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Abstract. We prove a new bound on the mixing time of a Markov chain by considering the
conductance of its connected subsets.

1. Introduction

Probabilistic algorithms which use sampling are extremely important tools. Perhaps
the oldest example of such an algorithm is the Metropolis–Hastings algorithm [15],
which is used for sampling from a given distribution on a finite set. Dyer, Frieze
and Kannan showed that using random sampling we can determine the volume of
a convex body up to a 1 + o(1) factor in polynomial time (with an exponentially
small probability of error) (see [5, 11–13] for further improvements). In contrast,
in d-dimensional space a deterministic algorithm to approximate the volume to
within a factor of 2d requires exponentially many samples. Another application is
the estimation of the permanent of a matrix by Jerrum and Sinclair in [8], where
perfect matchings on a suitably defined graph are randomly sampled. Random sam-
pling is also extremely important in approximating the partition function of various
statistical mechanics models, in polynomial-time. This is done for the Ising model
by Jerrum and Sinclair in [9]. Moreover, probabilistic algorithms are used to sam-
ple from the Gibbs distribution of a statistical mechanics model, such as the Ising
model (see [19]) or the Potts model at zero temperature, via the random sampling of
proper colourings of a graph (see [6]). For further references the interested reader
is referred to the survey [18].

In all the examples cited above, the size of the probability space from which we
sample is exponentially large in terms of the input size. Thus, choosing the random
sample is itself a non-trivial algorithmic task. A common technique is to define a
graph on the sample space and carry out a random walk on this graph. If we choose
the graph carefully, then after our walk has made enough steps, the element of the
sample space we are currently at can be used as a random sample. In order for this
technique to be useful, we need to bound the number of steps we are required to
take to ensure that the current state is sufficiently random. This is the theory of
rapidly mixing Markov chains.

A (finite) Markov chain M can be thought of as a digraph G on vertex set
Vn = {1, . . . , n} (this is the set of states) together with a collection of probabilities
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pij ≥ 0 that we move to state j given that we are at state i, such that pij > 0
precisely if ij is an edge of G. Thus, for every i ∈ Vn we have

∑
j pij = 1. Let

P = (pij )i,j∈Vn be the transition matrix. If we start at vertex i, then the state that
the Markov chain has reached after the t-th step has distribution eiP

t , where ei is
the vector with a 1 in the ith coordinate and 0 elsewhere. We use P t

i to denote this
distribution.

If we want to sample from a distribution π using a walk started at an arbitrary
state then it must be the case that for every i, P t

i → π as t → ∞, where the
convergence here is with respect to the total variation distance dT V between two
probability distributions on Vn defined as:

dT V

(
p(1), p(2)

)
= max

A⊆Vn

∣
∣
∣p(1)(A) − p(2)(A)

∣
∣
∣ .

If such a distribution exists then it is called the stationary distribution for M. It is
easy to see that in this case, π must be the unique distribution satisfying πP = π .

It is natural to consider chains for which every state has a non-zero stationary
probability, such chains are called ergodic. Clearly, the underlying digraph G for
such a chain must be strongly connected. Furthermore, there cannot be any k > 1
such that every cycle of G has length 0 mod k, for then P t

i (i) = 0 unless k divides t .
In fact, a Markov chain is ergodic precisely if these two conditions are satisfied,
i.e., if it is irreducible and aperiodic.

We focus on chains which are reversible, in the sense that in the stationary
distribution, the probability of moving from i to j equals the probability of moving
from j to i. That is, π(i)pij = π(j)pji ∀i, j ∈ Vn. In this case, ij is in E(G)

precisely if ji is, and so we can think of G as an undirected graph.
The mixing time Tmix of Markov chain M with stationary distribution π is

Tmix = sup
i

min
{
t : dT V

(
P t

i , π
)

< 1/e
}
.

It is easy to prove that min
{
t : dT V

(
P t

i , π
)

< (2/e)l
} ≤ lTmix. So, Tmix mea-

sures not only how long it takes to set to within 1/e of π , but also bounds how long
it takes to get arbitrarily close to π . Thus, it is the standard measure of the rate at
which the Markov chain mixes.

Some chains may take a long time to mix because they are nearly periodic.
Consider for example a chain for which G is obtained from a digraph in which
all cycles are even by adding a loop at some vertex x. Then until we visit x, the
probability mass at consecutive time steps is concentrated on disjoint sets, one of
which has probability at most 1/2 in the limit distribution, so we cannot yet have
mixed. Thus, the mixing time is at least the time until we hit x, which may be quite
a while.

To avoid this problem, we consider a slightly different lazy Markov chain where
at each time step, we stay where we are with probability 1/2 and take a step of the
original chain with probability 1/2. Note that this does not change the limit distri-
bution and at most doubles the mixing time. In what follows, we assume implicitly
that our chain is lazy.
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For lazy reversible Markov chains, the mixing time is essentially determined by
bottlenecks like the one depicted in Fig. 1. The figure depicts a graph H obtained
from two cliques of size n/2 by adding an edge xy between them (a clique is a graph
in which every two vertices are joined by an edge). We will consider the simple
random walk, M(H) on H . This is the Markov chain obtained from H by setting
pij = 0 if ij is not an edge of H and pij = 1/|{j : (i, j) ∈ E(H)}| otherwise.

If we start M(H) in C1, then we expect to visit x n/2 times before we move to
C2 and each time we leave x and enter C1 − x we expect to take n/2 steps before
revisiting x. So, we expect to take n2/4 steps before leaving C1. This implies that
there is some vertex y of C1 such that the probability we leave C1 within t = 	n2

40

steps if we start at y is at most 1/10 (since otherwise the expected time until we
leave C1 is at most t

∑∞
i=0(9/10)i). So P t

y(C1) > 9/10. But symmetry implies that
π(C1) = 1/2 and hence Tmix(M(H)) > t .

A bound of the same kind can be obtained by considering any set S of states of
a Markov chain. We define Q(S) to be the probability we leave S when we are in
the steady state, so Q(S) = ∑

i∈S,j �∈S π(i)pi,j and Q(S)/π(S) is the probability
that we leave S given we are in it. Thus, π(S)/Q(S) is the expected length of a
sojourn in S when we are in the steady state. It follows as above that the mixing
time of any Markov chain is at least max{S: 0<π(S)≤ 1

2 }
π(S)

10Q(S)
.

As in [8], we define the conductance of S, denoted �(S),

�(S) = Q(S)

π(S)π(Vn \ S)

and the conductance � = �(M) of M to be min{S: 0<π(S)<1} �(S). We note that
for reversible chains, �(S) = �(Vn \ S), so

Tmix ≥ 1

10�
.

We remark that �(S) compares the probability of moving from S to Vn \ S in
the steady state to the probability of doing so if we simply take two independent
samples using π(S).

At first blush, it might appear that there are other obstacles to rapid mixing. For
example, if we have a state i such that the set S of states within distance t of i satis-
fies π(S) ≤ 1/2, then Tmix is at least t + 1 (since P t

i (S) = 1). Thus for a reversible
chain, if there are two states i and j such that the shortest walk between them has

x
C2C1

C1,C2=Kn/2

Fig. 1. A bottleneck in a graph
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length at least 2t + 1 then Tmix is at least t . I.e., Tmix ≥ (diam(G) − 1)/2 where
diam(G) is the diameter of G. However, as we shall see below, if the diameter is
high then conductance is low. Specifically, letting πmin = mini∈Vn π(i), we have

diam(G) = O
(
�−1 log π−1

min

)
.

Moreover, Jerrum and Sinclair proved in [8] that the mixing time of an irreduc-
ible, aperiodic and reversible Markov chain satisfies:

Tmix ≤ C

�2 log π−1
min,

for some constant C. Thus, the mixing time of a reversible Markov chain is approx-
imately determined by its conductance.

Treading the path blazed by Lovász and Kannan [11], we prove a strengthening
of this result which can be used to tie down the mixing time of many Markov chains
more precisely. We prove this bound in the next section. We close this section with
a statement of our main result. First we give a brief intuition as to why it is true and
how it can be useful.

To warm up, we prove the aforementioned upper bound on the diameter in
terms of the conductance. For a node i let Si

t be the set of nodes at exactly dis-
tance t from i and let Si≤t be the set of nodes at distance at most t from i. Thus,
Si

≤t+1 = Si≤t ∪ Si
t+1. Now, whenever we leave Si≤t via an edge of G we enter Si

t+1.
Furthermore, in equilibrium, Q

(
Si≤t

)
is the probability that we are in Vn \ Si≤t but

we were in Si≤t at the last step. So, π
(
Si

t+1

) ≥ Q
(
Si≤t

)
, which yields

π
(
Si

≤t+1

)
= π

(
Si

≤t

)
+ π

(
Si

t+1

)
≥ π

(
Si

≤t

) (
1 + �

(
Si

≤t

)
π
(
Vn \ Si

≤t

))
.

If π
(
Si≤t

) ≤ 1/2 then this yields: π
(
Si

≤t+1

)
≥ (

1 + �
2

)
π
(
Si≤t

)
. Hence,

π
(
Si

≤t

)
≥ min

{
1

2
, πmin

(

1 + �

2

)t}

.

In particular, π
(
Si≤t

)
> 1

2 for t bigger than 2�−1 log π−1
min and so the diameter of

G is at most 4�−1 log π−1
min + 1.

We can strengthen this bound by using a more precise estimate of each �
(
Si≤t

)
.

For p > πmin, we let

�(p) = min
S connected,

p
2 ≤ π(S) ≤ p

�(S)

and if there is no such a set we define �(p) = 1 (the dual use of letter � should
cause no confusion). Since the Si≤t ’s are connected sets, we can show: diam(G) =
O

(
∑
log π−1

min�−1
j=1 �−1(2jπmin)

)

. This is the case because for any i, using the

above argument we can show that for all p ≤ 1/2 there are at most 2�−1(p)

values of t with p
2 ≤ π

(
Si≤t

) ≤ p.
In the same vein, we can strengthen the result of Jerrum and Sinclair, proving:
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Theorem 1. For an irreducible, reversible and aperiodic lazy Markov chain on Vn

we have

Tmix ≤ C


log π−1
min�∑

j=1

�−2
(

2−j
)

,

for some constant C that does not depend on the chain.

Remark 1. The above sum can be approximated within a constant factor by the
integral

∫ 1/2
πmin

dx
x�2(x)

. Related results were obtained independently in [10, 17].

This bound is quite useful if the connectivity faults in the chain are small and
widely spaced. For in this case, it is only the terms for large j which contribute
significantly to the sum. This is a common situation in random structures, and so our
result should be particularly useful in this context. To illustrate this point we state
the following theorem which we will prove in a companion paper. It concerns Gn,p

random graphs on Vn, where each edge is present independently with probability
p and, more specifically, the mixing time of a simple random walk on the largest
component of Gn,p, which we denote by Tmix(Gn,p).

Theorem 2. For every p = p(n) with 1 + �(1) < np, we have

Tmix(Gn,p) = �

(

max

{(
ln n

np

)2

,
ln n

ln np

})

,

with probability 1 − o(1).

Our bound is also useful if the only sets with low conductance are fairly large,
in which case the only large terms in the sum are those for small j . This case was
first dealt with by Kannan and Lovász [11] who proved the variant of our result
obtained by replacing �(p) by the minimum of �(S) over all S with π(S) ≤ p.
They applied this result to improve the complexity of a volume approximation algo-
rithm. Their result was also used by Benjamini and Mossel [3] to tie down precisely
the mixing time of a simple random walk on the infinite cluster of a supercritical
percolation process on the d-dimensional lattice Z

d . However, this variant is not
as widely applicable as our result. In particular if we use it to estimate the mixing
time of a simple random walk on the largest component of Gn,p we obtain an upper
bound on the mixing time which is off by a factor of ln n.

We feel that typically it is small sets which have low conductance and hence
our variant will extend the reach of this approach significantly.

2. The main result

To prove Theorem 1 we actually bound the value of a different invariant of a Markov
chain which is within a constant factor of Tmix.

We consider starting in some initial state i and performing a random walk stop-
ping exactly in π . In order to do so we will need to allow ourselves to vary the time
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at which we stop. A stopping rule � is a procedure for doing so, where after each
step we halt with some probability which depends (only) on the sequence of states
we have seen so far. We are interested in stopping rules such that the distribution
of the halting state is π . In [14], it was shown that such stopping rules exist. For
each i ∈ Vn, we define the hitting time time from i to π , denoted H(i, π) to be the
minimum over all stopping rules � from i to π of the expected number of steps
taken by �.

The mixing time will be defined as

H = max
i∈Vn

H(i, π).

Aldous has shown in [1] (see also [2]) that this definition of the mixing time is
equivalent to the definition of Tmix up to some multiplicative constants; i.e. there
exist C1, C2 > 0 such that for every (lazy) Markov chain, C1H ≤ Tmix ≤ C2H.
So, to bound Tmix from above it is sufficient to establish an upper bound on H and
this is how we proceed in the proof of Theorem 1. We remark that our bound on the
mixing time holds regardless of whether or not the chain is lazy, laziness is only
needed to prove the equivalence of the mixing time and Tmix.

3. Proof of Theorem 1

We choose a state i0 and stopping rule � from i0 to π whose hitting time is H.
The exit frequency of state i, denoted xi , is the expected number of times state i is
exited before the walk halts. By definition, H = ∑n

i=1 xi . We prove that

H ≤ 28


log π−1
min�∑

j=1

�−2
(

2−j
)

.

Theorem 1 follows from the relation between Tmix and H. We shall use the notion
of the scaled exit frequency defined as yi = xi/π(i) for any i ∈ Vn. Thus, we have
H = ∑n

i=1 π(i)yi . The scaled exit frequency yi = xi/π(i) indicates whether or
not we are overvisiting i. Now, yi0 ≥ 1/π(i0) so we overvisit i0. Indeed it turns
out, as we show below, that we overvisit i0 at least as much as any other state.
Also crucial to our analysis is the fact, proven in [14], that there is a halting state
h such that x(h) = y(h) = 0. Our proof mimics that of the diameter bound given
above. The vertices i0 and h will play the role of the two furthest apart vertices in
that proof. We will grow a nested sequence of connected sets S1, . . . around each

vertex such that π(Si+1) ≥ π(Si)
(

1 + �(Si)
4

)
. We bound

∑n
i=1 π(i)yi by a set of

terms each of which is a constant over �(Si) for some i in the series. The key trick
is to choose the right definition for these connected sets. Intuitively, it makes sense
that the more we overvisit a vertex, the closer it is to i0. Indeed, as we show below,
the set Sα = {i : yi > α} is a connected set which is either empty or contains i0.
The sequence of sets containing i0 are the Sα’s for various values of α. Now, the
set Zα = {i : yi < α} may not be connected. So the sets we grow around h are the
components of Zα containing h for various values of α. Forthwith the details.
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Assume without loss of generality that the scaled exit frequencies are such
that y1 ≤ · · · ≤ yn. By reordering, we can maintain this property whilst ensuring
that i0 = n and h = 1. Our proof relies on the following, which is an important
consequence of reversibility:

Lemma 1. If Z is a set of states not containing i0 then

π(Z) =
∑

i∈Z,j �∈Z

π(i)pij (yj − yi).

Proof. The expected number of times we traverse the edge (i, j) under the stop-
ping rule is xipij , or equivalently yiπ(i)pij . So, the expected number of times
we leave Z is

∑
i∈Z,j �∈Z yiπ(i)pij and the expected number of times we enter Z

is
∑

i∈Z,j �∈Z yjπ(j)pji , which by reversibility is
∑

i∈Z,j �∈Z yjπ(i)pij . Since we
start the walk outside Z and halt in π , it follows that

π(Z) =
∑

i∈Z,j �∈Z

(yj − yi)π(i)pij .

The following consequence of the above lemma is used in our proof:

Corollary 1. For any α the set Sα = {i : yi ≥ α} either is empty or is a connected
set containing i0. Hence yi0 ≥ yi ∀ i as claimed.

Proof. Let Z be a (non-empty) component of Sα , which does not contain i0. Then
the left-hand side of the above equality is positive, but the right-hand side has only
negative terms.

For an i ∈ Vn, we let Ci be the connected component of the subgraph induced by
the set of vertices {1, . . . , i} which contains 1 and let i∗ = min{i : π(Ci) > 1/2}.
Let m0 = y1 = 0 and set Z0 = {1}. For i ≥ 1, we set mi = mi−1 + 4

�(Zi−1)
and

ji = max{j : yj ≤ mi}. Then we let Zi = V (Cji
). Let L = max{j : mj < yi∗}.

We shall bound
∑n

i=1 π(i)yi , by splitting it into two sums. We first bound
yi∗ = ∑n

i=1 yi∗π(i) and then bound
∑

i>i∗(yi − yi∗)π(i). Clearly, the sum of
these two sums is at least

∑n
i=1 yiπ(i). It is immediate that

yi∗ ≤ mL+1 =
L∑

k=0

(mk+1 − mk) ≤
L∑

k=0

4

�(Zk)
. (1)

To bound the terms in this sum, we must first bound π(Zk+1 \ Zk). To do so, we
use Lemma 1: for 0 ≤ k ≤ L

π(Zk) =
∑

i∈Zk,j �∈Zk

π(i)pij (yj − yi).

Now, for any edge ij with i ∈ Zk , j �∈ Zk+1, we have yj > mk+1. Thus, if Ā

denotes the complement of A and Q(A, B) = ∑
i∈A,j∈B π(i)pij , then applying
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Lemma 1 we obtain:

π(Zk) =
∑

i∈Zk,j �∈Zk

π(i)pij (yj − yi) ≥ (mk+1 − mk)
∑

i∈Zk,j �∈Zk+1

π(i)pij

= 4

�(Zk)
Q(Zk, Z̄k+1) ≥ 2π(Zk)

Q(Zk, Z̄k)
Q(Zk, Z̄k+1),

because π(Z̄k) > 1/2 by the definition of Zk . Hence,

Q(Zk, Z̄k+1) ≤ Q(Zk, Z̄k)

2
,

and therefore

Q(Zk, Zk+1 \ Zk) ≥ Q(Zk, Z̄k)

2
.

Since π(Zk) ≤ 1/2, this yields

Q(Zk, Zk+1 \ Zk) ≥ π(Zk)�(Zk)

4
.

In equilibrium, Q(Zk, Zk+1 \ Zk) is the probability that we are in Zk+1 \ Zk

and that we moved there from Zk . So, π(Zk+1 \ Zk) ≥ Q(Zk, Zk+1 \ Zk) which
implies that

π(Zk+1) ≥ π(Zk)

(

1 + �(Zk)

4

)

.

Now for any l = 1, . . . , 
log π−1
min� − 1, if Zk is such that 2−l−1 ≤ π(Zk) ≤ 2−l ,

then �(Zk) ≥ �(2−l ). So

π(Zk+1) − π(Zk) ≥ π(Zk)�(2−l )

4
≥ 2−l−1�(2−l )

4
.

Therefore, the number of such Zk’s is no more than

4
2−l−1

2−l−1�(2−l )
= 4

�(2−l )
.

Thus, using (1)

yi∗ ≤
L∑

k=0

4

�(Zk)
≤ 16


log π−1
min�∑

k=1

�−2(2−k). (2)

Now, we shall estimate the sum
∑

i>i∗(yi − yi∗)π(i) in a similar way. By Cor-
ollary 1 the subgraph that is induced by the set {i∗ + 1, . . . , n} is connected and
also π({i∗ + 1, . . . , n}) < 1/2. Moreover, for every j between i∗ + 1 and n the
graph that is induced by {j, . . . , n} is connected.
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Let n0 = n and set S0 = n. For i ≥ 1, we set Si = {ni, . . . , n}, where ni =
min{j : π({j, . . . , n})−π(j) < π({ni−1, . . . , n})

(
1+ �(Si−1)

4

)
≤π({j, . . . , n})}.

Let L be such that nL ≥ i∗ + 1 > nL+1. Note that

∑

i>i∗
(yi − yi∗)π(i) ≤

L∑

k=0

nk−1∑

j=nk+1

(yj+1 − yj )π({j + 1, . . . , n}).

Now, for 0 ≤ k ≤ L we obtain:

nk−1∑

j=nk+1

(yj+1 − yj )π({j + 1, . . . , n}) ≤ π(Sk+1 \ {nk+1})
(
ynk

− ynk+1

)
.

So,

∑

i>i∗
(yi − yi∗)π(i) ≤

L∑

k=0

π(Sk+1 \ {nk+1})
(
ynk

− ynk+1

)
.

Furthermore, for each 0 ≤ k ≤ L by Lemma 1

π
(
S̄k

) =
∑

i∈Sk,j∈S̄k

π(j)pji

(
yi − yj

)
,

and consequently

π
(
S̄k

) ≥
∑

i∈Sk,j∈S̄k+1∪{nk+1}
π(j)pji(yi − yj )

≥ (
ynk

− ynk+1

) ∑

i∈Sk,j∈S̄k+1∪{nk+1}
π(j)pji

= (
ynk

− ynk+1

)
Q(Sk, S̄k+1 ∪ {nk+1}).

That is

ynk
− ynk+1 ≤ π

(
S̄k

)

Q
(
Sk, S̄k+1 ∪ {nk+1}

) .

Moreover,

Q(Sk, S̄k) = Q(Sk, S̄k+1 ∪ {nk+1}) + Q(Sk, Sk+1 \ ({nk+1} ∪ Sk))

≤ Q
(
Sk, S̄k+1 ∪ {nk+1}

)+ π(Sk+1 \ ({nk+1} ∪ Sk))

≤ Q
(
Sk, S̄k+1 ∪ {nk+1}

)+ π(Sk)�(Sk)

4

≤ Q
(
Sk, S̄k+1 ∪ {nk+1}

)+ Q
(
Sk, S̄k

)

2
,

and this implies that

Q
(
Sk, S̄k+1 ∪ {nk+1}

) ≥ Q
(
Sk, S̄k

)

2
> 0. (3)
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Hence,

ynk
− ynk+1 ≤ 2π

(
S̄k

)

Q
(
Sk, S̄k

) .

By the above inequality and the definition of Sk+1 we obtain

π(Sk+1 \ {nk+1})
(
ynk

− ynk+1

) ≤ π(Sk)

(

1 + �(Sk)

4

)
2π
(
S̄k

)

Q
(
Sk, S̄k

) .

Now, since Q(Sk)/π(Sk) is a probability and π
(
S̄k

)
> 1/2, we have �(Sk) ≤ 2.

This yields:

π(Sk+1 \ {nk+1})
(
ynk

− ynk+1

) ≤ 3

�(Sk)
.

Thus,

∑

i>i∗
(yi − yi∗)π(i) ≤

L∑

k=0

3

�(Sk)
.

We now argue as above: for any l = 1, . . . , 
log π−1
min� − 1, if Sk is such that

2−l−1 ≤ π(Sk) ≤ 2−l , then �(Sk) ≥ �(2−l ). Further, by the definition of Sk+1,
we have:

π(Sk+1) ≥ π(Sk)

(

1 + �(Sk)

4

)

.

Thus,

π(Sk+1) − π(Sk) ≥ π(Sk)�
(
2−l

)

4
≥ 2−l−1�

(
2−l

)

4
.

So, the number of such Sk’s is no more than

4
2−l−1

2−l−1�
(
2−l

) = 4

�
(
2−l

) ,

and therefore we obtain

∑

i>i∗
(yi − yi∗)π(i) ≤

L∑

k=0

3

�(Sk)
≤ 12


log π−1
min�∑

k=1

�−2
(

2−k
)

. (4)

Finally, inequalities (2) and (4) yield the upper bound on H and the proof of
Theorem 1 is complete.



Faster mixing and small bottlenecks 485

4. Concluding remarks

We intend this paper to be a jumping off point for future research in two respects.
Firstly, the main theorem can be sharpened significantly at some cost in sim-

plicity, by improving upon the inequality Q(Sk, Sk+1 \ ({nk+1} ∪ Sk)) ≤ π(Sk+1 \
({nk+1} ∪ Sk)). We hope our exposition gives readers enough feeling for the guts
of the proof that they can develop their own sharpenings as needed.

Secondly, we have just touched the tip of the iceberg as far as applications
are concerned. For example we are currently trying to tie down the mixing time
of a random walk on the giant component of a random graph with a fixed degree
sequence. Random graphs of this kind were treated by Gantzidis et al. [7], in the case
where the minimum degree is at least 3. However, as it was shown in [16], degree
sequences of more general form may give random graphs having almost surely a
giant component. We also intend to have a look at the mixing time of a random
walk on the giant component in the random cluster model on the complete graph
(see [4]). The authors in [3] raise the question about the mixing time of a simple
random walk on the critical cluster of a percolation process on the d-dimensional
lattice Z

d , for d ≥ 2. We believe that the local structure plays a more important role
there and our result might be used to answer the above question. We also expect
that our main theorem will have applications in a broader setting (in particular to
deterministically defined chains).
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