ≥ 1,

Pω

(∃n ≥ T (mN+1), L(n, N) ≤ c6M�N

)

≤ Pω(∃n ≥ T (mN+1), M ≤ �) +
∞∑

r = 0

Pω

⎛
⎝ kr∑

j = 1

Zj ≤ 4c6kr�N

⎞
⎠ (4.24)

=: I1 + I4.

With Eω(Z1) ≥ δ�N , note that if c6 < δ/5, then

I4 ≤
∞∑

r = 0

Pω

⎛
⎝ kr∑

j = 1

(Zj − Eω(Zj )) ≤ − δ

5
kr�N

⎞
⎠ ≤ c12Varω(Z1)

�
, (4.25)

[using in the last inequality both (4.2) and the fact that
∑

r k−1
r = 2�−1]. Thus,

taking � = �(i, N, ε) as before, in view of (4.24) and (4.25) we get (4.8) by the
same argument used to complete the derivation of (4.7) (even simpler, as we neither
sum over i nor consider I2 here). ��

We next show that upon the walk reaching the right end of a given valley, with
high probability no point of this valley has a local time much larger than its bottom.
This estimate complements (4.8) en-route to proving Proposition 4.2.

Lemma 4.4. There exists γ finite such that for any ε > 0, P -almost surely for N

large enough,

max
x∈[mN,mN+1)

Pω (ξ(T (mN+1), x) ≥ γ ξ(T (mN+1), bN)) ≤ e−(HN )1−ε

.

Proof of Proposition 4.2. Taking c5 = c6/γ > 0, the proposition follows from
(4.8) and Lemma 4.4 by means of the Borel–Cantelli lemma (as mN e−(HN )1−ε

is
summable). ��
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Proof of Lemma 4.4. We use the path decomposition of the walk as in Lemma 4.3,
with b = bN , T −1 = 0, T 0 = T (b) and T j , j ≥ 1 the times of returns of the walk
to b (c.f. (4.9)). We further set M = ξ(n, b) ≥ 1, hereafter taking n = T (i + 1)

for i = mN+1 − 1. Fixing x ∈ [mN, i], x �= b, let Yj = ξ(T j , x) − ξ(T j−1, x)

for j = 0, 1, . . . , denote the accumulated local time at x during the j -th segment
of the walk. Note that the non-negative random variables Yj , j ≥ 1, are i.i.d. of
finite second moment, and with Y1 having the law of Yb,x of Subsection 3.2, also
Eω(Y1) ≤ δ−1 (c.f. (4.17)). Further, similarly to (4.10) we have that

ξ(n, x) ≤ Y0 +
M∑

j = 1

Yj .

Hence, as in (4.11), for n = T (i + 1), γ ≥ 2(1 + δ−1) + 1 and kr = �2r , � ≥ 1,

Pω(ξ(n, x) ≥ γM) ≤ Pω(∃n ≥ T (i), M ≤ �) + Pω(Y0 ≥ �)

+
∞∑

r = 0

Pω

⎛
⎝ kr∑

j = 1

(Yj − Eω(Yj )) ≥ kr

⎞
⎠

=: I1 + I2 + I5(x) .

We fix ε > 0 and � = �(i, N, ε) as in Lemma 4.3, thus taking care of the term I1
(c.f. (4.15)). Further, with Y0 ≤ Z0 this choice also takes care of I2 (cf. (4.16)) and
just as in (4.19) we have that

I5(x) ≤ 2Varω(Y1)

�
= 2Varω(Yb,x)

�
.

It follows from (4.20) and (4.21) that

max
x∈[mN,i]

Varω(Yb,x) ≤ c9mN+1eU(b,i)

[compare with the derivation of (4.22)]. For our choice of � and the bound (4.13)
on p(b, i) it follows that P -almost surely, for any N large enough and all x ∈
[mN, i] = [mN, mN+1),

I5(x) ≤ c13mN+1e−2/3(H+
N−1)

1−ε

[see (4.23)]. As observed before, such estimates are all we need for the lemma [in
view of (2.12) and Lemma 2.1]. ��

Our next lemma is similar in spirit to Lemma 4.3. Its proof is slightly more
involved since two different (consecutive) valley bottoms are relevant here. This
happens for example when the occupation time of the last seen valley is to be
considered, as in (4.4).

Lemma 4.5. There exists κ finite such that for any ε > 0, P -almost surely for N

large enough,

Pω (∃n < T (ηN), L(n, N) > κ [ ξ(T (mN), bN−1) + ξ(n, bN) ]�N) ≤ e−(HN )1−ε

.
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Proof of Lemma 4.5. Clearly, it suffices to consider n ∈ [T (i), T (i + 1)) for i ∈
[mN, ηN). To this end, we adopt the path decomposition and notations of Lemma
4.3 (for b = bN ). The random variables Zj , j ≥ 1 are i.i.d. and the basic inequality
(4.10) applies, just taking M = 0 whenever n ∈ [T (i), T (i + 1)) for i < b. With
K := ξ(T (mN), bN−1), recall that K = K − 1 is a geometric random variable of
parameter

p(bN−1, mN) ≤ e−W(bN−1,mN ) ≤ eV (bN−1)−V (mN)+C ≤ c8e−H+
N−1 (4.26)

[compare with (4.14)].
Recall (4.18) that Eω(Z1) ≤ δ−1�N and further that �N ≥ 1 [see (4.2)].

Hence, with κ ≥ 2(δ−1 + 1) + 1, adapting the derivation of (4.11) we get for
kr = 2r , any � ≥ 1 and i ∈ [bN, ηN) the bound

Pω(∃n ∈ [T (i), T (i + 1)), L(n, N) > κ[K + M]�N)

≤ Pω(K < �) + Pω(Z0 ≥ ��N)+
∞∑

r = 0

Pω

⎛
⎝ kr∑

j = 1

(Zj −Eω(Zj )) ≥ [� + kr ]�N

⎞
⎠

=: I1 + I2 + I6(i) .

This applies also for i ∈ [mN, bN), upon setting I6(i) = 0. Fixing ε > 0 we take
care of the term I1 by choosing � := 
p(bN−1, mN)−1 exp(−(1/3)(H+

N−1)
1−ε)�

[see (4.15)]. By (4.26) such choice also handles the term I2 [compare with (4.16)].
All that remains is to deal with the sum of I6(i) over [bN, ηN). To this end, adapting
the derivation of (4.19), we get the bound

I6(i) ≤ Varω(Z1)

∞∑
r = 0

kr

(� + kr)2 ≤ c14Varω(Z1)

�
. (4.27)

Recall the bound (4.22) on Varω(Z1(i)) for i ≥ b, the monotonicity of i 
→ U(b, i)

and the fact that P -almost surely U(b, ηN) ≤ H+
N−1 − (H+

N−1)
1−ε. Together with

(4.27), our choice of � and the bound (4.26), this results with

ηN−1∑
i = bN

I6(i) ≤ c15m
4
N+1e−(2/3)(H+

N−1)
1−ε

,

holding for all N large enough. As usual, by (2.12) and Lemma 2.1, this concludes
the proof. ��
Proof of Proposition 4.1. Our claim (4.3) amounts to having P-almost surely for
N large,

max
n∈[T (mN), T (mN+1))

L(n, N − 1)

ξ(n, bN−1)
≤ c3 �N−1 ,

which in view of Lemma 2.1 follows from (4.7) by the Borel–Cantelli lemma. Sim-
ilarly, since n 
→ ξ(n, x) is monotone, combining Lemma 4.5 and (4.7) we find by
Lemma 2.1 that
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∑
N

Pω (∃n ≥ T (mN), L(n, N) > c4 [ ξ(n, bN−1) + ξ(n, bN) ]�N) < ∞,

for c4 = max(c3, κ). Applying the Borel–Cantelli lemma, this obviously implies
(4.4). ��

4.2. The effective width of the valleys

We consider next the asymptotic growth of the effective width �k [see (4.1)], of
the valleys.

Proposition 4.6. There exist constants 0 < γ− ≤ γ+ < ∞ such that

γ− ≤ lim sup
N→∞

1

log N
max

1≤k≤N
�k ≤ γ+ , P -a.s. (4.28)

Proof. We start by proving the lower bound in (4.28). To this end, consider the
events

Ek := {V (bk − i) − V (bk) ≤ c16, ∀ 0 ≤ i ≤ c17 log k} ,

for finite positive constants c16 and c17 to be chosen later. Recall that bk − mk ≥
H−

k / log( 1−δ
δ

) for the constant δ of (1.3) and P -almost surely log H−
k ∼ k for all

large k (by Lemma 2.1). Consequently, the interval [bk − c17 log k, bk] lies inside
the k-th valley for all k large enough, in which case the event Ek implies that �k ≥
c17e−c16 log k. Since Ek is adapted to the filtration Gk := σ {V (i), 0 ≤ i ≤ θk+1},
if ∑

k

P (Ek | Gk−1) = ∞, P -almost surely, (4.29)

then by Lévy’s Borel–Cantelli lemma (see, for example, [8, page 518]), we have
that P -almost surely Ek occurs for infinitely many k, and therefore

lim sup
k→∞

�k

log k
≥ c17e−c16 , P -a.s.

This clearly yields the lower bound in (4.28), with γ− = c17e−c16 > 0.
Turning to prove (4.29), define, for any ρ > 0,

η(ρ) := inf
{
i > 0 : Vk(i) − min

0≤j≤i
Vk(j) ≥ ρ

}
, (4.30)

b(ρ) := sup
{
i < η(ρ) : Vk(i) = min

0≤j≤η(ρ)
Vk(j)

}
, (4.31)

and the associated events

E(ρ, k) := {Vk(b(ρ) − i) − Vk(b(ρ)) ≤ c16, ∀ 0 ≤ i ≤ c17 log k} ,

where (Vk(i) := V (i + θk) − V (θk), i ∈ Z+) has the same law as (V (i), i ∈ Z+).
Recall that H+

k−1, θk and V (θk) are Gk−1-measurable while ηk − θk = η(ρ) and
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bk − θk = b(ρ) for ρ = H+
k−1. Thus, P(Ek|Gk−1) = P(E(ρ, k)) for this choice

of ρ. Since P -almost surely, log H+
k−1 ∼ k for k → ∞ (by Lemma 2.1), the proof

of (4.29) is reduced to showing that for some c18 > 0 and all k large enough,

inf
ρ≥ek/2

P(E(ρ, k)) ≥ c18

k
. (4.32)

To verify (4.32), recall that by assumption (1.3) the increments of the random walk
V are within [−C, C] for some C = C(δ) finite and positive. Further, (1.2) yields
that p∗ := min{P(V (1) > 0), P (V (1) ≤ −2C/d)} > 0 for some finite positive
integer d ≥ 2. Restricting the increments of the walk V (i + 1) − V (i), i ≤ j − 1
to be strictly positive if V (i) ≤ C and at most −2C/d otherwise, followed by d

increments which are at most −2C/d each, results in a sample of length j + d for
which the event

Fj :=
j+d⋃

� = j+1

{
V (0) = 0, V (i) ∈ (0, 2C], 0 ≤ i ≤ � − 1, V (�) ∈ (−C, 0]

}

holds. Hence, P(Fj ) ≥ p
j+d
∗ . In particular, if c17 > 0 is small enough, then

P(Fj ) ≥ c18
k

, for j = 
c17 log k�, some c18 > 0 and all k. Setting V (·) for Vk(·), it
is well known that the path (V (i), 0 ≤ i ≤ η(ρ)) can be constructed by concatenat-
ing i.i.d. excursions of the walk V (·), each starting at 0 and terminating at the first
exit time of (0, ρ). Then, η(ρ) is the terminal time of the first excursion to exit via
[ρ, ∞) with b(ρ) its starting time, and in concatenating the excursions en-route to
the path, one adds to each excursion the (non-positive) values of all terminal points
of preceding excursions. Adopting this construction, the event E(ρ, k) occurs for
c16 = 3C < ρ if the last of the excursions which exit via (−∞, 0] is in Fj for
j = 
c17 log k�, yielding the bound (4.32) in view of the independence of these
excursions.

Turning to show the upper bound in (4.28), let η = η(ρ) and b = b(ρ) be as
in (4.30)–(4.31). In the sequel we show that for some positive finite constants c19,
c20 and r0 ≥ 1,

sup
ρ≥K0

P

⎛
⎝

η−1∑
i=0

e−[V (i)−V (b)] > c20r

⎞
⎠ ≤ e−c19r , ∀ r ≥ r0. (4.33)

Recall that conditional upon Gk−1 the joint law of V (i) − V (bk) for i ∈ [θk, ηk] is
the same as the unconditional joint law of V (i) − V (b(ρ)) for i ∈ [0, η(ρ)] upon
taking ρ = H+

k−1 (which is measurable on Gk−1). Since H+
k−1 ≥ H+

0 ≥ K0, it thus

follows from (4.33) that P(
∑ηk−1

i=θk
e−[V (i)−V (bk)] > c20r) ≤ e−c19 r , for any k ≥ 1.

So, by the Borel–Cantelli lemma, for some γ+ < ∞ and P -almost surely for N

large enough,

ηN−1∑
i = θN

e−[ V (i)−V (bN ) ] ≤ γ+ log N.
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Further, from the definition of θN and H+
N−1 we know that P -almost surely for N

large enough,

θN−1∑
i = mN

e−[ V (i)−V (bN ) ] ≤
θN−1∑
i = mN

e−H+
N−1 ≤ bN e−H+

N−1 ≤ e−N

(the last inequality being a consequence of (2.12) and Lemma 2.1). Also, by (2.16),
for any ε > 0 and P -almost surely for all large N ,

mN+1−1∑
i = ηN

e−[ V (i)−V (bN ) ] ≤ mN+1e−(H+
N−1)

1−ε ≤ e−N.

Thus, we have that P -almost surely

�N =
mN+1−1∑
i = mN

e−[ V (i)−V (bN ) ] ≤ 2e−N + γ+ log N,

for all large N , clearly yielding the upper bound in (4.28).
To complete the proof of the proposition, it thus remains only to prove (4.33).

To this end, setting η = η(ρ) and b = b(ρ), we consider the random variables
L(j) := #{i < η : V (i) − V (b) ∈ [j, j + 1)}, j ∈ Z+ (which depend on ρ via η

and b) and the events

Aj,m :=
{
−(m + 1) < V (b) ≤ −m, L(j) > c21ej/2r

}
,

for j, m ∈ Z+ and c21 < ∞ to be determined in the sequel. Since {L(j) > c21ej/2r}
is the disjoint union of Aj,m and

∑η−1
i=0 e−[V (i)−V (b)] ≤ ∑∞

j=0 e−jL(j), it follows
that

P

⎛
⎝

η−1∑
i = 0

e−[V (i)−V (b)] > c20r

⎞
⎠≤

∞∑
j = 0

P
(
L(j) > c21ej/2r

)
=

∞∑
j=0

∞∑
m=0

P(Aj,m),

(4.34)

provided c20 ≥ c21
∑∞

j=0 e−j/2.
We thus proceed to bound P(Aj,m) for all j, m and ρ ≥ K0. To this end, as

V (·) is a non-degenerate random walk of zero mean and bounded increments, for
large positive integer c22 we have that

q∗ := sup
j≥0

P

(
inf

i∈[0, (j+c22)2)
V (i) > −(j + 2)

)
< 1. (4.35)

Next, fixing j ∈ Z+, let g = g(j) = (j + c22)
2 ≥ 1 and R = R(j) =


c21ej/2r/g(j)� − 1, where c21 is taken sufficiently large so that R(j) ≥ 1 for
any j ∈ Z+ and r ≥ 1. Fixing also m ∈ Z+, we consider the stopping times

T0 := inf {i ≥ 0 : V (i) ∈ (j − m − 1, j − m + 1)} ,

T� := inf {i ≥ T�−1 + g : V (i) ∈ (j − m − 1, j − m + 1)} , � ≥ 1,
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and the associated stopped σ -fields F�. Suppose the event Aj,m holds. Then, the
random walk (V (i), i ≤ η − 1) hits the interval (j − m − 1, j − m + 1) more
than �c21ej/2r� ≥ Rg times, and hence TR < η. In particular, as the walk V (·) can
not reach [ρ, ∞) for i < η(ρ) and the event �0 := {T0 < η} must hold as well, it
follows that Aj,m is an empty set whenever j − m − 1 ≥ ρ. Further, if Aj,m holds,
then by the preceding discussion also the events

�� :=
{

inf
i∈[0,g)

V (T�−1 + i) > −(m + 1)

}

hold for � = 1, . . . , R. Finally, if Aj,m holds then V (η) ≥ ρ+V (b) > ρ−(m+1),
while V (i) > −(m + 1) for all i ∈ (TR, η], implying that the event

�∗ = {
V (TR + i), i ≥ 0, exits (−(m + 1), ρ − (m + 1)] upwards

}
,

holds as well. To summarize, we have seen that

Aj,m ⊆ �0 ∩
R⋂

�=1

�� ∩ �∗ .

The following bounds apply

P(�∗ | FR) ≤ sup
x∈(j,j+2)

P
(
V (·) exits (0, ρ] upwards

∣∣ V (0) = x
)

≤ j + 2 + C

ρ + C
, (4.36)

P(�� | F�−1) ≤ sup
x∈(j−m−1,j−m+1)

P

(
inf

i∈[0,g)
V (i) > −(m + 1)

∣∣V (0) = x

)
≤ q∗ ,

(4.37)

using (4.35) in the latter bound. Further, if j − m + 1 ≤ −Jρ for some J ∈ Z+,
then considering the first downward crossing of −kρ for k = 1, . . . , J , leads to

P(�0) = P(T0 < η) ≤ P ( V (·) exits (−ρ + C, ρ) downwards )J ≤
(

ρ + C

2ρ

)J

.

Since �0 is empty for j − m − 1 ≥ ρ, this implies that for some finite c23 and
positive c24,

P(�0) ≤ c23e−c24|m−j |/ρ , ∀ρ ≥ K0, j, m ∈ Z+ . (4.38)

With �� measurable on F�, upon applying the strong Markov property at the stop-
ping times T�, � = 0, . . . , R, we get from (4.36), (4.37) and (4.38) that

P
(
Aj,m

) ≤ P

(
�0 ∩

R⋂
�=1

�� ∩ �∗

)
≤ c23e−c24|m−j |/ρ qR

∗
j + 2 + C

ρ + C

≤ c25
j + 1

ρ
exp

[
−c26

( |m − j |
ρ

+ ej/2r

(j + c22)2

)]
.
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This implies for some finite c27 and all ρ ≥ K0,

∞∑
m=0

P(Aj,m) ≤ c27 (j + 1) exp

(
−c26

ej/2r

(j + c22)2

)
.

Plugging the latter bound into (4.34) yields (4.33), thus concluding the proof of the
proposition. ��

5. Proof of Theorem 1.1

We start with a preliminary result.

Lemma 5.1. We have

lim
n→∞

ξ(n, bNn) + ξ(n, bNn−1)

max
y<mNn−1

ξ(n, y)
= ∞, P-a.s.

Proof. According to Proposition 4.1, we have P-a.s. for n large enough

ξ(n, bNn) + ξ(n, bNn−1) ≥ max

{
L(n, Nn)

c4 �Nn

,
L(n, Nn − 1)

c3 �Nn−1

}
.

Recall that by Proposition 4.6, P-a.s. for all n large enough

max{�Nn−1, �Nn} ≤ 2γ+ log Nn ,

and by (3.11), for any δ < 1, also P-a.s.

L(n, Nn − 1) + L(n, Nn) ≥ exp
(
(log n)δ

) ∑
1≤k<Nn−1

L(n, k)

≥ exp
(
(log n)δ

)
max

y<mNn−1
ξ(n, y) .

Hence, P-a.s. for n large enough,

ξ(n, bNn) + ξ(n, bNn−1) ≥ c28 (log Nn)
−1 exp

(
(log n)δ

)
max

y<mNn−1
ξ(n, y).

Since Nn ∼ log log n for n → ∞ (see (3.9)), this proves the claim of the lemma.
��

The rest of the section is devoted to the proof of Theorem 1.1.

Proof of Theorem 1.1. According to a 0–1 law in [3], there exists a possibly degen-
erate constant c ∈ [0, ∞] such that

lim inf
n→∞

ξ∗(n)

n/ log log log n
= c, P-a.s.

(Though the 0–1 law was proved in [3] for transient random walk in random envi-
ronment, its proof remains valid for our recurrent walk, with a reflecting barrier at
the origin.)
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It remains to check that 0 < c < ∞.
We start by showing that c is positive. From Proposition 4.1 we have that P-a.s.

for n large enough,

L(n, Nn − 1) + L(n, Nn) ≤ (c3 + c4)[ξ(n, bNn−1) + ξ(n, bNn)] max
k≤Nn

�k

Hence, combining (3.9) with the upper bound in Proposition 4.6, we have

lim inf
n→∞

[ ξ(n, bNn−1) + ξ(n, bNn) ] log log log n

L(n, Nn − 1) + L(n, Nn)
≥ 1

(c3 + c4)γ+
, P-a.s.

Since ξ(n, bNn−1)+ξ(n, bNn) ≤ 2ξ∗(n) and P-almost surely n−1(L(n, Nn−1)+
L(n, Nn)) → 1 for n → ∞ (as a consequence of Theorem 3.4), this implies that

lim inf
n→∞

ξ∗(n) log log log n

n
≥ 1

2(c3 + c4)γ+
, P-a.s.

Consequently, c ≥ 1/(2(c3 + c4)γ+) > 0 as claimed.
Turning to show that c < ∞, note that if n = T (mN) then Nn = N while

ξ(n, bN) = 0. Thus, by Lemma 5.1, P-a.s, if n = T (mN) for N large enough, then
ξ∗(n) = maxx∈[mN−1,mN ) ξ(n, x). Consequently, by (4.5), and the trivial inequality
L(T (mN), N − 1) ≤ T (mN), we have that

lim sup
N→∞

ξ∗(T (mN))�N−1

T (mN)
≤ 1

c5
, P-a.s.

By the lower bound in Proposition 4.6, it follows that lim supk (log k)−1�k−1 ≥
γ−. Consequently

lim inf
N→∞

ξ∗(T (mN)) log N

T (mN)
≤ 1

c5 γ−
, P-a.s.

Since P -almost surely log log mN ∼ log N for all N large enough [see (2.13)],
and P-almost surely log log T (x) ∼ 1

2 log x for x → ∞ (see Fact 3.1), it follows
that P-almost surely log log log T (mN) ∼ log N for N → ∞. Therefore,

lim inf
n→∞

ξ∗(n) log log log n

n
≤ 1

c5 γ−
, P-a.s.

We deduce that c ≤ 1/(c5γ−) is finite and hence conclude the proof of Theorem
1.1. ��
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