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Abstract. We consider infinite systems of macroscopic particles characterized by their
masses. Each pair of particles with masses x and y coalesce at a given rate K(x, y). We
assume that K satisfies a sort of Hölder property with index λ ∈ (0, 1], and that the initial
condition admits a moment of order λ. We show the existence of such infinite particle sys-
tems, as strong Markov processes enjoying a Feller property. We also show that the obtained
processes are the only possible limits when making the number of particles tend to infinity
in a sequence of finite particle systems with the same dynamics.

1. Introduction

Coalescence is a widespread phenomenon: it arises in physics (droplets, smoke),
chemistry (polymer), astrophysics (formation of galaxies), biology (hematology,
population theory), and mathematics (graphs and trees).

We consider a possibly infinite system of particles characterized by their masses.
The total mass of the system is supposed to be equal to 1. The only interactions
taken into account are the following: two particles with masses x and y are assumed
to merge into a single particle with mass x + y at some given rate K(x, y) ≥ 0,
which we will refer to as the coagulation kernel. Two different situations have to
be separated.

(a) Assume first that the particles are microscopic, and that the rate of coalescence is
infinitesimal. Then the system can be described by {c(t, m)}t≥0,m∈(0,∞), where
c(t, m) is the concentration of particles with mass m at time t . In such a case,
{c(t, m)}m∈(0,∞) solves a nonlinear deterministic integro-differential equation,
known as the Smoluchowski coagulation equation, see Laurençot-Mischler [7]
and Leyvraz [8] for recent reviews on this topic.

(b) When the particles are macroscopic and when the rate of coagulation is not
infinitesimal, then the study can not be reduced to the investigation of a deter-
ministic quantity.
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We refer to the review of Aldous [3] on stochastic coalescence and on the links
between the microscopic and macroscopic scales. The present work is dedicated to
the study of case (b).

When the initial state consists in a finite number of macroscopic particles,
the stochastic coalescent obviously exists, and is known as the Marcus-Lushnikov
process [10, 9]. When there are initially infinitely many particles, stochastic coa-
lescence with constant, additive, and multiplicative kernels have been extensively
studied, see Kingman [6], Aldous [1], Aldous-Pitman [2]. Much less seems to be
known for general kernels. The only work dealing with general kernels seems to be
that of Evans-Pitman [5], where the existence of such processes satisfying a Feller
property is proved under some quite restrictive conditions on the coagulation kernel
and the initial state.

The aim of this work is to generalize the results of [5], and to investigate
existence, uniqueness, and Feller property of stochastic coalescents with general
kernels. Corollary 2.5 below answers partially to Open Problem 13 of Aldous [3].

2. Notations and main results

Consider the following state space

S =
{

m = (mk)k≥1, m1 ≥ m2 ≥ · · · ≥ 0,

∞∑
k=1

mk ≤ 1

}
.

We think a state m ∈ S as the sequence of ordered masses of the particles in
an infinite system. We endow S with the pointwise convergence topology, which
makes S compact (due to the Fatou Lemma), and which can be metrized by the
distance

d(m, m̃) =
∑
k≥1

2−k|mk − m̃k|. (2.1)

In the sequel, a coagulation kernel K will be a function on [0, 1]2 such that
for any x, y ∈ [0, 1], K(x, y) = K(y, x) ≥ 0. The number K(x, y) represents the
rate at which two particles with masses x and y will aggregate.

For 1 ≤ i < j , the coalescence between the i-th and j -th larger particles is
described by the map cij : S �→ S, with

cij (m) = reordered(m1, . . . , mi−1, mi + mj , mi+1, . . . , mj−1, mj+1, . . . ).

(2.2)

For any k ≥ 1, [cij (m)]k stands for the k-th element of the sequence cij (m).
Our aim is to study a S-valued Markov process (M(t))t≥0, starting from some
given M(0) ∈ S, with generator L given, for any � : S �→ R sufficiently regular,
any m ∈ S, by

L�(m) =
∑

1≤i<j<∞
K(mi, mj )

[
�(cij (m)) − �(m)

]
. (2.3)
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We will prove in Section 3 that L is at least well-defined, as soon as K is
bounded, on the following class of functionals:

C = {� : S �→ R, ∃ c > 0, ∀ m, m̃ ∈ S, |�(m) − �(m̃)| ≤ cd(m, m̃)} .

(2.4)

For example, for any n ≥ 1, any Lipschitz function f : [0, 1]n �→ R, �(m) =
f (m1, . . . , mn) belongs to C.

We need to introduce some subsets of S. First,

S0 =
{
m = (mk)k≥1 ∈ S,

∑
k≥1

mk = 1, ∃ n ≥ 1, m = (m1, . . . , mn, 0, . . . )
}

contains all states with finitely many particles. Next, for λ ∈ (0, 1],

Sλ =

m = (mk)k≥1 ∈ S,

∑
k≥1

mk = 1,

∞∑
k=1

mλ
k < ∞




stands the set of states with total mass 1 and with a moment of order λ. Note that
for any 0 < λ < µ < 1,

S0 ⊂ Sλ ⊂ Sµ ⊂ S1.

Definition 2.1. (i) We say that a S-valued (or Sλ-valued) process (M(t))t≥0 is
càdlàg if a.s., the map t �→ M(t) is càdlàg for the pointwise convergence
topology on S.

(ii) For a coagulation kernel K bounded by K̄ , we consider a Poisson measure
N(dt, d(i, j), dz) on [0, ∞) × {(i, j) ∈ N

2, i < j} × [0, K̄] with inten-
sity measure dt

(∑
1≤k<l<∞ δ(k,l)

)
dz, and denote by {Ft }t≥0 the associated

canonical filtration.
(iii) Let M(0) ∈ S. A càdlàg {Ft }t≥0-adapted S-valued process (M(t))t≥0 is said

to solve (SDE(K, M(0), N)) if a.s., for all t ≥ 0,

M(t) = M(0) +
∫ t

0

∫
i<j

∫ K̄

0

[
cij (M(s−)) − M(s−)

]
11{z≤K(Mi(s−),Mj (s−))}N(ds, d(i, j), dz). (2.5)

Remark 2.2. Equation (2.5) has to be understood as: for all t ≥ 0, all k ≥ 1,

Mk(t) = Mk(0) +
∫ t

0

∫
i<j

∫ K̄

0

{
[cij (M(s−))]k − Mk(s−)

}
(2.6)

11{z≤K(Mi(s−),Mj (s−))}N(ds, d(i, j), dz),

and the above integrals are a.s. well-defined and finite for any càdlàg {Ft }t≥0-
adapted S-valued process (M(t))t≥0.

The convergence of the integrals will be checked in Section 4.
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Remark 2.3. Consider a bounded coagulation kernel K , and let N be as in
Definition 2.1. Consider an initial condition m ∈ S0. Then there exists a unique solu-
tion (Mm(t))t≥0 to (SDE(K, m, N)). Furthermore, (M(t))t≥0 is a strong Markov
S0-valued process. Its infinitesimal generator is given by L on all bounded mea-
surable functions � : S �→ R. (Notice that L�(m) is well-defined for any m ∈ S0
and any bounded measurable � : S �→ R). Such a Markov process is unique (in
law), and is called the (K, m)-Marcus-Lushnikov process.

The proof of this remark is almost immediate, since in this case, the total rate of
jump of the system is bounded from above by the constant n(n−1)

2 K̄ , where n ∈ N

is such that mk = 0 for all k > n. We refer to Aldous [3] and the references therein.
To state our result, we introduce, for λ ∈ (0, 1], for m and m̃ in Sλ,

||m||λ =
∑
k≥1

mλ
k, dλ(m, m̃) =

∑
k≥1

|mλ
k − m̃λ

k |. (2.7)

Theorem 2.4. Consider a coagulation kernel K bounded by K̄ and satisfying, for
some κ ≥ 0, some λ ∈ (0, 1],

|K(x, y) − K(u, v)| ≤ κ
(|xλ − uλ| + |yλ − vλ|) , ∀ x, y, u, v ∈ [0, 1].

(2.8)

Let N be as in Definition 2.1.

(i) For M(0) ∈ Sλ, there exists a unique Sλ-valued solution (M(t))t≥0 to (SDE

(K, M(0), N)).
(ii) For any pair of initial conditions M(0) ∈ Sλ and M̃(0) ∈ Sλ, denote by

(M(t))t≥0 and (M̃(t))t≥0 the associated Sλ-valued solutions to (SDE(K, M

(0), N)) and (SDE(K, M̃(0), N)). For all t ≥ 0,

E

[
sup
[0,t]

dλ(M(s), M̃(s))

]
≤ dλ(M(0), M̃(0))e4κ(||M(0)||λ+||M̃(0)||λ)t . (2.9)

Remark that if λ = 1, then ||M(0)||λ = ||M̃(0)||λ = 1. Notice also that if
K is constant, then (2.8) holds for each λ ∈ (0, 1] with κ = 0, so that dλ is
non-expanding along solutions to (2.5). As a corollary, we obtain the following
result.

Corollary 2.5. Consider a bounded coagulation kernel K satisfying (2.8), for some
λ ∈ (0, 1], κ ≥ 0.

(i) For any m ∈ Sλ, there exists a unique (in law) càdlàg Sλ-valued process
(Mm(t))t≥0 such that for any sequence mn ∈ S0 satisfying limn dλ(m, mn) =
0, the sequence of (K, mn)-Marcus-Lushnikov processes (Mmn

(t))t≥0 defined
in Remark 2.3 converges in law to (Mm(t))t≥0 in D([0, ∞), Sλ), Sλ being
endowed with the distance dλ.
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(ii) The process (Mm(t))t≥0 is a strong Markov process enjoying the following
Feller property: for all t ≥ 0, the map m �→ law(Mm(t)) is continuous
from Sλ into P(Sλ) for the weak convergence topology on P(Sλ), Sλ being
endowed with the distance dλ.

(iii) The infinitesimal generator of (Mm(t))t≥0 on functions � ∈ C is given by L.

When K ≡ 1, (M(t))t≥0 is known as the Kingman coalescent, [6]. The case
where K(x, y) = x + y (resp. K(x, y) = xy) is called the additive (resp. mul-
tiplicative) coalescent, see Aldous-Pitman, [2], Aldous [1]. When the initial state
contains infinitely many particles, the only work dealing with general kernels seems
to be that of Evans and Pitman [5]. They have shown the existence of (M(t))t≥0 as
a Feller process in the situation where K(0, 0) = 0 and where K is Lipschitz on
[0, 1]2, for initial values in the set {m ∈ S1,

∑
k≥1 kmk < ∞}. Hence, Theorem

2.4 seems to improve consequently their result: it applies to a wider class of kernels
(such as K(x, y) = xλ +yλ or K(x, y) = (xy)λ, for all λ ∈ (0, 1]), and even in the
case of a Lipschitz kernel, we require a weaker assumption on the initial condition.

After some preliminaries about the distances d and dλ presented in Section 3,
we prove Theorem 2.4 in Section 4.

3. Preliminaries

We devote this section to some technical issues: we investigate the action of coa-
lescence on the distances d and dλ.

To this aim, we start with a lemma, which will often allow us to neglect the
reordering after a coalescence. Recall that a finite permutation σ of N = {1, 2, . . . }
is a bijection from N into N such that σ(n) = n for all n sufficiently large.

Lemma 3.1. Consider a finite permutation σ of N and two nonincreasing non-
negative sequences m = (m1, m2, . . . ) and m̃ = (m̃1, m̃2, . . . ). Consider also a
nonincreasing nonnegative sequence (ak)k≥1. Then

∑
k≥1

ak|mk − m̃k| ≤
∑
k≥1

ak|mk − m̃σ(k)|.

Proof. It clearly suffices to check that for any n ∈ N, any m1 ≥ · · · ≥ mn ≥ 0,
m̃1 ≥ · · · ≥ m̃n ≥ 0, and any permutation σ of {1, . . . , n}, ∑n

i=1 ai |mi − m̃i | ≤∑n
i=1 ai |mi − m̃σ(i)|. We work by induction on n.

Step 1. If n = 2, we just have to consider the case where σ(1) = 2, σ(2) = 1.
Recalling that a1 ≥ a2 ≥ 0, and assuming for example that m1 ≥ m̃1,

a1|m1 − m̃1| + a2|m2 − m̃2| = a1(m1 − m̃2) + a1(m̃2 − m̃1) + a2|m2 − m̃2|
= a1|m1 − m̃2| − a1|m̃1 − m̃2| + a2|m2 − m̃2|
≤ a1|m1 − m̃2| + a2(−|m̃1 − m̃2| + |m2 − m̃2|)
≤ a1|m1 − m̃2| + a2|m2 − m̃1|.
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Step 2. Assume now that the property holds for permutations of {1, . . . , n−1},
and consider a permutation σ of {1, . . . , n}. If σ(n) = n, the inductive assumption
allows us to conclude immediately. Else, consider the inverse bijection τ = σ−1,
and denote by k = τ(n). Define the permutation σ̃ of {1, . . . , n − 1} as

σ̃ (i) = σ(i) for i �= k, σ̃ (k) = σ(n).

Due to Step 1, since mk ≥ mn, m̃σ(n) ≥ m̃n and ak ≥ an,

an|mn − m̃n| + ak|mk − m̃σ(n)| ≤ an|mn − m̃σ(n)| + ak|mk − m̃n|,
which can be rewritten as

an|mn − m̃n| + ak|mk − m̃σ̃ (k)| ≤ an|mn − m̃σ(n)| + ak|mk − m̃σ(k)|.
Hence,

n∑
i=1

ai |mi − m̃σ(i)| = an|mn − m̃σ(n)| + ak|mk − m̃σ(k)| +
n−1∑

i=1,i �=k

ai |mi − m̃σ(i)|

≥ an|mn − m̃n| + ak|mk − m̃σ̃ (k)| +
n−1∑

i=1,i �=k

ai |mi − m̃σ̃ (i)|

≥ an|mn − m̃n| +
n−1∑
i=1

ai |mi − m̃σ̃ (i)|.

We may conclude, using the inductive assumption. �
The next statement contains some estimates that will be of constant use.

Corollary 3.2. Consider m, m̃ ∈ S and 1 ≤ i < j < ∞. Recall that cij (m) and
and d were defined by (2.2) and (2.1). Then

d(cij (m), m) ≤ 3
2 2−imj ,

∑
1≤k<l<∞ d(ckl(m), m) ≤ 3

2 , (3.1)

d(cij (m), cij (m̃)) ≤ (2i + 2j )d(m, m̃). (3.2)

Let now λ ∈ (0, 1]. Recall that || ||λ and dλ were defined in (2.7). Then, for any
m, m̃ in Sλ, for any 1 ≤ i < j < ∞,

||cij (m)||λ ≤ ||m||λ, (3.3)

dλ(cij (m), cij (m̃)) ≤ dλ(m, m̃), (3.4)

dλ(cij (m), m̃) ≤ dλ(m, m̃) + 2mλ
j . (3.5)

Proof. First note that for m ∈ S, cij (m) is a nonincreasing sequence, and that
there exists a finite permutation σ of N (with σ(n) = n for all n ≥ i + 1) such
that ([cij (m)]σ(k))k≥1 = (ck)k≥1, the sequence c being defined by (ck)k≥1 =
(m1, . . . , mi−1, mi + mj , mi+1, . . . , mj−1, mj+1, . . . ). We may also build the
corresponding σ̃ and (c̃k)k≥1 for m̃.
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Using Lemma 3.1 with ak = 2−k , we obtain

d(cij (m), m) =
∑
k≥1

2−k|[cij (m)]k − mk| ≤
∑
k≥1

2−k|[cij (m)]σ(k) − mk|

≤
∑
k≥1

2−k|ck − mk| = 2−imj +
∞∑

k=j

2−k|mk+1 − mk|

≤ 2−imj + 2−jmj ≤ 3

2
2−imj ,

since |mk+1 − mk| = mk − mk+1 and i < j . Since
∑

j≥1 mj ≤ 1, the second
assertion in (3.1) follows immediately.

To prove (3.2), recall that σ(n) = σ̃ (n) = n for n ≥ i + 1, and write

d(cij (m), cij (m̃)) =
i∑

k=1

2−k|[cij (m)]k − [cij (m̃)]k| +
j−1∑

k=i+1

2−k|mk − m̃k|

+
∞∑

k=j

2−k|mk+1 − m̃k+1| (3.6)

≤
i∑

k=1

|[cij (m)]k − [cij (m̃)]k| + 2
∞∑

k=i+1

2−k|mk − m̃k|.

Next, due to Lemma 3.1 (with ak = 1 and with the permutation σ̃ ◦ σ−1 of
{1, . . . , i}),

i∑
k=1

|[cij (m)]k − [cij (m̃)]k| ≤
i∑

k=1

|[cij (m)]k − [cij (m̃)]σ̃◦σ−1(k)|

=
i∑

k=1

|cσ−1(k) − c̃σ−1(k)| =
i∑

k=1

|ck − c̃k|

=
i−1∑
k=1

|mk − m̃k| + |mi + mj − m̃i − m̃j |

≤ |mj − m̃j | + 2i
i∑

k=1

2−k|mk − m̃k|. (3.7)
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Gathering (3.6) and (3.7), we deduce (3.2).
Next, (3.3) is immediate, since λ ∈ (0, 1], so that (mi +mj)

λ ≤ mλ
i +mλ

j . We now

use Lemma 3.1, with ak = 1 for all k and with the permutation σ̃ ◦ σ−1, to deduce
that

dλ(cij (m), cij (m̃)) =
∑
k≥1

∣∣[cij (m)]λk − [cij (m̃)]λk
∣∣

≤
∑
k≥1

∣∣∣[cij (m)]λk − [cij (m̃)]λ
σ̃◦σ−1(k)

∣∣∣
=
∑
k≥1

∣∣∣cλ
σ−1(k)

− c̃λ
σ−1(k)

∣∣∣ =
∑
k≥1

∣∣cλ
k − c̃λ

k

∣∣
=
∑
k≥1

∣∣mλ
k − m̃λ

k

∣∣+ |(mi + mj)
λ − (m̃i + m̃j )

λ| − |mλ
i − m̃λ

i | − |mλ
j − m̃λ

j |

≤
∑
k≥1

∣∣mλ
k − m̃λ

k

∣∣ = dλ(m, m̃).

We used here that for any 0 ≤ x ≤ y, 0 ≤ u ≤ v, since λ ∈ (0, 1],

|(x + y)λ − (u + v)λ| ≤ |(x + y)λ − (x + v)λ| + |(x + v)λ − (u + v)λ|
≤ |yλ − vλ| + |xλ − uλ|.

We finally check (3.5), using Lemma 3.1, with ak = 1 for all k.

dλ(cij (m), m̃) ≤
∑
k≥1

∣∣∣[cij (m)]λσ(k) − m̃λ
k

∣∣∣ =
∑
k≥1

∣∣cλ
k − m̃λ

k

∣∣

≤
i−1∑
k=1

∣∣mλ
k − m̃λ

k

∣∣+ |(mi + mj)
λ − m̃λ

i |

+
j−1∑

k=i+1

∣∣mλ
k − m̃λ

k

∣∣+∑
k≥j

|mλ
k+1 − m̃λ

k |

≤
∑
k≥1

|mλ
k − m̃λ

k | +
{
|(mi + mj)

λ − m̃λ
j | − |mλ

i − m̃λ
i |
}

+
∑
k≥j

{|mλ
k+1 − m̃λ

k | − |mλ
k − m̃λ

k |
}

≤ dλ(m, m̃) + |(mi + mj)
λ − mλ

i | +
∑
k≥j

(mλ
k − mλ

k+1)

≤ dλ(m, m̃) + mλ
j + mλ

j .

This ends the proof. �
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We conclude this section with a Lemma concerning the operator L.

Lemma 3.3. Consider � in C (recall (2.4)).

(a) If K is bounded, L� is well-defined and bounded on S.
(b) If K is continuous on [0, 1]2, L� is continuous at any point m ∈ S1.

Proof. Point (a) is straightforward from (3.1), since for � ∈ C, for m ∈ S,

|L�(m)| ≤ cK̄
∑

1≤i<j<∞
d(cij (m), m) ≤ 3cK̄/2.

We now study the continuity of L�. First, let 1 ≤ i < j < ∞ be fixed. The
map m �→ cij (m) is continuous on S due to (3.2). Since K is continuous and
� ∈ C, m �→ �ij (m) = K(mi, mj )[�(cij (m)) − �(m)] is continuous on S.
Let now m ∈ S1, and let ml ∈ S go to m pointwise. Inferring the dominated
convergence Theorem, we just have to prove that

lim
k→∞

lim sup
l→∞

∑
1≤i<j<∞

|�ij (m
l)|11{i+j≥k} = 0. (3.8)

Using (3.1), we obtain∑
1≤i<j<∞

|�ij (m
l)|11{i+j≥k} ≤ cK̄

∑
1≤i<j<∞

d(cij (m
l), ml)11{i+j≥k}

≤ 3cK̄

2

∑
1≤i<j<∞

2−iml
j 11{j≥k/2} ≤ 3cK̄

2

∑
j≥k/2

ml
j .

To deduce that (3.8) holds, it suffices to note that, since
∑

i≥1 mi = 1 and since
liml m

l = m (pointwise),

lim sup
l

∑
j≥k/2

ml
j ≤ 1 − lim inf

l

∑
j<k/2

ml
j = 1 −

∑
j<k/2

mj =
∑

j≥k/2

mj ,

which tends to 0 when k → ∞. �

4. Existence and Feller property

This section is dedicated to the proofs of Theorem 2.4 and Corollary 2.5. We first
check that (2.5) always makes sense.

Proof of Remark 2.2. Consider any càdlàg {Ft }t≥0-adapted process (M(t))t≥0. For
each k ≥ 1, set

Ck(t) =
∫ t

0
ds
∑
i<j

E
[
K(Mi(s), Mj (s))

∣∣[cij (M(s))]k − Mk(s)
∣∣].
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Then the integrals in the right-hand side of (2.6) are well-defined for all k ≥ 1 if
Ck(t) < ∞ for all k ≥ 1, all t ≥ 0. But, recalling (2.1) and using (3.1),

∑
k≥1

2−kCk(t) ≤ K̄

∫ t

0
dsE


∑

i<j

d(M(s), cij (M(s))


 ≤ K̄

3

2
t.

The heart of the proof lies in the following estimate. �

Lemma 4.1. Assume (2.8), for some λ ∈ (0, 1], κ ≥ 0. Consider a Poisson
measure N as in Definition 2.1, and M(0), M̃(0) ∈ Sλ. Assume that there exist
some Sλ-valued solutions (M(t))t≥0 and (M̃(t))t≥0 to (SDE(K, M(0), N)) and
(SDE(K, M̃(0), N)). Recall (2.7).

1. Almost surely, t �→ ||M(t)||λ (and t �→ ||M̃(t)||λ) is nonincreasing.
2. For any t ≥ 0,

E

[
sup
[0,t]

dλ(M(s), M̃(s))

]
≤ dλ(M(0), M̃(0))e4κ(||M(0)||λ+||M̃(0)||λ)t .

Proof. The proof of 1 follows from (3.3). To prove 2, note that, since M and M̃

solve (2.5) with the same Poisson measure N , we have, for any t ≥ 0,

dλ(M(t), M̃(t)) = dλ(M(0), M̃(0)) + At + Bt + Ct ,

where

At :=
∫ t

0

∫
i<j

∫ K̄

0

{
dλ(cij (M(s−)), cij (M̃(s−))) − dλ(M(s−), M̃(s−))

}
11{z≤K(Mi(s−),Mj (s−))∧K(M̃i (s−),M̃j (s−))}N(ds, d(i, j), dz),

Bt :=
∫ t

0

∫
i<j

∫ K̄

0

{
dλ(cij (M(s−)), M̃(s−)) − dλ(M(s−), M̃(s−))

}
11{K(M̃i (s−),M̃j (s−))≤z≤K(Mi(s−),Mj (s−))}N(ds, d(i, j), dz),

Ct :=
∫ t

0

∫
i<j

∫ K̄

0

{
dλ(M(s−), cij (M̃(s−))) − dλ(M(s−), M̃(s−))

}
11{K(Mi(s−),Mj (s−))≤z≤K(M̃i (s−),M̃j (s−))}N(ds, d(i, j), dz).
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Due to (3.4), we know that At ≤ 0 for all t ≥ 0 a.s. Next, using (3.5) and (2.8),
we conclude that, setting (x)+ = max(x, 0),

E

[
sup
[0,t]

Bs

]
≤
∫ t

0
E


∑

i<j

2Mλ
j (s)

(
K(Mi(s), Mj (s)) − K(M̃i(s), M̃j (s))

)
+


 ds

≤ 2κ

∫ t

0
E


∑

i<j

Mλ
j (s)

[
|Mλ

i (s) − M̃λ
i (s)| + |Mλ

j (s) − M̃λ
j (s)|

] ds

≤ 2κ

∫ t

0
E


∑

i≥1

|Mλ
i (s) − M̃λ

i (s)|
∞∑

j=i+1

Mλ
j (s)


 ds

+ 2κ

∫ t

0
E


∑

j≥2

|Mλ
j (s) − M̃λ

j (s)|
j−1∑
i=1

Mλ
j (s)


 ds

≤ 4κ

∫ t

0
E
[
dλ(M(s), M̃(s))||M(s)||λ

]
ds.

≤ 4κ||M(0)||λ
∫ t

0
E
[
dλ(M(s), M̃(s))

]
ds.

We used here that for m ∈ Sλ,
∑j−1

i=1 mλ
j ≤ ∑j−1

i=1 mλ
i ≤ ||m||λ, and Point 1.

Using finally the same computation for Ct , we conclude that

E

[
sup
[0,t]

dλ(M(s), M̃(s))

]
≤ dλ(M(0), M̃(0))

+ 4κ
{
||M(0)||λ + ||M̃(0)||λ

} ∫ t

0
E
[
dλ(M(s), M̃(s))

]
ds.

The Gronwall Lemma allows us to conclude. �
Proof of Theorem 2.4. Point (ii) has already been checked in Lemma 4.1, from
which the uniqueness part in point (i) follows immediately. We thus just have to
prove the existence part. We thus consider λ ∈ (0, 1] to be fixed, we assume that
(2.8) holds, that M(0) ∈ Sλ, and we consider a Poisson measure N as in Definition
2.1.
Step 1. For each n ≥ 1, consider the initial condition

Mn(0) =
(

M1(0)

αn

, . . . ,
Mn(0)

αn

, 0, . . .

)
, αn =

n∑
i=1

Mi(0).

Due to Remark 2.3, there exists a uniqueS0-valued solution (Mn(t))t≥1 to (SDE(K,

Mn(0), N)). Since M(0) ∈ Sλ, easy computations show that

lim
n

dλ(M(0), Mn(0)) = 0, (4.1)∑
n≥1

dλ(M
n(0), Mn+1(0)) < ∞, (4.2)

a := supn≥1 ||Mn(0)||λ = supn≥1,t≥0 ||Mn(t)||λ < ∞. (4.3)
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One may then apply Lemma 4.1 to get, for each T ≥ 0,

E

[
sup
[0,T ]

dλ(M
n(s), Mn+1(s))

]
≤ CT dλ(M

n(0), Mn+1(0))

where CT = supn e4κT (||Mn(0)||λ+||Mn+1(0)||λ) < ∞. Thus, due to (4.2),

∑
n≥1

E

[
sup
[0,T ]

dλ(M
n(s), Mn+1(s))

]
< ∞.

We deduce that there exists a càdlàg adapted Sλ-valued process (M(t))t≥0 such
that for all T ≥ 0,

lim
n

E

[
sup
[0,T ]

dλ(M
n(s), M(s))

]
= 0. (4.4)

The fact that (M(t))t≥0 is Sλ-valued relies on the strong convergence (4.4).
Step 2. One may then pass to the limit in (2.5): it suffices to show that �n(t) → 0
as n → ∞, for any t > 0, where

�n(t) = E
[ ∫ t

0

∫
i<j

∫ K̄

0
N(ds, d(i, j), dz)

∑
k≥1

2−k

∣∣∣ ([cij (M(s−))]k − Mk(s−)
)

11{z≤K(Mi(s−),Mj (s−))}

− (
[cij (M

n(s−))]k − Mn
k (s−)

)
11{z≤K(Mn

i (s−),Mn
j (s−))}

∣∣∣]
≤ An(t) + Bn(t),

where An(t) = ∑
i<j A

ij
n (t), with

A
ij
n (t) =

∫ t

0
dsE

[
K(Mi(s), Mj (s))

∑
k≥1

2−k

∣∣∣ ([cij (M(s))]k − Mk(s)
)− (

[cij (M
n(s))]k − Mn

k (s)
) ∣∣∣],

and

Bn(t) =
∫ t

0
dsE

[∑
i<j

∣∣∣K(Mi(s), Mj (s)) − K(Mn
i (s), Mn

j (s))

∣∣∣
∑
k≥1

2−k
∣∣∣[cij (M

n(s))]k − Mn
k (s)

∣∣∣].
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First, recalling (2.1), using (2.8) and (3.1),

Bn(t) ≤ κ

∫ t

0
E
[∑

i<j

{
|(Mn

i (s))λ − (Mi(s))
λ| + |(Mn

j (s))λ − (Mj (s))
λ|
}

×d(Mn(s), cij (M
n(s)))

]
ds

≤ 3κ

2

∫ t

0
E
[∑

i<j

{
|(Mn

i (s))λ − (Mi(s))
λ| + |(Mn

j (s))λ − (Mj (s))
λ|
}

×2−iMn
j (s)

]
ds

≤ 3κ

∫ t

0
E
[
dλ(M(s), Mn(s))

]
ds,

which tends to 0 due to (4.4). Next, we prove that An(t) tends to 0 using the
Lebesgue dominated convergence Theorem. It suffices to show that:

(a) for each 1 ≤ i < j , A
ij
n (t) tends to 0 as n tends to infinity,

(b) limk→∞ lim supn→∞
∑

i+j≥k A
ij
n (t) = 0.

For each i < j , using (3.2) and since d(m, m̃) ≤ dλ(m, m̃) for each m, m̃ ∈ Sλ,
we obtain

A
ij
n (t) ≤ K̄

∫ t

0
dsE

[
d(M(s), Mn(s)) + d(cij (M(s)), cij (M

n(s)))
]

≤ K̄(2i + 2j + 1)

∫ t

0
dsE

[
d(M(s), Mn(s))

]

≤ K̄(2i + 2j + 1)

∫ t

0
dsE

[
dλ(M(s), Mn(s))

]
→ 0

as n tends to infinity, due to (4.4). Thus (a) holds. On the other hand, we obtain,
using Corollary 3.2,

A
ij
n (t) ≤ K̄

∫ t

0
dsE

[
d(M(s), cij (M(s))) + d(Mn(s), cij (M

n(s)))
]

≤ 3K̄

2

∫ t

0
ds2−iE

[
Mj(s) + Mn

j (s)
]
. (4.5)

Since
∑

j≥1

∫ t

0
E[Mj(s)]ds ≤ t and since

∑
i≥1 2−i = 1, (b) reduces to

lim
k→∞

lim sup
n→∞

∑
j≥k

∫ t

0
dsE

[
Mn

j (s)
] = 0.



522 N. Fournier

But for each k ≥ 1, since Mn(s) and M(s) belong to S1, and since the map
m �→ ∑k−1

1 mj is continuous for the pointwise convergence topology,

lim sup
n→∞

∫ t

0
dsE


∑

j≥k

Mn
j (s)


 =

∫ t

0
ds


1 − lim

n→∞ E


k−1∑

j=1

Mn
j (s)






=
∫ t

0
ds


1 − E


k−1∑

j=1

Mj(s)






=
∫ t

0
dsE


 ∞∑

j=k

Mj (s)


 ,

which tends to 0 as k tends to infinity, due to the dominated convergence Theorem
(for each s, a.s.,

∑∞
j=k Mj (s) tends to 0 because M(s) ∈ S1, and

∑∞
j=k Mj (s) ≤

1 ∈ L1(	 × [0, t], P ⊗ ds)). Thus (b) holds, and An(t) tends to 0 as n tends to
infinity. �

Proof of Corollary 2.5. Let N be a Poisson measure as in Definition 2.1. For each
m ∈ Sλ, denote by (Mm(t))t≥0 the unique Sλ-valued solution to (SDE(K, m, N)).
Point (i) is clear from Theorem 2.4-(ii). The fact that (Mm(t))t≥0 is a strong Markov
process is straightforward, since it solves a time-homogeneous Poisson-driven sto-
chastic differential equation for which (pathwise) uniqueness holds. The announced
Feller property follows immediately from Theorem 2.4 (point (ii)). Finally, it is
straightforward that for � ∈ C and m ∈ Sλ,

d

dt
E
[
�(Mm(t))

]∣∣∣∣
t=0

= L�(m). (4.6)

Indeed, it is clear from (2.5) that for all t ≥ 0, a.s.,

E
[
�(Mm(t))

] = �(m) +
∫ t

0
dsE

[L�(Mm(s))
]
. (4.7)

Furthermore, a.s., lims→0 Mm(s) = m for the pointwise convergence, since s �→
Mm(s) is a.s. right continuous. Due to Lemma 3.3 and since m ∈ Sλ ⊂ S1, we
deduce that L�(Mm(s)) is bounded and tends to L�(m) a.s. as s tends to 0. Hence,
due to the Lebesgue Theorem,

d

dt
E
[
�(Mm(t))

]∣∣∣∣
t=0

= lim
t→0

1

t

∫ t

0
dsE

[L�(Mm(s))
] = L�(m), (4.8)

which concludes the proof. �
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7. Laurençot, Ph., Mischler, S.: On coalescence equations and related models, Modeling

and computational methods for kinetic equations, Model. Simul. Sci. Eng. Technol.,
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