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Abstract. In this paper, we show that free cumulants can be naturally seen as the limiting
value of “cumulants of matrices”. We define these objects as functions on the symmetric
group by some convolution relations involving the generalized moments. We state that some
characteristic properties of the free cumulants already hold for these cumulants.

1. Introduction

D. Voiculescu introduced around 1983 a notion of freeness which plays in non com-
mutative probability theory a role similar to independence in classical probability.
Several concepts have been developed analogue to those around independence
among which the free additive convolution of measures. In [19], D. Voiculescu
defined a linearizing map of the free additive convolution, namely the R-series.
This map can be regarded as the analogue of the logarithm of the Fourier transform
for the classical theory and is of basic use in concrete calculations. The coefficients
of the R-series are called free cumulants. R. Speicher developed a combinatorial
approach for free cumulants, pointing out the connection with the lattice of non-
crossing partitions, and established many of their properties (see [18], [17]; see also
[13], [10], [11] and the references therein for various developments). On the other
hand, D. Voiculescu ([20]) and after that several authors ([7], [12], and references
therein) showed that several large independent matrices provide an asymptotic
model for free random variables. Our intention is to show that free cumulants, as
taken up by R. Speicher, can be naturally seen as the limiting value of scalar “cum-
ulants of matrices”, which actually already satisfy some classical properties of free
cumulants. Thus, this paper attempts to draw the dotted arrows of the following
diagram.
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Before explaining why our definition is natural, let us introduce briefly some nota-
tions. Let Sn be the symmetric group on {1, . . . , n} and π be a permutation in Sn;
denoting by C(π) the set of all the disjoint cycles of π and by γn(π) the number
of cycles of π , we set for any n-tuple B = (B1, B2, . . . , Bn) of N × N complex
matrices

rπ (B) = rπ (B1, . . . , Bn) :=
∏

C∈C(π)
T r




∏

j∈C
Bj



 .

We call generalized moments with order n of a set X of random matrices any expres-
sion E(rπ (X1, . . . , Xn)) where Xi ∈ X and π ∈ Sn. We call mixed generalized
moments of two sets X and B of random matrices the generalized moments of the set
X ∪B; note that they can be computed from expressions E(rπ (B1X1, . . . , BnXn))

with n ∈ N
∗, π ∈ Sn, Bi ∈ B ∪ {IN } and Xi ∈ X ∪ {IN }, denoting by IN the

N ×N identity matrix.
Our intuition is based on the following results.

• If two sets of non commutative random variables (a1, . . . , an) and (b1, . . . , bn)

are free in some non commutative probability space (A, φ), then the distri-
bution of (a1b1, . . . , anbn) can be described in terms of the distributions of
(a1, . . . , an) and (b1, . . . , bn). In particular, the mixed moments φ(a1b1 · · ·
anbn) can be written with the free cumulants of (a1, . . . , an) and the moments
of (b1, . . . , bn) or conversely (see [17] and section 2 below).

• When X is a n-tuple of independent Gaussian or Wishart matrices and B is an
independent set of matrices, any mixed generalized moment E(rπ (B1X1, . . . ,

BnXn)) can be written as a convolution on the symmetric group Sn of the gen-
eralized moments of B by one functionCX (see [8] and [3]). Moreover whenN
tends to infinity, after a suitable normalization, CX converges towards the free
cumulant function of respectively the semi-circular and the Marchenko-Pastur
distributions.

Two questions naturally arise from the results above. For what type of matricial
models X do we have such a convolution formula? Does the involving function CX
behave like a cumulant function?

Actually, dealing with two independent sets of matrices X and B such that the
distribution of one tuple, X for example, is invariant under unitary conjugation (that
is, for any unitary matrix U , (X1, . . . , Xn) and (UX1U

∗, . . . , UXnU∗) are identi-
cally distributed), we establish that any mixed generalized moment E(rπ (B1X1, . . . ,

BnXn)) proceeds from the convolution on the symmetric group Sn of the general-
ized moments of B by one function CX. Therefore, defining our cumulant function
byCX is natural by analogy with the results of [17] about the multiplication of freen-
tuples.We will then call by cumulants of X the collection {CX(π), π single cycle of
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Sn, n ≤ N}. We will show that they satisfy the expected following properties. First
they do vanish as soon as the involved matrices are taken in two independent sets,
one having distribution invariant under unitary conjugation; therefore they do lin-
earize the convolution. Moreover they converge towards the free cumulants after
normalization. Nevertheless, our cumulants fall outside the very general setting of
[11].

The paper is organized as follows. In section 2, we recall some results about
free cumulant functions as developed by R. Speicher and al. In section 3, we first
state the definition of our cumulant functions and give some basic properties which
are valid without any additional assumptions on the matricial models. We also give
the explicite values of the cumulants for well-known matricial models. In section
4, we establish the convolution formula for mixed moments of two independent
sets of random matrices, provided the distribution of one set is invariant under uni-
tary conjugation. Section 5 deals with the linearizing property of our cumulants for
models whose distribution is invariant under unitary conjugation. In section 6, we
recall the asymptotic behavior of the cumulants which was already described in [3]
and we mention the connection with asymptotic freeness and global fluctuations
(i.e variance of traces). We end this paper by some further properties concerning
the conjugation with a Gaussian matrix and the compression by a projection. These
ones are the analogues of some results of A. Nica and R. Speicher in [17].

All along the paper, n is any fixed integer and we deal with sets of matrices
whose generalized moments exist up to order n. We omit to mention this condition
up to now on.

2. Free moments and cumulants

Let (A, φ) be a non-commutative probability space. We introduce in this section the
free cumulants developed by Speicher in [18] and then by Speicher and Nica in [17].
In particular these authors characterize the freeness property and the multiplicative
convolution by special relations between moments and cumulants involving non-
crossing partitions. Here we translate them in terms of permutations as explained
in [3].
We first present the structure of Cayley graph of Sn: the vertex set is Sn and there
exists an edge between two permutations σ and π if and only if σ−1π is a trans-
position. With this structure, the length of a geodesic from the permutation σ to
another permutation π defines a distance between σ and π , denoted by dn(σ, π).
It is known that

dn(σ, π) = n− γn(σ
−1π) = dn(e, σ

−1π). (1)

We denote by [e, π ] the set of all the permutations lying on the geodesics from e

to π . This set is characterized by the following property:

σ ∈ [e, π ] ⇐⇒ dn(e, π) = dn(e, σ )+ dn(σ, π). (2)

Moreover according to Lemma 3 in [2], for any decomposition π = ∏r
i=1 πi into

disjoint cycles,

[e, π ] = [e, π1] × · · · × [e, πr ]. (3)
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Let us introduce the restricted convolution on Sn

f � g(π) =
∑

σ∈[e,π ]

f (σ)g(σ−1π). (4)

The constant function �Ŝn is �-invertible with inverse function the Möbius function
µn(e, .) defined by

µn(e, π) =
∏

µni (e, πi) =
∏
(−1)ni−1cni−1

when π = ∏
πi , where the πi are permutations of ni elements with disjoint sup-

ports and where cn = (2n)!

n!(n+ 1)!
are the Catalan numbers.

Now we define multilinear moments functionals on A as the sequence (φn)n∈N

φn : An → C

(a1, . . . , an) �→ φn(a1, . . . , an) = φ(a1 . . . an)

and for π = ∏r
i=1 πi in Sn with πi = (li,1, li,2, . . . , li,ni ), we write

φπ(a1, . . . , an) :=
r∏

i=1

φni (ali,1 , ali,2 , . . . , ali,ni
).

The free cumulants (kn)n∈N are defined recursively on A by the following system
of equations:

φ(a1. . . . .an) =
∑

π∈[e,1n]

kπ (a1, . . . , an) (5)

where similarly

kπ (a1, . . . , an) :=
r∏

i=1

kni (ali,1 , ali,2 , . . . , ali,ni
).

Using (3) for a decomposition into disjoint cycles one can generalize (5) by

φπ(a1, . . . , an) =
∑

σ∈[e,π ]

kσ (a1, . . . , an) = k(a1, . . . , an) � �Ŝn(π). (6)

And by Möbius inversion, (6) is equivalent to

kπ (a1, . . . , an) =
∑

σ∈[e,π ]

φσ (a1, . . . , an)µn(σ, π)=(φ(a1, . . . , an) � µ(e, .)) (π).

(7)

Nica and Speicher have described the way of getting the distribution of (a1b1, . . . ,

anbn)out of the distributions of free random variables (a1, . . . , an) and (b1, . . . , bn).
They proved in [17] the following
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Proposition 2.1. Let (A, φ) be a non-commutative probability space and con-
sider random variables a1, . . . , an, b1, . . . , bn ∈ A such that {a1, . . . , an} and
{b1, . . . , bn} are free. Then we have:

φ(a1b1 · · · anbn) =
∑

σ∈[e,1n]

kσ (a1, . . . , an) φσ−11n(b1, . . . , bn).

From (3), we easily deduce the more general relation:

φπ(a1b1, . . . , anbn) =
∑

σ∈[e,π ]

kσ (a1, . . . , an) φσ−1π (b1, . . . , bn). (8)

It is a fundamental relation for our purpose since we are going to state an equivalent
one for matrices.

3. Definition of matricial cumulants and basic properties

3.1. Definition

In [8] and [3], when one matricial set X is Gaussian or Wishart, the mixed gen-
eralized moments of X with an independent set B are expressed as a convolution
between the generalized moments of B with some function CX of X. This fact led
us to give a proposition for matricial cumulants in section 6.2 of [3]. Actually we
will show in section 4 that such a convolution formula still exists whenever X (or
B) has a distribution which is invariant under unitary conjugation and that in addi-
tion it does involve the cumulant function CX we guessed in [3]. As we will prove
in a forthcoming paper that a similar decomposition of the mixed moments also
occurs for orthogonally invariant matrices but requires another cumulant function,
we refer CX as the U-cumulant function in the present definition.

Denote by ∗ the classical convolution operation on the space of complex functions
on Sn,

f ∗ g(π) =
∑

σ∈Sn
f (σ )g(σ−1π) =

∑

ρ∈Sn
f (πρ−1)g(ρ), (9)

and by e the identity of Sn. Recall that the ∗-unitary element is

δe := π →
{

1 if π = e

0 else
,

that is f ∗ δe = δe ∗f = f for all f . The inverse function of f for ∗, if there exists,
is denoted by f (−1) and satisfies f ∗ f (−1) = f (−1) ∗ f = δe. In particular the
function π �→ xγn(π) is ∗-invertible for n−1 < |x| (see [8]). Moreover, since γn is
central (that is, constant on the conjugacy classes), xγn and thus (xγn)(−1) commute
with any function f defined on Sn.
We can now give the following
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Definition 3.1. For n ≤ N , for any n-tuple X = (X1, . . . , Xn) of random N ×N

complex matrices, the n-th U-cumulant function CX : Sn → C, π �→ CX(π) is
defined by the relation

CX := E(r(X)) ∗ (Nγn)(−1).

The U-cumulants of X are the CX(π) for single cycles π of Sn.

For example, if trN = 1
N
T r ,

CX((1)) = E(trN (X))

C(X1,X2)((1)(2)) = NE{T r(X1)T r(X2)} − E{T r(X1X2)}
N(N2 − 1)

C(X1,X2)((1 2)) = −E{T r(X1)T r(X2)} +NE{T r(X1X2)}
N(N2 − 1)

.

For simplicity since we only will consider U-cumulant functions or U-cumulants
in this paper, we will omit the U-feature up to now on. Moreover whenX1 = · · · =
Xn = X we will also use the notation CX for C(X,...,X).
The following will be devoted to show that some classical properties of the free
cumulants are already satisfied by our cumulants of matrices.

3.2. Basic properties and examples

We begin with elementary remarks. First of all, note that the moments of X with
order n can be found from the cumulant function by the inverse formula:

E(r(X)) = E(r(IN)) ∗ CX,

since E(r(IN)) = Nγn . This equality is to be related to the relation between
moments and free cumulants of noncommutative variables (see [17]).
Now, for each π in Sn, (X1, . . . , Xn) �→ C(X1,...,Xn)(π) is obviously n-linear.
Moreover it is clear that for any unitary matrix U ,

C(U∗X1U,...,U∗XnU)(π) = C(X1,...,Xn)(π).

Let us also mention the action of the conjugacy in Sn on CX. It will be of great
practical interest in the presentation of our future results. The proof of the lemma
is easy and left to the reader.

Lemma 3.1. 1. For any π and σ in Sn,

C(Xσ(1),... ,Xσ(n))(π) = C(X1,... ,Xn)(σπσ
−1).

2. CX(π) depends only of the conjugacy class of π .

Thus the cumulants CX(π) of a matrix X for single cycles π of Sn are all equal
so that we will denote by Cn(X) this common value. We will call it cumulant
of order n of the matrix X. In particular, C1(X) = E(trNX) and C2(X) =
N

N2−1

[
E{trN (X2)} − E{(trNX)2}

]
.
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Proposition 3.1. For any k < n ≤ N , any π in Sn, then

C(X1,... ,Xk,IN ,... ,IN )(π)

=
{
C(X1,... ,Xk)(ρ) if π = (n) · · · (k + 1)ρ for some ρ ∈ Sk,
0 else.

Proof. We prove this proposition by induction on n− k ≥ 1.
Let us prove the result for n− k = 1. For π in Sn, let us define π̌ in Sn−1 by,

• if π(n) = n, π̌ = π|{1,... ,n−1}
• if π(n) 
= n, π̌(i) = π(i) for i 
= π−1(n) and π̌(π−1(n)) = π(n).

Roughly speaking, you get π̌ from π by just “taking off” n. Note that

E (rπ (X1, . . . , Xn−1, IN)) = E (rπ̌ (X1, . . . , Xn−1)) if π(n) 
= n,

= NE (rπ̌ (X1, . . . , Xn−1)) if π(n) = n.

Hence, equivalently,

∑

σ∈Sn
C(X1,... ,Xn−1,IN )(σ )N

γn(σ
−1π)

=
∑

ρ∈Sn−1

C(X1,... ,Xn−1)(ρ)N
γn−1(ρ

−1π̌) if π(n) 
= n,

=
∑

ρ∈Sn−1

C(X1,... ,Xn−1)(ρ)N
γn−1(ρ

−1π̌)+1 if π(n) = n.

Now, letρ in Sn−1 andσ = (n)ρ ∈ Sn. Noting that, for anyπ in Sn,ρ−1π̌ = ˇ
σ−1π ,

we readily get that

γn(σ
−1π) = γn−1(ρ

−1π̌) if π(n) 
= n,

= γn−1(ρ
−1π̌)+ 1 if π(n) = n.

Denote now by An the subset of permutations of Sn of the form (n)ρ, ρ ∈ Sn−1.
For any σ = (n)ρ in An, σ̌ = ρ. Therefore, if π is in Sn,

∑

σ∈Sn
C(X1,... ,Xn−1,IN )(σ )N

γn(σ
−1π) =

∑

σ∈Sn
�Ân(σ )C(X1,... ,Xn−1)(σ̌ )N

γn(σ
−1π)

which yields (using that Nγn is ∗-invertible) that for any σ in Sn,

C(X1,... ,Xn−1,IN )(σ )=�Ân(σ )C(X1,... ,Xn−1)(σ̌ )=
{
C(X1,...,Xn−1)(ρ) if σ = (n)ρ

0 else.

It proves the first inductive step.
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Let l ≥ 2. Let us suppose that the result is true for n−k = l−1. Using the induction
hypothesis and then the first step, we successively get, for any σ in Sn,

C(X1,... ,Xk,IN ,... ,IN )(σ ) =
{
C(X1,... ,Xk,IN )(τ ) if σ = (n) · · · (k + 2)τ
0 else

=
{
C(X1,... ,Xk)(ρ) if σ = (n) · · · (k + 2)(k + 1)ρ
0 else

and the proof is complete. �

Proposition 3.1 together with Lemma 3.1 lead to

Corollary 3.1. Let V = {i ∈ {1, . . . , n}, Xi 
= IN } = {i1 < · · · < ik}. Then

C(X1,... ,Xn)(π) =
{
C(Xi1 ,... ,Xik )

(ρ) if π|V c = e and π|V = ρ

0 else.

Examples (see [3], [8], [4]).

1. X = λIN , E(r(X)) = λnNγn, CX = λnδe ,

C1(X) = λ, Cn(X) = 0 for n ≥ 2.

2. X is the matrix of an orthogonal projection on a p-dimensional subspace; then

E(r(X)) = pγn, CX = pγn ∗ (Nγn)(−1).

3. X is N(0, σ 2IN2)-distributed; then with n = 2k,

CX = σ 2k�P̂2k, C2(X) = σ 2, Cn(X) = 0 for n 
= 2

where P2k denotes the subgroup of the permutations of S2k such that their
decomposition in disjoint cycles only contains pairs.

4. X is Wishart W(N,p,
)-distributed; then

E(r(X)) = pγn ∗ E(r(
)), CX = pγn ∗ c(
).

In particular for 
 = σ 2IN2 ,

E(r(X)) = σ 2n pγn ∗Nγn, CX = σ 2n pγn, Cn(X) = σ 2n p.

5. X is Wishart W(N,p,
)-distributed with p > N ; then

E(r(X−1)) = (−1)n−γn [(p −N)γn ](−1) ∗ E(r(
−1)) ,

CX−1 = (−1)n−γn [(p −N)γn ](−1) ∗ C
−1 .

In particular for 
 = σ 2IN2 ,

E(r(X−1)) = (−1)n−γn
σ 2n [(p −N)γn ](−1) ∗Nγn,

CX−1 = (−1)n−γn
σ 2n [(p −N)γn ](−1).
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6. X is Beta(p, p + q)-distributed; then

E(r(X)) = [(p + q)γn ](−1) ∗ pγn ∗Nγn, CX = [(p + q)γn ](−1) ∗ pγn.
In subsection 4.3, we will also give the cumulants of a Haar matrix.

Note that for some of these examples, the Cn obviously linearize the convolution.
Nevertheless, one can check that

C2(X1 +X2)− C2(X1)− C2(X2)

= 1

2(N2 − 1)
E{T r(X1X2)} − 1

2N(N2 − 1)
E{T r(X1)T r(X2)}

is not null for some diagonal matrices for example. Actually, Corollary 3.1 together
with a relation convolution of type (15) below (when it exists!) will actually lead
to the linearizing property of the Cn (see section 5). Since we are able to show the
existence of such a convolution relation for models having distribution invariant
under unitary conjugation, we can deduce that the Cn do linearize the convolution
on such models.

4. Models with distribution invariant under unitary conjugation

The results of this section are based on the integration formula on the unitary group
U(N). We first apply it to the computation of the mixed moments for a model having
distribution invariant under unitary conjugation together with any independent set
of matrices. We also do use of it to get the cumulants of a random unitary matrix
following the Haar measure on U(N).

4.1. Integration on the unitary group

In [21], [1] and more recently [4] or [6], the authors give the following formula for
integration with respect to the Haar measure on U(N) when n ≤ N :

Proposition 4.1. Let n and n′ be positive integer numbers and let i = (i1, . . . , in),

i′ = (i′1, . . . , i
′
n′), j = (j1, . . . , jn), j′ = (j ′

1, . . . , j
′
n′) be tuples of positive inte-

gers in {1, . . . N}. Then,
if n 
= n′,

∫

U(N)

Ui1j1 · · ·UinjnUi′1j ′
1
. . . Ui′

n′ j
′
n′
dU = 0;

and if n = n′,
∫

U(N)

Ui1j1 · · ·UinjnUi′1j ′
1
. . . Ui′nj ′

n
dU

=
∑

σ,τ∈Sn
δi1i′σ(1) . . . δini

′
σ(n)
δj1j

′
τ(1)
. . . δjnj ′

τ(n)
WgU(τσ−1) (10)

where WgU denotes the Weingarten function on Sn.

We refer the reader to [6] for the definition and the properties of WgU .



28 M. Capitaine, M. Casalis

4.2. Application to mixed moments

Let X = (X1, . . . , Xn) be a n-tuple of N × N complex matrices such that, for
any unitary matrix U , (UX1U

∗, . . . , UXnU∗) has the same joint distribution as
(X1, . . . , Xn). Let B = (B1, . . . , Bn) be N × N matrices which are independent
with X. We first compute E (re(B1X1, . . . , BnXn)) using (10) and then turn to the
general case.
We have for any independent N × N matrix U whose distribution is the Haar
measure on the unitary group U(N):

E

(
n∏

i=1

T r(BiXi)

)
= E

(
n∏

i=1

T r(BiUXiU
∗)

)

=
∑

i,j,i′,j′
E

(
(B1)i′1i1Ui1j1(X1)j1j

′
1
Ui′1j

′
1
· · · (Bn)i′ninUinjn(Xn)jnj ′

n
Ui′nj ′

n

)

Now, one can deduce from formula (10) that

E

(
n∏

i=1

T r(BiXi)

)
=

∑

σ,τ∈Sn
WgU(τσ−1)

×




∑

i,i′
δi1i′σ(1) . . . δini

′
σ(n)

E((B1)i′1i1 · · · (Bn)i′nin)





×




∑

j,j′
δj1j

′
τ(1)
. . . δjnj ′

τ(n)
E((X1)j1j

′
1
· · · (Xn)jnj ′

n
)






=
∑

σ,τ∈Sn
WgU(τσ−1)E (rσ (B))E

(
rτ−1(X)

)

=
∑

σ∈Sn
E (rσ (B))




∑

τ∈Sn
E (rτ (X))WgU(τ−1σ−1)





the last equality coming from the previous one in exchanging τ by its inverse.
Introduce for any permutation π :

C̃X(π) =
∑

τ∈Sn
E (rτ (X))WgU(τ−1π) = {E (r(X)) ∗WgU }(π)

We get:

E (re(B1X1, . . . , BnXn)) = E

(
n∏

i=1

T r(BiXi)

)
= {E (r(B)) ∗ C̃X}(e) (11)

Remark 1. Since WgU is a central function (see [6]), any function f on Sn com-
mutes with WgU , so that C̃X = WgU ∗ E (r(X)) and

E (re(B1X1, . . . , BnXn)) = E (r(B)) ∗WgU ∗ E (r(X)) (e) = C̃B ∗ E (r(X)) (e)
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Let us now consider the generalized moments with any π in Sn. We need some pre-
liminary results. Let us introduce the following basis {Ea,b}1≤a,b≤N of the C-space
of N ×N complex matrices, defined by

(Ea,b)ij = δ(a,b),(i,j) = δa,iδb,j .

It has the property that T r(YEa,b) = Yba .

Lemma 4.1. For all permutations σ, π in Sn,

rσ (Eaπ(1),b1 , . . . , Eaπ(n),bn) = rπσ (Ea1,b1 , . . . , Ean,bn) (12)

The proof is let to the reader.
Now for any permutation π of Sn, let us compute E (rπ (B1X1, . . . , BnXn)). Con-
sider first the case where the Bi are some Eai,bi :

E
(
rπ (Ea1,b1X1, . . . , Ean,bnXn)

) = E

(
∏

i

(Xi)bi ,aπ(i)

)

= E
(
re(Eaπ(1),b1X1, . . . , Eaπ(n),bnXn)

)

(11)=
∑

σ∈Sn
E
(
rσ−1(Eaπ(1),b1 , . . . , Eaπ(n),bn)

)
C̃X(σ )

(12)=
∑

σ∈Sn
E
(
rπσ−1(Ea1,b1 , . . . , Ean,bn)

)
C̃X(σ )

= {E (r(Ea1,b1 , . . . , Ean,bn)
) ∗ C̃X}(π)

By n-linearity and using Remark 1, we deduce that :

E (rπ (B1X1, . . . , BnXn)) = {E(r(B)) ∗ C̃X}(π) = {C̃B ∗ E(r(X))}(π) (13)

Now, for X1 = · · · = Xn = IN , which is invariant under unitary conjugations,
and for any B, we get E (rπ (B)) = {C̃B ∗ Nγn}(π) so that if n ≤ N , Nγn being
∗-invertible, C̃B = CB. Taking now B1 = · · · = Bn = IN , we finally get that

WgU = (Nγn)(−1) = (E (r(IN)))
(−1) (14)

Hence we have proved the following

Theorem 4.1. Let X and B be two independent sets of N × N random complex
matrices such that the distribution of X is invariant under unitary conjugations.
Then for any n ≤ N , X = (X1, . . . , Xn) a n-tuple in X and B = (B1, . . . , Bn) in
B, we have:

E (rπ (B1X1, . . . , BnXn)) = {E(r(B)) ∗ CX}(π) = {CB ∗ E(r(X))}(π)
From Theorem 4.1, we can readily get the following convolution relation which
has to be related to Theorem 1.4 in [17].

Corollary 4.1. With the hypothesis of Theorem 4.1

C(X1B1,...,XnBn) = CX ∗ CB. (15)
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4.3. Cumulants of a n-tuple from a Haar matrix and its inverse

Proposition 4.2. Let U be a Haar-distributed unitary random matrix.
For ε = (ε1, . . . , εn) ∈ {1,−1}n, let be Vε := {i ∈ {1, . . . , n}; εi = 1}, V −

ε :=
{i ∈ {1, . . . , n}; εi = −1}, Tε := {ξ ∈ Sn; ξ(Vε) = V −

ε ; ξ(V −
ε ) = Vε} (note that

Tε is empty for odd n). Then

C(Uε1 ,...,Uεn )(ξ) = �Tε(ξ)(Nγn/2)(−1)(ξ2
|Vε )

Proof. For any π in Sn,

E
(
rπ (Ea1,b1U

ε1 , . . . , Ean,bnU
εn)
) = E

(
∏

i

(Uεi )bi ,aπ(i)

)
.

According to Proposition 4.1, the last quantity vanishes whenever cardV −
ε 
=

cardVε (therefore in particular when n is odd). Now, for any π in S2p,

E

(
rπ (Ea1,b1U, . . . , Eap,bpU,Eap+1,bp+1U

−1, . . . , Ea2p,b2pU
−1)

)

= E




p∏

i=1

Ubi,aπ(i)

p∏

j=1

Uaπ(j+p),bj+p





=
∑

(σ,τ )∈Sp×Sp

p∏

i=1

δbi ,aπ(σ(i)+p)δaπ(i),bτ(i)+pWg
U(τσ−1)

where we used (10). Let us denote T(1,... ,1,−1,... ,−1) by T . There is a one-to-one
correspondance between T and Sp×Sp defined by: (σ, τ ) ∈ Sp×Sp �→ ξ ∈ S2p,

∀i ∈ {1, . . . , p} ξ(i) = τ(i)+ p,

∀i ∈ {p + 1, . . . , 2p} ξ(i) = σ−1(i − p).

Hence,

E

(
rπ (Ea1,b1U, . . . , Eap,bpU,Eap+1,bp+1U

−1, . . . , Ea2p,b2pU
−1)

)

=
∑

ξ∈S2p

�T (ξ)
2p∏

i=1

δbi ,aπξ−1(i)
WgU(ξ2

|{1,... ,p})

=
∑

ξ∈S2p

�T (ξ)rπξ−1(Ea1,b1 , . . . , Ea2p,b2p )Wg
U(ξ2

|{1,... ,p}).

Thus, C(U,...,U,... ,U−1,... ,U−1)(ξ) = �T (ξ)(Nγp)(−1)(ξ2
|{1,... ,p}).

Now, let ε = (ε1, . . . , ε2p) be in {1,−1}2p such that cardV −
ε = cardVε. Then,

Vε = {i1 < · · · < ip} and V −
ε = {j1 < · · · < jp}.
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Let us define ψε ∈ S2p by ∀l ∈ {1, . . . , p} ψε(l) = il, ψε(l + n) = jl. By
Lemma 3.1,

C(Uε1 ,...,Uε2p )(ξ) = C(U,...,U,... ,U−1,... ,U−1)(ψ
−1
ε ξψε)

= �T (ψ−1
ε ξψε)(N

γp)(−1)(ψ−1
ε ξ2ψε |{1,... ,p})

= �Tε(ξ)(Nγp)(−1)(ξ2
|Vε ).


�

5. Linearizing property of Cn on models having distribution invariant
under unitary conjugation

We establish here the essential properties which lead us to adopt the name of cum-
ulants. These properties are well-known for free cumulants (see [17] for instance).

Proposition 5.1. Let X1, . . . , Xm be m independent matrices such that each Xi
has a distribution invariant under unitary conjugation. Let k1, . . . , kn be in {1, . . . ,
m}n. For each i in {1, . . . , m} define

Vi = {j ∈ {1, . . . , n}, kj = i}.
Let π be in Sn. If for every i in {1, . . . , m}, π(Vi) = Vi then

C(Xk1 ,... ,Xkn )
(π) =

m∏

i=1

CXi (π|Vi ).

Else,

C(Xk1 ,... ,Xkn )
(π) = 0.

Proof. Note that

C(Xk1 ,... ,Xkn )
(π) = C(Ak1Bk1 ,... ,AknBkn )

(π)

where, if ki = 1, Aki = X1, Bki = I and if ki ∈ {2, . . . , m}, Aki = I, Bki = Xki .

Hence, we have from (15):

C(Xk1 ,... ,Xkn )
(π) = C(Ak1 ,... ,Akn )

∗ C(Bk1 ,... ,Bkn )(π)
=
∑

σ∈Sn
C(Ak1 ,... ,Akn )

(σ )C(Bk1 ,... ,Bkn )
(σ−1π).

Set V c1 = {i1 < · · · < ik}. As Aki = I for any i in V c1 and Bki = I for any i in V1,
according to corollary 3.1, we can conclude that, if π(V1) = V1, then

C(Xk1 ,... ,Xkn )
(π) = CX1(π|V1

)C(Xki1
,... ,Xkik

)(π|V c1 )

and otherwise C(Xk1 ,... ,Xkn )(π) = 0.
Now, the result readily follows by an inductive argument on m. 
�
Corollary 5.1. Let X1 and X2 be two independent matrices such that X1 has a
distribution invariant under unitary conjugation. For any n ≤ N ,

Cn(X1 +X2) = Cn(X1)+ Cn(X2).
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6. Asymptotic behavior

For any n-tuple X = (X1, . . . , Xn) of N × N matrices, we call normalized gen-
eralized moments with order n of X the quantities E(r

(N)
π (X)) where π is in Sn

and

r(N)π (X) := 1

Nγn(π)
rπ (X1, . . . , Xn) =

∏

C∈C(π)

1

N
T r




∏

j∈C
Xj



 .

We have the following equivalence.

Proposition 6.1. When N goes to infinity, the normalized cumulants

(CX)
(N)(π) := Ndn(e,π)CX(π)

tend towards the free cumulants kπ (x) of noncommutative random variables x =
(x1, . . . , xn) if and only if the normalized generalized moments E(r

(N)
π (X)) con-

verge towards the generalized moments φπ(x1, . . . , xn) =
∏

C∈C(π)
φ(
∏

i∈C
xi) of x.

In [3], a set X is said to satisfy condition (C) if this property is valid for any tuple X
in X . This equivalence has been proved in lemma 6.4 therein for Hermitian matrices
but still holds for any set of complex matrices. Indeed, the proof is only based on
the following facts: the ∗-convolution relation E(rπ (X)) = CX ∗Nγn(.)(π) on the
whole group Sn with the suitable normalization 1

Nγn(.)
becomes the �-convolution

relation φ(x) = k(x)��Sn =
∑

σ∈[e,π ]

k(x) existing between moments and free cum-

ulants of x; conversely CX = E(r.(X))∗ (Nγn)−1 becomes k(x) = φ(x) �µn(e, .),
after normalization by Ndn(e,.) using the asymptotic result:

N2n

Nγn(π)
(Nγn)(−1)(π) = µn(e, π)+O

(
1

N2

)
. (16)

Equation (16) has been independently proved in [4].
Likewise under the hypothesis of Theorem 4.1 together with condition (C) for X
and B, the mixed moments

E(r(N)π (X1B1, . . . , XnBn)) = 1

Nγn(π)
CX ∗ E(r(B))(π)

converge towards the �-convolution

k(x) � φ(b)(π) = φπ(x1b1, . . . , xnbn)

giving the mixed moments of two free sets of noncommutative variables. Thus, we
get the asymptotic freeness of X and B already stated in Proposition 6.5 [3].

We now explain how one can get global fluctuations by using our matricial cum-
ulants. The variance of two traces can easily be expressed in terms of cumulants.
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Let be n = n1 + n2, π1 = (1, . . . , n1), π2 = (n1 + 1, . . . , n). Set S1 (respec-
tively S2) the symmetric group on {1, . . . , n1} (resp. on {n1 + 1, . . . , n}). For any
n-tuple A = (A1, . . . , An) ofN×N complex matrices, write A1 = (A1, . . . , An1),
A2 = (An1+1, . . . , An). Then,

k2
(
T r(A1 · · ·An1), T r(An1+1 · · ·An)

)
:= E(rπ1π2(A))− E(rπ1(A1))E(rπ2(A2))

=
∑

(σ1,σ2)∈S1×S2

(
CA(σ1σ2)− CA1(σ1)CA2(σ2)

)
Nγn(σ

−1
1 σ−1

2 π1π2)

+
∑

σ∈Sn\(S1×S2)

CA(σ )N
γn(σ

−1π1π2).

Let a be some n-tuple of noncommutative random variables, a1 = (a1, . . . , an1)

and a2 = (an1+1, . . . , an). Then if for any (σ1, σ2) ∈ S1 × S2,

Nd(e,σ1σ2)
{
CA(σ1σ2)− CA1(σ1)CA2(σ2)

} = ασ1,σ2(a)
N2 + o(

1

N2 ), (17)

and for any σ in Sn,

lim
N→+∞

(CA)
(N)(σ ) = kσ (a),

it follows that

lim
N→+∞

k2
(
T r(A1 · · ·An1), T r(An1+1 · · ·An)

)

=
∑

σ1σ2∈[e,π1π2]

ασ1,σ2(a)+
∑

σ ∈ Sn \ (S1 × S2)
d(e, π1π2)+ 2 = d(e, σ )+ d(σ, π1π2)

kσ (a). (18)

Note that (17) implies condition (C ′
) in [3] and therefore the almost surely conver-

gence of A towards a. Note also that (18) is a new formulation of (43) in [15]. In
particular, when A is a complex Wishart or Gaussian matrix, ασ1,σ2(a) = 0 for any
(σ1, σ2) and we recover Theorem 7.5 in [14] concerning the Wishart case. When A
is unitary, we can similarly get Theorem 3.6 in [16].

7. Further properties

We first point out the analogues in our matricial context of the results of A. Nica
and R. Speicher in [17]. In that paper the authors present some applications of their
Theorem 1.4. Two of these concern conjugation with a circular element which is
free from the family. Let us state their analogues in our matricial context.

The following result has to be related to Application 1.6 in [17].

Proposition 7.1. Let G be a Gaussian random matrix with independent entries
with mean zero and variance σ 2. For any integer n ≤ N and for any (B1, . . . , Bn)

random matrices independent with G∗G,

C(GB1G∗,...,GBnG∗) = E(r(σ 2B1, . . . , σ
2Bn)).
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Proof. The matrixG∗G is aW(N,N, σ 2I )Wishart matrix and therefore CG∗G =
σ 2nNγn . Thus we can deduce from corollary 4.1 that:

C(GB1G∗,...,GBnG∗) = C(B1G∗G,...,BnG∗G) = C(G∗G) ∗ C(B1,...,Bn)

= σ 2nNγn ∗ C(B1,...,Bn) = σ 2n
E(r(B1, . . . , Bn))

= E(r(σ 2B1, . . . , σ
2Bn)).


�
As to the result that this conjugation “converts orthogonality to freeness” (see

Corollary 1.8 in [17]), it admits the following matricial interpretation:

Corollary 7.1. If (B1, . . . , Bn) are taken among A1, . . . , Ak which are indepen-
dent withG∗G and such that AiAj = 0 for i 
= j , then Cn(GB1G

∗, . . . ,GBnG∗)
= 0 whenever there exists i and j such that Bi 
= Bj .

In [17], the authors presented Application 1.11 which dealt with the compres-
sion of a family of random variables by a projection which is free with the family.
Here is its matricial formulation.

Proposition 7.2. Let M(N) denote the space of N ×N complex matrices. Let be
p ≤ N . Define the contraction

�(N,p) : M(N) → M(p),X �→ (Xi,j )i,j∈{1,...,p}.

Then if the distribution of X = (X1, . . . , Xn) is invariant under unitary conjuga-
tions, we have:

C(�(N,p)(X1),... ,�(N,p)(Xn)) = CX,

(Cn)
(p)

(�(N,p)(X1),... ,�(N,p)(Xn))
= N

p
(Cn)

(N)

(
p
N
X1,... ,

p
N
Xn)
.

Proof. Let Pp be the matrix

(
Ip 0
0 0

)
. The result follows from

E(r(�(N, p)(X1), . . . , �(N, p)(Xn))) = E(r(PpX1, . . . , PpXn))

= CX ∗ E(r(Pp, . . . , Pp)) = CX ∗ pγn.

�

We now mention the straightforward action on the cumulants of an expansion
of the space.

Proposition 7.3. Let p ≤ N . Define the expansion �(p,N) by

�(p,N) : M(p) → M(N),Xp �→ YN :=
(
Xp 0
0 0

)
.

Then

CYN = CXp ∗ pγn ∗ (Nγn)(−1).
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Finally we readily get the combined action of a random projection invariant
under unitary conjugation with a contraction of the space.

Proposition 7.4. Let p, q andN satisfyN ≤ p+ q and let P (p+q)
p be the random

projection of M(p + q) of rank p,

P
(p+q)
p = Up+qI (p, q)U−1

p+q

where Up+q is a (p + q)× (p + q) Haar-distributed unitary matrix and

I (p, q) =
(
Ip 0
0 0

)
.

Then if the distribution of Xp+q is invariant under unitary conjugations and if

ZN := �(p + q,N)(P
(p+q)
p Xp+qP

(p+q)
p ),

we have:

CZN = CXp+q ∗ pγn ∗ [(p + q)γn ](−1).

Note that forX = Ip+q , we getCZN = pγn ∗[(p+q)γn ](−1), which is the cumulant
function of a Beta matrix Beta(p, q) (see Example 6 above). This last result agrees
with [5].

The situation for orthogonally invariant matrices is much more complicated as
one can see it through the computation of mixed generalized moments involving
a real Wishart matrix in [9]. In a forthcoming paper, we will show that under the
hypothesis of invariance under orthogonal conjugations of the distribution of one
of the two concerned matricial models X and B, the mixed moments can still be
expressed by a convolution relation. This one relies on the integration formula on
the orthogonal group stated in [6]. Note that Sn must be replaced there by S2n. We
will be led in consequence to introduce another cumulant function COX .
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