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Abstract. We study 1-dimensional continuum fields of Ginzburg-Landau type under the
presence of an external and a long-range pair interaction potentials. The corresponding
Gibbs states are formulated as Gibbs measures relative to Brownian motion [17]. In this
context we prove the existence of Gibbs measures for a wide class of potentials including
a singular external potential as hard-wall ones, as well as a non-convex interaction. Our
basic methods are: (i) to derive moment estimates via integration by parts; and (ii) in its
finite-volume construction, to represent the hard-wall Gibbs measure on C(R; R

+) in terms
of a certain rotationally invariant Gibbs measure on C(R; R

3).

1. Introduction

This paper studies R
d -valued continuum fields X = {X(s), s ∈ R} over R with

interactions prescribed by a (formal) Hamiltonian given by

H(X) = 1

2

∫
|∇X(s)|2 ds +

∫
ϕ(X(s)) ds

+1

2

∫∫
ψ(s − t, X(s),X(t)) dsdt, (1.1)

where ∇X = ∂X/∂s. This is a continuous counterpart to Ginzburg-Landau random
fields over the lattice Z (see [23]) with an external potential ϕ and a long-range pair
interaction potentialψ ; analogously to those lattice cases, the Gibbs state associated
with (1.1) would formally be given by

dµ(X) = exp{−H(X)} dX/normalization, (1.2)

where the reference measure dX ≡ ∏
s∈R

dX(s) is “Feynman’s measure”. By
incorporating the first term in (1.1) into the reference measure, the measure like
(1.2) can be interpreted as a local perturbation from Wiener measure; that is, we
consider Brownian motion under the presence of potentials ϕ and ψ . The corre-
sponding measure on the path space C(R; R

d) is formulated as a Gibbs measure
relative to Brownian motion [17], and defined through the so-called DLR equa-
tion (see Definition 2.1). Similarly to the lattice field case, such a measure appears
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as equilibrium states of random time-evolutions of the fields described by Ginz-
burg-Landau equations (see [8, 9, 7]); [11] also studies the dynamics by using the
Dirichlet form theory.

In the case ψ = 0, the corresponding Gibbs measure can be realized as a
P(φ)1-stationary Markov process and it has been fairly understood (see, e.g., [20,
22]). On the other hand, in the non-Markovian case ψ �= 0, the first mathematical
treatment was done by [17]; their motivation was originated from quantum field the-
ory, particularly from the Euclidean quantization of a certain Hamiltonian operator
called Nelson’s scalar field model [16]: its physical context is a quantum particle
in R

d governed by the Schrödinger operator H0 = −(1/2)�+ ϕ and coupled to a
free Bose field. It has been known [16] that, when the coupling is restricted to the
time interval [−T , T ], the Euclidean quantization involves the following types of
measures:

Z−1
T exp

{∫
|s|,|t |≤T

dsdt

∫
Rd
dk
f̃ (k)

f (k)
e−f (k)|s−t |cos(k · (X(s)−X(t)))

}
dPϕ(X),

(1.3)

where Pϕ denotes the law onC(R; R
d) of theP(φ)1-process associated withH0, f

and f̃ are some non-negative functions, andZT is the normalization. It is discussed
in [15] that the limit measure as T → ∞ (if it exists) plays an important role in the
analysis of spectral structure of the operator. For details, see the references cited
above.

Now we raise the question whether the family of measures as (1.3) has a limit
as T → ∞; that is, we discuss the existence of an infinite-volume Gibbs measure
for prescribed potentials ϕ and ψ . There are several possible ways to show the
existence: Ruelle’s superstability estimates [21, 13] on lattice fields; monotonicity
method developed in [17]; cluster expansions applied in [14]. Superstability esti-
mate relies on the product structure of a reference measure and there are a number of
difficulties in adapting this to the continuum case. Monotonicity uses log-concave
inequalities, hence requires certain convexity on ψ , which excludes interactions as
in (1.3). Cluster expansion is applicable to such an interaction when the coupling is
sufficiently weak; in [14], the growth order in spatial variables was also restricted to
at most quadratic. Recently, [1] has proved the existence under a mild assumption
on ϕ; his condition is almost as weak as assuming H0 to have an L2-ground state,
and the existence is shown in the case of bounded interactions satisfying a certain
pathwise condition.

One of the main purposes of this paper is to establish the existence for a wide
class of interactions. We deal with interactions of growth order q0 + 1 (q0 ≥ 0) in
spatial variables. We choose external potentials to grow polynomially of order 2p0
(p0 ≥ 1) at infinity. Roughly speaking, our result reads:

if p0 ≥ q0, then the associated Gibbs measure exists.

The key is to show the localization in its finite-volume construction (see
Theorem 3.1). Our method to derive this is different from those quoted above.
Its advantages are: (i) it requires no convexity on interactions; (ii) it is applicable
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to an arbitrary strength of interactions in the case p0 > q0. Our technique to be
developed here involves (deterministic) integration by parts. So we require weak
differentiability on potentials, however, many examples including Nelson’s model
can be treated in our framework.

Another purpose of this paper is to construct hard-wall Gibbs measures with
interactions on C(R; R

+). We deal with an external potential such as

ϕ(x) = ∞, x < 0.

Under the effect ofϕ, the path is restricted to stay positive over the real line (the hard
wall). Similarly to lattice fields [12, 3], a “repelling” phenomenon is also observed
in the present continuum case; indeed, the paths, renormalized by the hard-wall
effect, behave as 3-dimensional Bessel process, not as reflecting Brownian motion.
This observation reduces the problem to the localization of certain finite-volume
Gibbs measures on C(R; R

3), to which our method applies.
This paper is organized as follows: in Section 2, we state the main result; in

Section 3, we prepare a key theorem, which we prove in Section 4; in Section 5,
we discuss the existence of hard-wall Gibbs measures with interactions.

Throughout this paper we use the notation (x, y) instead of x · y for the inner
product on R

d . We write |x| = (x, x)1/2 and ‖x‖ = (1 + |x|2)1/2 for x ∈ R
d . R

+
denotes the set of the non-negative real numbers. We denote by 〈·〉 the expectation
with subscript of a reference measure. Other notation will be introduced as needed.

2. Main result

For given functions ϕ : R
d → R ∪ {∞} and ψ : R × R

d × R
d → R, we define

(ϕ, ψ)-Gibbs measures following [17]: Let C = C(R; R
d) endowed with the com-

pact uniform topology. For a finite interval� = [T1, T2] ⊂ R, let C� = C(�; R
d)

and C∗
� = C(�c; R

d). For a given ξ ∈ C, we define the local Hamiltonian H�,ξ ≡
Hϕ,ψ
�,ξ by

H�,ξ (X) =
∫
�

ϕ(X(s)) ds + 1

2

∫
�2
ψ(s − t, X(s),X(t)) dsdt

+
∫
�×�c

ψ(s − t, X(s), ξ(t)) dsdt, X ∈ C�.

The functions ϕ and ψ are called the external potential and interaction potential,
respectively. We assume ψ is symmetric in the sense that, for all s ∈ R and x, y ∈
R
d ,

ψ(s, x, y) = ψ(|s|, x, y), ψ(s, x, y) = ψ(s, y, x). (2.1)

Let π� : C → C� and π∗
� : C → C∗

� be canonical projections. For a probability
measure µ on C, define µ�,ξ (·) = µ(π� ∈ · |π∗

�)(ξ). Here µ(·|π∗
�) is the regular

conditional probability with respect to the σ -field σ(π∗
�).



160 Y. Hariya

Definition 2.1. A probability measure µ on C is called a (ϕ, ψ)-Gibbs measure if
its regular conditional probabilities satisfy the DLR equation:

dµ�,ξ (X) = (Z�,ξ )
−1e−H�,ξ (X) dW�,ξ (X) µ-a.e. ξ ∈ C.

Here W�,ξ denotes the law of Brownian bridge on C� with boundary conditions
X(T1) = ξ(T1) and X(T2) = ξ(T2), and Z�,ξ = 〈e−H�,ξ (X)〉W�,ξ

.

We proceed to the setup for the main result. We assume (A.1)–(A.3):

(A.1) Assumptions on ϕ. ϕ is bounded from below. There exist ϕ0 and ϕ1 such
that ϕ = ϕ0 + ϕ1, satisfying (A.1a) and (A.1b), respectively:

(A.1a) ϕ0 is a continuous function such that the associated Schrödinger operator
H0 = −(1/2)�+ ϕ0 acting on L2(Rd; dx) has a strictly positive ground
state f0 of class C2(Rd) satisfying the following conditions:

(i) (strict log-concavity) there exists an α > 0 such that

(ζ,Hessu0(x)ζ ) ≥ α|ζ |2 for all ζ, x ∈ R
d , (2.2)

where u0 = − log f0 and Hessu0 = (∂2u0/∂xi∂xj )1≤i,j≤d is the Hessian of u0;

(ii) there exists a p0 ≥ 1 such that

0 < lim inf
r→∞

1

r2p0
inf

|x|=r
U(x), lim sup

r→∞
1

rp0
sup
|x|=r

|V (x)| < ∞, (2.3)

where U = (f0)
−2div(f0∇f0) and V = (f0)

−1∇f0. Here div denotes the diver-
gence.

(A.1b) ϕ1 ∈ W 1,1
loc (R

d) and there exist b ≥ 0 and 0 ≤ p1 < p0 such that

|∇ϕ1(x)| ≤ b‖x‖p1 for a.e. x ∈ R
d .

HereW 1,1
loc (R

d) is the set of functionsf ∈ L1
loc(R

d)whose distributional derivatives
∂f/∂xi, 1 ≤ i ≤ d , belong to L1

loc(R
d).

(A.2)Assumptions onψ . For each fixed s ∈ R and y ∈ R
d ,ψ(s, ·, y) ∈ W 1,1

loc (R
d).

There exists a non-negative, integrable function ψ0 on R satisfying (i) and (ii):

(i) there exists a q0 ≥ 0 such that, for a.e. s ∈ R and x, y ∈ R
d ,

|∇xψ(s, x, y)| ≤ ψ0(s)(‖x‖q0 + ‖y‖q0) (∇x = (∂/∂x1, . . . , ∂/∂xd));
(ii) for a.e. s ∈ R and x, y ∈ R

d , ψ(s, x, y) ≥ −ψ0(s).

(A.3) p0 is strictly larger than q0.

Remark 2.1. From (2.2), we see in particular that |V (x)| − α|x| is bounded from
below. We assumed p0 ≥ 1 in (2.3) to make our assumption consistent.
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Now we state one of our main results, the existence of (ϕ, ψ)-Gibbs measures:

Theorem 2.1. Assume (A.1)–(A.3). Then there exists a translation invariant (ϕ, ψ)-
Gibbs measure µ satisfying

〈|X(0)|2p0〉µ < ∞.

Remark 2.2. In the case p0 = q0, the existence also holds if
∫
R
ψ0(s) ds is suffi-

ciently small. See Remark 4.3.

We give examples of potentials satisfying the above assumptions.

Example 2.1. We can construct examples of ϕ from f0. Note that we may assume
without loss of generality that −(1/2)�f0 + ϕ0f0 = 0, by adding a constant to ϕ0
if necessary. ϕ0 is then expressed as ϕ0 = (1/2)�f0/f0.

(i) Ornstein-Uhlenbeck processes:

ϕou(x) = 1

2

d∑
i=1

a2
i x

2
i , x ∈ R

d , ai > 0,

with f0(x) = exp{−(1/2)∑d
i=1 aix

2
i }.

(ii) Double-well potentials:

ϕdw(x) = 1

2
a2x4 − 1

2
b2x2, x ∈ R, a, b > 0.

This is obtained by taking

ϕ0(x) = 1

2
a2(x4 + x2)+ R(x), ϕ1(x) = −1

2
(a2 + b2)x2 − R(x)

withR(x)=−a‖x‖+(a/2)‖x‖−1. In this case we take f0(x)= exp{−(a/3)‖x‖3}.
Examples of ψ are:

Example 2.2. (i) Nelson’s scalar field model: Typically, it is given by

ψnel(s, x, y) = − 1

s2 + 1 + |x − y|2 .

We refer to [1]. This example corresponds to the case q0 = 0.
(ii) Non-convex interactions:

ψnc(s, x, y) = ψ0(s)υ(x − y),

where υ(x) = |x|q0+1 +Q(|x|)withQ a polynomial whose degree is less than
q0 + 1, and ψ0 is as in (A.2). Note that υ need not be convex.

By Theorem 2.1 we have established the existence for a large class of inter-
actions including Example 2.2; indeed, applying the theorem to the above exam-
ples, we conclude: (i) there always exists a Gibbs measure for (ϕou, ψnel) and for
(ϕdw, ψnel); (ii) there exists a Gibbs measure for (ϕou, ψnc) (resp. for (ϕdw, ψnc))
if q0 < 1 (resp. q0 < 2).
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3. Key theorem: Localization

To show Theorem 2.1, we prepare a key theorem, namely, the localization of finite-
volume Gibbs measures. As was already suggested in (1.3), we will incorporate
the effect of the external potential into the reference measure; this means we take
a P(φ)1-process as a reference process, instead of a Brownian motion itself.

For the Schrödinger operator H0 = −(1/2)� + ϕ0, recall that the associated
P(φ)1-process is determined by the stochastic differential equation (SDE)

dX(t) = dW(t)− ∇u0(X(t)) dt (3.1)

with W a d-dimensional Brownian motion. Here u0 = − log f0 as in (i) of (A.1a).
The process X is stationary under the measure f0(x)

2dx, which we denote by
m0(dx). Here we assume that f0 is normalized so that m0(dx) is a probability
measure. We denote by Pϕ0 the law of this process on C. For the precise definition
of P(φ)1-processes and related notion, see [20, 22] and references therein; see also
[2] for more detailed descriptions.

We take Pϕ0 as a reference measure, and perturb it by ϕ1 and ψ : For a finite
interval � ⊂ R, let Pϕ0

� denote the restriction of Pϕ0 to the σ -field σ(π�). Define

the finite-volume Gibbs measure µϕ,ψ� by

dµ
ϕ,ψ
� (X) = (Z

ϕ,ψ
� )−1 exp{−Hϕ1,ψ

� (X)} dPϕ0
� (X), (3.2)

where

Hϕ1,ψ
� (X) =

∫
�

ϕ1(X(s)) ds + 1

2

∫
�2
ψ(s − t, X(s),X(t)) dsdt

and Zϕ,ψ� = 〈exp{−Hϕ1,ψ
� (X)}〉Pϕ0 . Note that Zϕ,ψ� <∞ by assumption. µϕ,ψ� is

a probability measure on C� with free boundary condition. If we take a symmet-
ric interval � = [−T , T ], each corresponding subscript � is replaced by T ; e.g.,
Hϕ1,ψ
� = Hϕ1,ψ

T , µϕ,ψ� = µ
ϕ,ψ
T and so on.

Note that by (i) of (A.2), the growth order of ψ in spatial variables x and y
is less than or equal to q0 + 1. Suppose we had proved that {µϕ,ψ� }�⊂R has the
following localization property:

sup
�⊂R

max
t∈�

〈|X(t)|q1〉
µ
ϕ,ψ
�

< ∞ (∗)

for some q1 ≥ q0 + 1. Then, from the same argument as in [17, Sect. 4], the exis-
tence of a (ϕ, ψ)-Gibbs measure follows. The next theorem shows that (∗) is really
the case:

Theorem 3.1. Under (A.1a), (A.1b), (A.2) and (A.3), the localization (∗) holds.

Remark 3.1. As we will see in the proof, the localization (∗) holds with q1 = 2p0.
Note that 2p0 ≥ q0 + 1 since we assume p0 ≥ 1 and p0 > q0.
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4. Proof of Theorem 3.1

As was mentioned, once Theorem 3.1 is shown, then the existence result Theo-
rem 2.1 can be obtained as a corollary, in the same way as [17]. We thus concentrate
on proving Theorem 3.1. The essence of our proof is simple; we only have to use
integration by parts once, which is formulated as:∫

Rd
div(f0∇zf0)e

−Hϕ1,ψ
� (Xz) dz = −

∫
Rd
(f0∇zf0,∇ze−Hϕ1,ψ

� (Xz)) dz,

where Xz denotes a path given X(0) = z. See (4.8) below.
We begin with the following lemma:

Lemma 4.1. Assume (ii) of (A.1a). Then there exist constants ai > 0, i = 1, 2, 3,
such that, for all x ∈ R

d ,

U(x) ≥ a1‖x‖2p0 − a2, |V (x)| ≤ a3‖x‖p0 . (4.1)

Proof. By (2.3), there exist c, c′ > 0 and r > 0 such that U(x) ≥ c|x|2p0 and
|V (x)| ≤ c′|x|p0 for all |x| ≥ r . By the continuity, U is bounded from below and
|V | from above on {|x| ≤ r}. Combining these ends the proof. ��
Remark 4.1. By definition,

∫
Rd
U(x)m0(dx) = 0, which implies that U has a

negative part. So the constant a2 above cannot be taken negative; indeed, it must
satisfy a2 ≥ a1

∫
Rd

‖x‖2p0 m0(dx).

From now on we take a symmetric interval � = [−T , T ] for simplicity. Let

MT = max
|t |≤T

〈‖X(t)‖2p0〉
µ
ϕ,ψ
T

.

Proposition 4.2. Assume (A.1a), (A.1b), (A.2) and (A.3). Let ai , i = 1, 2, 3, be as
in Lemma 4.1. Then it holds that

a1MT − a2 ≤ a3Cd,α

(
bM

p0+p1
2p0

T + 2ψ̄0M

p0+q0
2p0

T

)
(4.2)

for all T > 0. Here Cd,α = 2
√
d/α and ψ̄0 = ∫

R
ψ0(s) ds.

Once this proposition is shown, then the proof of Theorem 3.1 is straightfor-
ward:

Proof of Theorem 3.1. Let us consider the following equation in m > 0:

a1m − a2 = a3Cd,α

(
bm

p0+p1
2p0 + 2ψ̄0m

p0+q0
2p0

)
. (4.3)

If p0 > q0, this equation has a unique solution m1. By Proposition 4.2, we then
obtain

max
|t |≤T

〈‖X(t)‖2p0〉
µ
ϕ,ψ
T

≤ m1 for all T > 0. (4.4)

This implies the theorem. ��
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For simplicity, we prove Proposition 4.2 in the case ϕ1 ≡ 0; that is, we let
b = 0 in (4.2) (for the proof of the case ϕ1 �= 0, see Remark 4.2 below). We write
Hψ
�(X) for Hϕ1,ψ

� (X) accordingly. In the following we suppress potentials from

the notation if there is no confusion; e.g., Zϕ,ψ� = Z�, µϕ,ψT = µT and so on.
For each fixed t0 ∈ [−T , T ], let I = 〈U(X(t0))〉µT . By the estimate on U in

(4.1), we have

a1〈‖X(t0)‖2p0〉µT − a2 ≤ I. (4.5)

We also have an upper estimate on I as follows:

Proposition 4.3. It holds that

I ≤ 2a3Cd,αψ̄0〈‖X(t0)‖2p0〉
1
2
µT M

q0
2p0
T .

Proposition 4.2 is an immediate consequence of these estimates:

Proof of Proposition 4.2. By (4.5) and Proposition 4.3, we have

a1〈‖X(t0)‖2p0〉µT − a2 ≤ 2a3Cd,αψ̄0〈‖X(t0)‖2p0〉
1
2
µT M

q0
2p0
T .

Taking the maximum over |t0| ≤ T on both sides leads to (4.2). ��

It now remains to prove Proposition 4.3, which we will do in a sequence of
lemmas.

First we consider the disintegration of Pϕ0 by conditioning on X(0). For this
purpose, letW+ andW−, together with a probability measure PW , be independent
d-dimensional Brownian motions starting at 0. Let Xz,±(t) ≡ Xz(t,W±) be the
strong solutions of (3.1) starting at z. We set

Xz(t) =
{
Xz,+(t), t ≥ 0,

Xz,−(−t), t ≤ 0.

Let Pϕ0( · |X(0) = z) denote the regular conditional probability of Pϕ0 given
X(0) = z. From the Markov property of Pϕ0 , we easily deduce:

Lemma 4.4. The process ({Xz(t), t ∈ R}, PW )has the same law as Pϕ0( · |X(0) =
z).

Recall from Section 3 that Pϕ0(X(0) ∈ dz) = m0(dz). For a Pϕ0 -integrable
functional F on C, we have, by Lemma 4.4 and by Fubini’s theorem,

〈F(X)〉Pϕ0 =
∫

Rd

〈F(X)|X(0) = z〉Pϕ0 m0(dz)

=
〈∫

Rd
F (Xz)m0(dz)

〉
PW

. (4.6)
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By definition, I = Z−1
T

〈
U(X(t0))e

−Hψ
T (X)

〉
Pϕ0

. For convenience, we may shift

t0 to the origin by the stationarity of Pϕ0 ; moreover, disintegrating Pϕ0 as (4.6),
we have

I = Z−1
�

〈∫
Rd
U(z)e−Hψ

�(X
z) m0(dz)

〉
PW

, (4.7)

where � = [T1, T2] with T1 = −(T + t0) and T2 = T − t0. Recall m0(dz) =
f0(z)

2 dz. By integration by parts formula, and by the estimate on |V | in (4.1),
∫

Rd
U(z)e−Hψ

�(X
z) m0(dz) =

∫
Rd
(V (z),∇zHψ

�(X
z))e−Hψ

�(X
z) m0(dz)

≤ a3

∫
Rd

‖z‖p0 |∇zHψ
�(X

z)|e−Hψ
�(X

z) m0(dz). (4.8)

We shall estimate |∇zHψ
�(X

z)| from above by using the following lemma:

Lemma 4.5. For each z ∈ R
d and 1 ≤ i ≤ d , let Y zi (t) = (∂Xzj (t)/∂zi)1≤j≤d .

Under the condition (i) of (A.1a), it holds that, for all z and i,
∣∣Y zi (t)

∣∣ ≤ e−α|t |, t ∈ R.

Proof. By symmetry, we need only to consider the case t ≥ 0. Then by definition,
Xz(t) ≡ Xz,+(t) satisfies

Xz(t) = z+W(t)−
∫ t

0
∇u0(X

z(s)) ds, t ≥ 0. (4.9)

Here we simply write W for W+. Differentiating both sides of (4.9) with respect
to zi and t successively, we have

d

dt
Y (t) = −Hessu0(X

z(t))Y (t),

where Y = Y zi . By (2.2), it then holds that

1

2

d

dt
|Y (t)|2 = −(Y (t),Hessu0(X

z(t))Y (t)) ≤ −α |Y (t)|2 ,

which shows |Y (t)|2 ≤ |Y (0)|2 e−2αt = e−2αt . This ends the proof. ��

By Lemma 4.5, we obtain the following estimate on |∇zHψ
�(X

z)|.
Lemma 4.6. Under the assumptions (A.1a)(i) and (A.2)(i), we have

|∇zHψ
�(X

z)| ≤
√
d

∫
�2

(‖Xz(s)‖q0 + ‖Xz(t)‖q0
)
α(ds, dt), (4.10)

where we set α(ds, dt) = ψ0(s − t)e−α|s| dsdt .
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Proof. Let Y zi be as in Lemma 4.5. By the symmetry (2.1) of ψ , we see

∂

∂zi
Hψ
�(X

z) =
∫
�2

(∇xψ(s − t, Xz(s),Xz(t)), Y zi (s)
)
dsdt

for each 1 ≤ i ≤ d . Then by (i) of (A.2) and Lemma 4.5, we have∣∣∣∣ ∂∂ziH
ψ
�(X

z)

∣∣∣∣ ≤
∫
�2
ψ0(s − t)(‖Xz(s)‖q0 + ‖Xz(t)‖q0)e−α|s| dsdt

for all 1 ≤ i ≤ d. Now the assertion follows readily. ��
We denote by J (Xz) the RHS of (4.10). Combining this lemma and (4.8), we

have ∫
Rd
U(z)e−Hψ

�(X
z) m0(dz) ≤ a3

∫
Rd

‖z‖p0J (Xz)e−Hψ
�(X

z) m0(dz).

Plugging this estimate into (4.7), we obtain

I ≤ a3〈‖X(0)‖p0J (X)〉µ�
=

√
da3

∫
�2

〈‖X(0)‖p0
(‖X(s)‖q0 + ‖X(t)‖q0

)〉
µ�
α(ds, dt). (4.11)

Since p0 > q0, the following is immediate from the (generalized) Hölder
inequality:

Lemma 4.7. Let M� = maxt∈�〈‖X(t)‖2p0〉µ� . We have, for all s ∈ �,

〈‖X(0)‖p0‖X(s)‖q0〉µ� ≤ 〈‖X(0)‖2p0〉
1
2
µ�M

q0
2p0
� .

Now we are in a position to prove Proposition 4.3:

Proof of Proposition 4.3. By (4.11) and Lemma 4.7, we see that

I ≤ 2
√
da3〈‖X(0)‖2p0〉

1
2
µ�M

q0
2p0
� α(�

2).

Note that α(�2) ≤ α(R
2) = (2/α)ψ̄0 by definition. Now we shift the origin to

t0 and obtain the proposition. ��
Remark 4.2. Let J (Xz) denote the RHS of (4.10) as above. If ϕ1 �= 0, the estimate
(4.10) is then replaced by

|∇zHϕ1,ψ
� (Xz)| ≤

√
db
∫
�

‖Xz(s)‖p1e−α|s| ds + J (Xz).

This follows from the assumption (A.1b) and Lemma 4.5. The rest of the proof can
be proceeded similarly to the above.

Remark 4.3. Since Lemma 4.7 remains true, the inequality (4.2) also holds in the
case p0 = q0. In this case the equation (4.3) has a unique solution m2 if a1 >

2a3Cd,αψ̄0. Then (4.4) holds with m2, from which the existence of the associated
Gibbs measures follows.
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5. Construction of hard-wall Gibbs measures with interactions

In this section we discuss the existence of hard-wall Gibbs measures; that is, we
consider an external potential ϕ+ such that ϕ+(x) = ∞ for x < 0.

In the following, boldfaced letters denote elements in R
3; e.g., x, y ∈ R

3. We
often write ρ(x) for |x|. For a function f on R

+, (f ◦ ρ)(x) means f (ρ(x))(≡
f (|x|)) as usual.

We summarize the assumptions on potentials:
(A.1′) Assumptions on ϕ+. ϕ+ is bounded from below. There exist ϕ+

0 and ϕ+
1

such that ϕ+ = ϕ+
0 + ϕ+

1 , taking values ∞ on {x < 0} and satisfying (A.1′a) and
(A.1′b), respectively:
(A.1′a) ϕ+

0 ◦ ρ satisfies (A.1a) with d = 3; that is, ϕ+
0 is continuous on {x ≥ 0},

and the Schrödinger operator Hρ0 = −(1/2)�+ ϕ+
0 ◦ ρ acting on L2(R3; dx) has

a strictly positive ground state f0 of class C2(R3) satisfying (i) and (ii) of (A.1a).
(A.1′b) ϕ+

1 ◦ ρ satisfies (A.1b) with d = 3.
(A.2′) Assumptions on ψ . The function ψρ(s, x, y) := ψ(s, ρ(x), ρ(y)) satisfies
(A.2) with d = 3.
(A.3′) p0 is strictly larger than q0.

Remark 5.1. By definition, we see f0 in (A.1′a) is radially symmetric; that is, there
exists a g0 on R

+ such that f0(x) = g0(|x|).
Now we state the existence of hard-wall Gibbs measures:

Theorem 5.1. Assume (A.1′)–(A.3′). Then there exists a (ϕ+, ψ)-Gibbs measure.

The existence of hard-wall Gibbs measures with interactions had been an open
problem; [17] required a certain symmetry on external potentials, which excluded
hard-wall ones.We have established the existence of such measures by Theorem 5.1.

To prove this theorem, we do the finite-volume construction in the same man-
ner as Section 3: For ϕ+

0 , let H+
0 be the corresponding Schrödinger operator with

Dirichlet boundary condition:
{
H+

0 f = − 1
2f

′′(x)+ ϕ+
0 (x)f (x), x > 0,

f (0) = 0.

Let g0 be as in Remark 5.1. As we see in Lemma 5.3, a ground state f+
0 of

H+
0 is given by f+

0 (x) = 2
√
πxg0(x). The constant 2

√
π is chosen so that∫

R+ |f+
0 |2 dx = ∫

R3 |f0|2 dx. The P(φ)1-process associated with H+
0 is deter-

mined by the SDE

dX(t) = dW(t)+ dt

X(t)
− v′

0(X(t)) dt (5.1)

with W a 1-dimensional Brownian motion. Here we set v0 = − log g0. The pro-
cess X is stationary under the probability measure f+

0 (x)
2 dx (we assume f+

0 is

normalized). We denote by Pϕ+
0 the law on C(R; R

+) of this process. For Pϕ+
0

and potentials ϕ+
1 , ψ , we define the finite-volume Gibbs measure µϕ

+,ψ
� through
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(3.2). Similarly to Theorem 2.1, the existence result Theorem 5.1 follows from the

localization result of {µϕ+,ψ
� }�⊂R:

Theorem 5.2. Assume (A.1′a), (A.1′b), (A.2′) and (A.3′). Then the localization (∗)

for {µϕ+,ψ
� }�⊂R holds.

A key to Theorem 5.2 is the following identity in law:

(X,Pϕ+
0 )

(d)= (|X|,Pϕ+
0 ◦ρ), (5.2)

where, on the RHS, Pϕ+
0 ◦ρ denotes the law of the P(φ)1-process associated with

Hρ0 = −(1/2)�+ ϕ+
0 ◦ ρ, and X ∈ C(R; R

3). Here is an example:

Example 5.1. When ϕ+
0 (x) = 1

2a
2x2, x ≥ 0, the P(φ)1-processX associated with

H+
0 has the following explicit representation:

{X(t), t ∈ R} (d)=
{

1√
2a
e−atR(3)(e2at ), t ∈ R

}
,

where {R(3)(s), s ≥ 0} is a 3-dimensional Bessel process starting at 0. In view of
the DLR equation, this can be seen from the fact that a Brownian bridge conditioned
to be positive has the same law as a 3-dimensional Bessel bridge.

Once the identity (5.2) is verified, then Theorem 5.2 is straightforward:

Proof of Theorem 5.2. For ϕ+
0 ◦ ρ, ϕ+

1 ◦ ρ and ψρ , let µρ� be the finite-volume
Gibbs measure on C(�; R

3) defined via (3.2):

dµ
ρ
�(X) = (Z

ρ
�)

−1e−Hρ
�(X) dPϕ+

0 ◦ρ
� (X).

Here Hρ
� = Hϕ+

1 ◦ρ,ψρ
� and Zρ� is the normalization. Note that, by definition,

Hρ
�(X) = Hϕ+

1 ,ψ

� (|X|) . From this and (5.2), we easily see that, for all t ∈ �,

〈X(t)2p0〉
µ
ϕ+,ψ
�

= 〈|X(t)|2p0〉µρ�. (5.3)

By the assumptions on potentials, we may use Theorem 3.1 to see that the locali-
zation (∗) for {µρ�}�⊂R holds with q1 = 2p0. Combining this with (5.3) ends the
proof. ��

The identity (5.2) is an immediate consequence of the following lemma:

Lemma 5.3. (i) Let {T +
t }t≥0 and {Tρt }t≥0 be the semi-group generated byH+

0 and
that generated by Hρ0 , respectively. Then it holds that, for x > 0 and x ∈ R

3 with
|x| = x,

(T +
t f )(x) = x(Tρt

f ◦ ρ
ρ

)(x), t ≥ 0. (5.4)

In particular, a ground state of H+
0 is given by xg0(x).

(ii) Under Pϕ+
0 ◦ρ , the process {|X(t)|, t ∈ R} satisfies the SDE (5.1). Moreover,

|X(0)| has the same law as Pϕ+
0 (X(0) ∈ · ).
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Remark 5.2. The identity (5.4) is related to the h-transform of Doob, cf. [19,
Chap. VIII].

Proof. (i) Let Wx be the law of 1-dimensional Brownian motion starting at x. Let
τ0 = inf{t ≥ 0;X(t) = 0}. Then T +

t is expressed as

(T +
t f )(x) = 〈f (X(t ∧ τ0)) exp{−

∫ t

0
ϕ+

0 (X(s ∧ τ0)) ds}〉Wx
, x > 0,

where ∧ denotes the minimum. By the conditional equivalence between absorbing
Brownian motion and 3-dimensional Bessel process (see, e.g., [10, Lemma 5.2.8]),
this is rewritten as, for x ∈ R

3 with |x| = x,

(T +
t f )(x) = x〈f (|X(t)|)|X(t)| exp{−

∫ t

0
ϕ+

0 (|X(s)|) ds}〉W(3)
x
. (5.5)

Here W(3)
x is the law of 3-dimensional Brownian motion starting at x. Recalling

ρ(x) = |x|, we see that (5.5) shows (5.4). (ii) Noting ∇ log f0 = −|x|−1v′
0(|x|)x,

we see that the process (X,Pϕ+
0 ◦ρ) satisfies the following SDE:

dX(t) = dW (t)− v′
0(|X(t)|)
|X(t)| X(t) dt,

where W is a 3-dimensional Brownian motion. By Itô’s formula, we have

d|X(t)| = dW̃(t)+ dt

|X(t)| − v′
0(|X(t)|) dt, W̃ (t) =

∫ t

0
(
X(s)

|X(s)| , dW (s)).

Since W̃ is a Brownian motion, the former assertion is proved. For the latter,
note that Pϕ+

0 ◦ρ(X(0) ∈ dx) = f0(x)2 dx, hence that |X(0)| is distributed as
f+

0 (x)
2 dx. This ends the proof. ��

Remark 5.3. Lemma 5.3 suggests that, in the Markovian case, namely, the case
ψ = 0, the existence of Gibbs measures for the hard-wall external potential ϕ+ is
reduced to that of the ground state for the Schrödinger operator defined by

−1

2
�+ ϕ+(|x|) on L2(R3; dx). (5.6)

Now let us consider the case where ϕ+ is a “single well” such as

ϕ+(x) = − β

(1 + x2)γ
, x ≥ 0,

for β, γ > 0 (the attractive potential). The parameters β and γ control the “depth”
and “width” of the well, respectively. Let Hβ ≡ Hβ,γ be the Schrödinger operator
defined by (5.6). Note that the essential spectrum of Hβ is equal to [0,∞) (see, e.g.,
[18]). Let λβ be the bottom of the spectrum of Hβ . If 0 < γ < 1, then λβ < 0 for
all β > 0 and λβ is a simple eigenvalue; that is, the associated ground state exists.
On the other hand, if γ ≥ 1, then there exists a β = βc (the threshold) such that
λβ ≡ 0 for β ≤ βc and λβ < 0 for β > βc. See [6, Chap. 8]. This phenomenon
may be regarded as a counterpart to wetting transitions in lattice models [4, 5]. We
will return to this somewhere else.
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