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Abstract. Benjamini asked whether the scenery reconstruction methods of Matzinger (see
e.g. [21], [22], [20]) can be done in polynomial time. In this article, we give the following
answer for a 2-color scenery and simple random walk with holding: We prove that a piece
of the scenery of length of the order 3" around the origin can be reconstructed — up to a
reflection and a small translation — with high probability from the first 2 - 3!%" observations
with a constant « > 0 independent of n. Thus, the number of observations needed is poly-
nomial in the length of the piece of scenery which we reconstruct. The probability that the
reconstruction fails tends to 0 as n — oo.

In contrast to [21], [22], and [20], the proofs in this article are all constructive. Our
reconstruction algorithm is an algorithm in the sense of computer science. This is the first
article which shows that the scenery reconstruction is also possible in the 2-color case with
holding. The case with holding is much more difficult than [22] and requires completely
different methods.

1. Introduction and Result

A scenery is a coloring of Z with finitely many colors. We call two sceneries &
and &' equivalent, ¢ ~ &', if & = & o T where T is a translation, a reflection,
or the composition of both. Let § := (Si)reN, be a recurrent random walk on
Z. Observing the scenery along the random walk path, we obtain the color record
X = (Xk := &(Sk))keN,- The scenery reconstruction problem asks the follow-
ing question: Given the color record x, can we reconstruct the scenery & up to
equivalence?

Early questions about random sceneries were raised by Benjamini and Kesten
and, independently, by Keane and den Hollander. Their investigations were moti-
vated among others by work of Kalikow [11] on the 7, 7~! transformation. More
recently, den Hollander and Steif [3] and Hoffman [7] generalized Kalikow’s results.
Early work on random sceneries include articles of Benjamini and Kesten [1], den
Hollander [4], Howard ([8], [9], [10]), Keane and den Hollander [12], Kesten [13],
and Lindenstrauss [17]. More recent contributions are due to Burdzy [2], Heicklen,
Hoffman, and Rudolph [6], Levin, Pemantle and Peres [15], Levin and Peres [16].
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We refer the reader to [14] and the introductions of [25] and [24] for more details.
Various contributions to the subject of scenery reconstruction have been made by
Matzinger ([21],[22]), Lowe and Matzinger ([18], [19]), Lowe, Matzinger, and Mer-
kl [20], Matzinger and Rolles [24]. In these papers, the scenery is taken random,
independent of the random walk, and it is shown that for almost all realizations of
the random walk path, almost all sceneries can be reconstructed up to equivalence.

The scenery reconstruction algorithms in [21], [22], [18], [19], [20], and [24] do
not work in polynomial time. Benjamini asked whether some of these reconstruc-
tions can be done in polynomial time. In this article, we give the following answer
to Benjamini’s question: Let & := (&;)rez With & i.i.d. uniform on {0, 1}, and let
S = (Sk)ken, be a simple random walk with holding on Z, independent of &. We
prove that in order to reconstruct — up to a reflection and a small translation — with
high probability a piece of scenery of length of the order 3" around the origin, we
need only the observations up to time p(3") with a polynomial p, independent of n.

In order to reconstruct the whole scenery, we need infinitely many observations
because the scenery is infinite. In finite time, we can never reconstruct with prob-
ability 1 a piece of scenery of length > 2. As a matter of fact, the random walk
stays with positive probability at the origin. Hence, we mean by reconstruction in
polynomial time that there exist algorithms A,, n > 1, with the following proper-
ties: A, obtains as input finitely many observations, namely x|[0, 2 - 31%¢"[ with
a constant @ > 0 and produces an output of length of the order 3”. The probability
that the reconstruction succeeds, in the sense that the output is — up to a reflection
and a small translation — a piece of the scenery around the origin, tends to 1 as
n — oo. The number of observations needed is polynomial in the length of the
reconstructed piece of scenery. Since the scenery is assumed to be i.i.d., with prob-
ability 1 every finite piece of scenery occurs somewhere in the scenery. Thus it is
crucial to reconstruct something close to the origin.

Formally, our result can be described as follows: Let C := {0, 1} denote the set
of colors. For two pieces of scenery v and ¥’ (not necessarily of the same length),
we write ¥ < v’ if ¥ is up to a possible reflection contained in v/’. We prove:
Theorem 1.1. There exist constants «, ¢3, c4, ¢cs > 0 and maps A, : ¢33t
C[_3'3"’3'3n], n > c3, which are measurable with respect to the canonical o -alge-
bras, such that for all n > c3, the event

Eni={€l1-3"3" = A, (x110,2-3%"]) < g][—4-3", 43"

satisfies P ([En]°) < caexp (—C5n0'2).

Asaconsequence of Theorem 1.1 the whole scenery can be reconstructed almost
surely:

Theorem 1.2. There exists a map A : cNo — CZ \vhich is measurable with
respect to the canonical o -algebras, such that P (A(x) ~ &) = 1.

The present article is the first article which solves the scenery reconstruction
problem in the case of two colors and simple random walk with holding. We call
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this case the semi-combinatorial case. On the piece of scenery 01, the random
walker can produce every pattern by jumping back and forth or staying. Thus, at
many places in the scenery, the random walk can produce every possible pattern in
the observations. This makes the semi-combinatorial case much more difficult than
the combinatorial case, where with high probability words of length cin (with a
constant ¢; > 0) are characteristic for certain parts of the scenery. Examples of the
combinatorial case are the following articles: [22], where an i.i.d. 2-color scenery
is observed along a simple random walk, [18], where a 2-dimensional scenery with
many colors is observed along a simple random walk, and [20], where a scenery
with sufficiently many colors is observed along a random walk on Z with bounded
jumps. In the semi-combinatorial case, it is much more difficult than in the com-
binatorial case to reconstruct small pieces of the scenery. The methods used below
are completely different from the techniques developed in earlier articles.

The remainder of the article is organized as follows: Section 2 collects some
notation. In Section 3, we show how Theorem 1.2 follows from Theorem 1.1.
Since the definition of the maps .4, which fulfill the claim of Theorem 1.1 is quite
involved, the construction is split into several steps. In Section 3, we state the results
needed for the construction of the A,. The crucial step consists in finding small
words in the scenery; this is done in Section 4. The second important step is the
construction of a partial reconstruction algorithm BigAlg” which is treated in Sec-
tion 5. In addition, we need a small piece of the scenery to get the reconstruction
started and also sequences of stopping times indicating when the random walker
is close to the origin. These results are proved in [23]. At the end of Section 3, we
show how the results of Sections 4 and 5 together with the results from [23] imply
Theorem 1.2.

The following diagram is a guide to the proofs of Theorems 1.2 and 1.1:

Proved in [23]
Central part:
Reconstructing Finding an Reconstructing  a Stopping close
words: initial block: = | small piece: = | to the origin:
Theorem 4.1 Theorem 3.2 Theorem 3.3 Proposition 3.1

4

Main results

‘ Polynomial reconstruction: Theorem 1.1 ‘

U

‘ Reconstructing the whole scenery: Theorem 1.2 ‘

2. Notation
In this section, we collect some notations and conventions.

Numbers, sets, and functions: We denote by N := {1, 2, 3, ...} the set of natural
numbers and set Ny := NU{0}. If x € R, we denote by | x| the largest integer < x.
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We write x Ay for the minimum of x, y € R. Fora vector y = (yi)ke[1,m] € R” we

define the /'-norm ||y ||y := Y7~ |yx| and the /?>-norm ||y|l> := (kazl[yk]z)l/z.
The cardinality of a set D is denoted by |D|. We write f|D for the restriction
of a function f to a set D. An integer interval is a set of the form I N Z with
an interval I C R. In this article, intervals are always taken over the integers,
eg. la,bl={z€Z:a <z<b}

Admissible paths: Let I = [iy, i] be an integer interval. We call R € Z! an
admissible piece of path if Ri+1 — R; € {—1,0, 1} foralli € [i1, i — 1]. We call
R;, the starting point, R;, the endpoint, and |/| the length of R.

Measures: We define é, to be the Dirac measure in x. We denote the image of a
measure Q under a map F by QF 1.

Sceneries: We denote by C := {0, 1} the set of colors. A scenery is an element of
CZ. Let I C Z be an integer interval. An element of C! is a piece of scenery or a
word. If ¢ € C!, we call || the length of ¥ and denote it by ||. We write (1); for
the piece of scenery in C! which is identically equal to 1.

Blocks: Leta,b € I witha < b and |a — b| > 2. We define ¥ € Cl*?] to be a
block if V¥, = ¥, and Y. # ¥, for all ¢ €]la, b[. Y. is the color of the block. We
call a the left endpoint, b the right endpoint, and || := b — a — 1 the blocklength
of 1. For instance, 01110 is a block of length 3. We set 0y := {a, b}.

Let x|[t1, r2] and &|[a, b] be blocks. We say that x |[t1, 2] is generated by the
random walk S on the block &|[a, b] if {S;,, Si,} € {a, b} and S; €]a, b for all
t €lty, .

Equivalence of sceneries: Let ¥ € C! and ' € C! be two pieces of scenery.
We say that v and ' are equivalent and write ¢ ~ v iff I and I’ have the same
length and there exists a € Z and b € {—1, 1} such that for all kK € I we have that
a+bk € I'"and Y = ¥, ;- We call ¢ and " strongly equivalent and write
v =9y if ' =a+ I forsomea € Z and y; = 1//"1+k for all k € I. We say ¢
occurs in ' and write ¥ T o if Y = ¢'|J for some J C I'. We write ¢ < ¢ if
¥ ~ ’|J for some J C I'.If the subset J is unique, we write ¥ <1 ¥'.

Random walks and random sceneries: Let 2, C 7ZNo denote the set of admis-
sible paths. Let p, g > 0 satisfy 2p + g = 1. We denote by O, the distribution
on £2; of a random walk (Sy)ien, starting at x with i.i.d. increments distributed
according to p§_; + gdo + péi, i.e. S is a simple random walk with holding, and
satisfies

P=PSip1 =Sk =1 =P(Sky1 — Sk =—1),
q = P(Sk+1— Sk =0)

for all k > 0. The scenery & := (§)iez isiid. with P(§, = 0) = P& = 1) =
1/2. We assume that £ and S are independent and realized as canonical projections
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on Q := C% x , with the product o -algebra generated by the canonical projec-
tions and probability measures P, := (%80 + %51)®Z ® Oy, x € Z. We abbreviate
P := Py. Wecall x := (xk := &(Sk))ken, the scenery observed along the random
walk path; sometimes we write £ o S instead of y.

For a fixed scenery & € CZ we set Prg =08 ® Qx, Pe :== Py¢. Thus P, ¢
is the canonical version of the conditional probability Py (-|£), the distribution P
conditioned on the random walk to start in x and the scenery &£. We never work with
a different version of the conditional probability Py (-|&).

Filtration: We define G := (Gp)yen, With G, := o (); k € [0, n]) to be the
natural filtration of the observations over 2.

Shifts: We define the shift 6 : CNo — ¢No, y > (- + 1). We introduce the shift
O:Q—>Q ¢, 8- (ES1+),S(1+-)— S1).Foraset A € Q and a random
time T > 0 we set O~ T (A) := {w : ©T@ (w) € A}.

Constants: We denote constants by ¢;, i > 1; they keep their meaning throughout
the whole article. Constants ¢y, ¢2, cg, ¢7, and « play a special role. They are chosen
as follows:

cy > 21,

c1 € 4N with ¢ > max{153, 4¢»},

c6 > (c1 +4)In3,

c7 > max{0,2In3 — 2cy In p + 2¢6 + 2c1 In[max; ¢y, 51 [|x] |12} with x;* as in
Definition 4.4,

5. « e Nwitha > 1 + 17¢; 4+ [24¢7 — 3¢y In p]/In 3.

-

3. Overview of the reconstruction

In this section, we show how Theorem 1.1 is proved using the results from Sections
4 and 5 and [23]. First we show how Theorem 1.1 implies Theorem 1.2.

Proof of Theorem 1.2. Let A, : ¢23'™" — ¢1-33"33"] be as in Theorem 1.1.

We say that a sequence of pieces of sceneries (£, € C"),>., converges pointwise
to a scenery ¢ if for all z € Z there exists n, such that z € I, and ¢, (z) = ¢(z) for
all n > n,. We define

limy— 0o An (x1[0,2 - 31%[) if this limit exists pointwise,
Ax) =
Dz else.

As a limit of measurable maps, A is measurable. Theorem 1.1 implies
Y00 P(EAI) < Yon2. caexp (—csn®?) < oco. Hence by the Borel-Cantelli

n=c3 n=c3

lemma, P(UyL., N;2, Ex) = 1. In order to prove P (A(x) ~§) = 1, we
use the same arguments as in the proof of Theorem 3.7 of [20]. (One shows

P (U%O=C3mgim {e1[-3".3"] =1 &I1[-4- 3l 4. 3"“]}) = 1, which implies

that the reconstructed pieces of scenery A, (x| [O, 2. 310an [) fit uniquely together
for all n sufficiently large and yield the scenery £.) O
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Hence, it suffices to define maps .4,, which fulfill the claim of Theorem 1.1.
The main ingredient in the construction of .4,, is a map BigAlg” which obtains as
input data the observations collected by the random walk up to time 2-310%" (as A,
does). In addition, BigAlg" needs a sequence of stopping times T := (Tg)ke[1,397]
and a small piece of scenery . BigAlg” produces as output a piece of scenery
w e CI=33"33"] which satisfies £|[—3", 3"] < w < &|[—4 - 3", 4 - 3"] with high
probability.

The reason why we need the stopping times (7x)ke(1,3«#] is the following: In
order to be able to reconstruct the scenery in the interval [—3", 3], the random
walk must visit this part of the scenery many times. Otherwise, we will not have
enough information for the reconstruction. Since 2 - 319" is considerably larger
than 3", there is a good chance, the random walk visits the interval [—3", 3"] often
up to time 2 - 319" However, up to time 2 - 319" only a small fraction of the
time is spent in [—3", 3"]. The rest of the time, when the random walk is outside of
[—3", 3], the observations do not provide us with useful information. Hence we
need to be able to determine which parts of the observations are generated by the
random walk on £|[—3", 3"*]. Formally, the task of the stopping times (Tx)ke[1,307]
is specified by the event Eg, defined as follows.

Definition 3.1. For n € N and a sequence t = (ty)r>1 of G-adapted stopping
times, we define the event

3&”
Ens = {rk <310 (g | <3 74 2.3 < g for j < k} .
k=1

Besides stopping times, BigAlg” obtains as input a piece of scenery i of
length > 2n% + 1. Compared to the output of BigAlg”, which has length of the
order 3", v is very small. If ¢ < &|[—3", 3"], i.e. if we have with ¢ some infor-
mation about the underlying scenery, and if the event E:’t;fp holds, then with high
probability, BigAlg" reconstructs a piece of scenery around the origin. More for-

mally:

Theorem 3.1. There exist cg, ¢y, c1o > 0 and a sequence of measurable maps

BigAlg” : [0, 3100][13"] 5 23" | ] clokA) s 173333y e

k>n?

such that for alln > cg and every sequence T = (Ty)ke[1,32n] of G-adapted stopping
times

P (E;’t;fp \ E%T ) < coe 10" where

recon Big

o | Forall y € CIRKl with k > n? and W < &][—3",3"] we have
recon Big * T E'[_Sn’ 3n] < BigAlg”(‘L’, Xl [0’ 2. 310001[ , w) < Sl[_4 . 3n’ 4. 3)1]
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Let us explain how BigAlg” reconstructs a piece of the scenery. Using the
stopping times t together with the observations from its input, BigAlg” reconstructs
with high probability all words of length cin/2 in £|[—5 - 3",5 - 3"]; here ¢ is a
(large) constant as described in Section 2. This is the crucial step in the definition
of BigAlg". The words cannot be extracted from y in a simple manner. Instead we
need to look at certain empirical distributions of words which then allow us to obtain
information about the true distribution and finally about the words themselves. The-
orem 4.1 below provides a criterion to find words in the scenery. Reconstructing
the words is a hard problem under our assumptions on random walk and scenery.
In fact, this part of the reconstruction is much more difficult in the present setting
than in previously solved scenery reconstruction problems.

Since with high probability, each word of length cin/4 occurs at most once
in &[5 - 3",5 - 3"], it is possible to reconstruct a piece of scenery containing
&|[-3", 3"] from the collection of words of length cin/2. The assemblage will
be done as follows: We start with the small piece of scenery ¥ from the input of
BigAlg”. Then we look for a word of length c¢1n/2 which overlaps with i by at
least c1n /4 letters and extends ¥ by at least one letter. We continue the procedure
with the extended .

Once we have defined BigAlg", we can define the map A, in terms of BigAlg”
with suitable stopping times T and a piece of scenery i as input. The initial piece
Y will be a piece of scenery around a long block of & close to the origin. Since the
ideas for finding words and defining BigAlg" are central for this paper, we decided
to concentrate on these parts. The proofs concerning the stopping times and the
initial piece can be found in [23].

Let block™t := & |[b7+, b"*] designate the leftmost block of & of length > n
with bl"+ > 0, and let block"™ := &|[b] ", b} "] denote the rightmost block of &
of length > n with 4"~ < 0. Finally, let block” € {block" T, block”™} denote the
block which is visited first by S.

The map A, will reconstruct a piece of scenery around block”. Thus, first we
need to locate block™. With high probability, in a large neighborhood of block™
there is no other large block in the scenery. Hence, up to a certain time horizon,
long blocks in the observations x indicate that the random walker generates the
observations on block”. The following theorem states that with high probability,
there is a stopping time that stops the random walk in the set dblock”.

Theorem 3.2. ([23], Theorem 3.1) For all n € N, there exists a G-adapted stop-
ping time v"(0), measurable with respect to o (xx; k € [0, 31%"[), such that the
probability of the event

E:}n(o) ok :=1{Su(0) € dblock™} N {v"(0) < 2- 3%y N {(ablock™ < [—3"/3,3"/3]}

satisfies the following bound: There exist constants c11, c12, c13 such that for all
n=ci

" c —ey3n®3
P Eu"(O) ok < cpe .
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Next, we reconstruct a piece of scenery around block”. We show that there is a
map SmallAlg" with the following properties: Given 3 1"} observations collected
by the random walker starting in the set dblock”, a piece of scenery of length of
the order 31""*) around block” can be reconstructed with high probability. For our
purposes, it is convenient to state this differently: For £ in a set of probability close
to 1, conditioned on the scenery &, SmallAlg” reconstructs with high probability a
piece of scenery around block”.

Theorem 3.3. ([23], Theorem 3.2) There exist constants c14, ci¢ > 0 and a se-
quence

O,ZJ]

7!03 )10'2 n
SmallAlg" : 103", @=3307330 s

of measurable maps such that the following holds: We set H' :== min{k > 0 : §; =
b} fori e {I,r}. If we define

ERT o ={SmallAlg” (xI[T, T+3""7)]) < glby —3 - 31" 74330770}
and
g" = {S € CZ : PE([E?C’C](;H Small]c) = e_qwm for allT € {Hln’ Hrn}}’

then P (§ ¢ E") < e—cion™? foralln > cya4.

In fact, in [23], we heavily use the ideas from the construction of BigAlg"
to define SmallAlg”. The piece of scenery reconstructed by SmallAlg” is much
smaller than the piece of scenery which 4, is supposed to reconstruct. The map
SmallAlg" is used to define stopping times v” (k), k > 1, which indicate when the
random walk is in the interval [—3", 3"]. Recall that .4,, should reconstruct a piece
of scenery of length of the order 3" which is contained in £|[—4 - 3", 4 - 3""]. Hence,
it will be useful to have stopping times which stop the random walk in the interval
[—3", 3""]. We define

Y i= Small Alg" (x |[V" (0), v (0)+311"*1]), (3.1)
2021 21002
. Jrelv ), 310an 31012 3 e B33 Sueh that w < 3.2)
and w < SmallAlg" (x |[t, 1+31"1])
Let (1) < v*(2) < --- denote the points in T” in increasing order. We define

V= (v (k))kef1,30m) by
(2 - 33k) 4 31

if2. 3%k < |T"
v (k) = {310an 1 =

else.

Note that v (k) depends only on x|[0, 31%¢"[ and is a G-adapted stopping time. In
fact, in order to determine whether ¢t € T,, we need to look at x|[z,  + 3 n%3) [, but

V" (k) is never defined to be ¢, but only ¢ + 3%,
The idea behind the definition of the v"(k)’s is the following: With high pro-
ability, v"(0) stops the random walk in the set dblock” and v, is up to a possible
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reflection a piece of scenery of length 6-3 1721 4 1 around block” . The set T, consists
of times # > V" (0) such that SmallAlg" applied to the observations starting at time
t produces an output which agrees on a large subpiece, namely a piece of length
2.3 + 1, with v,,. With high probability, v, is typical for the scenery around
block”, and hence the random walker is in the interval [—3", 3"] at time . (With
high probability, block” can be found in the piece of scenery &|[—3" /3, 3" /3].) For
the construction below, it will be essential that we have sufficiently many v" (k)’s
which are far enough apart from each other and all bounded by 310"‘" Formally,
the task of the stopping times v" (k) is specified by the event E’;
3.1

Recall the definition of E" from Theorem 3.3. If the event E”, 0 ok NE s:cvonn(os)mall
holds and & € E,,, then with high probability the stopping times v" stop the random
walk correctly, in the sense that the event E%
following proposition:

stop , see Definition

stop " holds. This is made precise by the

Proposition 3.1. ([23], Proposition 3.3) There exist constants c19, c20, €21 Such
that for alln > c19

n,v"(0) 03

P([ES”(O) ok N Ere;con Small N {E € En}] \ Estop ) = Czoe_czm
Now, we have achieved the following: Using SmallAlg”, we can reconstruct
a piece of scenery ¥, around block”. With high probability, v, < &|[—3", 3"].
Furthermore, the stopping times v" (k) stop the random walk with high probability
in the interval [—3", 3"]. Hence, with this input data, the algorithm BigAlg" recon-
structs with high probability a piece of scenery of length of the order 3" around the
origin.
Let n > c14 with c14 as in Theorem 3.3, and let v, be as in (3.1). We define

A (x110,2 - 3197 = BigAlg" (", x 1[0, 2 - 3'%"[, yr,).

Proof of Theorem 1.1. We show that the maps .A,, defined above fulfill the claim
of Theorem 1.1. We have

P ([En]c) = P([Egto]; N En”(O) ok N E:Le’cv(;lrfos)ma]l] \ E”) + P([E\r)l"(o) Ok]c)
+P([Em oy ox N B G N6 € B\ Eli)

recon Smal

+P([EMh ) o N 1€ € BN\ Bt Q) + PE € ED.  (33)

recon Small

If ELS Q) holds, then v, < &[[bf — 3 - 31" b1 4 3. 31" ] 1f in addi-
tion E:;l"(()) holds, then dblock” < [—3"/3,3"/3], and consequently, ¥, =<
&|[-3", 3" for all n sufficiently large. Hence, using Theorem 3.1,

n,v n,v"(0) E" v —
P([Estop N En”(O) ok N Erecon Small] \ E, ) = P( stop \ Erecon Blg) = cge cor

for all n sufficiently large. By Theorem 3.2, P([E7, ) o) = cize —e13n™ for all
n > c11. Proposition 3.1 states that

n,1"(0) —cpqn%3

P([Elrjl”(O) ok n Erecon Small N {é e & }] \ Estop ) = c20€
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for all n > c19. Next, we estimate the second to last term in (3.3):
P([En m{%— :"n}] En,v"(o) ) _ P (En E”,V"(O) )dP
v (0) ok ceu \ recon Small) — e E\EVn(0) ok \ recon Small
ol

V*(0) V(0)
: /{5 E"} [PE ({SV"(O) =b'}\ E;lecvon Small)+PE ({SU"(O) =b;}\ E:::cvon Small)] dp.
egn

Using the strong Markov property of the random walk and Theorem 3.3, we con-
clude that the last quantity is < 2¢~<16""_ Finally, by Theorem 3.3, P (¢ ¢ E") <
exp[—cléno'z] for all n > c14. Combining all these estimates with (3.3), the claim
follows. O

4. How we find words in the observations

In this section, we prove a sufficient condition for a word to be contained in the
scenery close to the origin. First, we explain why reconstructing words is so difficult
in the present setup.

Special 4-color sceneries. Assume for a moment that the scenery &, instead of
being a 2-color scenery, is a 4-color scenery, i.e. £ € {0, 1, 2, 3}Z. Let us assume
furthermore, that for two integers y, z we have §, = 2 and §; = 3, but &, ¢ {2, 3}
forall x € Z\ {y, z}. Then we could reconstruct the portion of the scenery & lying
between y and z: As a matter of fact, since the random walk § is recurrent, it tra-
verses a.s. at least once (and hence infinitely often) the shortest path from y to z.
Since we are given infinitely many observations yx, the distance between y and z is
the shortest time lapse that a 3 ever appears in the observations x after a2. When the
random walk goes in the shortest possible way from y to z, it traverses the straight
path from y to z. During that time, the random walk reveals in the observations the
portion of £ lying between y and z.

Simple random walk without holding. A related, but much more involved idea
can still be used for 2-color sceneries. Let us next explain why the 2-color scenery
reconstruction problem is much more difficult for simple random walk with holding
than for simple random walk. So assume for the moment that S is a simple random
walk, i.e. in each step S jumps one to the right or one to the left with probability
1/2. In this case, we can use instead of the extra colors 2 and 3 in the previous
paragraph binary words of the form 001100 and 110011: It is easy to verify that the
only possibility for the word 001100 to appear in the observations, is when 001100
occurs in the scenery (i.e. £|[x, x +5] = 001100 for some x) and the random walk
traverses the straight path between x and x + 5. The same is true for the word
110011.

If 001100 occurred in precisely one place y of the scenery and 110011 occurred
in precisely one place z # y of the scenery, then we could reconstruct up to a reflec-
tion the piece of scenery occurring between 001100 and 110011. We would just
look in the observations where the word 110011 occurs in shortest time after the
word 001100. In between, we see a copy of the piece of the scenery & comprised
between 001100 and 110011.
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Of course, in an i.i.d. scenery, the word 001100 occurs a.s. infinitely often. Nev-
ertheless, a modification of this idea was for instance used by Lowe, Matzinger, and
Merkl in [20] for sufficiently many colors. They used, that with high probability
certain words occur only in certain areas of the scenery, which allowed them to
reconstruct the words in between.

The present problem. For a random walk with holding, the idea of patterns in
the observations which tell us when we are back at the same spot like for example
001100 does not work at all. The reason is that if £, = 1 and &, = 0, then the
random walk with holding can produce any pattern by just moving back and forth
between z and z + 1 and holding. Thus, all patterns can be produced in most places
in £ and are thus not specific for some places in the scenery. However, in the case
of a random walk with holding, the same idea of getting in shortest time from a
point y to a point z can be applied to the distributions of the observations.

A simplified version. Fix a point x € Z. First, assume that we have stopping times
7% which all stop the random walk at the point x. The empirical distribution of the
3cn observations after these stopping times i, i.e. the distribution

37 Syl dern (4.1)
ke[1,3%1]

is an approximation of the real distribution
Py £ (x1[0, 3cin[€ -) 4.2)

of x|[0, 3cin[ conditioned on the scenery to be & and the random walk to start in
x. Thus, if all the stopping times 7 satisfy Sy, € [—3", 3"] (which is the case if
the event E;lt’ofp holds), then the empirical distribution in (4.1) is an approximation
of a mixture of the distributions in (4.2) where x ranges over [—3", 3"]. In other

words, it is an approximation of

D a@Pes(x10, 3cinle -), (4.3)
x€[—3",3"]

where a(x) designates the proportion of stopping times 7, k € [1, 3%"], with S;, =x.

Convention: Sometimes it will be convenient to identify a measure A which is
supported on a countable ordered set {s;}; with the vector (A({s;}));. In particular,
we do this with Py £ (x [0, 3cin[e ).

Let y, z € [—3", 3"] such that z — y = ¢;n — 1. How can one reconstruct the
word &|[y, z] of length cn from the measure in (4.3)? First, we rewrite the measure
in (4.3) by conditioning on the positions of the random walk at times c;n and 2¢n:

Y a@Pes(x10, 3cinle )

xe[—3",3"]

= Y a@) P (xII0, cinl€ -|Sepn = ) (4.4)
x,v'.7

®Py (X110, c1nl€ -|Se;n = 2) ® Py ¢ (x |10, cinle ),
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where the sum is taken over all x, y’, z’ such that x € [—3", 3"], |x —y| < c1n and
|y" — Z/| < ci1n. Here ® denotes the product of two measures. If one identifies the
distributions with vectors, the product measure corresponds to the tensor product
of the associated vectors.

We can reconstruct £|[y, z] from (4.3) if there is a linear component in the
distribution Py ¢ (x|[0, 3cin[e -) occuring only “to the left of y” and a linear com-
ponent occuring only “to the right of z”. By this we mean that there exist two linear
functionals g’ and g” such that

g (Pes (X110, cinl€ -|Sen = ') =0 (4.5)
forall x € [-3",3"]and y' > y and
¢ (P £ (x][0, cinle -)) =0 (4.6)

for all 7 < z. When we apply the linear functional g/ ® id ® g" to the second sum
in (4.4), all the terms disappear except for the terms with y) = y and 7’ = z + 1.
This is the only possibility for a random walk starting at y’ to be at 7" at time cin
because the interval [y, z] has length ¢{n and we required |y’ — z| < c{n. But when
we have ' = y and z/ = z + 1, then conditional on Sy = y" and S;,, = 7/, the
random walk performs during its first cyn steps a straight walk from the point y to
z. Thus, in that case Py ¢ (x|[0, cin[€ -|S¢,, = Z’) is the atomic distribution where
the atom is at the point £|[y, z]. This allows us to reconstruct &|[y, z] provided
some adequate functionals g’ and g” exist.

The real approach. It turns out that instead of working with the distributions (4.1)
and (4.2), we need to deal with slightly different distributions as will be explained
now: Let x" := x][0,2 - 310an[ and let T = (tk)keq1,3¢] be a sequence of G-
adapted stopping times. The reader should think of stopping times such that the

event E stop * holds. Instead of taking the 3cn observations after each stopping time,

we let the random walker run freely 3" steps after each stopping time 7. This
way, it has a chance to reach all points in [—5 - 3", 5 - 3"] which is important if
we want to reconstruct all words from &|[—5 - 3", 5 - 3"] of length c{n/2. Then,
we record the lengths of the following cjn blocks in the observations, truncated
at 5. (So if a block has length > 5, we record a 5.) Then, we record the follow-
ing word from the observations of length c¢1n/2, extended up to the beginning of
the next block. Finally, we collect the lengths of the following cin blocks in the
observations, truncated at length 5. This way, we obtain for every stopping time tx
a quantity 0" (x|[tx, 7« + 33*]) which is a triple of the form (0", 03, 03) with
O}, 0% € [1,5]°'" sequences of truncated block lengths and O3 a word over the
alphabet {0, 1}. Next, we look at the corresponding empirical d1str1but10n namely

,&;L(r . 3—an Z 8o o ym)
ke[l,391]

instead of (4.1).
Let S” := S|[0, 2 - 3'%"[ The real distribution “5 S" of our collected infor-
mation is a mixture of the distributions of O"(x") under Py ¢, where the term
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Py [07( X")]_], the distribution of O"(x") under Pyg, gets as weight the
proportion of stopping times ti stopping the random walk at x (see Definition 4.3).
Of course, “g:gn cannot be obtained from x and 7 only. Thus, we need to work
with the empirical distribution 2),’. Let 8;';% denote the difference between the
empirical and the real distribution; so SE sn is a signed measure. It will be shown
in Lemma 5.8 that the probability that the stopping times tj stop correctly (i.e.

gtop holds), but sg ;,, has a norm which is not exponentlally small in n has an

exponentially small probability. In this sense, {i"; X,, approximates pi;’ £ S"
How can we reconstruct words from the scenery using the empirical distribu-

tion ;l’;,f ? A sufficient criterion for w < &[—3%", 3%] is given in Theorem 4.1:

one needs the ex1stence of certain linear functionals g}’ and g3 on (R)®¢1"; these
play the role of g’ and g” in the above. Since the criterion is formulated in terms
of the empirical distribution {i"; ) ! instead of the real distribution /,LE’ gn» One has the
condition that g’ ® 1 ® g3 applied to the empirical distribution is small instead of
being 0 as in (4.5) and (4.6).

Theorem 4.1 is the key tool for the reconstruction algorithm BigAlg” described
in Section 5. Given the observations collected by the random walk, one first con-
siders a set Words" of words obtained by checking conditions (5.2)—(5.5); these
conditions are motivated by (4.10)—(4.13). A word belongs to Words" if there exist
functionals g}’ and g3’ with certain properties. Suitable functionals are defined in
Definition 5.4. With high probability, they fulfill their task in the sense that the event
Bﬁmcuona] holds (see Definition 5.9, Lemma 5.3, and the estimates in Section 5.4).
With high probability, the words from Words” can be assembled as in a puzzle
game to find the scenery.

4.1. A sufficient criterion

First, we give a precise definition of O": Let € Uk>’;’§n CIO-KL; the reader should
think of 1 as a piece of observations. We consider O" 0 O” where O” consists of the
first 1 blocks of 7 after time 3%, 07 equals the followmg cin/2 observatlons nn
extended until the next block starts, and O" consists of the following cn blocks of
n. Next, for j = 1, 3, we replace 6? by the sequence O’} e {l1,2,3,4,5}1" where
the ith component equals the minimum of 5 and the length of the ith block of 6;’
Formally:

Definition 4.1. Let n € Uk233n CIOKL We abbreviate 0" = n| [32”, 33 [ We
denote by By (n) the kth block of n if n possesses at least k blocks; otherwise we set
Bi(n) ;=101 € B3 3743 We denote by of (n) the right end of B¢\, (n"*). Further-
more we denote by o} (n) the left end of the first block of | [0}1 () +cin/2-2,3%" [
and set o (n) = o} (n) + 1. If n"| [0?(7)) +cin/2 =2, 33"[ does not contain a
block, then we set o} (1) := o} (). We define O" := (0}, 03, O%) by

O () = (IBk(m™")| A S)kef1,c1n]»
HOERNAORAOIE
Bn) = (IBr@% ™ ()] A Skt ern)-
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The letter “O” should remind the reader of “observation”. By definition, |O} ()]

> cin/2 unless o} (n) = of (). The following picture illustrates our definitions for
cin =6:

n=1110... 01110010001110100000011000000011001011110001 00111110...
—_—
010, 3%

0 (n) 01 ()

Mol and n,» are marked with boxes. In this example, we have O7(n)=(3, 1, 1, 5,
2,3), 05(n) = 100001, O3(n) = (3,2,1,1,4,3).

In the following, let T = (tx)re[1,3#7] be a sequence of G-adapted stopping
times.

Definition 4.2. For n € C[O'z'?’mw[, we define the empirical distribution of O"
observed after each time 1y, k € [1, 3%"]:

" ") Sonet:

ke[1,3%7]
N AT . LT
Forn € C°, we set [i;'" = H4110.2.3100n

Definition 4.3. For an admissible path R € z[0.:2:31%" [, let aﬁ’r (x) be the propor-
tion of k € [1, 3”‘”] with Ry, = x. We define

= Y afT WP [0"00]

xe[—3",3"]

x'ﬂ

n,
M,
AN,T n,r

En,r A
£R ‘= Meop — MeR

n,t

For an admissible path R € 7N, we set /,Lg = Mg Ri[0.2.3100[

By definition, ug:; and ﬂf;’f are measures on the set obs := [1, 5]1" x obsy x
[1, 51" with obss := {w € C* : k > c1n/2, wp—1 # wy, w; = wy_1 forall j €
[cin/2 — 1, k — 1]}. We denote by

[T, : obs — obsp, IIj3:o0bs — [1,5]" x [1, 5]

the canonical projections. Furthermore, we introduce the event that an observation
O € obs has 1> (O) of length d > ¢ n/2:

Eblock {O € obs : [T12(0)]g—1 # [T12(0)]4} .

We order the 2¢ elements of C? lexicographically and denote them by v!v?,
v Let epk = (eyr(0));[1 241 be defined by ek (i) 1= Sk (i); ie. {ey; k €
[1, 2d]} is the canonical basis in de. Let {1,;k € [1, 2"]} be the dual basis, i.e.

1k(e,;) = & (j) forall j, k € [1, 24]. Recall that we identify a measure A on a
countable set {s;}; by (A({s;}));.



Retrieving random media 483

Notation for linear functionals: Let w € C?. For any probability measure A on
C? we have 1,,(A) = A(w). In particular, if A gives mass one to w, then 1,,(1) = 1.
We denote by 1 the linear functional defined by 1(X) := Zflzl Ai

If g and g’ are two linear functionals, we denote by g ® g’ their tensor product.
More precisely, for row vectors A = (X;)ie[1,m] € R and A" = ()»/j)je[l,m’] e R™,
we define A ® A’ to be the matrix

A = ()»i)»/j)ie[l,m],je[l,m’]- 4.7)

In other words, if A and A" represent probability distributions, then A ® A’ repre-
sents the corresponding product measure. If g : R” — R and g’ : R™ — R are
the linear functionals given by g() = 3_iL; giA; and g'(') = 31, gA";, then
g®¢g R"® R™ — Ris the map given by

(g®gH®1) = Z(g ®8)ija®1)i;j=gn)g' () (4.8)
iJ

where we identify g with (g;)ic[1.m] € R™ and g’ with (g})je[])m/] € R™ and use
the tensor product of vectors (4.7). Note that

(g®gN(PAIRA )+ (M2 ®12) = p(g® &N ® A1)
+(g®g)(M®12) 4.9)

for any scalar p € Rand A1, 22 € R™, 1|, 1} € R™

The following theorem gives sufficient conditions for a word w € C? to be
contained in the scenery &|[—33", 3%]. Its proof is postponed to Section 4.3. For
the definition of positivity for a linear functional we refer the reader to Section 4.2,
in particular Definition 4.5.

Theorem 4.1. There exists coo > 0 such that for all n > ¢y, d € [c1n/2, c1n],

and w € C¢ with wy_1 # wy the following holds whenever the event ES"t’Orp holds:

Suppose there exist positive linear functionals g\’ and gy’ on (R>)®1" with the
following properties:

1. Caseq #0:
(81 ® Ly ® g¥) (ALl N Ef&, D) > 1 (4.10)
(81 ® 1® g (ALl N Eps' D) < 1/(5n?) (4.11)
1/2
gt ® g¥lla - llep s1I,/> < 1/2n?). (4.12)

2. Caseq =0:(4.10), (4.12), and
(&' ® 1® gV (AL N Epien D < 1/(5n). (4.13)

Then w < £|[-33",3%"].
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4.2. Positive linear functionals

For m € N, we denote by T;, the first hitting time of {—1, m} by the random walk
S: T, ;= min{k > 0 : S € {—1,m}}. Let &|[a, b] be a block of length m and let
S5 be a random walk with Ség € {a, b} having its increments distributed as S. Then
the Pg-distribution of the length of the first block in § o § B equals P[T,,]7}, the
distribution of 7,,. For A € Ny, we abbreviate

M'(A):=P ({Tm e A}N{Sy, = —1}) , A(A):=P ({Tm e AN {St, = m}) .
Clearly, T, > 1 P-almost surely. So A" and A" are probability measures supported

onN. We canidentify 17" with the vector (A" ({k})), .y = (P (Tn =k, S1,, =—1)), .y

and A" with the vector (A ({k})), .y = (P(Tn = k, S, = m)), - We compute

A = (p, pq, pg*, pa’, gt .. ),

Ay =0, p%,2p%q, p* + 3P0 4ptq + 407, ),
3 3 3 5 32

A = (0,0, p°,3p7q,2p> +6p°q", ...),

4 4 4
)‘rZ(O’O,O,P,ﬁlpq,...),

5 5 .

A2 =1(0,0,0,0,p°,...);

here “...” means we are not interested in these values. We define 2 : Ng — [1, 5],
x +— x A 5. Then, for A C Ny,

MhTNA) = P ({T A5 € Ay N (Sp, = —1)). (4.14)

m

The measures )L;”h_l, A;”h_l are supported on the set {1, 2, 3, 4, 5}. Hence we can
identify them with vectors in Ri.

Definition 4.4. We define vectors in Ri:

X1 = (p. pq. pa*. pa’. pa®).

Xy =27 = (0, p?.2p%q. p* +3p7¢”, A5, oo,
X3:= (0,0, p*,3p°q, p° +6p°¢?),

o= 2471 =1(0,0,0, p*, A4S, oo,

%5 :=(0,0,0,0, 1).

Clearly, {X;}ic[1.5) is a basis of R>. We denote by {;;’(}ie[]’S] the corresponding dual
basis. In particular, X} : R> — R is a linear map with

(X)) =1 and X/(Xj)=0 foralli# j. (4.15)

Remark 4.1. 1. Foranym > 1 andi € {l, r} the vector )Lf"h_l can be written
as a linear combination with positive coefficients of X 1 <j<5.
2. We have )?;‘(A;”h_l) £ 0iffi = r and m = 2. Furthermore, )?I()»Th_l) #0
iffi =randm = 4.
3. Fori €{1,3,5}, we have x} (A2h™") = 0 and x} (Ath™") = 0.
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4. The lower bound X,

(A:"h_l) > (m + 1)_1 holds for allm > 1.

Proof. First, we prove the following identities:

AnTt =3 + 4135, coD¥s, (4.16)
Ahl =5, (4.17)
Mhl =354 (p° 4+ A2(15, oo[)) s, (4.18)
Ml =5y, (4.19)
Al = m+1)7%s  forallm > 5. (4.20)

The identities (4.17) and (4.19) for )\%h’l and kfh’l are true by the definitions of
X and X4. Let X; (k) denote the kth component of X;, k = 1, ..., 5. Clearly, for
k=1,...,.4 A n=1({k}) = AL ({k}) = X, (k). Furthermore,
AnTI{S) = P(Ty A5 =5, 51, = 5)
=P(T1 =585 =5+ P(T >5,5, =95)
= 1, ({5) + A} (15, ool
= X1(5) + 4, (15, oo]).
Consequently, A}h_l =X+ A} (15, oo[)x5 which is the statement in (4.16). Simi-
larly,
ARhm (k) = (k) = X3(k) fork =1,... ,4, and
ARTISH = A3(5) + 2335, 0o) = F3(5) + p° + 2315, o0D).

Thus, (4.18) holds. For all m > 5, we have

Al ((ky) = 0fork =1,...,4, and
AR ({5) = P(Tyy = 5, S7, = m) = P(Sp, = m).

m

Since for a simple symmetric random walk with holding starting at O the probability
to reach m before —1 equals (m + 1)~!, the claim (4.20) follows.
Next, we show that the following statements hold:
Mh™! =¥+ 4,15, 0o])¥s, (4.21)
AhTl =X 4 %3 + 2215, oo))Xs, (4.22)
)L;”h_l =X+ X3+ (p5 + 27" (15, oo[))Xs forallm > 3. (4.23)
By symmetry, A ll hl = k}h’l; thus, (4.21) follows from (4.16). Next, we calculate
using (4.14):
Mh~ = (p, pq, pa® + P’ pa’ +3p°q, p° + 6p°¢” + pq* + 17 (15, o)
= ¥ + X3+ A7 (15, 00D ¥s,
Wb~ = (p. pq. pa® + P’ g’ +3p°q. 2p° + 6p°¢* + pg* + 1] (15, 0cl))
= X1 433+ (7 + 1) (15, coD)¥s.
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Finally, let m > 4. Consider any path of our random walk, starting at 0 and ending
at —1. If the path makes at most 5 steps, then it does not visit the point 3. Conse-
quently, fork = 1,...,4, we have A"h~'({k}) = P(T,, NS =k, S, = —1) =
P(Iz N5 =k, 81, = —1) = k?h_l({k}). By the same argument, A}"({5}) =
A ({5)) = X1(5) + X3(5) + p°. Thus, (4.23) holds.

Part 1 of Remark 4.1 follows because all coefficients in the representations
(4.16)—(4.20) and (4.21)—(4.23) are positive.

Recall (4.15). Since {X;};e[1,5] is a basis of R3, we have X3 ()Lf”h_l) # 0 iff in
the representation of )»;"h_l as a linear combination of the X; the coefficient of x>
is non-zero. This is only the case for A%h_l as can be seen from (4.16)—(4.20) and
(4.21)—(4.23). Similarly, X} (A;”h_l) # 0 iff in the representation of )»?”h_l as a
linear combination of the X the coefficient of X4 is non-zero which is only the case
for )f,‘h’] . This proves part 2.

Leti € {1, 3,5}, and recall (4.15). By (4.17), we have x}(A2h~!) = x7¥ (%) =
0, and by (4.19), we have x* ()\‘r‘h’l) = x}(X4) = 0. This proves part 3 of Remark
4.1.

Form=1,...,4,% (A"h~') =X (A"h~') =1 > (m+1)"! because of

the representations (4.16)—(4.19). On the other hand, form > 5, X% . (A"h~') =

X5 (mh™) = X2 (m 4+ 1D)7'Xs) = (m + 1)~! because of (4.20). This completes
the proof of part 4 and thus of Remark 4.1. O

Definition 4.5. We call a functional f : (R5)®m — Rpositive if f (®2":1)?nk) >0
forallny, no, ... 0y €{1,2,3,4,5}.

Remark 4.2. Let g be a positive linear functional on (R>)®¢1", If PeglSor = y1 >
0, then g(Pxg[O] € ISy = y]) = 0. If Pxg[Sor = y] > 0, then g(Py |05 €
1S = yD) = 0.

Proof. Suppose Py ¢ (Sop = y) > 0. By the definition of O, we can write the
probability Py ¢[O] € -|S(,7 = y] as a linear combination with positive coeffi-

cients of tensor products of the ){"h_l’s. Each Ag”h_l equals a linear combina-
tion with positive coefficients of ¥;, 1 < i < 5, by Remark 4.1. The estimate
g(Pr (O] € '|So," = y]) > 0 follows because g is positive. The second part of the
statement is proved analogously. O

4.3. Proof of Theorem 4.1

We begin with a lemma, which we need in the proof of Theorem 4.1.

Lemma 4.1. There exists cp3 > 0 such that for all n > c»3, for all d €]2, cin],
and all x € [0, d[ the following hold:

1. Ifg #0, then P(Sy = x) < n?>P(S4_1 = x).
2. Ifg =0and P(Sy_>» = x) > 0, then P(Sq = x) < n>P(Sq_> = x).

Proof. Letn € N, d €]2,cin], x € [0,d][, and suppose ¢ # 0. We denote by
g € 71941 the set of all admissible pieces of paths from 0 to x, and we define
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amap f : Ilgx — Tlg—1, as follows: If © € Il; . contains a holding, i.e.
7y = my—_1 for some y €]0, d], then we define f(7r) to be the path obtained from
7 by removing the first holding in 7. Otherwise, because of x < d, there exists
either a step to the left followed by a step to the right or a step to the right followed
by a step to the left in 7. In this case, we define f (;r) to be the path obtained from
7 by replacing the first occurrence of such a pair of steps by a holding. For any
w € I x we have

P(SI10.d] = m) < max {g. pq " | P(SI0.d = 1] = £(m)).

Furthermore, any 7’ € Tl;_;  has at most 3d pre-images under f. Hence we
obtain

P(Sg=x)= ) POSI0.dl=m)< » Y PESI0.dl=n)
mellyy n'elly_1xwef~'(x')

= Y |rtah|mac]q. p7 Pesii0.d - 11 =)

w'elly—1.x

< 3d max {q, pzq_l} P(Sq—1 = x).

Since d < cyn, we have 3d max {q, p>q~'} < n? for all n sufficiently large and
the claim follows in the case g # 0. The case g = 0 is treated similarly. O

Proof of Theorem 4.1. Let g # 0. We do a proof by contradiction. Assume that
for infinitely many n, there exist d € [c1n/2, cin], w € C? with wy_, # wy, and
positive linear functionals g}" and g3’ on (R3)®c1” guch that (4.10)—(4.12) hold on
the event Efy, but w £ &| [—3%", 3%"].

stop?
For any linear functional g : R™ — R and A € R™, we have the estimate
g = 120 gidil < [0 g2 1210, 22112 = Jigll2lill2 by Holder’s

inequality. Since 82; is the difference of two probability measures, we can identify
it with a vector (el’ — s[’)i, where ¢, ¢/ € [0, 1] and i runs through a finite index
set. Consequently,

. d 12 T2 2 )
leg 51 N EygadIs = e 513 = 3 lef — /7 = D _lei —f'| = llef 5.
i i
Using this together with (4.12), we obtain

(8’ ® Ly ® g¥) (el 51 N gy DI < gl ® 1 ® g¥lla - el §I- N Egiéey il

<lg¥ ® gVl - lel5lly/ > <1/@2n); (4.24)

here we used that [[g}’ ® 1, ® g3'l2 = llg]" ® g5'll2. Hence, it follows from
“g:g = /1;30’3 - 8;; and (4.10) that

(&' ® Ly ® g§) (5[ N Efyoy ) = 1= 1/Q2n%);
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here we used the linearity (compare (4.9)) of g}’ ® 1,, ® g% . Inserting the definition
of ,ug:;, using the linearity of g’ ® 1,, ® g% again, and using also the definition of
1,,, we obtain

1—1/2n?) (4.25)

(&) ® Ly ® g¥) (5[ N Ef, D)

Y agTE! ® Ly ® ¥ (P e[(01(x), 05(x), 0500) € - N Epiay D
xe[—3",3"]

Y Ayt ® Ly ® 8§) (Prel(01 00, 05(x) = w. 05(0)) € ).
xe[—3",3"]

IA

In the following, we omit dependencies on yx in the notation. Since we assumed

w £ &|[-3%,3%"], we have for any admissible path R € [-3%", 33”][O’d[ with
& o R = w the estimate |Ry — Ry—1| < d — 1. Consequently,

Px,f[(ona g = w9ogl) € ]

= > PelSyp=y.Sp=2(0].0=w.0)) el (426
y.Z

where the sum is taken overall y, z € [—33”, 33"] with the property |y —z| <d—1
and Px,g[Soy =y, S,,;a+d,1 = z] > 0. We rewrite the addends: On the event
{O5 = w}, we have 0] = o} +d — 1. Note that O} depends only on the random
walk up to time 0}, whereas (Sy1, O3, O3) depends only on S, and the random walk
increments S0]n+, — SO;r, t > 0. Therefore, O} and (Sor 03, Og) are independent
conditioned on Sop = - Thus, the right-hand side of equation (4.26) equals

Y PeelSy =y,0} €]
v,z

®Px £[Sor =2, (05 = w, 05) € +[Spr = y] (4.27)
=) PulSyp =y,0f €]
y,Z

® (PeslSopsa—t = 218y = YIPeel(03 = w, O} € -14d7"])

with A‘yizl = {S(,;« =y, So;'+d—1 = z}. In the last sum, the addends consist of the
tensor product of the two vectors Px,g[Sogz =y,07] € Jand P, ¢[(O] = w,05) €
~|A§le], multiplied by the constant nyg[Solrurd, 1= z|S0;r = y]. Using again the
Markov property of the random walk, we see that O3 and O} are independent,
conditioned on the event A, , := {So;l =y, Son = z}. Hence,

Px,é [Ay,z]

Piel(03 = w, 03) € |4 '] = me,g[(Og = w,0%) €4yl
X, y,2
PiglAy.]
= S PO =w e A, ]
PrglAy:

®Py £[04 € -|Ay ]
= P s[05 = w e |AI 1@ P £[Of € -|A, ..
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Consequently, we obtain from (4.26) and (4.27)

Py [(07,05 =w,0%) € ]
=Y PuilSy =y,0} €] (4.28)

y:z
®(Pr&[Sorra—1 =2l = y1P [0 = w € -|A97"])
®P£[05 € -|A, -]
In view of (4.25), the aim is to apply g}’ ® 1, ® g% to the last sum. First, we

estimate 1,, applied to the middle vector in the addends of (4.28). We observe for
n > c¢p3 with ¢p3 as in Lemma 4.1

Py elSorsa—1 = 2lSor = Y11u(Pe [0 = w € -|AJ'])
< PrelSopra—t = 2lSor =yl = PoglSa1 =2 =yl < n*PoglSar =z -yl
= 1P g[Sy ya— = 2l = yI; (4.29)

here we used the Markov property of the random walk and Lemma 4.1. Combining
(4.28) with (4.29) and using Remark 4.2 yields

(&) ® 1y ® g¥) (P £[(OF, 05 = w,0}) € 1) (4.30)
<D el [PeelSy =y, Of € 1In?
¥,z

XPx,’;‘[Sa;’+d—2 = Z|So;l = Y]gg)[Px,E[Og € '|Ay,z]]~

We can enlarge the last sum by summing overall y, z € [—33", 33”] with |y — z|
<d—1and Px,g(So;: =Y, Ser = z) > 0 and not only over those with Px,g[sgy =
v, SD7+d_ 1 = z] > 0. The terms added in this way are non-negative by Remark
4.2. Note that

-1
Py e[(0}, 05,00 € - N Efei 1= P s[05 = w', (O], 04) € 1,

w

where the sum is taken over all w’ € C¢~! with wl_, # w)_,. We use (4.28) with
d — 1 instead of d to obtain

(430) < (g0’ ® 1 ® g¥)[Pec[(O}, 05,00 e - N E L. (431)

T

Since the event Eg holds, Y- ;31 31y @’ (x) = 1. Consequently, the estimates

stop
(4.25) and (4.31) imply
(1= @nH)™Hn™? < (g @ 1@ )ik NERE'D. (432

We can identify ¢!’ with a vector (g1(i));, ¥ witha vector (g3(k))x, and egg witha

/ " . / " / _ " _
vector (el.!j’k—8,.’1.’,()1,],,c where & ik ik = Oand Zi)j’k & ik _Zi’j’k & k= 1.
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Consequently, using Holder’s inequality,
d— .
(et © 1© g¥)(ef 51 N Epjoce DI Y 1g1Dgs )] - lef 4 — & 14
ijk

=Y ler g3 ®) - [ D16 — el ]
ik J

2
= Diaonmr [ [k el ]
ik ik

1/2
<lgt ® g¥lla- V2 lef5ly? < V2/@n);

in the second to last inequality we used that ) |¢] ik &/ ;& = 2 and for the last

inequality, we used (4.12). Hence, it follows from (4.32) and [Lgors = M?JS + Sg’;
@l @ 1® g¥)(ALSE N o D = (1= 2n®)™Hn ™2 = 1/(V2n?),

which is strictly larger than 1/ (Snz) for n sufficiently large; thus, it contradicts
assumption (4.11). Thus w < &| [—33", 33”] and the theorem is proved in the case
q # 0.1f g = 0, one replaces d — 1 by d — 2 in the above argument und uses (4.13)
instead of (4.11). O

5. Reconstructing a piece of scenery

Let n € N. The aim of this section is to define a map BigAlg” which fulfills the
claim of Theorem 3.1. Special functionals and events are needed in the proof of
Theorem 3.1; their definitions are stated in Subsection 5.2. Subsection 5.3 contains
the combinatorial part in the proof of Theorem 3.1, and Subsection 5.4 deals with
the probabilistic estimates.

5.1. Definition of BigAlg"

BigAlg" takes as arguments

1 3001]

re [o, 310“"][ T nee™ andy e | A (5.1)

k>n?

and produces an output BigAlg" (z, n, ¥) € CI=33"-33"] The reader should think
of T as a realization of a sequence of 3*” stopping times, 7 stands for 2 - 310¢7
observations, and i should be thought of as a small piece of the scenery & around
which the reconstruction takes place. In the following, we treat t, 1, and ¥ as
abstract input data of BigAlg" which need to fulfill (5.1) only.

Let 7, n, and ¢ satisfy (5.1). We use the conditions of Theorem 4.1 to define
a set Words" (7, n) of building blocks for the scenery which we would like to
reconstruct.
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Definition 5.1. Let ¢; > 0 be chosen as in Section 2. We define Words” (t, n) to
be the set of all w € cl . d e [c1n/2, c1n] such that there exist positive linear
functionals g{ and g3’ on (RO)®1" with the following properties:

1. Caseq # 0:

(7 ® Ly ®g¥) (AT [ NEfd, D > 1 (5.2)
&P @ 1® gL NELED < 1/(5n?) (5.3)
el ® g3 ll2 < e, (5.4)

2. Caseq =0:(5.2), (5.4), and
@Y ® 1® V) (AN N EGeD < 1/(5n?). (5.5)

The output of BigAlg" is supposed to contain ¥ in the middle and all subpieces
of length cyn/2 should be contained in a possibly bigger piece of Words" (z, n).
Formally:

Definition 5.2. We define Output” (z, n, ¥) :=

w e CE¥ 33 |k, kl|=y for k=(¥|—1)/2 and for all intervals I
C[3-3",3-3"Vwith |I|=c\n/2 there exists w'e Words" (t, n) such that w|ICw'["

We will see in the proof of Lemma 5.2 below that under appropriate conditions,
there is precisely one element in Output” (z, n, ¥).

Definition 5.3. We define
BlgAlgn . [O, 3100(}1][] ,30‘"] % 62'3100‘" % U C[‘k,k] - 0[73'3’1’3.3”]
k>n2
as follows: If Output” (t, n, ¥) #0, then we define BigAlg" (t,n,¥) to be its lexico-
graphically smallest element. Otherwise we set BigAlg" (t, n, V) := (1)[=3.31 3.31].

5.2. Definitions of functionals and events

Below we will need some special linear functionals. Recall the definition of
{X*}ier1,51 from Definition 4.4.

Definition 5.4. Let & € CZ.

1. Let z € 7Z be such that &, # &,_1, and let Be denote the ith block of
E<|] — 00, 7], where £ denotes the reflected scenery, defined by E =&,
forall y € 7. We set

cin

~;’§ = (1BZI+1)- Fgins

i=1

and call g} := 32" p~1"=2g"" the left functional of £ at z.
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2. Let z € Z be such that &, # &,_1, and let Bi? denote the ith block of &|[z —
1, ool. We define the right functional of & at z by

cin

gt =@ (B2 +1) "B |As:

i=1
Clearly, g?é and g/ are positive linear functionals.

Definition 5.5. Ler & € CZ.

1. Let x| € Z such that &, # &x,—1. We call a positive linear functional g a left
limiting functional of § atx iff forall xo > x1 with&,,_1 # &x, we have that for
allx € [—3”, 3"], Pre(Sop = x2) > Oimplies g(Px £(O € |Sor = x2)) =0,
whilst g(Py (O € -|So;z =x1)) > 0.

2. Lety| € Z suchthat &y, # &,,_1. We call a positive linear functional g a right
limiting functional of § at yy ifffor all y, < yy with&,, # &,,_1 we have that for
allx € [=3",3"], Pcg(Son = y2) > Oimplies g(Py £ (0 € -|Ser = y2)) =0,
whilst g(Py £ (05 € |Spn = y1)) > 0.

In the remainder, we abbreviate
x" = x|[0,2-3"%"[.

We define in alphabetical order events which will be needed below. The event
B} ocks ba Nolds if the lengths of any c¢1n consecutive blocks are bounded in a certain

sense in a region around the origin. Bf . . is the event that g?é and g/ are lim-

iting functionals for all z not too large. Bg’; gives bounds on the length of O3 (x).
If B, . holds, then for every word w of length cn/2 there exist blocks to the
left and to the right of w which are close to w. Bl’;nique 4 guarantees that all words
of length c1n/4 in a certain region of the scenery are distinct. Blocks of lengths 2
and 4 play a special role in the arguments below. B{j . 2.4 guarantees that there
are sufficiently many blocks of lengths 2 and 4 in the scenery. In Definition 5.12 we
introduce a convenient notation for a sequence of blocks of lengths 2 and 4. Bgignals
denotes the event that certain sequences of blocks of lengths 2 and 4 can only be
observed to the left or to the right of a point in the scenery. Finally, E&;;rds ok 1s the
event that all words in Words™ (z, x") are contained (up to a possible reflection) in

£|[—33", 33"] and Words" (z, x") contains sufficiently many words.

Definition 5.6. Let co > 0 be as in Section 2. Recall the definitions of B; and
B from Definition 5.4. We define Bl pa = By~ 0 By~ with By~ =

cin cin
{Vze[—z .33 0. 33"] we have [ [[1B;|+1]1<e®" and Z[|Bg|+2]§8c]n},

i=1 i=1

and B{)ll;e is defined by replacing “— " by “<" in the definition of Bgl’)ﬁ.



Retrieving random media 493

Definition 5.7. Let c; be as in Section 2. We define

B . ) In any sequence of c\n consecutive blocks of &|[—7-3",7-3"]
blocks 2.4 *™ | there are at least con blocks of length 2 or 4. )

Definition 5.8. Let c7 be as in Section 2. We define B)'" := {||8g§ 1 < e 4 }

Definition 5.9. We define Bl iona := Bhob. 0 Bl with
gl . Forall y e [-6-3",6-3"with &, # &, theleft functional at y is
func == 1 g left limiting functional at y. ’

B — Forall y e [-6-3",6-3"] with &, #&,_, theright functional at y
func = 1 js a right limiting functional at y.

Definition 5.10. We define the event By" := By ' N BY, Jarge With
Bg2rsmall {Vk € [1’ 3‘1”] : |O’21(9TkX)| =< 3n} s

B0, taee = [vg € C%andVx € [-3",3"]: Pr(10500] > 3") =< e’scm].

Definition 5.11. We define B!

scen ok -

thatly —z| < cn, I Sy, z],§ #&-1, and § #&.1.
Definition 5.12. Let ny 4 be the number of blocks of length 2 and 4 in the piece
of scenery £" = £| [ 7-34,7- 3"] Let B2’4 be the ith block of €|[y — 1, oo[ of
length 2 or 4, and let C * be its color. We can describe the blocks of length 2 and
4 of €" by col(E") = (col & = (1B}, 4| ¢’ )),6[1 nog) With y = —7 - 3". For
R €1, n2,4]1 we have col o R = (colRi)lel. We set

{ For all intervals I C [-5-3",5-3"] of length cyn/2 there exist y,z € Z such}

ﬁjx,czn,% = COI(SnN[X, x + conl, ﬁ)x,czn,e = (Clefi(S"); i €[0, CZ”[)
(5.6)

for all x where this makes sense. For all other x, we set Wy cyn,—, Wx,con,« ‘=
((1, 1))i[0.con[- We denote by E" the scenery obtained from £" by replacing alf 0’s
by 1’s and all 1’s by 0’s. We define Wy cyn,—, Wx,con, < by replacing £ by &" in
(5.6).

Definition 5.13. We call R € Z!*"! a nearest-neighbor path if Ri.1 — R; €
(=1, +1} foralli € [a, b[. We define B": := B%! N B™ with

signals * sign sign
Bl Vx € [1,ny4] ¥ nearest — neighbor path R € [1, ny4]%" with Ry > x
sien | we have col(€") o R & {Wy.cyn, » W con, ) ’

grr . | Yx €[l.na4] ¥ nearest —neighbor path R € [1.n,, 40l yith Ry < x
sien | we have col(§") o R & {Wx con,—, Wy cyn,— )

Definition 5.14. For z € Z and m € N we define w; ;.- = &|[z, z + m[ to be
the word of length m starting at z, and we denote by w; » — the word obtained by
reading w; . from right to left. We define
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B | Va2 € [=3%,3%] and Vi1, iy € {«, >} with (21, i) # (22, i2)
unique fit - we have W, z1,i1,c1n/4 # wy, 22,i2,c1n/4
Definition 5.15. We define E(,l\’,grds ok = Egr’ﬂry 0N E:flrwords with
Enf = {1rw € Words™ (z, "), thenw < [-3%, 3]},
g _ 1w <e|[ 5-3",5-3"] and |w| = cin/2, then Ju' €
all words - Words” (t, x™) with w C w’

5.3. Combinatorics

Lemma 5.1. There exists cya > 0 such that for all n > cy4 the following inclusion
holds:

n,t n n,t n,t
Eg stop NnB blocks bd N B N Btunctlonal N By scen ok CE Words ok *
n n
Proof Let n € N and suppose the events Estop, B{locks bas Be " Biinctional» and

scen ok hold.
First we show that EOnly « holds: Let w € Words" (z, x"). Then there exist
positive linear functionals g}’ and gé" such that (5.2), (5.3/5.5), and (5.4) are ful-

filled. Since B}'* holds, it follows from (5.4) that ||g1 ® gy H2 ||g§ S||i/2 <e

which is < 1/(2n?) for all n sufficiently large. Consequently, the assumptions
(4.10),(4.11/4.13), and (4.12) of Theorem 4.1 are satisfied, and Theorem 4.1 implies
w < E&| [ 33, 33"] for all n sufficiently large.

It remains to show that Eall words holds: Let I C [—5 -3 5. 3”] with |I| =
cin/2. Since Bl ., holds, there exist y, z such that |y — z| < cin, I C [y, z],
-1 # &y, and &, # &, 1. Forn sufﬁciently large, |y|, |z] < 6 -3". We set
di=z—y+Lw:=§&|y,zl,g =g/ ._g E ,and g3 := g% '_gzé and claim
that w, g1, and g3 satisfy (5.2), (5.3/5.5), and (5.4) with n = x" which implies
w € Words" (z, x").

Note that ||g ® g’ll2 = ligll2llg’ll2 for any g, g’. Using this together with the
fact that BJ} 1,4 holds, we obtain

cin
lg1®@gsllz = 37" p *1”—21"! 1211 1B 1 L 5], Pe
1

< 32np—2c‘1ne2c‘6n[ max H ”2]20111 < Pl (57)

ie[1,5]

because cjn > 2and ¢7 > 21n3 — 2¢; In p + 2¢6 + 2¢1 In [max;eq1,5) [ %} Hz] (see
Section 2). Hence (5.4) is satisfied.
Next, we verify (5.3) in the case g # 0. By the definition of Mg’g, we have

PN EGE I = Y afT () Pee[(01.08) € - of = of +d —2].
xe[—31,37]
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With A, , := {So;l =u, Son = v, 0} = 0] +d — 2} the following holds

Pec[(O1,0%) €0 = of +d —2]

= > Py g [Auy] Pegl(O], OF) € -|Ay,]
{u,veZ:lu—v|<d—2}
= > Peg [Auo] Peg [07 € -[Aus] ® PeelOh € Ayl

{u,veZ:lu—v|<d-2}

for the last equality we used that O and Of are independent conditioned on Sop
and Syr. Let lu — v| < d — 2 such that Py £(A,, ) > 0. We cannot have simulta-
neously # < yand v > z because z —y =d — 1. Hence u > y or v < z. Recall
that we chose g = g;'é and g3 = g;. Since the event Bf oy, holds, g1 and
g3 are left and right limiting functionals at y and z, respectively. Consequently,

g1(Prg[Of € -]A, ) =0or gg(Px’g[Ogl € -|Ay.»]) = 0, and we conclude

(81 ® 1® ga)(uf §[- N Efjo ') = 0.

Hence, because of ﬂgots = ug’g + e and the linearity of g1 ® g3, we obtain

(@1 @1®g3) (L5 NEya ') = g1®1@g3(ef 5[ N Epjo' D
< lgi®gslz - el N EGS . (5.8)

Since 8g§ is the difference of two probability measures and BJ** holds, ||gg:§[- N
Epé 3 < 5l < e~ Thus, using (5.8) and (5.7) yields

(&1 ® 1 ® ga) (ALl N Efya ') < e < 1/(5n%)
for all n sufficiently large. Thus (5.3) holds.

Finally, we check that (5.2) holds for ¢ # 0. Note that [le}"§ || < [|e}"§]1}* <
€27 because 8;; is the difference of two probability measures and B}'* holds.
Since 1" = ppg+epgand (g1® 1w ®g3)(er’g) < llg1®g3l2-lleg gl < e
by (5.7), we obtain

(£1©10®g3) (A3 N Efid, D=(81® 10 ®g3) (W5 N Efd, ) —e™".(5.9)

Since Egy, holds, 3=, c(_3u 3 ay" (x) = 1. Hence, by the definition of 14;, it

suffices to show that
(81 ® 1y ® g3) (P e[(0],05,05) € -,0f =0 +d— 1)) =2  (5.10)

for all x € [—3",3"] because (5.10) and (5.9) imply (5.2) for all n sufficiently
large.

Let yg and z¢ denote the right end of the ¢;nth block of £ < |Joo, y]and §|[z, oo,
respectively; recall £, = £_,,. Le. yo is the left end of the cnth block in £ to the
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left of y. The following picture illustrates this for cyn = 6. The points y and z are
marked with a box.

0 1101000010 11100001[0]1111001000110 1
Y0 £y, 2l @

Let 0 denote the left end of the ¢inth block of x before of (here blocks are counted
backwards) and let 6 denote the right end of the cjnth block of x after 0. Recall
the definitions of Bi(,_y and Bi’_z’ from Definition 5.4. We observe

P g [(O]
> Py [( 1,05,0%) € -, 0} =0} +d—1, Ser =Y0. Sop =, Sor =2, S@y=20]

cn cin

BSI B2

= PP [Sip = 30| @2 1 Q[0 | @ !
i=1 i=1

Decomposing (5.11) according to the different possible values for Son and S,» and
using Remark 4.2, we obtain

5,0%) €0l =0 +d—1] (5.11)

(81 ® 1w ® g3)(Py £[(OF, 03, 05) € -, 07 = 0] +d —1])

cin
|Bi\" — |Br:| _
> <g1®1w®g3)(pr,s [S;,;« =yo]®xr TR QUp w1 QA h 1)
i=1 i=1
cin

— 32npr1n+d71PX’§[S{37 = yo]l_[ ([|B:}| +17- X|B<—|A5()\ Biy h 1))
i=1

cin
B2, _
T (UBZ 1+ 10 s 07h)
i=1
> 37 p 7 P e[Sy = yol: (5.12)

for the last estimate we used d < cyn and the fact that X* (A;"h_l) >m+1)7!
for all m > 1 by Remark 4.1. Recall the definition of 0. We have that o} is the

left end of the first block of 63 (£ o S). If S3u = yo and Sy, = yo + 1, then
Sﬁ;t = yp. (Recall that a block of £ starts at yp.) Using this and the local central
limit theorem (see e.g. [5] Theorem (5.2), page 132) yields

3 p~ P elSsp = yol = 3% p~' Peg[ S50 = yo, Syupg = yo + 1]
=32 Py £[S320 = yol > 62532n3_" =c353">2
for all n > cp¢ with constants ¢»5, ¢26 > 0 independent of x € [—3", 3"] and yp;
recall that |yg| < 7 - 3" for all n sufficiently large because B}, pq holds. The

estimate (5.10) follows from (5.12).
In the case g = 0, the above proof can be easily adapted. O
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Lemma 5.2. There exists cy7 > 0 such that for all n > c7 the following inclusion
holds:

n,t n n,t
EWords ok n Bunique fit < Erecon Big*

Proof. Letn € N, and suppose EWomls ok and Bunlque g hold. Letyr € UanzC[_k’k]
with ¢ < &|[—3", 3"]. There exista € [—3",3"] and b € {—1, 1} such that

Vj=&upj and a+bje[-3",3"] forall j €[~k kl. (5.13)

We argue that w := (§444)) je[-3-37,3.37] € Output”(z, x", ¥): By (5.13), ¥ =
w|[—k, k].Let I € [—3-3", 3.3"] be an integer interval with || = ¢yn/2. Then the
image of I under the map j = a-bj is again an integer interval, which is contained

[ 5-3%5. 3"] for all n sufﬁciently large because |a| < 3" and ¢1n/2 < 3" for
all n sufﬁmently large. Since Eall Words holds, there exists w’ € Words" (z, x") with
w|l C w'. Hence w € Output®(z, x", ¥). In particular, Output” (z, x", ¥) # @.

It remains to show &|[—3",3"] = w =< &[[-4-3",4-3"] forall w €
Output”(z, x", ¥). Let w € Output’(z, x", ¥). Then w|[—k, k] = ¥, and con-
sequently, by (5.13),

w; = i:a+bj (5.14)

for all j € [—k, k]. Suppose we prove (5.14) for all j € [—3 -3, 3. 3"]. Then
there is precisely one element in Qutput” (z, x", ¥). Since ¥ < &|[—3", 3"], there
are more than 2 - 3" letters to the left and to the right of ¥ in w, and consequently
&|[—3", 3"] < w. On the other hand, in w, there are less than 3 - 3" letters to the
left and to the right of ¢. Hence w < &|[—4 - 3",4 - 3"].

Thus, to finish the proof, it suffices to verify (5.14) forall j € [—3 -3 3. 3"].
Suppose we know (5.14) for all j € [—s, s] for some s € [k, 3.3" — 1]. This
assumption is true for s = k. Weset I} == [-s — 1,—s — 1 +¢c1/2[, I, =
Is+1—cin/2,s + 1], w; := w|l;, and w, := w|I,. Note that w; and w, have
both precisely c¢;n/2 — 1 points in common with w|[—s, s]; w; and w, extend
w|[—s, s] one letter to the left and to the right, respectively. The words w; and
w, are well defined because cjn/2 < |y| = 2k + 1 for all n sufficiently large.
Since w € Output”(z, x", ¥), there exist w;, w,. € Words" (z, x") with w; C wy,
w, C w}. Using that EJ . holds, we see that wy, w, < &[[—3%",3%"].

Suppose (5.14) does not hold for j = —s — 1. Let I; ¢ denote the image of /;
under the map j + a + bj. Then &|1; ¢ # w;; more precisely, £|1; ¢ and wy dis-
agree in precisely one point, namely the leftmost point. Thus we found two words
of length ¢yn/2 in &|[—3%", 3>"] which disagree in precisely one point. Conse-
quently, there exist z, 7’ € [—33”, 33"], i,i’ € {«,—} with (z,i) # (z/,i’) such
that& |1 e = wy i ciny2 and wp = Wy j7 ¢ nyo. I We restrict w j cynj2 and wyr i ¢ n 2
to the last cjn/4 letters, we obtain two words of length ¢yn/4 in &| [—3%", 3],
and these two words agree. This contradicts the fact that the event B” holds.
Thus (5.14) holds for j = —s — 1.

To see that (5.14) holds for j = s + 1, one applies the above argument with
w defined by w; := w_j for j € [-3-3",3-3"| in place of w. By the induction
principle, (5.14) holds for all j € [—3 2373 3"]. |

unique fit
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Lemma 5.3. There exists cyg such that for all n > cpg the following inclusion
holds:

n n n n
Bblocks bd N Bblocks 2,4 N Bsignals < Bfunctional'

Proof. The proof will be done by contradiction. Suppose the events By i« b
Byjocks 2,4» and B,  hold, but B 1 = B;’u’rllc N By, does not hold. Suppose
B does nothold. Then there exists y € [—6 - 3", 6 - 3" | with &, # &,_; such that
the right functional at y is not a right limiting functional at y, i.e. there exist y; < y
with &y, # &y 1 and x € [—3”, 3"] such that gi:f(Px,g(Og‘ € :|Sor = y)) =0or
both Py £(S,» = y1) > 0 and gijf(Pxﬁg(Og’ € -|Sor = y1)) # 0 hold.

Let R be an admissible piece of path. If £ o R consists of precisely k blocks,
we say that R generates k blocks on §. We denote by £|[b/", b¥.] the block of & on

which the ith block of £ o R is generated. If Rb_RI = Ryr , we set jiR := [, otherwise
we set jiR := r. We abbreviate liR = bl-Rr — biRl — 1. Using this notation, we have

cin
Ps(Of e Sp=y)=y Qrin" (5.15)

(i, ji) i=1

where the sum is taken over all (I;, ji)ie[1,c;n) € (N x {I, rHth-einl guch that there
exists an admissible piece of path R starting at y which generates blocks with
(R, j®y = (i, ji). Since Bf) 4 pq holds, the path which starts at y and walks 6¢1n
(which is < 3" for all n sufficiently large) steps to the right generates at least cyn
blocks on &, namely Biy, i € [1, cin]. Consequently, by the definition of the right

functional of £ at y and Remark 4.1, we have g;’&,jf(Px,g(Og’ €, 8n =1y) >0

Hence, by our assumption, Py ¢(Sor = y1) > 0 and gijf(Px,g(Og’ € |Son =
y1)) # 0. Writing Py (05 € -, Spr = y1) as a sum as in (5.15), we see that for
at least one admissible piece of path R starting at y; and generating at least cn

IR . ..
blocks on & we have gi:f(@f‘znlkijh_l) > 0. Inserting the definition of g7, we

obtain

En R T . (A
0 < g%,(@)\jﬂh ) = TTUBG 1+ 100 (21n 7).
i=1 i=1 ' !

By Remark 4.1, ¥3(A""h~!) # 0iff i = r and m = 2, and also, X;(A"h~') # 0
iff i = r and m = 4. Furthermore, x}(A2) = 0 and x*(A}) = 0 fori € {1,3,5}.
Thus |Bl.’_;| € {2,4}iff liR € {2,4} and R crosses the block Bl_; from left to right.
Since |y| < 6-3" and By}, pg holds, we have B, C &| [-7-3",7-3"]foralln
sufficiently large and i € [1, cin]. Using that By, » 4 holds, we see that at least
con of the blocks Bi,_;’ i € [1, cin], have length 2 or 4. Hence there are > cyn
blocks with If € {2, 4}.

Clearly, the color of two successive blocks in &, and also in the observations,
must be different. Hence the colors of the blocks of length 2 or 4 among the first
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c1n blocks of £ o R either all agree with the colors of the blocks ny i €1, cin],
of length 2 or 4 or they have all the opposite color. But this contradicts the fact that

BS"i’grn holds. A similar argument shows that the assumption that B?u}llc holds leads

to a contradiction. O

5.4. Probabilistic estimates

In this section, we prove that the complements of all the basic events B” defined in
Section 5.2 have a probability which is exponentially small in n; for some events
this is only true under the assumption that E:t’orp holds. We treat the events in alpha-
betical order.

Lemma 5.4. There exist c9, c30 > 0 such that for all n > ¢y
c —
p ([B{)llocks bd] ) = 2e” 0%,
Proof. By the definition of B} 4. vq = Bey N Bpy ™ s

cin cin

1= U {TTuszi+usenful duszi+21> sen).
i=1

ze[-23%,23%] i=1

For each z, the block lengths |Bl._;|, i > 1, are i.i.d. with P(|Bi_;| =k) =27k,
k > 1; in particular E£|B;| = 2. By Chebyshev’s inequality, we obtain

cin cn
P(TTuBz1+ 11> en) < e B TTuBz 1+ 11) = 3me o,
i=1

i=1

Furthermore, by the large deviation principle, we have

cin on
P(Z[IB,?ZI +2] > 8c1n) = P(Z |B| > 6c1n> < el (©)
i=l i=1

with the rate function 7 (x) = (x — 1) In(x — 1) 4+ x In(2/x). Since 1(6) > 1, we
conclude

P([B{;{)_)]C) < (4 . 3311 + 1) [3clne—06n +e—cln] < e—C30n
for some constant c39 > 0 for all n sufficiently large; here we used that ¢ — (¢ +
4)In3 > 0 by our choice of ¢ and ¢; > 4In3. The same estimate holds for
P([By," 19. i

Lemma 5.5. There exist c31 > 0 such that for alln € N

P ([ Bbiocks 2,4]6) < 141",
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Proof. Recall that for all z, the block lengths | B, |,i > 1,arei.i.d. with P(|B;| =
k) =27%,k = 1. Hence P(IB;;| € {2,4}) =272 4+27* =5/16. Let i, k > 1,
be i.i.d. Bernoulli with parameter 5/16, and let J(x) := (I — x)In (W) +
x In (18). By the large deviation principle (see e.g. [S]), P(3_{", Y < cin/4) <
e~ //en Since ¢y < ¢1/4 and there are at most 14 - 3" sequences of ¢;n con-
secutive blocks in £ [—7 - 3", 7 - 3"], we have

P ([Blr)llocks 2’4]0) S 14 . 3"6—1(1/4)0111 S 146—031]1
because J(1/4)ci —In3 > 0. 5

Recall that 3*" a4’ (x) equals the number of stopping times , k € [1,3%"],
with S7, = x. The following lemma, which will be needed in the proof of Lemma
5.8, states that with very high probability, the stopping times stop often in x provided

the event Eg;, holds.

Lemma 5.6. There exists c3p > 0 such that for alln > c3»
P(E:t’oi) N U {3anag,t(x) < 317clnel667n}) < e ",
xe[—3",3"]

Proof. The proof is very similar to the proof of Lemma 6.14 in [24]. In the nota-
tion of [24], the estimate holds whenever @ > 1 + y — [3¢1In p]/In3 with y :=
17¢1 + 16¢7/ In 3, which is satisfied by our choice of « (see Section 2). |

The following basic large deviation estimate will be needed below.

Lemma 5.7. Let X;, i > 1, be i.i.d. Bernoulli with parameter 8, and let 6,, :=
Y 'L\ X;. There exists a constant c33 > 0 such that for allm € N and all a > 0

P(ow = m(a + 8)) < e’

Proof. By the large deviation principle (see e.g. [5]), we have P (0, > m(a+6)) <
e~m1(@+) with the rate function Is(a) = aln ($)+(1—a)In (}%g) One verifies
that Is(a + 8) > c33a® for all § €]0, 1[ and @ €]0, 1 — §[ with a constant ¢33 > 0
independent of § and a. m]

Lemma 5.8. There exist constants c34, ¢35, ¢3¢ > 0 such that

P (E?tzfp \ BZ”) < c3se 9" foralln > c34.

Proof. We define for x € [—3", 3”]

~ —1
ygos = [3"a5T0] T D 1Sy = xPorenp,
ke[1,3%1]
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ie. ,&z;o  is the empirical distribution of the O" collected after times 7z with

Sy = x. Suppose the event Eg;, holds. Then |S;, | < 3" for all k € [1,3%"], and
consequently

N -1
5= ), a5t [MZZEOS — P [0"(0)] ] :
x€[—31,37]
By the triangle inequality,

legslhi < Y gt

xe[—3",31]

O -1
iy Eos — Pee [0"00] H] . (5.16)

Let S denote the set of possible states of the random variable O" (x ) if |05 (x)| <
3", and let S’ be the set of possible states of O”"(x) if |05 (x)| > 3". Recall that
0" = (0}, 03, O5) where O},0% € {1, 2, ..., 5} and O} is the concatenation of
a word of length < ¢yn/2 with a block. Consequently, | S| < 5%172¢1131 < 28,
Recall the definition of Bg’; from Definition 5.10. Clearly,
P (Ep \B27) = P ([l 0 BET |\ BET) + P (B \ BET) -517)
We split the sum in (5.16) in two parts. Let
Jseldom := {x € [_3n’ 3n] : 30(”“;’1()5)53”'8'291607” } s Joften 1= P?’n, 3n]\~’seld0m~

By the definition of Jgeldom, We have

Z ag’(x) ‘

x€Jseldom

:&Z:gos_Px,E [On (X)]—l Hl S32n3(1—01)1121601}161607/1 Se—gcm’

(5.18)

where the last inequality follows from our choice of «. Next, we define the event
that the contribution to ||8§’§ l{ coming from O" = s € § is small: We set for

X € [—3”, 3”] ands € S

BTTS = [Ifx € Joften, then

x often

L (Ush=Pee [0 GO (s |=lsi~! e},

If the event Nye[—3n 3n] Nyes B2t holds, then

x often
T
PBREODY

X € Joften seS

ArEsUsh = Pog [0"G0] T s = e (5.19)

AN, T

If the event By holds, then /iy £.s({s) = 0 forall s € S’ and consequently,

IHEDY

x € Joften se§’

< Y dTWP (05001 >3 < et

X € Joften

AL sUs) = Prg [0"G0] ™ ({s})\
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Combining the last estimate with (5.19) and (5.18), we obtain

n,t n,t n,t,s n,t n,t n,t —8C7n
EStOP n BO2 n m m B ofien S Estop N BOZ N {Hgg,_g“l <3e }
X€[-3".3"] 58S

n,t n,t n,t
< Estop N 802 N Bs

for all n sufficiently large. Hence, using Q = {x € Jseldom} U {x € Jofien}, We
obtain

s s s s s T, c
P([EmmnBs |\ Br) = p(Espnes’ 0 U UBrGI) 620
xe[—-3",3"]seS

P(E:torp N U {x e Jseldom})
xe[—3m,3"]

(U UL € Jorenh \ Bl
xe[-3",3"]seS
= P[E:torp N U {x € Jseldom}]
xe[—3",3"]

+32n|8| xe[_gl%i(] ies P[{X € Joften} \ B;l’orti{venjl'

IA

It follows from |S| < 281" and Lemma 5.6 that for all n > c3»

P[E:torp N U {x e Jseldom}]

x€[—3",3"]
< P[E:torp N U [3anag,f(x) < 317c1nel6C7n}:|
xe[—3",3"]
< e, (5.21)

We introduce the stopping times 7;° when the random walker is at x: 7 :=
min{z; : i € [1,3%"], 8, = x}, ¢y, = min{7 > g :i € [1,3*"], 5, =x}.
The random variables | [r,f + 321, r,f + 330 [ k € [1, j], are i.i.d. conditioned on
E"* . Hence, by the definition of [ngos, P ({x € Joften} \ BT |E”’r) equals

stop* x often !~ stop
a large deviation probability for sums of Bernoulli random variables and we can
apply Lemma 5.7 with m = 3%"a" (x) > 3"|S]%e!%7" and a = |S|~le78emm.
Since for this choice, ma? > 3" we obtain

P ({x € Jofien} \ By en) < eXp(—c333"). (5.22)
Combining (5.20) with (5.21), |S| < 281" and (5.22), we conclude
stop

Alwnm)in) e e

for all n > ¢34 with some constant c34 > c¢37. The claim of the lemma follows from
(5.17), (5.23), and Lemma 5.10. |
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Lemma 5.9. There exist c37, c3g, c39 > 0 such that for all n > c37

n ¢ —c39n
P ([Bfunctional] ) = c38€e .

c c ¢
Proof. By Lemma 53’ Blzlunctional < [Btr)llocks bd] U I:Blr)llocks 2,4] U I:Bsnignals] - The
claim follows immediately from Lemmas 5.4, 5.5, and 5.12. O

Lemma 5.10. There exist cao, ca1, cap > 0 such that for all n > c49
P (Bl \ BES ) < cure™".
Proof. Clearly,
P (E:ltorp \ Bg)f) =P (I:E:ltorp 0 Bylocks bd:l \ Bg’;) + P ([Bhiocks ba] ) - (5:24)

n,t __ pnh,T "
Recall that B02 = 302 sman1 N Bgz large- By definition,
n,T n,t
P ([Estop N Bglocks bd:I \ BOZ small)

<3 max Py (Byjocks ba N 1105001 > 3"}
xe[—3",3"]

=3 max_ Ey [1Bfos ba Pre (105001 > 3M)]. (5.25)

xe[—3",3"]

Let x € [—3",3"]. Suppose the random walk starts at x and |04 (x)| > 3". Then
x| [0, 33n [ contains a block of length > 3" — ¢|n and this block must be generated
on&|[—2-3%,2. 33 If B} 4 pq holds, all blocks of & [—2 - 3%, 2 - 3%"] have
length < 6c¢(n. Consequently, the random walk stays time ¢t > 3" — cyn in an
interval I of length < 6¢n. It is known (see e.g.[23], Lemma 5.2) that

P(S; e Iforalli €[0,1]) <cu3 exp(—C44t/|I|2)
with constants c43, c44 > 0. Thus it follows from (5.25)

c44[3" — cyn]
p (I:E;Ltol;) N Bl;llocks bd] \ B(r;)zrsma]]) = 6433an exp [ - 2.2 :|
36cin

<e™" (5.26)

for all n sufficiently large. Furthermore, by the above argument, [E :{otp N B ocks bd] \
Bg

e~ " for all n sufficiently large. The claim follows from (5.24) and Lemma 5.4. O

= ) for all n sufficiently large. Thus P ([E”r N Bllocks bd] \ Bé;) <

o large stop =

Lemma 5.11. There exist cas, ca6 > O such that for all n > cas

P ([Blen o)) < 126746,

scen ok
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Proof. 1t is not hard to see that for all n sufficiently large, Bl . contains the
event {All blocks of £| [—6-3", 6 -3"] have length < c¢;n/4}. Consequently,

P ([Bieen o]')

IA

P (3 block of £[[—6-3",6-3"] of length > cn/4)
123" 27/

A

here we used that there are < 12-3" possible left endpoints for a block in & | [ —6-3",
6- 3"] and that the probability that a block starting at x has length > ¢;n/4 equals

2=¢1"/4 because the scenery is i.i.d. uniformly colored. The claim follows because
c1 >4In3/In2. O

Lemma 5.12. There exists c47 > 0 such that for alln € N

P ([Bignas] ) = 60",

Proof. Recall the notation introduced in Definitions 5.12 and 5.13. Let y := —7-3".
The sequence (|B2’4| C2’4),>1 is a Markov chain under P with time- homogeneous

transition probabilities. The block lengths (|B |)l>1 are 1.i.d. with P(|B |

2) = 2 2/(2 242 =45 and P(|B24| =4) =1/5 and 1ndependent of
the colors (C iy ),>1 Note that C ;é Cl +1 y iff between B 4 and Bl +1 y there
are 2k blocks of length 1, 3, or 5 for some k > 0. Recall the definition of B_’

from Definition 5.4. Let pp 4 := P(|Bl_;| €{2,4) =2"24+2"%=5/16and set
q2.4:=1—pra=11/16. Then

241 16

p
P(CHr#£CH ) = HKprg=—""" = =_
( ;é t+1 \) Zq2,4p2,4 1— q22’4 1+ qo4 27

and P(C 12 ’V4 C; +1 V) = 11/27. Hence the one-step transition probabilities of the
Markov chain col; (§"),i > 1, are < ‘5—‘ . % = % < %

Let x € [1,np4], let R € [1, n2,4][0'52”[ be a nearest-neighbor path with
Ry < x,and let w € {ﬁ)x,czn,—n Wy con,— > W = (Wi)ig[0,con[- We set Hy =
o(col;(");i € [1,k]). Clearly, wy € H,4k. Since R is a nearest-neighbor path,
Ry < x 4k for all k; hence colg, € Hyyr—1 for all k. Using that wy, k € [0, can],
is a Markov chain with the above specified transition probabilities, we obtain

P(col(¢") o R = w) = P(col; (") = w; Vi € [0, cpn[)
con—2
[ Pleolit1(E") = wisileol;i (E") = wi)

i=0

< (%)Czn—l'

IA
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There are ny 4 < 14-3" possibilities to choose x and 2¢2"~! possibilities to choose
R. Thus, by the definition of B!

51gn’
nr € nncon—1 64 \ can—1
() =2 e e (55)
<3031 (2 o =)
135

< 30e” "

for some constant c47 > 0 because 64/135 < 1/2 and ¢; > In3/(In(135/128)).
The same estimate holds for B;gln, and the claim follows from the definition of
B . =B" np"’ O

signals sign sign*

Lemma 5.13. There exists c4g > O such that for alln € N

c n
P ([ iinique ﬁt] ) = 4o 48",

Proof. Let z1,z2 € [-3%,3%] and i1, iy € {«, =} with (z1,i1) # (22, 02).
For k = 1,2, we set oy := +1 if iy =—, o := —1 if iy =<, and we define
fx(j) := zk + oxj for j € [0, cin/4[. As is shown in the proof of Lemma 6.8 of
[24], there exists a subset J < [0, cyn/4[ of cardinality |J| > cin/12 such that
f1(J) N f2(J) = @. Consequently,

P(wzl,il,cln/4 = wzz,iz,cln/él) =< P(wzl,il,cln/4|f1(-]) = wzz,iz,cln/4|f2(-]))
— 2—(,‘111/12'

Since there are < (2 - 33n 4 l)2 < 380 possibilities to choose z1 and z and < 4
possibilities to choose i1 and i;, we conclude

P (I:Bl}inlque ﬁt]c) = 4. 38n2—c1n/12 < 4o 48"
for some constant c43 > 0 because ¢; > 961n3/1n2. O

5.4.1. Proof of Theorem 3.1

Proof of Theorem 3.1 Combining Lemmas 5.2, 5.1, and 5.3 we obtain

Egiop N Bblocks bd N Bblocks 2,4 N Bn n Bfunctional N By k N B

n Bunique fit
n,t
— “recon Big

stop scen o signals

for all n sufficiently large. Hence

n T c n,t n
stop \ Erecon Big = [Bblocks bd] [Bblocks 2 4] U [ stop \ B ] U [BfunctionaI]

c c
n c n n
U [ scen ok] U [ signals] U [ unique ﬁt] .

The claim follows from Lemmas 5.4, 5.5, 5.8, 5.9, 5.11, 5.12, and 5.13. ]

c
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