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Abstract. Benjamini asked whether the scenery reconstruction methods of Matzinger (see
e.g. [21], [22], [20]) can be done in polynomial time. In this article, we give the following
answer for a 2-color scenery and simple random walk with holding: We prove that a piece
of the scenery of length of the order 3n around the origin can be reconstructed – up to a
reflection and a small translation – with high probability from the first 2 · 310αn observations
with a constant α > 0 independent of n. Thus, the number of observations needed is poly-
nomial in the length of the piece of scenery which we reconstruct. The probability that the
reconstruction fails tends to 0 as n→∞.

In contrast to [21], [22], and [20], the proofs in this article are all constructive. Our
reconstruction algorithm is an algorithm in the sense of computer science. This is the first
article which shows that the scenery reconstruction is also possible in the 2-color case with
holding. The case with holding is much more difficult than [22] and requires completely
different methods.

1. Introduction and Result

A scenery is a coloring of Z with finitely many colors. We call two sceneries ξ
and ξ ′ equivalent, ξ ≈ ξ ′, if ξ = ξ ′ ◦ T where T is a translation, a reflection,
or the composition of both. Let S := (Sk)k∈N0 be a recurrent random walk on
Z. Observing the scenery along the random walk path, we obtain the color record
χ := (χk := ξ(Sk))k∈N0 . The scenery reconstruction problem asks the follow-
ing question: Given the color record χ , can we reconstruct the scenery ξ up to
equivalence?

Early questions about random sceneries were raised by Benjamini and Kesten
and, independently, by Keane and den Hollander. Their investigations were moti-
vated among others by work of Kalikow [11] on the T , T −1 transformation. More
recently, den Hollander and Steif [3] and Hoffman [7] generalized Kalikow’s results.
Early work on random sceneries include articles of Benjamini and Kesten [1], den
Hollander [4], Howard ([8], [9], [10]), Keane and den Hollander [12], Kesten [13],
and Lindenstrauss [17]. More recent contributions are due to Burdzy [2], Heicklen,
Hoffman, and Rudolph [6], Levin, Pemantle and Peres [15], Levin and Peres [16].
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We refer the reader to [14] and the introductions of [25] and [24] for more details.
Various contributions to the subject of scenery reconstruction have been made by
Matzinger ([21],[22]), Löwe and Matzinger ([18], [19]), Löwe, Matzinger, and Mer-
kl [20], Matzinger and Rolles [24]. In these papers, the scenery is taken random,
independent of the random walk, and it is shown that for almost all realizations of
the random walk path, almost all sceneries can be reconstructed up to equivalence.

The scenery reconstruction algorithms in [21], [22], [18], [19], [20], and [24] do
not work in polynomial time. Benjamini asked whether some of these reconstruc-
tions can be done in polynomial time. In this article, we give the following answer
to Benjamini’s question: Let ξ := (ξk)k∈Z with ξk i.i.d. uniform on {0, 1}, and let
S = (Sk)k∈N0 be a simple random walk with holding on Z, independent of ξ . We
prove that in order to reconstruct – up to a reflection and a small translation – with
high probability a piece of scenery of length of the order 3n around the origin, we
need only the observations up to time p(3n)with a polynomial p, independent of n.

In order to reconstruct the whole scenery, we need infinitely many observations
because the scenery is infinite. In finite time, we can never reconstruct with prob-
ability 1 a piece of scenery of length ≥ 2. As a matter of fact, the random walk
stays with positive probability at the origin. Hence, we mean by reconstruction in
polynomial time that there exist algorithms An, n ≥ 1, with the following proper-
ties: An obtains as input finitely many observations, namely χ |[0, 2 · 310αn[ with
a constant α > 0 and produces an output of length of the order 3n. The probability
that the reconstruction succeeds, in the sense that the output is – up to a reflection
and a small translation – a piece of the scenery around the origin, tends to 1 as
n → ∞. The number of observations needed is polynomial in the length of the
reconstructed piece of scenery. Since the scenery is assumed to be i.i.d., with prob-
ability 1 every finite piece of scenery occurs somewhere in the scenery. Thus it is
crucial to reconstruct something close to the origin.

Formally, our result can be described as follows: Let C := {0, 1} denote the set
of colors. For two pieces of scenery ψ and ψ ′ (not necessarily of the same length),
we write ψ � ψ ′ if ψ is up to a possible reflection contained in ψ ′. We prove:

Theorem 1.1. There exist constants α, c3, c4, c5 > 0 and maps An : C2·310αn →
C[−3·3n,3·3n], n ≥ c3, which are measurable with respect to the canonical σ -alge-
bras, such that for all n ≥ c3, the event

En :=
{
ξ |[−3n, 3n] � An(χ |[0, 2 · 310αn[) � ξ |[−4 · 3n, 4 · 3n]

}

satisfies P ([En]c) ≤ c4 exp
(−c5n

0.2
)
.

As a consequence of Theorem 1.1 the whole scenery can be reconstructed almost
surely:

Theorem 1.2. There exists a map A : CN0 −→ CZ, which is measurable with
respect to the canonical σ -algebras, such that P (A(χ) ≈ ξ) = 1.

The present article is the first article which solves the scenery reconstruction
problem in the case of two colors and simple random walk with holding. We call
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this case the semi-combinatorial case. On the piece of scenery 01, the random
walker can produce every pattern by jumping back and forth or staying. Thus, at
many places in the scenery, the random walk can produce every possible pattern in
the observations. This makes the semi-combinatorial case much more difficult than
the combinatorial case, where with high probability words of length c1n (with a
constant c1 > 0) are characteristic for certain parts of the scenery. Examples of the
combinatorial case are the following articles: [22], where an i.i.d. 2-color scenery
is observed along a simple random walk, [18], where a 2-dimensional scenery with
many colors is observed along a simple random walk, and [20], where a scenery
with sufficiently many colors is observed along a random walk on Z with bounded
jumps. In the semi-combinatorial case, it is much more difficult than in the com-
binatorial case to reconstruct small pieces of the scenery. The methods used below
are completely different from the techniques developed in earlier articles.

The remainder of the article is organized as follows: Section 2 collects some
notation. In Section 3, we show how Theorem 1.2 follows from Theorem 1.1.
Since the definition of the maps An which fulfill the claim of Theorem 1.1 is quite
involved, the construction is split into several steps. In Section 3, we state the results
needed for the construction of the An. The crucial step consists in finding small
words in the scenery; this is done in Section 4. The second important step is the
construction of a partial reconstruction algorithm BigAlgn which is treated in Sec-
tion 5. In addition, we need a small piece of the scenery to get the reconstruction
started and also sequences of stopping times indicating when the random walker
is close to the origin. These results are proved in [23]. At the end of Section 3, we
show how the results of Sections 4 and 5 together with the results from [23] imply
Theorem 1.2.

The following diagram is a guide to the proofs of Theorems 1.2 and 1.1:

2. Notation

In this section, we collect some notations and conventions.

Numbers, sets, and functions: We denote by N := {1, 2, 3, . . . } the set of natural
numbers and set N0 := N∪{0}. If x ∈ R, we denote by �x� the largest integer≤ x.
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We write x∧y for the minimum of x, y ∈ R. For a vector y = (yk)k∈[1,m] ∈ R
m we

define the l1-norm ‖y‖1 :=∑mk=1 |yk| and the l2-norm ‖y‖2 := (∑mk=1[yk]2
)1/2

.
The cardinality of a set D is denoted by |D|. We write f |D for the restriction
of a function f to a set D. An integer interval is a set of the form I ∩ Z with
an interval I ⊆ R. In this article, intervals are always taken over the integers,
e.g. [a, b] = {z ∈ Z : a ≤ z ≤ b}.

Admissible paths: Let I = [i1, i2] be an integer interval. We call R ∈ Z
I an

admissible piece of path if Ri+1 − Ri ∈ {−1, 0, 1} for all i ∈ [i1, i2 − 1]. We call
Ri1 the starting point, Ri2 the endpoint, and |I | the length of R.

Measures: We define δx to be the Dirac measure in x. We denote the image of a
measure Q under a map F by QF−1.

Sceneries: We denote by C := {0, 1} the set of colors. A scenery is an element of
CZ. Let I ⊆ Z be an integer interval. An element of CI is a piece of scenery or a
word. If ψ ∈ CI , we call |I | the length of ψ and denote it by |ψ |. We write (1)I for
the piece of scenery in CI which is identically equal to 1.

Blocks: Let a, b ∈ I with a < b and |a − b| ≥ 2. We define ψ ∈ C[a,b] to be a
block if ψa = ψb and ψc �= ψa for all c ∈]a, b[. ψc is the color of the block. We
call a the left endpoint, b the right endpoint, and |ψ | := b− a − 1 the blocklength
of ψ . For instance, 01110 is a block of length 3. We set ∂ψ := {a, b}.

Let χ |[t1, t2] and ξ |[a, b] be blocks. We say that χ |[t1, t2] is generated by the
random walk S on the block ξ |[a, b] if {St1 , St2} ⊆ {a, b} and St ∈]a, b[ for all
t ∈]t1, t2[.

Equivalence of sceneries: Let ψ ∈ CI and ψ ′ ∈ CI ′ be two pieces of scenery.
We say that ψ and ψ ′ are equivalent and write ψ ≈ ψ ′ iff I and I ′ have the same
length and there exists a ∈ Z and b ∈ {−1, 1} such that for all k ∈ I we have that
a + bk ∈ I ′ and ψk = ψ ′a+bk . We call ψ and ψ ′ strongly equivalent and write
ψ ≡ ψ ′ if I ′ = a + I for some a ∈ Z and ψk = ψ ′a+k for all k ∈ I . We say ψ
occurs in ψ ′ and write ψ � ψ ′ if ψ ≡ ψ ′|J for some J ⊆ I ′. We write ψ � ψ ′ if
ψ ≈ ψ ′|J for some J ⊆ I ′. If the subset J is unique, we write ψ �1 ψ

′.

Random walks and random sceneries: Let �2 ⊆ Z
N0 denote the set of admis-

sible paths. Let p, q > 0 satisfy 2p + q = 1. We denote by Qx the distribution
on �2 of a random walk (Sk)k∈N0 starting at x with i.i.d. increments distributed
according to pδ−1 + qδ0 + pδ1, i.e. S is a simple random walk with holding, and
satisfies

p = P(Sk+1 − Sk = 1) = P(Sk+1 − Sk = −1),

q = P(Sk+1 − Sk = 0)

for all k ≥ 0. The scenery ξ := (ξk)k∈Z is i.i.d. with P(ξk = 0) = P(ξk = 1) =
1/2. We assume that ξ and S are independent and realized as canonical projections
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on � := CZ × �2 with the product σ -algebra generated by the canonical projec-
tions and probability measures Px := ( 1

2δ0+ 1
2δ1)

⊗Z⊗Qx , x ∈ Z. We abbreviate
P := P0. We call χ := (χk := ξ(Sk))k∈N0 the scenery observed along the random
walk path; sometimes we write ξ ◦ S instead of χ .

For a fixed scenery ξ ∈ CZ we set Px,ξ := δξ ⊗ Qx , Pξ := P0,ξ . Thus Px,ξ
is the canonical version of the conditional probability Px(·|ξ), the distribution P
conditioned on the random walk to start in x and the scenery ξ . We never work with
a different version of the conditional probability Px(·|ξ).

Filtration: We define G := (Gn)n∈N0 with Gn := σ(χk; k ∈ [0, n]) to be the
natural filtration of the observations over �.

Shifts: We define the shift θ : CN0 → CN0 , η �→ η(· + 1). We introduce the shift
� : �→ �, (ξ, S) �→ (ξ(S1 + ·), S(1+ ·)− S1). For a set A ⊆ � and a random
time T ≥ 0 we set �−T (A) := {ω : �T (ω)(ω) ∈ A}.

Constants: We denote constants by ci , i ≥ 1; they keep their meaning throughout
the whole article. Constants c1, c2, c6, c7, and α play a special role. They are chosen
as follows:

1. c2 > 21,
2. c1 ∈ 4N with c1 > max{153, 4c2},
3. c6 > (c1 + 4) ln 3,
4. c7 > max{0, 2 ln 3− 2c1 lnp + 2c6 + 2c1 ln[maxi∈[1,5] ‖x∗i ‖2]} with x∗i as in

Definition 4.4,
5. α ∈ N with α > 1+ 17c1 + [24c7 − 3c1 lnp]/ ln 3.

3. Overview of the reconstruction

In this section, we show how Theorem 1.1 is proved using the results from Sections
4 and 5 and [23]. First we show how Theorem 1.1 implies Theorem 1.2.

Proof of Theorem 1.2. Let An : C2·310αn → C[−3·3n,3·3n] be as in Theorem 1.1.
We say that a sequence of pieces of sceneries (ζn ∈ CIn)n≥c3 converges pointwise
to a scenery ζ if for all z ∈ Z there exists nz such that z ∈ In and ζn(z) = ζ(z) for
all n ≥ nz. We define

A(χ) :=
{

limn→∞An(χ |
[
0, 2 · 310αn

[
) if this limit exists pointwise,

(1)Z else.

As a limit of measurable maps, A is measurable. Theorem 1.1 implies∑∞
n=c3

P ([En]c) ≤ ∑∞n=c3
c4 exp
(−c5n

0.2
)
< ∞. Hence by the Borel-Cantelli

lemma, P(∪∞m=c3
∩∞n=m En) = 1. In order to prove P (A(χ) ≈ ξ) = 1, we

use the same arguments as in the proof of Theorem 3.7 of [20]. (One shows
P
(∪∞m=c3

∩∞n=m
{
ξ | [−3n, 3n

] �1 ξ |
[−4 · 3n+1, 4 · 3n+1

]}) = 1, which implies
that the reconstructed pieces of scenery An(χ |

[
0, 2 · 310αn

[
) fit uniquely together

for all n sufficiently large and yield the scenery ξ .) ��
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Hence, it suffices to define maps An which fulfill the claim of Theorem 1.1.
The main ingredient in the construction of An is a map BigAlgn which obtains as
input data the observations collected by the random walk up to time 2 ·310αn (as An

does). In addition, BigAlgn needs a sequence of stopping times τ := (τk)k∈[1,3αn]
and a small piece of scenery ψ . BigAlgn produces as output a piece of scenery
w ∈ C[−3·3n,3·3n] which satisfies ξ |[−3n, 3n] � w � ξ |[−4 · 3n, 4 · 3n] with high
probability.

The reason why we need the stopping times (τk)k∈[1,3αn] is the following: In
order to be able to reconstruct the scenery in the interval [−3n, 3n], the random
walk must visit this part of the scenery many times. Otherwise, we will not have
enough information for the reconstruction. Since 2 · 310αn is considerably larger
than 3n, there is a good chance, the random walk visits the interval [−3n, 3n] often
up to time 2 · 310αn. However, up to time 2 · 310αn, only a small fraction of the
time is spent in [−3n, 3n]. The rest of the time, when the random walk is outside of
[−3n, 3n], the observations do not provide us with useful information. Hence we
need to be able to determine which parts of the observations are generated by the
random walk on ξ |[−3n, 3n]. Formally, the task of the stopping times (τk)k∈[1,3αn]
is specified by the event En,τstop defined as follows.

Definition 3.1. For n ∈ N and a sequence τ = (τk)k≥1 of G-adapted stopping
times, we define the event

E
n,τ
stop :=

3αn⋂
k=1

{
τk < 310αn, |Sτk | ≤ 3n, τj + 2 · 33n ≤ τk for j < k

}
.

Besides stopping times, BigAlgn obtains as input a piece of scenery ψ of
length ≥ 2n2 + 1. Compared to the output of BigAlgn, which has length of the
order 3n, ψ is very small. If ψ � ξ |[−3n, 3n], i.e. if we have with ψ some infor-
mation about the underlying scenery, and if the event En,τstop holds, then with high
probability, BigAlgn reconstructs a piece of scenery around the origin. More for-
mally:

Theorem 3.1. There exist c8, c9, c10 > 0 and a sequence of measurable maps

BigAlgn : [0, 310αn][1,3αn] × C2·310αn ×
⋃

k≥n2

C[−k,k] → C[−3·3n,3·3n], n ∈ N,

such that for all n ≥ c8 and every sequence τ = (τk)k∈[1,3αn] of G-adapted stopping
times

P
(
E
n,τ
stop \ En,τrecon Big

)
≤ c9e

−c10n, where

E
n,τ
recon Big :=

{
For all ψ ∈ C[−k,k] with k ≥ n2 and ψ � ξ | [−3n, 3n] we have
ξ |[−3n, 3n] � BigAlgn(τ, χ | [0, 2 · 310αn

[
, ψ) � ξ |[−4 · 3n, 4 · 3n].

}
.
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Let us explain how BigAlgn reconstructs a piece of the scenery. Using the
stopping times τ together with the observations from its input, BigAlgn reconstructs
with high probability all words of length c1n/2 in ξ |[−5 · 3n, 5 · 3n]; here c1 is a
(large) constant as described in Section 2. This is the crucial step in the definition
of BigAlgn. The words cannot be extracted from χ in a simple manner. Instead we
need to look at certain empirical distributions of words which then allow us to obtain
information about the true distribution and finally about the words themselves. The-
orem 4.1 below provides a criterion to find words in the scenery. Reconstructing
the words is a hard problem under our assumptions on random walk and scenery.
In fact, this part of the reconstruction is much more difficult in the present setting
than in previously solved scenery reconstruction problems.

Since with high probability, each word of length c1n/4 occurs at most once
in ξ |[−5 · 3n, 5 · 3n], it is possible to reconstruct a piece of scenery containing
ξ |[−3n, 3n] from the collection of words of length c1n/2. The assemblage will
be done as follows: We start with the small piece of scenery ψ from the input of
BigAlgn. Then we look for a word of length c1n/2 which overlaps with ψ by at
least c1n/4 letters and extends ψ by at least one letter. We continue the procedure
with the extended ψ .

Once we have defined BigAlgn, we can define the map An in terms of BigAlgn

with suitable stopping times τ and a piece of scenery ψ as input. The initial piece
ψ will be a piece of scenery around a long block of ξ close to the origin. Since the
ideas for finding words and defining BigAlgn are central for this paper, we decided
to concentrate on these parts. The proofs concerning the stopping times and the
initial piece can be found in [23].

Let blockn+ := ξ |[bn+l , bn+r ] designate the leftmost block of ξ of length ≥ n
with bn+l ≥ 0, and let blockn− := ξ |[bn−l , bn−r ] denote the rightmost block of ξ
of length ≥ n with bn−r ≤ 0. Finally, let blockn ∈ {blockn+,blockn−} denote the
block which is visited first by S.

The map An will reconstruct a piece of scenery around blockn. Thus, first we
need to locate blockn. With high probability, in a large neighborhood of blockn

there is no other large block in the scenery. Hence, up to a certain time horizon,
long blocks in the observations χ indicate that the random walker generates the
observations on blockn. The following theorem states that with high probability,
there is a stopping time that stops the random walk in the set ∂blockn.

Theorem 3.2. ([23], Theorem 3.1) For all n ∈ N, there exists a G-adapted stop-
ping time νn(0), measurable with respect to σ(χk; k ∈ [0, 310αn[), such that the
probability of the event

Enνn(0) ok :={Sνn(0) ∈ ∂block n} ∩ {νn(0) ≤ 2 · 33n} ∩ {∂block n ⊆ [−3n/3, 3n/3]}

satisfies the following bound: There exist constants c11, c12, c13 such that for all
n ≥ c11

P
([
Enνn(0) ok

]c) ≤ c12e
−c13n

0.3
.
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Next, we reconstruct a piece of scenery around blockn. We show that there is a
map SmallAlgn with the following properties: Given 3�n0.3� observations collected
by the random walker starting in the set ∂blockn, a piece of scenery of length of
the order 3�n0.2� around blockn can be reconstructed with high probability. For our
purposes, it is convenient to state this differently: For ξ in a set of probability close
to 1, conditioned on the scenery ξ , SmallAlgn reconstructs with high probability a
piece of scenery around blockn.

Theorem 3.3. ([23], Theorem 3.2) There exist constants c14, c16 > 0 and a se-
quence

SmallAlgn : C[0,3�n0.3�[ → C[−3·3�n0.2�,3·3�n0.2�], n ≥ c14,

of measurable maps such that the following holds: We setHn
i := min{k ≥ 0 : Sk =

bni } for i ∈ {l, r}. If we define

E
n,T
recon Small:=

{
SmallAlgn

(
χ |[T , T +3�n

0.3�[) � ξ |[bnl −3 · 3�n0.2�, bnr +3 · 3�n0.2�]
}

and

�n := {ξ ∈ CZ : Pξ
([
E
n,T
recon Small

]c) ≤ e−c16n
0.2

for all T ∈ {Hn
l ,H

n
r }
}
,

then P (ξ �∈ �n) ≤ e−c16n
0.2

for all n ≥ c14.

In fact, in [23], we heavily use the ideas from the construction of BigAlgn

to define SmallAlgn. The piece of scenery reconstructed by SmallAlgn is much
smaller than the piece of scenery which An is supposed to reconstruct. The map
SmallAlgn is used to define stopping times νn(k), k ≥ 1, which indicate when the
random walk is in the interval [−3n, 3n]. Recall that An should reconstruct a piece
of scenery of length of the order 3n which is contained in ξ |[−4 ·3n, 4 ·3n]. Hence,
it will be useful to have stopping times which stop the random walk in the interval
[−3n, 3n]. We define

ψn :=SmallAlgn(χ |[νn(0), νn(0)+3�n
0.3�[), (3.1)

T
n :=
{
t∈[νn(0), 310αn−3�n0.3�[: ∃w∈C[−3�n0.2�,3�n0.2�] such that w�ψn
and w � SmallAlgn(χ |[t, t+3�n0.3�[)

}
. (3.2)

Let ν̃n(1) < ν̃n(2) < · · · denote the points in T
n in increasing order. We define

νn := (νn(k))k∈[1,3αn] by

νn(k) :=
{
ν̃n(2 · 33nk)+ 3�n0.3� if 2 · 33nk ≤ |Tn|
310αn else.

Note that νn(k) depends only on χ |[0, 310αn[ and is a G-adapted stopping time. In
fact, in order to determine whether t ∈ Tn, we need to look at χ |[t, t + 3�n0.3�[, but
νn(k) is never defined to be t , but only t + 3�n0.3�.

The idea behind the definition of the νn(k)’s is the following: With high pro-
ability, νn(0) stops the random walk in the set ∂blockn and ψn is up to a possible
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reflection a piece of scenery of length 6·3�n0.2�+1 around blockn. The set Tn consists
of times t ≥ νn(0) such that SmallAlgn applied to the observations starting at time
t produces an output which agrees on a large subpiece, namely a piece of length
2 · 3�n0.2� + 1, with ψn. With high probability, ψn is typical for the scenery around
blockn, and hence the random walker is in the interval [−3n, 3n] at time t . (With
high probability, blockn can be found in the piece of scenery ξ |[−3n/3, 3n/3].) For
the construction below, it will be essential that we have sufficiently many νn(k)’s
which are far enough apart from each other and all bounded by 310αn. Formally,
the task of the stopping times νn(k) is specified by the event En,ν

n

stop , see Definition
3.1.

Recall the definition of�n from Theorem 3.3. If the eventEnνn(0) ok∩En,ν
n(0)

recon Small
holds and ξ ∈ �n, then with high probability the stopping times νn stop the random
walk correctly, in the sense that the event En,ν

n

stop holds. This is made precise by the
following proposition:

Proposition 3.1. ([23], Proposition 3.3) There exist constants c19, c20, c21 such
that for all n ≥ c19

P
([
Enνn(0) ok ∩ En,ν

n(0)
recon Small ∩ {ξ ∈ �n}

] \ En,νnstop

) ≤ c20e
−c21n

0.3
.

Now, we have achieved the following: Using SmallAlgn, we can reconstruct
a piece of scenery ψn around blockn. With high probability, ψn � ξ |[−3n, 3n].
Furthermore, the stopping times νn(k) stop the random walk with high probability
in the interval [−3n, 3n]. Hence, with this input data, the algorithm BigAlgn recon-
structs with high probability a piece of scenery of length of the order 3n around the
origin.

Let n ≥ c14 with c14 as in Theorem 3.3, and let ψn be as in (3.1). We define

An(χ |[0, 2 · 310αn[) := BigAlgn(νn, χ |[0, 2 · 310αn[, ψn).

Proof of Theorem 1.1. We show that the maps An defined above fulfill the claim
of Theorem 1.1. We have

P
(
[En]c
) ≤ P ([En,νnstop ∩ Enνn(0) ok ∩ En,ν

n(0)
recon Small

] \ En
)+ P([Enνn(0) ok]c)

+P ([Enνn(0) ok ∩ En,ν
n(0)

recon Small ∩ {ξ ∈ �n}
] \ En,νnstop

)

+P ([Enνn(0) ok ∩ {ξ ∈ �n}] \ En,ν
n(0)

recon Small

)+ P(ξ �∈ �n). (3.3)

If En,ν
n(0)

recon Small holds, then ψn � ξ |[bnl − 3 · 3�n0.2�, bnr + 3 · 3�n0.2�]. If in addi-
tion Enνn(0) ok holds, then ∂blockn ⊆ [−3n/3, 3n/3], and consequently, ψn �
ξ |[−3n, 3n] for all n sufficiently large. Hence, using Theorem 3.1,

P
([
E
n,νn

stop ∩ Enνn(0) ok ∩ En,ν
n(0)

recon Small

] \ En
) ≤ P (En,νnstop \ En,ν

n

recon Big

) ≤ c9e
−c10n

for all n sufficiently large. By Theorem 3.2, P([Enνn(0) ok]c) ≤ c12e
−c13n

0.3
for all

n ≥ c11. Proposition 3.1 states that

P
([
Enνn(0) ok ∩ En,ν

n(0)
recon Small ∩ {ξ ∈ �n}

] \ En,νnstop

) ≤ c20e
−c21n

0.3
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for all n ≥ c19. Next, we estimate the second to last term in (3.3):

P
(
[Enνn(0) ok∩{ξ ∈�n}] \ En,ν

n(0)
recon Small

) =
∫

{ξ∈�n}
Pξ
(
Enνn(0) ok \ En,ν

n(0)
recon Small

)
dP

≤
∫

{ξ∈�n}

[
Pξ
({Sνn(0)=bnl } \ En,ν

n(0)
recon Small

)+Pξ
({Sνn(0)=bnr } \ En,ν

n(0)
recon Small

)]
dP.

Using the strong Markov property of the random walk and Theorem 3.3, we con-
clude that the last quantity is ≤ 2e−c16n

0.2
. Finally, by Theorem 3.3, P (ξ �∈ �n) ≤

exp[−c16n
0.2] for all n ≥ c14. Combining all these estimates with (3.3), the claim

follows. ��

4. How we find words in the observations

In this section, we prove a sufficient condition for a word to be contained in the
scenery close to the origin. First, we explain why reconstructing words is so difficult
in the present setup.

Special 4-color sceneries. Assume for a moment that the scenery ξ , instead of
being a 2-color scenery, is a 4-color scenery, i.e. ξ ∈ {0, 1, 2, 3}Z. Let us assume
furthermore, that for two integers y, z we have ξy = 2 and ξz = 3, but ξx �∈ {2, 3}
for all x ∈ Z \ {y, z}. Then we could reconstruct the portion of the scenery ξ lying
between y and z: As a matter of fact, since the random walk S is recurrent, it tra-
verses a.s. at least once (and hence infinitely often) the shortest path from y to z.
Since we are given infinitely many observations χ , the distance between y and z is
the shortest time lapse that a 3 ever appears in the observations χ after a 2. When the
random walk goes in the shortest possible way from y to z, it traverses the straight
path from y to z. During that time, the random walk reveals in the observations the
portion of ξ lying between y and z.

Simple random walk without holding. A related, but much more involved idea
can still be used for 2-color sceneries. Let us next explain why the 2-color scenery
reconstruction problem is much more difficult for simple random walk with holding
than for simple random walk. So assume for the moment that S is a simple random
walk, i.e. in each step S jumps one to the right or one to the left with probability
1/2. In this case, we can use instead of the extra colors 2 and 3 in the previous
paragraph binary words of the form 001100 and 110011: It is easy to verify that the
only possibility for the word 001100 to appear in the observations, is when 001100
occurs in the scenery (i.e. ξ |[x, x+ 5] = 001100 for some x) and the random walk
traverses the straight path between x and x + 5. The same is true for the word
110011.

If 001100 occurred in precisely one place y of the scenery and 110011 occurred
in precisely one place z �= y of the scenery, then we could reconstruct up to a reflec-
tion the piece of scenery occurring between 001100 and 110011. We would just
look in the observations where the word 110011 occurs in shortest time after the
word 001100. In between, we see a copy of the piece of the scenery ξ comprised
between 001100 and 110011.
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Of course, in an i.i.d. scenery, the word 001100 occurs a.s. infinitely often. Nev-
ertheless, a modification of this idea was for instance used by Löwe, Matzinger, and
Merkl in [20] for sufficiently many colors. They used, that with high probability
certain words occur only in certain areas of the scenery, which allowed them to
reconstruct the words in between.

The present problem. For a random walk with holding, the idea of patterns in
the observations which tell us when we are back at the same spot like for example
001100 does not work at all. The reason is that if ξz = 1 and ξz+1 = 0, then the
random walk with holding can produce any pattern by just moving back and forth
between z and z+ 1 and holding. Thus, all patterns can be produced in most places
in ξ and are thus not specific for some places in the scenery. However, in the case
of a random walk with holding, the same idea of getting in shortest time from a
point y to a point z can be applied to the distributions of the observations.

A simplified version. Fix a point x ∈ Z. First, assume that we have stopping times
τk which all stop the random walk at the point x. The empirical distribution of the
3c1n observations after these stopping times τk , i.e. the distribution

3−αn
∑

k∈[1,3αn]

δχ |[τk,τk+3c1n[ (4.1)

is an approximation of the real distribution

Px,ξ (χ |[0, 3c1n[∈ ·) (4.2)

of χ |[0, 3c1n[ conditioned on the scenery to be ξ and the random walk to start in
x. Thus, if all the stopping times τk satisfy Sτk ∈ [−3n, 3n] (which is the case if
the event En,τstop holds), then the empirical distribution in (4.1) is an approximation
of a mixture of the distributions in (4.2) where x ranges over [−3n, 3n]. In other
words, it is an approximation of

∑
x∈[−3n,3n]

a(x)Px,ξ (χ |[0, 3c1n[∈ ·), (4.3)

where a(x) designates the proportion of stopping times τk , k∈ [1, 3αn], withSτk =x.

Convention: Sometimes it will be convenient to identify a measure λ which is
supported on a countable ordered set {si}i with the vector (λ({si}))i . In particular,
we do this with Px,ξ (χ |[0, 3c1n[∈ ·).

Let y, z ∈ [−3n, 3n] such that z − y = c1n − 1. How can one reconstruct the
word ξ |[y, z] of length c1n from the measure in (4.3)? First, we rewrite the measure
in (4.3) by conditioning on the positions of the random walk at times c1n and 2c1n:

∑
x∈[−3n,3n]

a(x)Px,ξ (χ |[0, 3c1n[∈ ·)

=
∑
x,y′,z′

a(x)Px,ξ (χ |[0, c1n[∈ ·|Sc1n = y′) (4.4)

⊗Py′,ξ (χ |[0, c1n[∈ ·|Sc1n = z′)⊗ Pz′,ξ (χ |[0, c1n[∈ ·),
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where the sum is taken over all x, y′, z′ such that x ∈ [−3n, 3n], |x−y′| ≤ c1n and
|y′ − z′| ≤ c1n. Here ⊗ denotes the product of two measures. If one identifies the
distributions with vectors, the product measure corresponds to the tensor product
of the associated vectors.

We can reconstruct ξ |[y, z] from (4.3) if there is a linear component in the
distribution Px,ξ (χ |[0, 3c1n[∈ ·) occuring only “to the left of y” and a linear com-
ponent occuring only “to the right of z”. By this we mean that there exist two linear
functionals gl and gr such that

gl(Px,ξ (χ |[0, c1n[∈ ·|Sc1n = y′)) = 0 (4.5)

for all x ∈ [−3n, 3n] and y′ > y and

gr(Pz′,ξ (χ |[0, c1n[∈ ·)) = 0 (4.6)

for all z′ ≤ z. When we apply the linear functional gl ⊗ id⊗ gr to the second sum
in (4.4), all the terms disappear except for the terms with y′ = y and z′ = z + 1.
This is the only possibility for a random walk starting at y′ to be at z′ at time c1n

because the interval [y, z] has length c1n and we required |y′ −z| ≤ c1n. But when
we have y′ = y and z′ = z + 1, then conditional on S0 = y′ and Sc1n = z′, the
random walk performs during its first c1n steps a straight walk from the point y to
z. Thus, in that case Py′,ξ (χ |[0, c1n[∈ ·|Sc1n = z′) is the atomic distribution where
the atom is at the point ξ |[y, z]. This allows us to reconstruct ξ |[y, z] provided
some adequate functionals gl and gr exist.

The real approach. It turns out that instead of working with the distributions (4.1)
and (4.2), we need to deal with slightly different distributions as will be explained
now: Let χn := χ |[0, 2 · 310αn[, and let τ = (τk)k∈[1,3αn] be a sequence of G-
adapted stopping times. The reader should think of stopping times such that the
eventEn,τstop holds. Instead of taking the 3c1n observations after each stopping time,

we let the random walker run freely 32n steps after each stopping time τk . This
way, it has a chance to reach all points in [−5 · 3n, 5 · 3n] which is important if
we want to reconstruct all words from ξ |[−5 · 3n, 5 · 3n] of length c1n/2. Then,
we record the lengths of the following c1n blocks in the observations, truncated
at 5. (So if a block has length > 5, we record a 5.) Then, we record the follow-
ing word from the observations of length c1n/2, extended up to the beginning of
the next block. Finally, we collect the lengths of the following c1n blocks in the
observations, truncated at length 5. This way, we obtain for every stopping time τk
a quantity On(χ |[τk, τk + 33n]) which is a triple of the form (On

1 ,O
n
2 ,O

n
3 ) with

On
1 ,O

n
3 ∈ [1, 5]c1n sequences of truncated block lengths and On

2 a word over the
alphabet {0, 1}. Next, we look at the corresponding empirical distribution, namely

µ̂
n,τ
χn := 3−αn

∑
k∈[1,3αn]

δOn(θτk χn)

instead of (4.1).
Let Sn := S|[0, 2 · 310αn[. The real distribution µn,τξ,Sn of our collected infor-

mation is a mixture of the distributions of On(χn) under Px,ξ , where the term
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Px,ξ
[
On(χn)

]−1, the distribution of On(χn) under Px,ξ , gets as weight the
proportion of stopping times τk stopping the random walk at x (see Definition 4.3).
Of course, µn,τξ,Sn cannot be obtained from χ and τ only. Thus, we need to work
with the empirical distribution µ̂n,τχn . Let εn,τξ,Sn denote the difference between the
empirical and the real distribution; so εn,τξ,Sn is a signed measure. It will be shown
in Lemma 5.8 that the probability that the stopping times τk stop correctly (i.e.
E
n,τ
stop holds), but εn,τξ,Sn has a norm which is not exponentially small in n has an

exponentially small probability. In this sense, µ̂n,τχn approximates µn,τξ,Sn .
How can we reconstruct words from the scenery using the empirical distribu-

tion µ̂n,τχn ? A sufficient criterion for w � ξ [−33n, 33n] is given in Theorem 4.1:

one needs the existence of certain linear functionals gw1 and gw3 on (R5)⊗c1n; these
play the role of gl and gr in the above. Since the criterion is formulated in terms
of the empirical distribution µ̂n,τχn instead of the real distribution µn,τξ,Sn , one has the
condition that gw1 ⊗ 1⊗ gw3 applied to the empirical distribution is small instead of
being 0 as in (4.5) and (4.6).

Theorem 4.1 is the key tool for the reconstruction algorithm BigAlgn described
in Section 5. Given the observations collected by the random walk, one first con-
siders a set Wordsn of words obtained by checking conditions (5.2)–(5.5); these
conditions are motivated by (4.10)–(4.13). A word belongs to Wordsn if there exist
functionals gw1 and gw3 with certain properties. Suitable functionals are defined in
Definition 5.4. With high probability, they fulfill their task in the sense that the event
Bnfunctional holds (see Definition 5.9, Lemma 5.3, and the estimates in Section 5.4).
With high probability, the words from Wordsn can be assembled as in a puzzle
game to find the scenery.

4.1. A sufficient criterion

First, we give a precise definition of On: Let η ∈ ⋃k≥33n C[0,k[; the reader should

think of η as a piece of observations. We consider Õn1On2Õn3 where Õn1 consists of the
first c1n blocks of η after time 32n, On2 equals the following c1n/2 observations in η
extended until the next block starts, and Õn3 consists of the following c1n blocks of
η. Next, for j = 1, 3, we replace Õnj by the sequence Onj ∈ {1, 2, 3, 4, 5}c1n where

the ith component equals the minimum of 5 and the length of the ith block of Õnj .
Formally:

Definition 4.1. Let η ∈ ⋃k≥33n C[0,k[. We abbreviate ηn := η| [32n, 33n
[
. We

denote by Bk(η) the kth block of η if η possesses at least k blocks; otherwise we set
Bk(η) := 101 ∈ C

[
33n,33n+3

[
.We denote by onl (η) the right end ofBc1n(η

n). Further-
more we denote by õnr (η) the left end of the first block of ηn|[onl (η)+c1n/2−2, 33n

[
and set onr (η) := õnr (η) + 1. If ηn| [onl (η)+ c1n/2− 2, 33n

[
does not contain a

block, then we set onr (η) := onl (η). We define On := (On1,On2,On3) by

On1(η) := (|Bk(ηn)| ∧ 5)k∈[1,c1n],

On2(η) := η| [onl (η), onr (η)
]
,

On3(η) := (|Bk(θ õnr (η)(η))| ∧ 5)k∈[1,c1n].
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The letter “O” should remind the reader of “observation”. By definition, |On2(η)|≥ c1n/2 unless onr (η) = onl (η). The following picture illustrates our definitions for
c1n = 6:

η = 1110 . . . 01110010︸ ︷︷ ︸
η|[0, 32n[

0 01110100000011000 1︸ ︷︷ ︸
Õn

1(η)

000 0 1 11001011110001︸ ︷︷ ︸
Õn

3(η)

00111110 . . .

ηonl
and ηonr are marked with boxes. In this example, we have On1(η)= (3, 1, 1, 5,

2, 3), On2(η) = 100001, On3(η) = (3, 2, 1, 1, 4, 3).
In the following, let τ = (τk)k∈[1,3αn] be a sequence of G-adapted stopping

times.

Definition 4.2. For η ∈ C[0,2·310αn[, we define the empirical distribution of On

observed after each time τk , k ∈ [1, 3αn]:

µ̂n,τη := 3−αn
∑

k∈[1,3αn]

δOn(θτk η).

For η ∈ CN0 , we set µ̂n,τη := µ̂n,τ
η|[0,2·310αn[

.

Definition 4.3. For an admissible path R ∈ Z

[
0,2·310αn

[
, let an,τR (x) be the propor-

tion of k ∈ [1, 3αn
]

with Rτk = x. We define

µ
n,τ
ξ,R :=

∑
x∈[−3n,3n]

a
n,τ
R (x)Px,ξ

[
On(χ)
]−1

,

ε
n,τ
ξ,R := µ̂n,τξ◦R − µn,τξ,R.

For an admissible path R ∈ Z
N0 , we set µn,τξ,R := µn,τ

ξ,R|[0,2·310αn[
.

By definition, µn,τξ,R and µ̂n,τη are measures on the set obs := [1, 5]c1n× obs2×
[1, 5]c1n with obs2 := {w ∈ Ck : k ≥ c1n/2, wk−1 �= wk,wj = wk−1 for all j ∈
[c1n/2− 1, k − 1]}. We denote by

�2 : obs→ obs2, �1,3 : obs→ [1, 5]c1n × [1, 5]c1n

the canonical projections. Furthermore, we introduce the event that an observation
O ∈ obs has �2(O) of length d ≥ c1n/2:

E
n,d
block := {O ∈ obs : [�2(O)]d−1 �= [�2(O)]d} .

We order the 2d elements of Cd lexicographically and denote them by v1,v2,

· · · , v2d . Let evk := (evk (i))i∈[1,2d ] be defined by evk (i) := δk(i); i.e. {evk ; k ∈
[1, 2d ]} is the canonical basis in R

2d . Let {1vk ; k ∈ [1, 2d ]} be the dual basis, i.e.
1vk (evj ) = δk(j) for all j, k ∈ [1, 2d ]. Recall that we identify a measure λ on a
countable set {si}i by (λ({si}))i .
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Notation for linear functionals: Let w ∈ Cd . For any probability measure λ on
Cd we have 1w(λ) = λ(w). In particular, if λ gives mass one tow, then 1w(λ) = 1.
We denote by 1 the linear functional defined by 1(λ) :=∑di=1 λi .

If g and g′ are two linear functionals, we denote by g⊗ g′ their tensor product.
More precisely, for row vectors λ = (λi)i∈[1,m] ∈ R

m and λ′ = (λ′j )j∈[1,m′] ∈ R
m′ ,

we define λ⊗ λ′ to be the matrix

λtλ′ = (λiλ′j )i∈[1,m],j∈[1,m′]. (4.7)

In other words, if λ and λ′ represent probability distributions, then λ ⊗ λ′ repre-
sents the corresponding product measure. If g : R

m → R and g′ : R
m′ → R are

the linear functionals given by g(λ) = ∑mi=1 giλi and g′(λ′) = ∑m′j=1 g
′
j λ
′
j , then

g ⊗ g′ : R
m ⊗ R

m′ → R is the map given by

(g ⊗ g′)(λ⊗ λ′) =
∑
i,j

(g ⊗ g′)i,j (λ⊗ λ′)i,j = g(λ)g′(λ′) (4.8)

where we identify g with (gi)i∈[1,m] ∈ R
m and g′ with (g′j )j∈[1,m′] ∈ R

m′ and use
the tensor product of vectors (4.7). Note that

(g⊗g′)(ρ(λ1⊗λ1
′)+ (λ2 ⊗ λ2

′)) = ρ(g ⊗ g′)(λ1 ⊗ λ1
′)

+(g⊗g′)(λ2⊗λ2
′) (4.9)

for any scalar ρ ∈ R and λ1, λ2 ∈ R
m, λ′1, λ

′
2 ∈ R

m′ .
The following theorem gives sufficient conditions for a word w ∈ Cd to be

contained in the scenery ξ |[−33n, 33n]. Its proof is postponed to Section 4.3. For
the definition of positivity for a linear functional we refer the reader to Section 4.2,
in particular Definition 4.5.

Theorem 4.1. There exists c22 > 0 such that for all n ≥ c22, d ∈ [c1n/2, c1n],
and w ∈ Cd with wd−1 �= wd the following holds whenever the event En,τstop holds:

Suppose there exist positive linear functionals gw1 and gw3 on (R5)⊗c1n with the
following properties:

1. Case q �= 0:

(gw1 ⊗ 1w ⊗ gw3 )(µ̂n,τξ◦S[· ∩ En,dblock]) > 1 (4.10)

(gw1 ⊗ 1⊗ gw3 )(µ̂n,τξ◦S[· ∩ En,d−1
block ]) ≤ 1/(5n2) (4.11)

‖gw1 ⊗ gw3 ‖2 · ‖εn,τξ,S‖1/21 ≤ 1/(2n2). (4.12)

2. Case q = 0: (4.10), (4.12), and

(gw1 ⊗ 1⊗ gw3 )(µ̂n,τξ◦S[· ∩ En,d−2
block ]) ≤ 1/(5n2). (4.13)

Then w � ξ | [−33n, 33n
]
.
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4.2. Positive linear functionals

For m ∈ N, we denote by Tm the first hitting time of {−1,m} by the random walk
S: Tm := min{k ≥ 0 : Sk ∈ {−1,m}}. Let ξ |[a, b] be a block of length m and let
SB be a random walk with SB0 ∈ {a, b} having its increments distributed as S. Then
the Pξ -distribution of the length of the first block in ξ ◦ SB equals P [Tm]−1, the
distribution of Tm. For A ⊆ N0, we abbreviate

λml (A) := P ({Tm ∈ A} ∩ {STm = −1}) , λmr (A) := P ({Tm ∈ A} ∩ {STm = m}
)
.

Clearly, Tm ≥ 1P -almost surely. So λml and λmr are probability measures supported
on N.We can identifyλml with the vector

(
λml ({k})

)
k∈N=
(
P(Tm=k, STm=−1)

)
k∈N

and λmr with the vector
(
λmr ({k})

)
k∈N =
(
P(Tm = k, STm = m)

)
k∈N. We compute

λ1
r = (p, pq, pq2, pq3, pq4, . . . ),

λ2
r = (0, p2, 2p2q, p4 + 3p2q2, 4p4q + 4p2q3, . . . ),

λ3
r = (0, 0, p3, 3p3q, 2p5 + 6p3q2, . . . ),

λ4
r = (0, 0, 0, p4, 4p4q, . . . ),

λ5
r = (0, 0, 0, 0, p5, . . . );

here “. . . ” means we are not interested in these values. We define h : N0 → [1, 5],
x �→ x ∧ 5. Then, for A ⊆ N0,

λml h
−1(A) = P ({Tm ∧ 5 ∈ A} ∩ {STm = −1}) . (4.14)

The measures λml h
−1, λmr h

−1 are supported on the set {1, 2, 3, 4, 5}. Hence we can
identify them with vectors in R

5+.

Definition 4.4. We define vectors in R
5+:

�x1 := (p, pq, pq2, pq3, pq4),

�x2 := λ2
r h
−1 = (0, p2, 2p2q, p4 + 3p2q2, λ2

r ([5,∞[),

�x3 := (0, 0, p3, 3p3q, p5 + 6p3q2),

�x4 := λ4
r h
−1 = (0, 0, 0, p4, λ4

r ([5,∞[),

�x5 := (0, 0, 0, 0, 1).

Clearly, {�xi}i∈[1,5] is a basis of R
5. We denote by {�x∗i }i∈[1,5] the corresponding dual

basis. In particular, �x∗i : R
5 → R is a linear map with

�x∗i (�xi) = 1 and �x∗i (�xj ) = 0 for all i �= j. (4.15)

Remark 4.1. 1. For any m ≥ 1 and i ∈ {l, r} the vector λmi h
−1 can be written

as a linear combination with positive coefficients of �xj , 1 ≤ j ≤ 5.
2. We have �x∗2 (λmi h−1) �= 0 iff i = r and m = 2. Furthermore, �x∗4 (λmi h−1) �= 0

iff i = r and m = 4.
3. For i ∈ {1, 3, 5}, we have x∗i (λ

2
r h
−1) = 0 and x∗i (λ

4
r h
−1) = 0.
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4. The lower bound �x∗m∧5

(
λmr h

−1
) ≥ (m+ 1)−1 holds for all m ≥ 1.

Proof. First, we prove the following identities:

λ1
r h
−1 = �x1 + λ1

r (]5,∞[)�x5, (4.16)

λ2
r h
−1 = �x2, (4.17)

λ3
r h
−1 = �x3 + (p5 + λ3

r (]5,∞[))�x5, (4.18)

λ4
r h
−1 = �x4, (4.19)

λmr h
−1 = (m+ 1)−1�x5 for all m ≥ 5. (4.20)

The identities (4.17) and (4.19) for λ2
r h
−1 and λ4

r h
−1 are true by the definitions of

�x2 and �x4. Let �xi(k) denote the kth component of �xi , k = 1, . . . , 5. Clearly, for
k = 1, . . . , 4, λ1

r h
−1({k}) = λ1

r ({k}) = �x1(k). Furthermore,

λ1
r h
−1({5}) = P(T1 ∧ 5 = 5, ST5 = 5)

= P(T1 = 5, ST5 = 5)+ P(T1 > 5, ST5 = 5)

= λ1
r ({5})+ λ1

r (]5,∞[)

= �x1(5)+ λ1
r (]5,∞[).

Consequently, λ1
r h
−1 = �x1 + λ1

r (]5,∞[)�x5 which is the statement in (4.16). Simi-
larly,

λ3
r h
−1({k}) = λ3

r ({k}) = �x3(k) for k = 1, . . . , 4, and

λ3
r h
−1({5}) = λ3

r ({5})+ λ3
r (]5,∞[) = �x3(5)+ p5 + λ3

r (]5,∞[).

Thus, (4.18) holds. For all m ≥ 5, we have

λmr h
−1({k}) = 0 for k = 1, . . . , 4, and

λmr h
−1({5}) = P(Tm ≥ 5, STm = m) = P(STm = m).

Since for a simple symmetric random walk with holding starting at 0 the probability
to reach m before −1 equals (m+ 1)−1, the claim (4.20) follows.

Next, we show that the following statements hold:

λ1
l h
−1 = �x1 + λ1

r (]5,∞[)�x5, (4.21)

λ2
l h
−1 = �x1 + �x3 + λ2

l (]5,∞[)�x5, (4.22)

λml h
−1 = �x1 + �x3 + (p5 + λml (]5,∞[))�x5 for all m ≥ 3. (4.23)

By symmetry, λ1
l h
−1 = λ1

r h
−1; thus, (4.21) follows from (4.16). Next, we calculate

using (4.14):

λ2
l h
−1 = (p, pq, pq2 + p3, pq3 + 3p3q, p5 + 6p3q2 + pq4 + λ2

l (]5,∞[))

= �x1 + �x3 + λ2
l (]5,∞[)�x5,

λ3
l h
−1 = (p, pq, pq2 + p3, pq3 + 3p3q, 2p5 + 6p3q2 + pq4 + λ3

l (]5,∞[))

= �x1 + �x3 + (p5 + λ3
l (]5,∞[))�x5.
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Finally, letm ≥ 4. Consider any path of our random walk, starting at 0 and ending
at −1. If the path makes at most 5 steps, then it does not visit the point 3. Conse-
quently, for k = 1, . . . , 4, we have λml h

−1({k}) = P(Tm ∧ 5 = k, STm = −1) =
P(T3 ∧ 5 = k, ST3 = −1) = λ3

l h
−1({k}). By the same argument, λml ({5}) =

λ3
l ({5}) = �x1(5)+ �x3(5)+ p5. Thus, (4.23) holds.

Part 1 of Remark 4.1 follows because all coefficients in the representations
(4.16)–(4.20) and (4.21)–(4.23) are positive.

Recall (4.15). Since {�xi}i∈[1,5] is a basis of R
5, we have �x∗2 (λmi h−1) �= 0 iff in

the representation of λmi h
−1 as a linear combination of the �xj the coefficient of �x2

is non-zero. This is only the case for λ2
r h
−1 as can be seen from (4.16)–(4.20) and

(4.21)–(4.23). Similarly, �x∗4 (λmi h−1) �= 0 iff in the representation of λmi h
−1 as a

linear combination of the �xj the coefficient of �x4 is non-zero which is only the case
for λ4

r h
−1. This proves part 2.

Let i ∈ {1, 3, 5}, and recall (4.15). By (4.17), we have x∗i (λ
2
r h
−1) = x∗i (�x2) =

0, and by (4.19), we have x∗i (λ
4
r h
−1) = x∗i (�x4) = 0. This proves part 3 of Remark

4.1.
Form = 1, . . . , 4, �x∗m∧5

(
λmr h

−1
) = �x∗m

(
λmr h

−1
) = 1 ≥ (m+1)−1 because of

the representations (4.16)–(4.19). On the other hand, for m ≥ 5, �x∗m∧5

(
λmr h

−1
) =

�x∗5
(
λmr h

−1
) = �x∗5
(
(m+ 1)−1�x5

) = (m+ 1)−1 because of (4.20). This completes
the proof of part 4 and thus of Remark 4.1. ��

Definition 4.5. We call a functional f :
(
R

5
)⊗m→ R positive if f

(⊗mk=1�xnk
) ≥ 0

for all n1, n2, . . . , nm ∈ {1, 2, 3, 4, 5}.
Remark 4.2. Let g be a positive linear functional on (R5)⊗c1n. IfPx,ξ [Sonl = y] >
0, then g(Px,ξ [On1 ∈ ·|Sonl = y]) ≥ 0. If Px,ξ [Sonr = y] > 0, then g(Px,ξ [On3 ∈
·|Sonr = y]) ≥ 0.

Proof. Suppose Px,ξ (Sonl = y) > 0. By the definition of On1, we can write the
probability Px,ξ [On1 ∈ ·|Sonl = y] as a linear combination with positive coeffi-

cients of tensor products of the λmi h
−1’s. Each λmi h

−1 equals a linear combina-
tion with positive coefficients of �xi , 1 ≤ i ≤ 5, by Remark 4.1. The estimate
g(Px,ξ [On1 ∈ ·|Sonl = y]) ≥ 0 follows because g is positive. The second part of the
statement is proved analogously. ��

4.3. Proof of Theorem 4.1

We begin with a lemma, which we need in the proof of Theorem 4.1.

Lemma 4.1. There exists c23 > 0 such that for all n ≥ c23, for all d ∈]2, c1n],
and all x ∈ [0, d[ the following hold:

1. If q �= 0, then P(Sd = x) ≤ n2P(Sd−1 = x).
2. If q = 0 and P(Sd−2 = x) > 0, then P(Sd = x) ≤ n2P(Sd−2 = x).

Proof. Let n ∈ N, d ∈]2, c1n], x ∈ [0, d[, and suppose q �= 0. We denote by
�d,x ⊆ Z

[0,d] the set of all admissible pieces of paths from 0 to x, and we define
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a map f : �d,x → �d−1,x as follows: If π ∈ �d,x contains a holding, i.e.
πy = πy−1 for some y ∈]0, d], then we define f (π) to be the path obtained from
π by removing the first holding in π . Otherwise, because of x < d, there exists
either a step to the left followed by a step to the right or a step to the right followed
by a step to the left in π . In this case, we define f (π) to be the path obtained from
π by replacing the first occurrence of such a pair of steps by a holding. For any
π ∈ �d,x we have

P(S|[0, d] = π) ≤ max
{
q, p2q−1

}
P(S|[0, d − 1] = f (π)).

Furthermore, any π ′ ∈ �d−1,x has at most 3d pre-images under f . Hence we
obtain

P(Sd = x) =
∑

π∈�d,x
P (S|[0, d] = π) ≤

∑
π ′∈�d−1,x

∑

π∈f−1(π ′)

P (S|[0, d] = π)

≤
∑

π ′∈�d−1,x

∣∣∣f−1(π ′)
∣∣∣max
{
q, p2q−1

}
P(S|[0, d − 1] = π ′)

≤ 3d max
{
q, p2q−1

}
P(Sd−1 = x).

Since d ≤ c1n, we have 3d max
{
q, p2q−1

} ≤ n2 for all n sufficiently large and
the claim follows in the case q �= 0. The case q = 0 is treated similarly. ��

Proof of Theorem 4.1. Let q �= 0. We do a proof by contradiction. Assume that
for infinitely many n, there exist d ∈ [c1n/2, c1n], w ∈ Cd with wd−1 �= wd , and
positive linear functionals gw1 and gw3 on (R5)⊗c1n such that (4.10)–(4.12) hold on
the event En,τstop, but w �� ξ | [−33n, 33n

]
.

For any linear functional g : R
m → R and λ ∈ R

m, we have the estimate
|g(λ)| = |∑mi=1 giλi | ≤ [

∑m
i=1 g

2
i ]1/2[
∑m
i=1 λ

2
i ]

1/2 = ‖g‖2‖λ‖2 by Hölder’s
inequality. Since εn,τξ,S is the difference of two probability measures, we can identify

it with a vector
(
ε′i − ε′′i
)
i
, where ε′i , ε

′′
i ∈ [0, 1] and i runs through a finite index

set. Consequently,

‖εn,τξ,S [· ∩ En,dblock]‖22 ≤ ‖εn,τξ,S‖22 =
∑
i

∣∣ε′i − ε′′i
∣∣2 ≤
∑
i

∣∣ε′i − ε′′i
∣∣ = ‖εn,τξ,S‖1.

Using this together with (4.12), we obtain

|(gw1 ⊗ 1w ⊗ gw3 )(εn,τξ,S [· ∩ En,dblock])|≤‖gw1 ⊗ 1w ⊗ gw3 ‖2 · ‖εn,τξ,S [· ∩ En,dblock]‖2
≤‖gw1 ⊗ gw3 ‖2 · ‖εn,τξ,S‖1/21 ≤1/(2n2); (4.24)

here we used that ‖gw1 ⊗ 1w ⊗ gw3 ‖2 = ‖gw1 ⊗ gw3 ‖2. Hence, it follows from
µ
n,τ
ξ,S = µ̂n,τξ◦S − εn,τξ,S and (4.10) that

(gw1 ⊗ 1w ⊗ gw3 )(µn,τξ,S[· ∩ En,dblock]) ≥ 1− 1/(2n2);
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here we used the linearity (compare (4.9)) of gw1 ⊗1w⊗gw3 . Inserting the definition
of µn,τξ,S , using the linearity of gw1 ⊗ 1w ⊗ gw3 again, and using also the definition of
1w, we obtain

1− 1/(2n2) (4.25)

≤ (gw1 ⊗ 1w ⊗ gw3 )(µn,τξ,S[· ∩ En,dblock])

=
∑

x∈[−3n,3n]

a
n,τ
S (x)(gw1 ⊗ 1w ⊗ gw3 )(Px,ξ [(On1(χ),On2(χ),On3(χ)) ∈ · ∩ En,dblock])

=
∑

x∈[−3n,3n]

a
n,τ
S (x)(gw1 ⊗ 1w ⊗ gw3 )(Px,ξ [(On1(χ),On2(χ) = w,On3(χ)) ∈ ·]).

In the following, we omit dependencies on χ in the notation. Since we assumed

w �� ξ | [−33n, 33n
]
, we have for any admissible path R ∈ [−33n, 33n

][0,d[
with

ξ ◦ R = w the estimate |R0 − Rd−1| < d − 1. Consequently,

Px,ξ [(On1,On2 = w,On3) ∈ ·]
=
∑
y,z

Px,ξ [Sonl = y, Sonr = z, (On1,On2 = w,On3) ∈ ·], (4.26)

where the sum is taken over all y, z ∈ [−33n, 33n
]

with the property |y−z| < d−1
and Px,ξ [Sonl = y, Sonl +d−1 = z] > 0. We rewrite the addends: On the event
{On2 = w}, we have onr = onl + d − 1. Note that On1 depends only on the random
walk up to time onl , whereas (Sonr ,On2,On3) depends only onSonl and the random walk
increments Sonl +t − Sonl , t ≥ 0. Therefore, On1 and (Sonr ,On2,On3) are independent
conditioned on Sonl = y. Thus, the right-hand side of equation (4.26) equals

∑
y,z

Px,ξ [Sonl = y,On1 ∈ ·]

⊗Px,ξ [Sonr = z, (On2 = w,On3) ∈ ·|Sonl = y] (4.27)

=
∑
y,z

Px,ξ [Sonl = y,On1 ∈ ·]

⊗
(
Px,ξ [Sonl +d−1 = z|Sonl = y]Px,ξ [(On2 = w,On3) ∈ ·|Ad−1

y,z ]
)

with Ad−1
y,z := {Sonl = y, Sonl +d−1 = z}. In the last sum, the addends consist of the

tensor product of the two vectors Px,ξ [Sonl = y,On1 ∈ ·] and Px,ξ [(On2 = w,On3) ∈
·|Ad−1

y,z ], multiplied by the constant Px,ξ [Sonl +d−1 = z|Sonl = y]. Using again the
Markov property of the random walk, we see that On2 and On3 are independent,
conditioned on the event Ay,z := {Sonl = y, Sonr = z}. Hence,

Px,ξ [(On2 = w,On3) ∈ ·|Ad−1
y,z ] = Px,ξ [Ay,z]

Px,ξ [Ad−1
y,z ]

Px,ξ [(On2 = w,On3) ∈ ·|Ay,z]

= Px,ξ [Ay,z]

Px,ξ [Ad−1
y,z ]

Px,ξ [On2 = w ∈ ·|Ay,z]

⊗Px,ξ [On3 ∈ ·|Ay,z]
= Px,ξ [On2 = w ∈ ·|Ad−1

y,z ]⊗ Px,ξ [On3 ∈ ·|Ay,z].
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Consequently, we obtain from (4.26) and (4.27)

Px,ξ [(On1,On2 = w,On3) ∈ ·]
=
∑
y,z

Px,ξ [Sonl = y,On1 ∈ ·] (4.28)

⊗(Px,ξ [Sonl +d−1 = z|Sonl = y]Px,ξ [On2 = w ∈ ·|Ad−1
y,z ]
)

⊗Px,ξ [On3 ∈ ·|Ay,z].

In view of (4.25), the aim is to apply gw1 ⊗ 1w ⊗ gw3 to the last sum. First, we
estimate 1w applied to the middle vector in the addends of (4.28). We observe for
n ≥ c23 with c23 as in Lemma 4.1

Px,ξ [Sonl +d−1 = z|Sonl = y]1w(Px,ξ [On2 = w ∈ ·|Ad−1
y,z ])

≤ Px,ξ [Sonl +d−1 = z|Sonl = y] = P0,ξ [Sd−1 = z− y] ≤ n2P0,ξ [Sd−2 = z− y]

= n2Px,ξ [Sonl +d−2 = z|Sonl = y]; (4.29)

here we used the Markov property of the random walk and Lemma 4.1. Combining
(4.28) with (4.29) and using Remark 4.2 yields

(gw1 ⊗ 1w ⊗ gw3 )(Px,ξ [(On1,On2 = w,On3) ∈ ·]) (4.30)

≤
∑
y,z

gw1 [Px,ξ [Sonl = y,On1 ∈ ·]]n2

×Px,ξ [Sonl +d−2 = z|Sonl = y]gw3 [Px,ξ [On3 ∈ ·|Ay,z]].

We can enlarge the last sum by summing over all y, z ∈ [−33n, 33n
]

with |y − z|
< d − 1 and Px,ξ (Sonl = y, Sonr = z) > 0 and not only over those with Px,ξ [Sonl =
y, Sonl +d−1 = z] > 0. The terms added in this way are non-negative by Remark
4.2. Note that

Px,ξ [(On1,On2,On3) ∈ · ∩ En,d−1
block ] =

∑
w′
Px,ξ [On2 = w′, (On1,On3) ∈ ·],

where the sum is taken over all w′ ∈ Cd−1 with w′d−1 �= w′d−2. We use (4.28) with
d − 1 instead of d to obtain

(4.30) ≤ n2(gw1 ⊗ 1⊗ gw3 )[Px,ξ [(On1,On2,On3) ∈ · ∩ En,d−1
block ]]. (4.31)

Since the event En,τstop holds,
∑
x∈[−3n,3n] a

n,τ
S (x) = 1. Consequently, the estimates

(4.25) and (4.31) imply

(1− (2n2)−1)n−2 ≤ (gw1 ⊗ 1⊗ gw3 )(µn,τξ◦S[· ∩ En,d−1
block ]). (4.32)

We can identify gw1 with a vector (g1(i))i , gw3 with a vector (g3(k))k , and εn,τξ,S with a
vector (ε′i,j,k−ε′′i,j,k)i,j,k where ε′i,j,k, ε

′′
i,j,k ≥ 0 and

∑
i,j,k ε

′
i,j,k=
∑
i,j,k ε

′′
i,j,k=1.
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Consequently, using Hölder’s inequality,

|(gw1 ⊗ 1⊗ gw3 )(εn,τξ,S [· ∩ En,d−1
block ])|≤

∑
i,j,k

|g1(i)g3(k)| · |ε′i,j,k − ε′′i,j,k|

=
∑
i,k

|g1(i)g3(k)| ·
[∑

j

|ε′i,j,k − ε′′i,j,k|
]

≤
√∑
i,k

|g1(i)g3(k)|2
√√√√
∑
i,k

[∑
j

|ε′i,j,k−ε′′i,j,k|
]2

≤‖gw1 ⊗ gw3 ‖2 ·
√

2 · ‖εn,τξ,S‖1/21 ≤
√

2/(2n2);

in the second to last inequality we used that
∑
j |ε′i,j,k − ε′′i,j,k| ≤ 2 and for the last

inequality, we used (4.12). Hence, it follows from (4.32) and µ̂n,τξ◦S = µn,τξ◦S + εn,τξ,S

(gw1 ⊗ 1⊗ gw3 )(µ̂n,τξ◦S[· ∩ En,d−1
block ]) ≥ (1− (2n2)−1)n−2 − 1/(

√
2n2),

which is strictly larger than 1/(5n2) for n sufficiently large; thus, it contradicts
assumption (4.11). Thus w � ξ | [−33n, 33n

]
and the theorem is proved in the case

q �= 0. If q = 0, one replaces d−1 by d−2 in the above argument und uses (4.13)
instead of (4.11). ��

5. Reconstructing a piece of scenery

Let n ∈ N. The aim of this section is to define a map BigAlgn which fulfills the
claim of Theorem 3.1. Special functionals and events are needed in the proof of
Theorem 3.1; their definitions are stated in Subsection 5.2. Subsection 5.3 contains
the combinatorial part in the proof of Theorem 3.1, and Subsection 5.4 deals with
the probabilistic estimates.

5.1. Definition of BigAlgn

BigAlgn takes as arguments

τ ∈
[
0, 310αn

][1,3αn]
, η ∈ C2·310αn

, and ψ ∈
⋃

k≥n2

C[−k,k] (5.1)

and produces an output BigAlgn(τ, η, ψ) ∈ C[−3·3n,3·3n]. The reader should think
of τ as a realization of a sequence of 3αn stopping times, η stands for 2 · 310αn

observations, and ψ should be thought of as a small piece of the scenery ξ around
which the reconstruction takes place. In the following, we treat τ , η, and ψ as
abstract input data of BigAlgn which need to fulfill (5.1) only.

Let τ , η, and ψ satisfy (5.1). We use the conditions of Theorem 4.1 to define
a set Wordsn(τ, η) of building blocks for the scenery which we would like to
reconstruct.
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Definition 5.1. Let c7 > 0 be chosen as in Section 2. We define Wordsn(τ, η) to
be the set of all w ∈ Cd , d ∈ [c1n/2, c1n] such that there exist positive linear
functionals gw1 and gw3 on (R5)⊗c1n with the following properties:

1. Case q �= 0:
(
gw1 ⊗ 1w ⊗ gw3

)
(µ̂n,τη [· ∩ En,dblock]) > 1 (5.2)

(gw1 ⊗ 1⊗ gw3 )(µ̂n,τη [· ∩ En,d−1
block ]) ≤ 1/(5n2) (5.3)

‖gw1 ⊗ gw3 ‖2 ≤ ec7n. (5.4)

2. Case q = 0: (5.2), (5.4), and

(gw1 ⊗ 1⊗ gw3 )(µ̂n,τη [· ∩ En,d−2
block ]) ≤ 1/(5n2). (5.5)

The output of BigAlgn is supposed to containψ in the middle and all subpieces
of length c1n/2 should be contained in a possibly bigger piece of Wordsn(τ, η).
Formally:

Definition 5.2. We define Output n(τ, η, ψ) :=
{
w ∈ C[−3·3n,3·3n] : w|[−k, k]=ψf or k=(|ψ |−1)/2 and f or all intervals I
⊂ [−3 · 3n, 3 · 3n] with |I |=c1n/2 there exists w′∈Wordsn(τ, η) such that w|I�w′

}
.

We will see in the proof of Lemma 5.2 below that under appropriate conditions,
there is precisely one element in Outputn(τ, η, ψ).

Definition 5.3. We define

BigAlgn : [0, 310αn][1,3αn] × C2·310αn ×
⋃

k≥n2

C[−k,k] → C[−3·3n,3·3n]

as follows: If Output n(τ, η, ψ) �=∅, then we define BigAlgn(τ,η,ψ) to be its lexico-
graphically smallest element. Otherwise we set BigAlgn(τ, η, ψ) :=(1)[−3·3n,3·3n].

5.2. Definitions of functionals and events

Below we will need some special linear functionals. Recall the definition of
{�x∗i }i∈[1,5] from Definition 4.4.

Definition 5.4. Let ξ ∈ CZ.

1. Let z ∈ Z be such that ξz �= ξz−1, and let B←i,z denote the ith block of
ξ↔|]−∞, z], where ξ↔ denotes the reflected scenery, defined by ξ↔y := ξ−y
for all y ∈ Z. We set

g̃
n,l
z,ξ :=

c1n⊗
i=1

(|B←i,z | + 1
) · �x∗|B←i,z |∧5

and call gn,lz,ξ := 32np−c1n−2g̃
n,l
z,ξ the left functional of ξ at z.
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2. Let z ∈ Z be such that ξz �= ξz−1, and let B→i,z denote the ith block of ξ |[z −
1,∞[. We define the right functional of ξ at z by

g
n,r
z,ξ :=

c1n⊗
i=1

(|B→i,z | + 1
) · �x∗|B→i,z |∧5.

Clearly, gn,lz,ξ and gn,rz,ξ are positive linear functionals.

Definition 5.5. Let ξ ∈ CZ.

1. Let x1 ∈ Z such that ξx1 �= ξx1−1. We call a positive linear functional g a left
limiting functional of ξ at x1 iff for all x2 > x1 with ξx2−1 �= ξx2 we have that for
allx ∈ [−3n, 3n

]
,Px,ξ (Sonl = x2) > 0 impliesg(Px,ξ (On1 ∈ ·|Sonl = x2)) = 0,

whilst g(Px,ξ (On1 ∈ ·|Sonl = x1)) > 0.
2. Let y1 ∈ Z such that ξy1 �= ξy1−1. We call a positive linear functional g a right

limiting functional of ξ at y1 iff for all y2 < y1 with ξy2 �= ξy2−1 we have that for
allx ∈ [−3n, 3n

]
,Px,ξ (Sonr = y2) > 0 impliesg(Px,ξ (On3 ∈ ·|Sonr = y2)) = 0,

whilst g(Px,ξ (On3 ∈ ·|Sonr = y1)) > 0.

In the remainder, we abbreviate

χn := χ |[0, 2 · 310αn[.

We define in alphabetical order events which will be needed below. The event
Bnblocks bd holds if the lengths of any c1n consecutive blocks are bounded in a certain

sense in a region around the origin. Bnfunctional is the event that gn,lz,ξ and gn,rz,ξ are lim-
iting functionals for all z not too large. Bn,τO2

gives bounds on the length of On2(χ).
If Bnscen ok holds, then for every word w of length c1n/2 there exist blocks to the
left and to the right of w which are close to w. Bnunique fit guarantees that all words
of length c1n/4 in a certain region of the scenery are distinct. Blocks of lengths 2
and 4 play a special role in the arguments below. Bnblocks 2,4 guarantees that there
are sufficiently many blocks of lengths 2 and 4 in the scenery. In Definition 5.12 we
introduce a convenient notation for a sequence of blocks of lengths 2 and 4.Bnsignals
denotes the event that certain sequences of blocks of lengths 2 and 4 can only be
observed to the left or to the right of a point in the scenery. Finally, En,τWords ok is the
event that all words in Wordsn(τ, χn) are contained (up to a possible reflection) in
ξ |[−33n, 33n] and Wordsn(τ, χn) contains sufficiently many words.

Definition 5.6. Let c6 > 0 be as in Section 2. Recall the definitions of B→i,z and
B←i,z from Definition 5.4. We define Bnblocks bd := Bn,→bb ∩ Bn,←bb with Bn,→bb :=
{
∀z∈
[
−2 · 33n, 2 · 33n

]
we have

c1n∏
i=1

[|B→i,z |+1]≤ec6n and
c1n∑
i=1

[|B→i,z |+2]≤8c1n

}
,

and Bn,←bb is defined by replacing “→” by “←” in the definition of Bn,→bb .
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Definition 5.7. Let c2 be as in Section 2. We define

Bnblocks 2,4 :=
{
In any sequence of c1n consecutive blocks of ξ | [−7 · 3n, 7 · 3n]
there are at least c2n blocks of length 2 or 4.

}
.

Definition 5.8. Let c7 be as in Section 2. We define Bn,τε :=
{
‖εn,τξ,S‖1 ≤ e−4c7n

}
.

Definition 5.9. We define Bnfunctional := Bn,lfunc ∩ Bn,rfunc with

B
n,l
func :=
{
For all y ∈ [−6 · 3n, 6 · 3n]with ξy �= ξy−1 the lef t f unctional at y is
a lef t limiting f unctional at y.

}
,

B
n,r
func :=
{
For all y ∈ [−6 · 3n, 6 · 3n] with ξy �= ξy−1 the right f unctional at y
is a right limiting f unctional at y.

}
.

Definition 5.10. We define the event Bn,τO2
:= Bn,τO2 small ∩ BnO2 large with

B
n,τ
O2 small := {∀k ∈ [1, 3αn

]
: |On2(θτkχ)| ≤ 3n

}
,

BnO2 large :=
{
∀ξ ∈ CZ and ∀x ∈ [−3n, 3n

]
: Px,ξ (|On2(χ)| > 3n) ≤ e−8c7n

}
.

Definition 5.11. We define Bnscen ok :=
{
For all intervals I ⊆ [−5 · 3n, 5 · 3n] of length c1n/2 there exist y, z ∈ Z such
that |y − z| < c1n, I ⊆ [y, z], ξy �= ξy−1, and ξz �= ξz−1.

}
.

Definition 5.12. Let n2,4 be the number of blocks of length 2 and 4 in the piece
of scenery ξn := ξ | [−7 · 3n, 7 · 3n]. Let B2,4

i,y be the ith block of ξ |[y − 1,∞[ of

length 2 or 4, and let C2,4
i,y be its color. We can describe the blocks of length 2 and

4 of ξn by col(ξn) := (coli (ξn) := (|B2,4
i,y |, C2,4

i,y ))i∈[1,n2,4] with y = −7 · 3n. For

R ∈ [1, n2,4]I we have col ◦ R = (colRi )i∈I . We set

ŵx,c2n,→ := col(ξn)|[x, x + c2n[, ŵx,c2n,← := (colx−i (ξn); i ∈ [0, c2n[
)

(5.6)

for all x where this makes sense. For all other x, we set ŵx,c2n,→, ŵx,c2n,← :=
((1, 1))i∈[0,c2n[. We denote by ξ̄ n the scenery obtained from ξn by replacing all 0’s
by 1’s and all 1’s by 0’s. We define w̄x,c2n,→, w̄x,c2n,← by replacing ξn by ξ̄ n in
(5.6).

Definition 5.13. We call R ∈ Z
[a,b] a nearest-neighbor path if Ri+1 − Ri ∈

{−1,+1} for all i ∈ [a, b[. We define Bnsignals := Bn,lsign ∩ Bn,rsign with

B
n,l
sign :=
{∀x ∈ [1, n2,4] ∀ nearest − neighbor path R ∈ [1, n2,4][0,c2n[ with R0 > x
we have col(ξn) ◦ R �∈ {ŵx,c2n,←, w̄x,c2n,←}

}
,

B
n,r
sign :=
{∀x ∈ [1, n2,4] ∀ nearest − neighbor path R ∈ [1, n2,4][0,c2n[ with R0 < x
we have col(ξn) ◦ R �∈ {ŵx,c2n,→, w̄x,c2n,→}

}
.

Definition 5.14. For z ∈ Z and m ∈ N we define wz,m,→ := ξ |[z, z + m[ to be
the word of length m starting at z, and we denote by wz,m,← the word obtained by
reading wz,m,→ from right to left. We define



494 H. Matzinger, S.W.W. Rolles

Bnunique fit :=
{∀z1, z2 ∈

[−33n, 33n
]
and ∀i1, i2 ∈ {←,→} with (z1, i1) �= (z2, i2)

we have wz1,i1,c1n/4 �= wz2,i2,c1n/4

}
.

Definition 5.15. We define En,τWords ok := En,τonly xi ∩ En,τall words with

E
n,τ
only xi :=

{
If w ∈Words n(τ, χn), then w � ξ |

[
−33n, 33n

]}
,

E
n,τ
all words :=

{
Ifw � ξ | [−5 · 3n, 5 · 3n] and |w| = c1n/2, then ∃w′ ∈
Words n(τ, χn) with w � w′

}
.

5.3. Combinatorics

Lemma 5.1. There exists c24 > 0 such that for all n ≥ c24 the following inclusion
holds:

E
n,τ
stop ∩ Bnblocks bd ∩ Bn,τε ∩ Bnfunctional ∩ Bnscen ok ⊆ En,τWords ok.

Proof. Let n ∈ N and suppose the events En,τstop, Bnblocks bd, Bn,τε , Bnfunctional, and
Bnscen ok hold.

First we show that En,τonly xi holds: Let w ∈ Wordsn(τ, χn). Then there exist
positive linear functionals gw1 and gw3 such that (5.2), (5.3/5.5), and (5.4) are ful-

filled. SinceBn,τε holds, it follows from (5.4) that
∥∥gw1 ⊗ gw3

∥∥
2 · ‖εn,τξ,S‖

1/2
1 ≤ e−c7n,

which is ≤ 1/(2n2) for all n sufficiently large. Consequently, the assumptions
(4.10), (4.11/4.13), and (4.12) of Theorem 4.1 are satisfied, and Theorem 4.1 implies
w � ξ | [−33n, 33n

]
for all n sufficiently large.

It remains to show that En,τall words holds: Let I ⊆ [−5 · 3n, 5 · 3n] with |I | =
c1n/2. Since Bnscen ok holds, there exist y, z such that |y − z| < c1n, I ⊆ [y, z],
ξy−1 �= ξy , and ξz �= ξz−1. For n sufficiently large, |y|, |z| ≤ 6 · 3n. We set
d := z− y + 1, w := ξ |[y, z], g1 := gw1 := gn,ly,ξ , and g3 := gw3 := gn,rz,ξ and claim
that w, g1, and g3 satisfy (5.2), (5.3/5.5), and (5.4) with η = χn which implies
w ∈Wordsn(τ, χn).

Note that ‖g ⊗ g′‖2 = ‖g‖2‖g′‖2 for any g, g′. Using this together with the
fact that Bnblocks bd holds, we obtain

‖g1⊗g3‖2 ≤ 32np−c1n−2
c1n∏
i=1

[|B→i,z |+1
] ·
[
|B←i,y |+1

]
[ max
i∈[1,5]

∥∥�x∗i
∥∥

2]2c1n

≤ 32np−2c1ne2c6n[ max
i∈[1,5]

∥∥�x∗i
∥∥

2]2c1n ≤ ec7n (5.7)

because c1n ≥ 2 and c7 ≥ 2 ln 3− 2c1 lnp+ 2c6 + 2c1 ln
[
maxi∈[1,5]

∥∥�x∗i
∥∥

2

]
(see

Section 2). Hence (5.4) is satisfied.
Next, we verify (5.3) in the case q �= 0. By the definition of µn,τξ,S , we have

µ
n,τ
ξ,S[· ∩ En,d−1

block ]�−1
1,3 =

∑
x∈[−3n,3n]

a
n,τ
S (x)Px,ξ [(On1,On3) ∈ ·, onr = onl + d − 2].
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With Au,v := {Sonl = u, Sonr = v, onr = onl + d − 2} the following holds

Px,ξ [(On1,On3) ∈ ·, onr = onl + d − 2]

=
∑

{u,v∈Z:|u−v|≤d−2}
Px,ξ
[
Au,v
]
Px,ξ [(On1,On3) ∈ ·|Au,v]

=
∑

{u,v∈Z:|u−v|≤d−2}
Px,ξ
[
Au,v
]
Px,ξ
[
On1 ∈ ·|Au,v

]⊗ Px,ξ [On3 ∈ ·|Au,v];

for the last equality we used that On1 and On3 are independent conditioned on Sonl
and Sonr . Let |u − v| ≤ d − 2 such that Px,ξ (Au,v) > 0. We cannot have simulta-
neously u ≤ y and v ≥ z because z − y = d − 1. Hence u > y or v < z. Recall
that we chose g1 = gn,ly,ξ and g3 = gn,rz,ξ . Since the event Bnfunctional holds, g1 and
g3 are left and right limiting functionals at y and z, respectively. Consequently,
g1(Px,ξ [On1 ∈ ·|Au,v]) = 0 or g3(Px,ξ [On3 ∈ ·|Au,v]) = 0, and we conclude

(g1 ⊗ 1⊗ g3)(µ
n,τ
ξ,S[· ∩ En,d−1

block ]) = 0.

Hence, because of µ̂n,τξ◦S = µn,τξ,S + εn,τξ,S and the linearity of g1 ⊗ g3, we obtain

(g1⊗1⊗g3)(µ̂
n,τ
ξ◦S[· ∩ En,d−1

block ]) = g1⊗1⊗g3(ε
n,τ
ξ,S [· ∩ En,d−1

block ])

≤ ‖g1⊗g3‖2 · ‖εn,τξ,S [· ∩ En,d−1
block ]‖2. (5.8)

Since εn,τξ,S is the difference of two probability measures and Bn,τε holds, ‖εn,τξ,S [· ∩
E
n,d−1
block ]‖22 ≤ ‖εn,τξ,S‖1 ≤ e−4c7n. Thus, using (5.8) and (5.7) yields

(g1 ⊗ 1⊗ g3)(µ̂
n,τ
ξ◦S[· ∩ En,d−1

block ]) ≤ e−c7n ≤ 1/(5n2)

for all n sufficiently large. Thus (5.3) holds.
Finally, we check that (5.2) holds for q �= 0. Note that ‖εn,τξ,S‖2 ≤ ‖εn,τξ,S‖1/21 ≤

e−2c7n because εn,τξ,S is the difference of two probability measures and Bn,τε holds.
Since µ̂n,τχ = µn,τξ,S+εn,τξ,S and (g1⊗1w⊗g3)(ε

n,τ
ξ,S ) ≤ ‖g1⊗g3‖2 ·‖εn,τξ,S‖2 ≤ e−c7n

by (5.7), we obtain

(g1⊗1w⊗g3)(µ̂
n,τ
χ [· ∩ En,dblock])≥(g1⊗1w⊗g3)(µ

n,τ
ξ,S[· ∩ En,dblock])−e−c7n.(5.9)

Since En,τstop holds,
∑
x∈[−3n,3n] a

n,τ
S (x) = 1. Hence, by the definition of µn,τξ,S , it

suffices to show that

(g1 ⊗ 1w ⊗ g3)(Px,ξ [(On1,On2,On3) ∈ ·, onr = onl + d − 1]) ≥ 2 (5.10)

for all x ∈ [−3n, 3n] because (5.10) and (5.9) imply (5.2) for all n sufficiently
large.

Let y0 and z0 denote the right end of the c1nth block of ξ↔|]∞, y] and ξ |[z,∞[,
respectively; recall ξ↔u = ξ−u. I.e. y0 is the left end of the c1nth block in ξ to the
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left of y. The following picture illustrates this for c1n = 6. The points y and z are
marked with a box.

. . . 0︸︷︷︸
y0

1101000010 1 1100001 0︸ ︷︷ ︸
ξ |[y, z]

1111001000110 1︸︷︷︸
z0

. . .

Let ônl denote the left end of the c1nth block of χ before onl (here blocks are counted
backwards), and let ônr denote the right end of the c1nth block of χ after onr . Recall
the definitions of B←i,y and B→i,z from Definition 5.4. We observe

Px,ξ
[(

On1,On2,On3
) ∈ ·, onr = onl + d − 1

]
(5.11)

≥ Px,ξ
[(

On1,On2,On3
) ∈ ·, onr =onl +d−1, Sônl =y0, Sonl

=y, Sonr =z, Sônr =z0

]

= pPx,ξ
[
Sônl
= y0

] c1n⊗
i=1

λ
|B←i,y |
r h−1

⊗[
pdδw

] c1n⊗
i=1

λ
|B→i,z |
r h−1.

Decomposing (5.11) according to the different possible values for Sonl and Sonr and
using Remark 4.2, we obtain

(g1 ⊗ 1w ⊗ g3)(Px,ξ [(On1,On2,On3) ∈ ·, onr = onl + d − 1])

≥ (g1 ⊗ 1w ⊗ g3)
(
pPx,ξ

[
Sônl
= y0

] c1n⊗
i=1

λ
|B←i,y |
r h−1

⊗
[pdδw]

c1n⊗
i=1

λ
|B→i,z |
r h−1

)

= 32np−c1n+d−1Px,ξ [Sônl = y0]
c1n∏
i=1

(
[|B←i,y | + 1] · �x∗|B←i,y |∧5(λ

|B←i,y |
r h−1)

)

·
c1n∏
i=1

(
[|B→i,z | + 1] · �x∗|B→i,z |∧5(λ

|B→i,z |
r h−1)

)

≥ 32np−1Px,ξ [Sônl = y0]; (5.12)

for the last estimate we used d ≤ c1n and the fact that �x∗m∧5

(
λmr h

−1
) ≥ (m+ 1)−1

for all m ≥ 1 by Remark 4.1. Recall the definition of onl . We have that ônl is the

left end of the first block of θ32n
(ξ ◦ S). If S32n = y0 and S32n+1 = y0 + 1, then

Sônl
= y0. (Recall that a block of ξ starts at y0.) Using this and the local central

limit theorem (see e.g. [5] Theorem (5.2), page 132) yields

32np−1Px,ξ [Sônl = y0] ≥ 32np−1Px,ξ [S32n = y0, S32n+1 = y0 + 1]

= 32nPx,ξ [S32n = y0] ≥ c2532n3−n = c253n ≥ 2

for all n ≥ c26 with constants c25, c26 > 0 independent of x ∈ [−3n, 3n
]

and y0;
recall that |y0| ≤ 7 · 3n for all n sufficiently large because Bnblocks bd holds. The
estimate (5.10) follows from (5.12).

In the case q = 0, the above proof can be easily adapted. ��
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Lemma 5.2. There exists c27 > 0 such that for all n ≥ c27 the following inclusion
holds:

E
n,τ
Words ok ∩ Bnunique fit ⊆ En,τrecon Big.

Proof. Let n ∈ N, and supposeEn,τWords ok andBnunique fit hold. Letψ ∈ ∪k≥n2C[−k,k]

with ψ � ξ |[−3n, 3n]. There exist a ∈ [−3n, 3n] and b ∈ {−1, 1} such that

ψj = ξa+bj and a + bj ∈ [−3n, 3n
]

for all j ∈ [−k, k]. (5.13)

We argue that w := (ξa+bj )j∈[−3·3n,3·3n] ∈ Outputn(τ, χn, ψ): By (5.13), ψ =
w|[−k, k]. Let I ⊆ [−3·3n, 3·3n] be an integer interval with |I | = c1n/2. Then the
image of I under the map j �→ a+bj is again an integer interval, which is contained
in
[−5 · 3n, 5 · 3n] for all n sufficiently large because |a| ≤ 3n and c1n/2 ≤ 3n for

all n sufficiently large. SinceEn,τall words holds, there existsw′ ∈Wordsn(τ, χn)with
w|I � w′. Hence w ∈ Outputn(τ, χn, ψ). In particular, Outputn(τ, χn, ψ) �= ∅.

It remains to show ξ | [−3n, 3n
] � w � ξ |[−4 · 3n, 4 · 3n] for all w ∈

Outputn(τ, χn, ψ). Let w ∈ Outputn(τ, χn, ψ). Then w|[−k, k] = ψ , and con-
sequently, by (5.13),

wj = ξa+bj (5.14)

for all j ∈ [−k, k]. Suppose we prove (5.14) for all j ∈ [−3 · 3n, 3 · 3n]. Then
there is precisely one element in Outputn(τ, χn, ψ). Sinceψ � ξ |[−3n, 3n], there
are more than 2 · 3n letters to the left and to the right of ψ in w, and consequently
ξ |[−3n, 3n] � w. On the other hand, in w, there are less than 3 · 3n letters to the
left and to the right of ψ . Hence w � ξ |[−4 · 3n, 4 · 3n].

Thus, to finish the proof, it suffices to verify (5.14) for all j ∈ [−3 · 3n, 3 · 3n].
Suppose we know (5.14) for all j ∈ [−s, s] for some s ∈ [k, 3 · 3n − 1

]
. This

assumption is true for s = k. We set Il := [−s − 1,−s − 1 + c1/2[, Ir :=
]s + 1 − c1n/2, s + 1], wl := w|Il , and wr := w|Ir . Note that wl and wr have
both precisely c1n/2 − 1 points in common with w|[−s, s]; wl and wr extend
w|[−s, s] one letter to the left and to the right, respectively. The words wl and
wr are well defined because c1n/2 ≤ |ψ | = 2k + 1 for all n sufficiently large.
Sincew ∈ Outputn(τ, χn, ψ), there existw′l , w

′
r ∈Wordsn(τ, χn)withwl � w′l ,

wr � w′r . Using that En,τonly xi holds, we see that wl,wr � ξ |
[−33n, 33n

]
.

Suppose (5.14) does not hold for j = −s − 1. Let Il,ξ denote the image of Il
under the map j �→ a + bj . Then ξ |Il,ξ �= wl ; more precisely, ξ |Il,ξ and wl dis-
agree in precisely one point, namely the leftmost point. Thus we found two words
of length c1n/2 in ξ |[−33n, 33n] which disagree in precisely one point. Conse-
quently, there exist z, z′ ∈ [−33n, 33n

]
, i, i′ ∈ {←,→} with (z, i) �= (z′, i′) such

that ξ |Il,ξ = wz,i,c1n/2 andwl = wz′,i′,c1n/2. If we restrictwz,i,c1n/2 andwz′,i′,c1n/2
to the last c1n/4 letters, we obtain two words of length c1n/4 in ξ | [−33n, 33n

]
,

and these two words agree. This contradicts the fact that the event Bnunique fit holds.
Thus (5.14) holds for j = −s − 1.

To see that (5.14) holds for j = s + 1, one applies the above argument with
w̄ defined by w̄j := w−j for j ∈ [−3 · 3n, 3 · 3n] in place of w. By the induction
principle, (5.14) holds for all j ∈ [−3 · 3n, 3 · 3n]. ��



498 H. Matzinger, S.W.W. Rolles

Lemma 5.3. There exists c28 such that for all n ≥ c28 the following inclusion
holds:

Bnblocks bd ∩ Bnblocks 2,4 ∩ Bnsignals ⊆ Bnfunctional.

Proof. The proof will be done by contradiction. Suppose the events Bnblocks bd,

Bnblocks 2,4, and Bnsignals hold, but Bnfunctional = Bn,lfunc ∩Bn,rfunc does not hold. Suppose

B
n,r
func does not hold. Then there exists y ∈ [−6 · 3n, 6 · 3n]with ξy �= ξy−1 such that

the right functional at y is not a right limiting functional at y, i.e. there exist y1 < y

with ξy1 �= ξy1−1 and x ∈ [−3n, 3n
]

such that gξ,ny,r (Px,ξ (On3 ∈ ·|Sonr = y)) = 0 or

both Px,ξ (Sonr = y1) > 0 and gξ,ny,r (Px,ξ (On3 ∈ ·|Sonr = y1)) �= 0 hold.
Let R be an admissible piece of path. If ξ ◦ R consists of precisely k blocks,

we say that R generates k blocks on ξ . We denote by ξ |[bRi,l, bRi,r ] the block of ξ on

which the ith block of ξ ◦R is generated. IfRbRi,l
= RbRi,r , we set jRi := l, otherwise

we set jRi := r . We abbreviate lRi := bRi,r − bRi,l − 1. Using this notation, we have

Px,ξ (O
n
3 ∈ ·, Sonr = y) =

∑
(li ,ji )

c1n⊗
i=1

λ
li
ji
h−1, (5.15)

where the sum is taken over all (li , ji)i∈[1,c1n] ∈ (N× {l, r})[1,c1n] such that there
exists an admissible piece of path R starting at y which generates blocks with
(lRi , j

R
i ) = (li , ji). SinceBnblocks bd holds, the path which starts at y and walks 6c1n

(which is ≤ 3n for all n sufficiently large) steps to the right generates at least c1n

blocks on ξ , namely B→i,y , i ∈ [1, c1n]. Consequently, by the definition of the right

functional of ξ at y and Remark 4.1, we have gξ,ny,r (Px,ξ (On3 ∈ ·, Sonr = y)) > 0.

Hence, by our assumption, Px,ξ (Sonr = y1) > 0 and gξ,ny,r (Px,ξ (On3 ∈ ·|Sonr =
y1)) �= 0. Writing Px,ξ (On3 ∈ ·, Sonr = y1) as a sum as in (5.15), we see that for
at least one admissible piece of path R starting at y1 and generating at least c1n

blocks on ξ we have gξ,ny,r (⊗c1n
i=1λ

lRi

jRi
h−1) > 0. Inserting the definition of gξ,ny,r , we

obtain

0 < gξ,ny,r

( c1n⊗
i=1

λ
lRi

jRi
h−1
)
=

c1n∏
i=1

[|B→i,y | + 1] · �x∗|B→i,y |∧5

(
λ
lRi

jRi
h−1
)
.

By Remark 4.1, �x∗2 (λmi h−1) �= 0 iff i = r and m = 2, and also, �x∗4 (λmi h−1) �= 0
iff i = r and m = 4. Furthermore, x∗i (λ

2
r ) = 0 and x∗i (λ

4
r ) = 0 for i ∈ {1, 3, 5}.

Thus |B→i,y | ∈ {2, 4} iff lRi ∈ {2, 4} and R crosses the block B→i,y from left to right.

Since |y| ≤ 6 · 3n and Bnblocks bd holds, we have B→i,y � ξ |
[−7 · 3n, 7 · 3n] for all n

sufficiently large and i ∈ [1, c1n]. Using that Bnblocks 2,4 holds, we see that at least
c2n of the blocks B→i,y , i ∈ [1, c1n], have length 2 or 4. Hence there are ≥ c2n

blocks with lRi ∈ {2, 4}.
Clearly, the color of two successive blocks in ξ , and also in the observations,

must be different. Hence the colors of the blocks of length 2 or 4 among the first
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c1n blocks of ξ ◦R either all agree with the colors of the blocks B→i,y , i ∈ [1, c1n],
of length 2 or 4 or they have all the opposite color. But this contradicts the fact that
B
n,r
sign holds. A similar argument shows that the assumption that Bn,lfunc holds leads

to a contradiction. ��

5.4. Probabilistic estimates

In this section, we prove that the complements of all the basic events Bn... defined in
Section 5.2 have a probability which is exponentially small in n; for some events
this is only true under the assumption thatEn,τstop holds. We treat the events in alpha-
betical order.

Lemma 5.4. There exist c29, c30 > 0 such that for all n ≥ c29

P
([
Bnblocks bd

]c) ≤ 2e−c30n.

Proof. By the definition of Bnblocks bd = Bn,→bb ∩ Bn,←bb ,

[
B
n,→
bb

]c =
⋃

z∈[−2·33n,2·33n]

{ c1n∏
i=1

[|B→i,z | + 1] > ec6n
}
∪
{ c1n∑
i=1

[|B→i,z | + 2] > 8c1n
}
.

For each z, the block lengths |B→i,z |, i ≥ 1, are i.i.d. with P(|B→i,z | = k) = 2−k ,
k ≥ 1; in particular E|B→i,z | = 2. By Chebyshev’s inequality, we obtain

P
( c1n∏
i=1

[|B→i,z | + 1] > ec6n
)
≤ e−c6nE

( c1n∏
i=1

[|B→i,z | + 1]
)
= 3c1ne−c6n.

Furthermore, by the large deviation principle, we have

P
( c1n∑
i=1

[|B→i,z | + 2] > 8c1n
)
= P
( c1n∑
i=1

|B→i,z | > 6c1n
)
≤ e−c1nI (6)

with the rate function I (x) = (x − 1) ln(x − 1) + x ln(2/x). Since I (6) > 1, we
conclude

P([Bn,→bb ]c) ≤ (4 · 33n + 1)
[
3c1ne−c6n + e−c1n

] ≤ e−c30n

for some constant c30 > 0 for all n sufficiently large; here we used that c6 − (c1 +
4) ln 3 > 0 by our choice of c6 and c1 > 4 ln 3. The same estimate holds for
P([Bn,←bb ]c). ��

Lemma 5.5. There exist c31 > 0 such that for all n ∈ N

P
([
Bnblocks 2,4

]c) ≤ 14e−c31n.
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Proof. Recall that for all z, the block lengths |B→i,z |, i ≥ 1, are i.i.d. withP(|B→i,z | =
k) = 2−k , k ≥ 1. Hence P(|B→i,z | ∈ {2, 4}) = 2−2 + 2−4 = 5/16. Let Yk , k ≥ 1,

be i.i.d. Bernoulli with parameter 5/16, and let J (x) := (1 − x) ln
( 16(1−x)

11

) +
x ln
( 16x

5

)
. By the large deviation principle (see e.g. [5]), P(

∑c1n
k=1 Yk ≤ c1n/4) ≤

e−J (1/4)c1n. Since c2 < c1/4 and there are at most 14 · 3n sequences of c1n con-
secutive blocks in ξ | [−7 · 3n, 7 · 3n], we have

P
([
Bnblocks 2,4

]c) ≤ 14 · 3ne−J (1/4)c1n ≤ 14e−c31n

because J (1/4)c1 − ln 3 > 0. ��

Recall that 3αnan,τS (x) equals the number of stopping times τk , k ∈
[
1, 3αn
]
,

with Sτk = x. The following lemma, which will be needed in the proof of Lemma
5.8, states that with very high probability, the stopping times stop often in x provided
the event En,τstop holds.

Lemma 5.6. There exists c32 > 0 such that for all n ≥ c32

P
(
E
n,τ
stop ∩

⋃
x∈[−3n,3n]

{
3αnan,τS (x) ≤ 317c1ne16c7n

} )
≤ e−n.

Proof. The proof is very similar to the proof of Lemma 6.14 in [24]. In the nota-
tion of [24], the estimate holds whenever α > 1 + γ − [3c1 lnp]/ ln 3 with γ :=
17c1 + 16c7/ ln 3, which is satisfied by our choice of α (see Section 2). ��

The following basic large deviation estimate will be needed below.

Lemma 5.7. Let Xi , i ≥ 1, be i.i.d. Bernoulli with parameter δ, and let σm :=∑m
i=1Xi . There exists a constant c33 > 0 such that for all m ∈ N and all a > 0

P(σm ≥ m(a + δ)) ≤ e−c33ma
2
.

Proof. By the large deviation principle (see e.g. [5]), we haveP(σm ≥ m(a+δ)) ≤
e−mIδ(a+δ) with the rate function Iδ(a) = a ln

(
a
δ

)+ (1−a) ln
(

1−a
1−δ
)

. One verifies

that Iδ(a + δ) ≥ c33a
2 for all δ ∈]0, 1[ and a ∈]0, 1− δ[ with a constant c33 > 0

independent of δ and a. ��

Lemma 5.8. There exist constants c34, c35, c36 > 0 such that

P
(
E
n,τ
stop \ Bn,τε

)
≤ c35e

−c36n for all n ≥ c34.

Proof. We define for x ∈ [−3n, 3n
]

µ̂
n,τ
x,ξ◦S := [3αnan,τS (x)

]−1 ∑
k∈[1,3αn]

1{Sτk = x}δOn(θτk χ),
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i.e. µ̂n,τx,ξ◦S is the empirical distribution of the On collected after times τk with

Sτk = x. Suppose the event En,τstop holds. Then |Sτk | ≤ 3n for all k ∈ [1, 3αn
]
, and

consequently

ε
n,τ
ξ,S =

∑
x∈[−3n,3n]

a
n,τ
S (x)
[
µ̂
n,τ
x,ξ◦S − Px,ξ

[
On(χ)
]−1
]
.

By the triangle inequality,

‖εn,τξ,S‖1 ≤
∑

x∈[−3n,3n]

a
n,τ
S (x)

∥∥∥µ̂n,τx,ξ◦S − Px,ξ
[
On(χ)
]−1
∥∥∥

1
. (5.16)

Let S denote the set of possible states of the random variable On(χ) if |On2(χ)| ≤
3n, and let S ′ be the set of possible states of On(χ) if |On2(χ)| > 3n. Recall that
On = (On1,On2,On3)where On1, On3 ∈ {1, 2, . . . , 5}c1n and On2 is the concatenation of
a word of length < c1n/2 with a block. Consequently, |S| ≤ 52c1n2c1n3n ≤ 28c1n.

Recall the definition of Bn,τO2
from Definition 5.10. Clearly,

P
(
E
n,τ
stop \ Bn,τε

)
≤ P
([
E
n,τ
stop ∩ Bn,τO2

]
\ Bn,τε
)
+ P
(
E
n,τ
stop \ Bn,τO2

)
. (5.17)

We split the sum in (5.16) in two parts. Let

Jseldom :=
{
x∈[−3n, 3n

]
: 3αnan,τS (x)≤3n|S|2e16c7n

}
, Joften :=[−3n, 3n

]\Jseldom.

By the definition of Jseldom, we have
∑

x∈Jseldom

a
n,τ
S (x)

∥∥∥µ̂n,τx,ξ◦S−Px,ξ
[
On(χ)
]−1
∥∥∥

1
≤32n3(1−α)n216c1ne16c7n≤e−8c7n,

(5.18)

where the last inequality follows from our choice of α. Next, we define the event
that the contribution to ‖εn,τξ,S‖1 coming from On = s ∈ S is small: We set for

x ∈ [−3n, 3n
]

and s ∈ S

B
n,τ,s
x often :=

{
If x∈Joften, then

∣∣∣µ̂n,τx,ξ◦S({s})−Px,ξ
[
On(χ)
]−1

({s})
∣∣∣≤|S|−1e−8c7n

}
.

If the event ∩x∈[−3n,3n] ∩s∈S Bn,τ,sx often holds, then

∑
x∈Joften

a
n,τ
S (x)
∑
s∈S

∣∣∣µ̂n,τx,ξ◦S({s})− Px,ξ
[
On(χ)
]−1

({s})
∣∣∣ ≤ e−8c7n. (5.19)

If the event Bn,τO2
holds, then µ̂n,τx,ξ◦S({s}) = 0 for all s ∈ S ′ and consequently,

∑
x∈Joften

a
n,τ
S (x)
∑
s∈S ′

∣∣∣µ̂n,τx,ξ◦S({s})− Px,ξ
[
On(χ)
]−1

({s})
∣∣∣

≤
∑

x∈Joften

a
n,τ
S (x)Px,ξ (|On2(χ)| > 3n) ≤ e−8c7n.
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Combining the last estimate with (5.19) and (5.18), we obtain

E
n,τ
stop ∩ Bn,τO2

∩
⋂

x∈[−3n,3n]

⋂
s∈S

B
n,τ,s
x often ⊆ En,τstop ∩ Bn,τO2

∩
{
‖εn,τξ,S‖1 ≤ 3e−8c7n

}

⊆ En,τstop ∩ Bn,τO2
∩ Bn,τε

for all n sufficiently large. Hence, using � = {x ∈ Jseldom} ∪ {x ∈ Joften}, we
obtain

P
([
E
n,τ
stop ∩ Bn,τO2

]
\ Bn,τε
)
≤ P
(
E
n,τ
stop ∩ Bn,τO2

∩
⋃

x∈[−3n,3n]

⋃
s∈S

[
B
n,τ,s
x often

]c) (5.20)

≤ P
(
E
n,τ
stop ∩

⋃
x∈[−3n,3n]

{x ∈ Jseldom}
)

+P
( ⋃
x∈[−3n,3n]

⋃
s∈S

[{x ∈ Joften} \ Bn,τ,sx often

] )

≤ P
[
E
n,τ
stop ∩

⋃
x∈[−3n,3n]

{x ∈ Jseldom}
]

+32n|S| max
x∈[−3n,3n],s∈S

P
[
{x ∈ Joften} \ Bn,τ,sx often

]
.

It follows from |S| ≤ 28c1n and Lemma 5.6 that for all n ≥ c32

P
[
E
n,τ
stop ∩

⋃
x∈[−3n,3n]

{x ∈ Jseldom}
]

≤ P
[
E
n,τ
stop ∩

⋃
x∈[−3n,3n]

{
3αnan,τS (x) ≤ 317c1ne16c7n

} ]

≤ e−n. (5.21)

We introduce the stopping times τxk when the random walker is at x: τx1 :=
min{τi : i ∈ [1, 3αn

]
, Sτi = x}, τxk+1 := min

{
τi > τxk : i ∈ [1, 3αn

]
, Sτi = x

}
.

The random variables χ | [τxk + 32n, τ xk + 33n
[
, k ∈ [1, j ], are i.i.d. conditioned on

E
n,τ
stop. Hence, by the definition of µ̂n,τx,ξ◦S , P

(
{x ∈ Joften} \ Bn,τ,sx often|En,τstop

)
equals

a large deviation probability for sums of Bernoulli random variables and we can
apply Lemma 5.7 with m = 3αnan,τS (x) > 3n|S|2e16c7n and a = |S|−1e−8c7n.
Since for this choice, ma2 > 3n we obtain

P
({x ∈ Joften} \ Bn,τ,sx often

) ≤ exp(−c333n). (5.22)

Combining (5.20) with (5.21), |S| ≤ 28c1n, and (5.22), we conclude

P
([
E
n,τ
stop ∩ Bn,τO2

]
\ Bn,τε
)
≤ 2e−n (5.23)

for all n ≥ c34 with some constant c34 ≥ c32. The claim of the lemma follows from
(5.17), (5.23), and Lemma 5.10. ��
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Lemma 5.9. There exist c37, c38, c39 > 0 such that for all n ≥ c37

P
(
[Bnfunctional]

c
) ≤ c38e

−c39n.

Proof. By Lemma 5.3, Bnfunctional ⊆
[
Bnblocks bd

]c ∪
[
Bnblocks 2,4

]c ∪
[
Bnsignals

]c
. The

claim follows immediately from Lemmas 5.4, 5.5, and 5.12. ��

Lemma 5.10. There exist c40, c41, c42 > 0 such that for all n ≥ c40

P
(
E
n,τ
stop \ Bn,τO2

)
≤ c41e

−c42n.

Proof. Clearly,

P
(
E
n,τ
stop \ Bn,τO2

)
≤ P
([
E
n,τ
stop ∩ Bnblocks bd

]
\ Bn,τO2

)
+ P ([Bnblocks bd

]c)
. (5.24)

Recall that Bn,τO2
= Bn,τO2 small ∩ BnO2 large. By definition,

P
([
E
n,τ
stop ∩ Bnblocks bd

]
\ Bn,τO2 small

)

≤ 3αn max
x∈[−3n,3n]

Px(B
n
blocks bd ∩ {|On2(χ)| > 3n})

= 3αn max
x∈[−3n,3n]

Ex
[
1Bnblocks bdPx,ξ (|On2(χ)| > 3n)

]
. (5.25)

Let x ∈ [−3n, 3n
]
. Suppose the random walk starts at x and |On2(χ)| > 3n. Then

χ | [0, 33n
[

contains a block of length≥ 3n− c1n and this block must be generated
on ξ | [−2 · 33n, 2 · 33n

]
. If Bnblocks bd holds, all blocks of ξ | [−2 · 33n, 2 · 33n

]
have

length ≤ 6c1n. Consequently, the random walk stays time t ≥ 3n − c1n in an
interval I of length ≤ 6c1n. It is known (see e.g.[23], Lemma 5.2) that

P(Si ∈ I for all i ∈ [0, t[) ≤ c43 exp(−c44t/|I |2)

with constants c43, c44 > 0. Thus it follows from (5.25)

P
([
E
n,τ
stop ∩ Bnblocks bd

]
\ Bn,τO2 small

)
≤ c433αn exp

[
− c44[3n − c1n]

36c2
1n

2

]

≤ e−n (5.26)

for alln sufficiently large. Furthermore, by the above argument,
[
E
n,τ
stop∩Bnblocks bd

]
\

BnO2 large = ∅ for all n sufficiently large. Thus P
([
E
n,τ
stop ∩ Bnblocks bd

]
\ Bn,τO2

)
≤

e−n for all n sufficiently large. The claim follows from (5.24) and Lemma 5.4. ��

Lemma 5.11. There exist c45, c46 > 0 such that for all n ≥ c45

P
([
Bnscen ok

]c) ≤ 12e−c46n.
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Proof. It is not hard to see that for all n sufficiently large, Bnscen ok contains the
event
{
All blocks of ξ | [−6 · 3n, 6 · 3n] have length ≤ c1n/4

}
. Consequently,

P
([
Bnscen ok

]c) ≤ P (∃ block of ξ | [−6 · 3n, 6 · 3n] of length > c1n/4
)

≤ 12 · 3n · 2−c1n/4;

here we used that there are≤12·3n possible left endpoints for a block in ξ |[−6·3n,
6 · 3n] and that the probability that a block starting at x has length > c1n/4 equals
2−c1n/4 because the scenery is i.i.d. uniformly colored. The claim follows because
c1 > 4 ln 3/ ln 2. ��

Lemma 5.12. There exists c47 > 0 such that for all n ∈ N

P
([
Bnsignals

]c) ≤ 60e−c47n.

Proof. Recall the notation introduced in Definitions 5.12 and 5.13. Let y := −7·3n.
The sequence (|B2,4

i,y |, C2,4
i,y )i≥1 is a Markov chain underP with time-homogeneous

transition probabilities. The block lengths (|B2,4
i,y |)i≥1 are i.i.d. with P(|B2,4

i,y | =
2) = 2−2/(2−2 + 2−4) = 4/5 and P(|B2,4

i,y | = 4) = 1/5 and independent of

the colors (C2,4
i,y )i≥1. Note that C2,4

i,y �= C2,4
i+1,y iff between B2,4

i,y and B2,4
i+1,y there

are 2k blocks of length 1, 3, or 5 for some k ≥ 0. Recall the definition of B→i,y
from Definition 5.4. Let p2,4 := P(|B→i,y | ∈ {2, 4}) = 2−2 + 2−4 = 5/16 and set
q2,4 := 1− p2,4 = 11/16. Then

P(C
2,4
i,y �= C2,4

i+1,y) =
∞∑
k=0

q2k
2,4p2,4 = p2,4

1− q2
2,4

= 1

1+ q2,4
= 16

27

and P(C2,4
i,y = C2,4

i+1,y) = 11/27. Hence the one-step transition probabilities of the

Markov chain coli (ξn), i ≥ 1, are ≤ 4
5 · 16

27 = 64
135 <

1
2 .

Let x ∈ [1, n2,4], let R ∈ [1, n2,4][0,c2n[ be a nearest-neighbor path with
R0 < x, and let w ∈ {ŵx,c2n,→, w̄x,c2n,→}, w = (wi)i∈[0,c2n[. We set Hk :=
σ(coli (ξn); i ∈ [1, k]). Clearly, wk ∈ Hx+k . Since R is a nearest-neighbor path,
Rk < x + k for all k; hence colRk ∈ Hx+k−1 for all k. Using that wk , k ∈ [0, c2n[,
is a Markov chain with the above specified transition probabilities, we obtain

P(col(ξn) ◦ R = w) = P(coli (ξ
n) = wi ∀i ∈ [0, c2n[)

≤
c2n−2∏
i=0

P(coli+1(ξ
n) = wi+1|coli (ξ

n) = wi)

≤
( 64

135

)c2n−1
.
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There are n2,4 ≤ 14 · 3n possibilities to choose x and 2c2n−1 possibilities to choose
R. Thus, by the definition of Bn,rsign,

P
([
B
n,r
sign

]c) ≤ 2 · 14 · 3n2c2n−1 ·
( 64

135

)c2n−1

≤ 30 · 3n2c2n
( 64

135

)c2n

≤ 30e−c47n

for some constant c47 > 0 because 64/135 < 1/2 and c2 > ln 3/(ln(135/128)).
The same estimate holds for Bn,lsign, and the claim follows from the definition of

Bnsignals = Bn,lsign ∩ Bn,rsign. ��
Lemma 5.13. There exists c48 > 0 such that for all n ∈ N

P
([
Bnunique fit

]c) ≤ 4e−c48n.

Proof. Let z1, z2 ∈
[−33n, 33n

]
and i1, i2 ∈ {←,→} with (z1, i1) �= (z2, i2).

For k = 1, 2, we set ok := +1 if ik =→, ok := −1 if ik =←, and we define
fk(j) := zk + okj for j ∈ [0, c1n/4[. As is shown in the proof of Lemma 6.8 of
[24], there exists a subset J ⊆ [0, c1n/4[ of cardinality |J | ≥ c1n/12 such that
f1(J ) ∩ f2(J ) = ∅. Consequently,

P(wz1,i1,c1n/4 = wz2,i2,c1n/4) ≤ P(wz1,i1,c1n/4|f1(J ) = wz2,i2,c1n/4|f2(J ))

= 2−c1n/12.

Since there are ≤ (2 · 33n + 1)2 ≤ 38n possibilities to choose z1 and z2 and ≤ 4
possibilities to choose i1 and i2, we conclude

P
([
Bnunique fit

]c) ≤ 4 · 38n2−c1n/12 ≤ 4e−c48n

for some constant c48 > 0 because c1 > 96 ln 3/ ln 2. ��

5.4.1. Proof of Theorem 3.1

Proof of Theorem 3.1 Combining Lemmas 5.2, 5.1, and 5.3 we obtain

E
n,τ
stop ∩ Bnblocks bd ∩ Bnblocks 2,4 ∩ Bn,τε ∩ Bnfunctional ∩ Bnscen ok ∩ Bnsignals ∩ Bnunique fit

⊆ En,τrecon Big

for all n sufficiently large. Hence

E
n,τ
stop \ En,τrecon Big ⊆

[
Bnblocks bd

]c ∪ [Bnblocks 2,4

]c ∪
[
E
n,τ
stop \ Bn,τε

]
∪ [Bnfunctional

]c

∪ [Bnscen ok

]c ∪
[
Bnsignals

]c ∪
[
Bnunique fit

]c
.

The claim follows from Lemmas 5.4, 5.5, 5.8, 5.9, 5.11, 5.12, and 5.13. ��
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