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Abstract. In this paper we study the potential theory of symmetric geometric stable pro-
cesses by realizing them as subordinate Brownian motions with geometric stable subordi-
nators. More precisely, we establish the asymptotic behaviors of the Green function and the
Lévy density of symmetric geometric stable processes. The asymptotics of these functions
near zero exhibit features that are very different from the ones for stable processes. The
Green function behaves near zero as 1/(|x|d log2 |x|), while the Lévy density behaves like
1/|x|d . We also study the asymptotic behaviors of the Green function and Lévy density of
subordinate Brownian motions with iterated geometric stable subordinators. As an applica-
tion, we establish estimates on the capacity of small balls for these processes, as well as
mean exit time estimates from small balls and a Harnack inequality for these processes.

1. Introduction

Geometric stable distributions and geometric infinitely divisible distributions were
first introduced in [12]. Since their introduction they have played an important
role in heavy-tail modeling of economic data, see [16] and the reference therein.
Despite the wide spread applications of geometric stable processes in mathematical
finance and other fields, there has not been much study of the potential theory of
these processes. In this paper we take up this task. In particular, we will study the
behaviors of the Green function and the Lévy density of symmetric geometric sta-
ble processes. The asymptotic behaviors of these functions near zero exhibit some
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new features that are dramatically different from the ones for stable processes.
The Green function behaves near zero as 1/(|x|d log2 |x|), while the Lévy density
behaves like 1/|x|d .

Let α ∈ (0, 2]. A Lévy process X = (Xt ,Px) is called a geometric strictly
α-stable process if its characteristic exponent �(ξ) = − log(Ex(eiξ ·(X1−X0))) is
given by

�(ξ) = log(1 +�(ξ)), ξ ∈ R
d ,

with exp(−�) being the characteristic function of some strictly α-stable distribu-
tion. In this paper we will be mainly interested in the rotationally invariant geometric
strictly α-stable process in R

d , that is, in the case when

�(ξ) = log(1 + |ξ |α), ξ ∈ R
d .

We will simply call these processes symmetric geometric α-stable processes. The
symmetric geometric 2-stable process also goes by the name of symmetric variance
gamma process and it is used by some researchers to study heavy-tailed financial
models (see [15], [9] and the references therein).

Our approach to the potential theory of symmetric geometric stable processes
is to realize them as subordinate Brownian motions with geometric stable subordi-
nators, and then use Tauberian-type theorems to establish behaviors of the Green
function and the Lévy density. To be more precise, for any α ∈ (0, 2], the subordi-
nator S = (St : t ≥ 0) with the Laplace exponent

φ(λ) = log(1 + λα/2), λ > 0

is called a geometric α/2-stable subordinator. Note that for α = 2 the correspond-
ing geometric stable subordinator is in fact the well-known gamma subordinator.
Let Y = (Yt : t ≥ 0) be a Brownian motion in R

d , independent of the subordinator
S. By computing the characteristic exponent, it is easy to show that the subordinate
processX = (Xt : t ≥ 0) defined byXt = Y (St ), t ≥ 0, is a symmetric geometric
α-stable process.

This approach has been used in [17] to study the Green function behavior of
the sum of a Brownian motion and an independent α-stable process. The Laplace
exponent of the corresponding subordinator is the sum of two power functions. This
fact allowed for the use of Karamata’s Tauberian theorem ([4], Theorem 1.7.1) and
monotone density theorem ([4], Theorem 1.7.2). However, in the present case the
Laplace exponent of the geometric stable subordinator is of the logarithmic type
which calls for the use of more delicate de Haan’s Tauberian theorem ([4], Theorem
3.7.3) and de Haan’s monotone density theorem ([4], Theorem 3.6.8).

The Lévy density of the geometric α/2-stable subordinator is of the order
α/(2x) for x near zero, which makes it almost integrable near zero. One con-
sequence is that such a subordinator is very slow. This implies that the subordinate
process is also slow and spends a large amount of time in a ball centered at the
starting point. This fact is reflected in the behavior of the Green function near the
origin which is on the brink of integrability.
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The approach described above is also applicable to subordinate Brownian
motions with n-iterated geometric stable subordinators, i.e., subordinators whose
Laplace exponents aren-fold compositions of that of geometric stable subordinators.
Iterated geometric stable subordinators and subordinate Brownian motions with
iterated geometric stable subordinators give two families of very concrete Lévy
processes with fat-tails and they could be very useful in applications.

The results on asymptotic behaviors of the Green functions can be used to estab-
lish estimates on the capacity of balls for the corresponding processes, as well as
the exit time estimates from small balls. We present these results as a consequence
of the more general results for certain symmetric Lévy processes. Finally, as an
application we establish the Harnack inequality for geometric stable processes.

The content of this paper is organized as follows. In the next section we study
the asymptotic behaviors of the potential density and the Lévy density at zero and
infinity of geometric stable subordinators. These results are applied in Section 3 to
establish the asymptotic behaviors at zero and infinity of the symmetric geometric
stable processes. In Section 4, we refine the results of the previous two sections
to iterated geometric stable subordinators and subordinate Brownian motions. The
results of this section extend most of those of Sections 2 and 3, but the details of
proofs are more cumbersome. This is why we have decided to present them sepa-
rately, after the reader has become acquainted with basic ideas and techniques. In
Section 5, we prove capacity estimates and the exit time estimates for Lévy pro-
cesses with radially symmetric decreasing Green functions. In the last section we
present the Harnack inequality for symmetric geometric stable processes.

In the paper we use following notation: If f and g are two functions, then f ∼ g

if f/g converges to 1, and f � g if the quotient f/g stays bounded between two
positive constants.

2. Geometric stable subordinators

In this section we assume that α ∈ (0, 2] and that S = (St : t ≥ 0) is a geometric
α/2-stable subordinator, that is, an increasing Lévy process taking values in [0,∞)

whose Laplace exponent is given by

φ(λ) = log(1 + λα/2), λ > 0.

The function φ above can be written in the form

φ(λ) =
∫ ∞

0
(1 − e−λt )µ(dt), λ > 0 ,

where µ is a σ -finite measure µ on (0,∞) satisfying

∫ ∞

0
(t ∧ 1)µ(dt) < ∞.

The measure µ is called the Lévy measure of S. Since the function φ is a complete
Bernstein function, the Lévy measureµ has a complete monotone densityµ(t). For
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definition and properties of complete Bernstein functions see, for instance, [10] or
[17].

The potential measure of the subordinator S is defined by

U(A) = E

∫ ∞

0
1(St∈A) dt , (2.1)

and its Laplace transform is given by

LU(λ) = E

∫ ∞

0
exp(−λSt ) dt = 1

φ(λ)
= 1

log(1 + λα/2)
. (2.2)

In the sequel we will also use U to denote the function on [0,∞) defined by
U(x) = U([0, x]). Since limλ→∞ φ(λ) = ∞, we must have µ((0,∞)) = ∞.
Therefore by Theorem 2.3 of [17] the potential measure U has a density uwhich is
completely monotone on (0,∞). When α = 2, the corresponding geometric stable
subordinator is the gamma subordinator, and its Lévy density is given by

µ(t) = t−1e−t , t > 0 ,

(see e.g. [18], p.45). Such an explicit formula for the Lévy densityµ is not available
for other values of α. The purpose of this section is to study the behaviors of the
functions u and µ near zero and infinity. We will need the following versions of
Tauberian and monotone density theorems. The versions when x → ∞ are proved
in [4], Theorem 3.7.3 and Theorem 3.6.8. We have not found in the literature the
statements of the versions when x → 0, but they could be proven by applying
techniques from Chapter 3 of [4].

Theorem 2.1. (a) (de Haan’s Tauberian Theorem) Let U : (0,∞) → (0,∞) be
an increasing function. If � is slowly varying at ∞ (resp. at 0+), c ≥ 0, the
following are equivalent:
(i) As x → ∞ (resp. x → 0+)

U(λx)− U(x)

�(x)
→ c log λ, ∀λ > 0.

(ii) As x → ∞ (resp. x → 0+)

LU( 1
λx
)− LU( 1

x
)

�(x)
→ c log λ, ∀λ > 0.

(b) (de Haan’s Monotone Density Theorem) Let U : (0,∞) → (0,∞) be an
increasing function with dU(x) = u(x)dx, where u is monotone and nonneg-
ative, and let � be slowly varying at ∞ (resp. at 0+). Assume that c > 0. Then
the following are equivalent:
(i) As x → ∞ (resp. x → 0+)

U(λx)− U(x)

�(x)
→ c log λ, ∀λ > 0.
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(ii) As x → ∞ (resp. x → 0+)

u(x) ∼ cx−1�(x).

Now we are going to apply this result to establish the asymptotic behavior of
the potential density at zero.

Theorem 2.2. For any α ∈ (0, 2], we have

u(x) ∼ 2

αx(log x)2
, x → 0 + .

Proof. Recall that

LU(λ) = 1/φ(λ) = 1/ log(1 + λα/2).

Since

LU( 1
tλ
)− LU( 1

λ
)

(log λ)−2 → 2

α
log t, ∀t > 0

as λ → 0+, we have by (the 0+ version of) Theorem 2.1 (a) that

U(tx)− U(x)

(log x)−2 → 2

α
log t, t > 0

as x → 0+. Now we can apply (the 0+ version of) Theorem 2.1 (b) to get that

u(x) ∼ 2

αx(log x)2

as x → 0+. 
�
Remark 2.3. One can easily show that

u(x) ∼ 1

	(α/2)
xα/2−1 , x → ∞

(see, e.g. [17], proof of Theorem 3.3).

Theorem 2.4. For any α ∈ (0, 2], we have

µ(x) ∼ α

2x
, x → 0 + . (2.3)

Proof. The distribution function Fα/2 of the random variable S1 is called by some
authors the Mittag-Leffler distribution (see [11], for example). It follows therefore
from Theorem 2.2 of [11], that

µ(x) = α

2x
(1 − Fα/2(x)), x > 0.

Now the conclusion follows immediately. 
�
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Since φ(λ) = log(1 + λα/2) is a complete Bernstein function, the function
ψ(λ) = λ/φ(λ) is also a complete Bernstein function. Let T = (Tt : t ≥ 0) be a
subordinator with Laplace exponentψ and letV be the potential measure of the sub-
ordinator T . Since limλ→∞ ψ(λ)/λ = limλ→∞ 1/φ(λ) = 0 and limλ→∞ ψ(λ) =
∞, the Lévy measure ν of T must satisfy ν((0,∞)) = ∞. Therefore by Theorem
2.3 of [17] we know that the potential measure V of T has a density v which is
completely monotone on (0,∞).

Theorem 2.5. For any α ∈ (0, 2), we have

µ(x) ∼ α

2xα/2+1	(1 − α/2)
, x → ∞.

Proof. Since

1

ψ(λ)
∼ λα/2−1, λ → 0+,

we have, by Karamata’s Tauberian theorem, that the potential measure V of T
satisfies

V (x) ∼ x1−α/2

	(2 − α/2)
, x → ∞.

Now using Karamata’s monotone density theorem we get that

v(x) ∼ 1

xα/2	(1 − α/2)
, x → ∞.

It follows from Corollary 2.4.8 of [21] that

µ((t,∞)) = v(t), t > 0,

and so we have

µ((t,∞)) ∼ 1

tα/2	(1 − α/2)
, t → ∞.

Now applying Karamata’s monotone density theorem again we get

µ(t) ∼ α

2tα/2+1	(1 − α/2)
, t → ∞.


�
It is known (see for instance [13]) that the distribution Fα/2 of S1 is absolutely

continuous and the density fα/2 is decreasing on (0,∞). When α = 2 we have

f1(x) = e−x, x > 0.

In the next result we establish the asymptotic behaviors of fα/2 for α ∈ (0, 2). We
will need the following fact. Let Z = (Zt , t ≥ 0) be a Lévy process with char-
acteristic exponent � and let τ be an exponential random variable with parameter
1 which is independent of Z. Then X = Z(τ) is a geometric infinitely divisi-
ble random variable with characteristic function exp(−�), where � is given by
�(ξ) = log(1 +�(ξ)). Therefore the distribution of X is equal to the 1-potential
of the process Z.
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Theorem 2.6. For any α ∈ (0, 2), we have

fα/2(x) ∼ 1

	(α/2)
x
α
2 −1, x → 0+ , (2.4)

and

fα/2(x) ∼ 2π	(1 + α

2
) sin(

απ

4
)x−1− α

2 , x → ∞. (2.5)

Proof. We first prove (2.4). Since the Laplace transform of the distribution of S1 is
given by

1

1 + λα/2
, λ > 0,

we can easily get from Karamata’s Tauberian theorem thatFα/2 is regularly varying
at 0

Fα/2(x) ∼ 1

	(1 + α/2)
x
α
2 , x → 0 + . (2.6)

Now we can apply Karamata’s monotone density theorem to get (2.4).
Now we establish (2.5). From the paragraph preceding the theorem we know

that

fα/2(x) =
∫ ∞

0
e−t p̃α/2(t, x)dt =

∫ ∞

0
e−t t−

2
α p̃α/2(1,

x

t2/α
)dt

where p̃α/2(t, x) is the transition density of an α/2-stable subordinator. It follows
from [19] that

p̃α/2(1, x) ∼ 2π	
(

1 + α

2

)
sin
(απ

4

)
x−1− α

2 , x → ∞

and that for all x > 0

p̃α/2(1, x) ≤ c(1 ∧ x−1− α
2 ),

for some positive constant c > 0. Now we can apply the dominated convergence
theorem to arrive at (2.5). 
�

3. Green functions and Lévy densities of symmetric geometric stable
processes

Let Y = (Yt , t ≥ 0) be a d-dimensional Brownian motion with the transition
density given by

p2(t, x, y) = (4πt)−d/2 exp

(
−|x − y|2

4t

)
, x, y ∈ R

d , t > 0 .
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Let S = (St , t ≥ 0) be a geometric α/2-stable subordinator with the Laplace
exponent log(1 + λα/2), α ∈ (0, 2], and let u(t) be the potential density of S. Then
we know from Theorem 2.2 that

u(t) ∼ 2

αt log2 t
, t → 0 + . (3.1)

If we assume that Y and S are independent, the symmetric geometric α-stable
processes X = (Xt , t ≥ 0) can be obtained by Xt = Y (St ).

Throughout this section we assume that d > α. This implies that the processX
is transient (see e.g., [3], p.33). The potential operator Gf (x) := E

x
∫∞

0 f (Xt ) dt

of X has a density G(x, y) = G(y − x) with

G(x) =
∫ ∞

0
p2(t, 0, x)u(t) dt.

The Lévy density of X is given by

J (x) =
∫ ∞

0
p2(t, 0, x)µ(t)dt,

where µ(t) is the Lévy density of S.
In this section we will study the asymptotic behaviors of G and J . In order to

establish these asymptotic behaviors we start by defining an auxiliary function. For
any slowly varying function � at infinity and any β > 0, let

f�,β(y, t) :=
{

�(1/y)
�(4t/y) , y <

t
β
,

0, y ≥ t
β
.

The following technical lemma will be crucial in establishing the asymptotics ofG
and J .

Lemma 3.1. Suppose that w : (0,∞) → (0,∞) is a decreasing function satisfy-
ing the following two assumptions:

(i) There exist a constant c0 > 0 and a continuous functions � : (0,∞) → (0,∞)

slowly varying at +∞ such that

w(t) ∼ c0

t�(1/t)
, t → 0 + . (3.2)

(ii) If d = 1 or d = 2, then there exist a constant c∞ > 0 and a constant γ < d/2
such that

w(t) ∼ c∞tγ−1 , t → +∞ . (3.3)

Let g : (0,∞) → (0,∞) be a function such that∫ ∞

0
td/2−1e−t g(t) dt < ∞ .

If there is β > 0 such that f�,β(y, t) ≤ g(t) for all y, t > 0, then

I (x) :=
∫ ∞

0
(4πt)−d/2e−

|x|2
4t w(t) dt ∼ c0	(d/2)

πd/2

1

|x|d�( 1
|x|2 )

, |x| → 0 .
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Proof. Let us first note that the assumptions of the lemma guarantee that I (x) < ∞
for every x 
= 0. By a change of variable we get

∫ ∞

0
(4πt)−d/2e−

|x|2
4t w(t) dt = |x|−d+2

4πd/2

∫ ∞

0
td/2−2e−tw

( |x|2
4t

)
dt

= 1

4πd/2

(
|x|−d+2

∫ β|x|2

0
+|x|−d+2

∫ ∞

β|x|2

)

= 1

4πd/2

(
|x|−d+2I1 + |x|−d+2I2

)
.

We first consider I1 for the case d = 1 or d = 2. It follows from the assumptions
that there exists a positive constant c1 such that w(s) ≤ c1s

γ−1 for all s ≥ 1/(4β).
Thus

I1 ≤
∫ β|x|2

0
td/2−2e−t c1

( |x|2
4t

)γ−1

dt

≤ c2|x|2γ−2
∫ β|x|2

0
td/2−γ−1 dt

= c3|x|d−2 .

It follows that

lim
|x|→0

|x|−d+2I1
1

|x|d�( 1
|x|2 )

= 0 . (3.4)

In the case d ≥ 3, we proceed similarly, using the bound w(s) ≤ w(1/(4β)) for
s ≥ 1/(4β).

Now we consider I2:

|x|−d+2I2 = 1

|x|d−2

∫ ∞

β|x|2
td/2−2e−tw

( |x|2
4t

)
dt

= 4

|x|d �( 1
|x|2 )

∫ ∞

β|x|2
td/2−1e−t

w
( |x|2

4t

)
1

|x|2
4t �(

4t
|x|2 )

�( 1
|x|2 )

�( 4t
|x|2 )

dt .

Using the assumption (3.2), we can see that there is a constant c > 0 such that

w
( |x|2

4t

)
1

|x|2
4t �(

4t
|x|2 )

< c ,

for all t and x satisfying |x|2/(4t) ≤ 1/(4β). Since � is slowly varying at infinity,

lim
|x|→0

�( 1
|x|2 )

�( 4t
|x|2 )

= 1
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for all t > 0. Note that

�( 1
|x|2 )

�( 4t
|x|2 )

= f�,β(|x|2, t) .

It follows from the assumption that

td/2−1e−t
w
( |x|2

4t

)
1

|x|2
4t �(

4t
|x|2 )

�( 1
|x|2 )

�( 4t
|x|2 )

≤ ctd/2−1e−t g(t) .

Therefore, by the dominated convergence theorem we have

lim
|x|→0

∫ ∞

β|x|2
td/2−1e−t

w
( |x|2

4t

)
1

|x|2
4t �(

4t
|x|2 )

�( 1
|x|2 )

�( 4t
|x|2 )

dt =
∫ ∞

0
c0t

d/2−1e−t dt = c0	(d/2) .

Hence,

lim
|x|→0

|x|−d+2I2
4

|x|d l( 1
|x|2 )

= c0	(d/2) . (3.5)

Finally, combining (3.4) and (3.5) we get

lim
|x|→0

I (x)
1

|x|d�( 1
|x|2 )

= c0	(d/2)

πd/2
.


�
Theorem 3.2. For any α ∈ (0, 2], we have

G(x) ∼ 	(d/2)

2απd/2|x|d log2 1
|x|
, |x| → 0.

Proof. We apply Lemma 3.1 withw(t) = u(t), the potential density of S. By (3.1),
u(t) ∼ 2

αt log2 t
as t → 0+, so we take c0 = 2/α and �(t) = log2 t . Moreover, by

Remark 2.3, u(t) ∼ tα/2−1/(	(α)/2) as t → +∞, so we can take γ = α/2 < d/2.
Choose β = 1/2. Let

f (y, t) := f�,1/2(y, t) =
{

log2 y

log2 y
4t
, y < 2t, ,

0 , y ≥ 2t .

Define

g(t) :=
{

log2 2t
log2 2

, t < 1
4 ,

1 , t ≥ 1
4 .
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In order to show that f (y, t) ≤ g(t), first let t < 1/4. Then y �→ f (y, t) is an
increasing function for 0 < y < 2t . Hence,

sup
0<y<2t

f (y, t) = f (2t, t) = log2 2t

log2 2
.

Clearly, f (y, 1/4) = 1. For t > 1/4, y �→ f (y, t) is a decreasing function for
0 < y < 1. Hence

sup
0<y<(2t)∧1

f (y, t) = f (0, t) := lim
y→0

f (y, t) = 1 .

Clearly,
∫ ∞

0
td/2−1e−t g(t) dt < ∞ .


�
Remark 3.3. The asymptotic behavior of G(x) as |x| → ∞ was proved in [17],
Theorem 3.3 to be

G(x) ∼ 1

πd/22α
	(d−α2 )

	(α2 )
|x|α−d , |x| → ∞ .

Now we establish the asymptotic behaviors of J .

Theorem 3.4. For every α ∈ (0, 2] we have

J (x) ∼ α	(d/2)

2|x|d , |x| → 0.

Proof. We again apply Lemma 3.1, this time with w(t) = µ(t), the density of the
Lévy measure of S. By (2.3), µ(t) ∼ α

2t as t → 0+, so we take c0 = α/2 and
�(t) = 1. By Theorem 2.5, µ(t) is of the order t−α/2−1 as t → +∞, so we may
take γ = −α/2. Choose β = 1/2 and let g = 1. 
�
Theorem 3.5. For every α ∈ (0, 2) we have

J (x) ∼ α

2α+1πd/2

	(d+α2 )

	(1 − α
2 )

|x|−d−α, |x| → ∞.

Proof. Theorem 2.5 tells us that

µ(t) ∼ α

2	(1 − α/2)
t−α/2−1 , t → ∞ .

Now combine this with Theorem 2.4 to get that

µ(t) ≤ C(t−1 ∨ t−α/2−1) . (3.6)
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By a simple change of variable we have
∫ ∞

0
(4πt)−d/2 exp

(
−|x|2

4t

)
µ(t) dt

= 1

4πd/2
|x|−d+2

∫ ∞

0
sd/2−2e−sµ

( |x|2
4s

)
ds

= α

8πd/2	(1 − α/2)
|x|−d−α

∫ ∞

0
sd/2−2e−s

µ
(

|x|2
4s

)

α

2	(1−α/2)

(
|x|2
4s

)−α/2−1

(
1

4s

)−α/2−1

ds

= α

2α+1πd/2	(1 − α/2)
|x|−d−α

∫ ∞

0
sd/2+α/2−1e−s

µ
(

|x|2
4s

)

α

a	(1−α/2)

(
|x|2
4s

)−α/2−1 ds

Let |x| ≥ 2. Then by (3.6),

u
( |x|2

4s

)
( |x|2

4s

)−α/2−1 ≤ C

(( |x|2
4s

)α/2
∨ 1

)

≤ C(s−α/2 ∨ 1) .

It follows that the integrand in the last display above is bounded by an integrable
function, so we may use the bounded convergence theorem to obtain

lim
|x|→∞

1

|x|−d−α
∫ ∞

0
(4πt)−d/2 exp

(
−|x|2

4t

)
µ(t) dt = α

2α+1πd/2

	(d+α2 )

	(1 − α
2 )
,

(3.7)

which proves the result. 
�
Theorem 3.6. When α = 2, we have

J (x) ∼ 2−d/2π− d−1
2
e−|x|

|x| d+1
2

, |x| → ∞.

Proof. By making a simple change of variable we get that

J (x) = 1

2

∫ ∞

0
t−1e−t (4πt)−d/2 exp(−|x|2

2
)dt

= 2−d−1π−d/2|x|−d
∫ ∞

0
s
d
2 −1e−

s
4 − |x|2

s ds

= 2−d−1π−d/2|x|−dI (|x|),
where

I (r) =
∫ ∞

0
s
d
2 −1e−

s
4 − r2

s ds.
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Using the change of variable u =
√
s

2 − r√
s

we get

I (r) = e−r
∫ ∞

0
s
d
2 −1e

−(
√
s

2 − r√
s
)2

ds

= e−r
∫ ∞

−∞
2(u+ √

u2 + 2r)d√
u2 + 2r

e−u
2
du

= 2e−r r
d−1

2

∫ ∞

−∞
u+ √

u2 + 2r√
u2 + 2r

(
u√
r

+
√
u2

r
+ 2)d−1e−u

2
du

Therefore by the dominated convergence theorem we get

I (r) ∼ 2
d
2 +1√πe−r r d−1

2 , r → ∞.

Now the assertion of the theorem follows immediately. 
�

Now we are going to study the asymptotic behavior of the transition density
qα(1, x, y) = qα(1, y − x) at infinity of the process X. From the paragraph pre-
ceding Theorem 2.6 we know that

qα(1, x) =
∫ ∞

0
e−tpα(t, x)dt , (3.8)

where pα(t, x) is the transition density of a symmetric α-stable process.

Theorem 3.7. For α ∈ (0, 2) we have

qα(1, x) ∼ α2α−1 sin απ
2 	(

d+α
2 )	(α2 )

π
d
2 +1|x|d+α

, |x| → ∞.

For α = 2 we have

q2(1, x) ∼ 2− d
2 π− d−1

2
e−|x|

|x| d−1
2

, |x| → ∞.

Proof. The proof of the case α = 2 is same as the proof of the previous theorem,
so we only give the proof of the case α ∈ (0, 2). Using the scaling property we get
that

qα(1, x) =
∫ ∞

0
e−t t−

d
α pα(1,

x

t1/α
)dt.

Now we can use Theorem 2.1 of [5] and the dominated convergence theorem to
arrive at our conclusion. 
�
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4. Extension to iterated subordinators

In this section we extend some of the results of the previous section to iterated geo-
metric stable subordinators and subordinate Brownian motion with iterated geo-
metric stable subordinators.

Let e0 = 0, and inductively, en = een−1 ,n ≥ 1. Forn ≥ 1 define ln : (en,∞) →
(0,∞) by

ln(y) = log log . . . log y , n times .

Further, let L0(y) = 1, and for n ∈ N, define Ln : (en,∞) → (0,∞) by

Ln(y) = l1(y)l2(y) . . . ln(y) .

Note that l′n(y) = 1/(yLn−1(y)) for every n ≥ 1.
Let α ∈ (0, 2]. Define φ(y) = φ(1)(y) := log(1 + yα/2). For n ∈ N define

inductively φ(n)(y) := φ(φ(n−1)(y)). Let kn(y) := 1/φ(n)(y).

Lemma 4.1. Let t > 0. For every n ∈ N,

lim
y→∞(kn(ty)− kn(y))Ln−1(y)ln(y)

2 = − 2

α
log t .

Proof. The proof for n = 1 is straightforward and is implicit in the proof of Theo-
rem 2.2. We only give the proof for n = 2, the proof for general n is similar. Using
the fact that

log(1 + y) ∼ y, y → 0+, (4.1)

we can easily get that

lim
y→∞

(
log

log y

log(yt)

)
log y = − lim

y→∞

(
log

log y + log t

log y

)
log y = − log t. (4.2)

Using (4.1) and the elementary fact

log(1 + y) ∼ log y, y → ∞,

we get that

lim
y→∞(k2(ty)− k2(y))L1(y)l2(y)

2

= α

2
lim
y→∞

(
log

log(1 + yα/2)

log(1 + (ty)α/2)

)
log y(log log y)2

(α2 )
2 log(log(1 + yα/2)) log(log(1 + (ty)α/2))

= 2

α
lim
y→∞

(
log

log y

log(yt)

)
log y

= − 2

α
log t .


�
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We will assume that S(n) = (S
(n)
t : t ≥ 0) is a subordinator whose Laplace

exponent is given by φ(n)(λ). The function φ(n) can be written in the form

φ(n)(λ) =
∫ ∞

0
(1 − e−λt )µ(n)(dt), λ > 0

for some σ -finite measure µ(n) on (0,∞) satisfying the
∫ ∞

0
(t ∧ 1)µ(n)(dt) < ∞.

The measure µ(n) is called the Lévy measure of S(n). Since the function φ(n) is
a complete Bernstein function, the Lévy measure µ(n) has a complete monotone
density µ(n)(t) (see for instance [10]).

Note that if S(n−1) and S are independent subordinators with Laplace expo-
nents φ(n−1) and φ, respectively, then the subordinator S(n−1)(St ) has the same
distribution as S(n)t . In this way we may regard S(n) as an n-fold iteration of S by
itself.

The potential measure of the subordinator S(n) is defined by

U(n)(A) = E

∫ ∞

0
1
(S
(n)
t ∈A) dt , (4.3)

and its Laplace transform is given by

LU(n)(λ) = E

∫ ∞

0
exp(−λS(n)t ) dt = 1

φ(n)(λ)
. (4.4)

In the sequel we will also use U(n) to denote the function on [0,∞) defined by
U(n)(x) = U(n)([0, x]). Since limλ→∞ φ(n)(λ) = ∞, we must haveµ(n)((0,∞)) =
∞. Therefore by Theorem 2.3 of [17] the potential measure U(n) has a density u(n)

which is completely monotone on (0,∞). One of the purpose of this section is to
study the behaviors of the functions u(n) and µ(n) near zero and infinity.

Theorem 4.2. For any α ∈ (0, 2], we have

u(n)(x) ∼ 2

αxLn−1(
1
x
)ln(

1
x
)2
, x → 0 + . (4.5)

Proof. Using Lemma 4.1 we can easily see that

LU(n)( 1
tλ
)− LU(n)( 1

λ
)

(Ln−1(
1
λ
)ln(

1
λ
)2)−1

→ 2

α
log t, ∀t > 0

as λ → 0+. Therefore, by (the 0+ version of) Theorem 2.1 (a) we have that

U(n)(tx)− U(n)(x)

(Ln−1(
1
x
)ln(

1
x
)2)−1

→ 2

α
log t, t > 0
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as x → 0+. Now we can apply (the 0+ version of) Theorem 2.1 (b) to get that

u(n)(x) ∼ 2

αxLn−1(
1
x
)ln(

1
x
)2

as x → 0+. 
�
Remark 4.3. One can easily show that

u(n)(x) ∼ 1

	((α/2)n)
x(α/2)

n−1 , x → ∞

(see, e.g. [17], proof of Theorem 3.3).

Sinceφ(n)(λ) is a complete Bernstein function, the functionψ(n)(λ) = λ/φ(n)(λ)

is also a complete Bernstein function. Let T (n) = (T
(n)
t : t ≥ 0) be a sub-

ordinator with Laplace exponent ψ(n) and let V (n) be the potential measure of
the subordinator T (n). Since limλ→∞ ψ(n)(λ)/λ = limλ→∞ 1/φ(n)(λ) = 0 and
limλ→∞ ψ(n)(λ) = ∞, the Lévy measure ν(n) ofT must satisfy ν(n)((0,∞)) = ∞.
Therefore by Theorem 2.3 of [17] the potential measure V (n) of T (n) has a density
v(n) which is completely monotone on (0,∞).

Theorem 4.4. For any α ∈ (0, 2), we have

µ(n)(x) ∼ (α/2)n

x(α/2)
n+1	(1 − (α/2)n)

, x → ∞.

Proof. Since

1

ψ(n)(λ)
∼ λ(α/2)

n−1, λ → 0+,

we have, by Karamata’s Tauberian theorem, that the potential measure V (n) of T
satisfies

V (n)(x) ∼ x1−(α/2)n

	(2 − (α/2)n)
, x → ∞.

Now using Karamata’s monotone density theorem we get that

v(n)(x) ∼ 1

x(α/2)
n
	(1 − (α/2)n)

x → ∞.

It follows from Corollary 2.4.8 of [21] that

µ((t,∞)) = v(t), t > 0,

and so we have

µ((t,∞)) ∼ 1

t (α/2)
n
	(1 − (α/2)n)

t → ∞.

Now applying Karamata’s monotone density theorem again we get

µ(t) ∼ (α/2)n

t(α/2)
n+1	(1 − (α/2)n)

t → ∞.


�
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Remark 4.5. Note that the previous theorem is proved for α ∈ (0, 2) only. We
know that for n = 1, the Lévy density µ(1)(x) is equal to e−x/x. We expect similar
behavior for n ≥ 2 as well. Unfortunately, we were unable to find precise asymp-
totic behavior of the Lévy density µ(n)(x) as x → ∞ in case α = 2 and n ≥ 2.
One of the difficulties is that all functions φ(n)(λ) are of the same order λ near zero.
We were unable to find in the literature a Tauberian type theorem that is applicable
in this case.

Let Y = (Yt , t ≥ 0) be a d-dimensional Brownian motion as in the previous
section. Assume that Y and S(n) are independent. We define the subordinate process
X(n) = (X

(n)
t , t ≥ 0) byX(n)t = Y (S

(n)
t ). The processX(n) has a transition density

q
(n)
α (t, x, y) = q

(n)
α (t, y − x) given by

q(n)α (t, x) =
∫ ∞

0
p2(t, 0, x)f (n)α/2(t, s)ds (4.6)

where f (n)α/2(t, s) is the density of S(n)t . Note that q(1)α (1, x) = qα(1, x), where
qα(1, x) was introduced in Section 3.

Throughout this section we assume that d > 2(α/2)n. Similarly as in the pre-
vious section, this implies that the process X(n) is transient. The potential operator
G(n)f (x) := E

x
∫∞

0 f (X
(n)
t ) dt ofX(n) has a densityG(n)(x, y) = G(n)(y−x) =

G(n)(|y − x|) with

G(n)(x) =
∫ ∞

0
(4πt)−d/2 exp

(
−|x|2

4t

)
u(n)(t) dt,

where u(n) is the potential density of S(n). The Lévy density of X(n) is given by

J (n)(x) =
∫ ∞

0
p2(t, 0, x)µ(n)(t)dt,

where µ(n)(t) is the Lévy density of S. Another expression for J (n) is as follows:

J (n)(x) =
∫ ∞

0
pα(t, 0, x)t−1e−t dt (4.7)

where pα is the transition density of the symmetric α-stable process in R
d . Note

that J (n)(x) depends only on |x|. Therefore, by slightly abusing notation we will
define J (n)(r) := J (n)(x) for r = |x| > 0. We want to study the asymptotic behav-
ior of G(n) using Lemma 3.1. In order to check the conditions of that lemma, we
need some preparation.

For n ∈ N, define fn : (0, 1/en)× (0,∞) → [0,∞) by

fn(y, t) :=



Ln−1(
1
y
)ln(

1
y
)2

Ln−1(
4t
y
)ln(

4t
y
)2
, y < 2t

en
,

0 , y ≥ 2t
en
.
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Note that fn is equal to the function f�,β , defined before Lemma 3.1, with �(y) =
Ln−1(y)ln(y)

2 and β = en/2. Also, for n ∈ N, let

gn(t) :=
{
fn(

2t
en
, t) , t < 1/4 ,

1 , t ≥ 1/4 .

Moreover, for n ∈ N, define hn : (0, 1/en)× (0,∞) → (0,∞) by

hn(y, t) :=
ln(

1
y
)

ln(
4t
y
)
.

Clearly, for 0 < y < 2t
en

∧ 1
en

we have that

fn(y, t) = h1(y, t) . . . hn−1(y, t)hn(y, t)
2 . (4.8)

Lemma 4.6. For all y ∈ (0, 1/en) and all t > 0 we have fn(y, t) ≤ gn(t). More-
over,

∫∞
0 td/2−1e−t gn(t) dt < ∞.

Proof. A direct calculation of partial derivative gives

∂hn

∂y
(y, t) =

Ln(
1
y
)− Ln(

4t
y
)

yLn−1(
1
y
)Ln−1(

4t
y
)ln(

4t
y
)2
.

The denominator is always positive. Clearly, the numerator is positive if and only
if t > 1/4. Therefore, for t < 1/4, y �→ hn(y, t) is increasing on (0, 2t/en), while
for t > 1/4 it is decreasing on (0, 2t/en).

Let t < 1/4. It follows from (4.8) and the fact that y �→ hn(y, t) is increasing
on (0, 2t/en) that y �→ fn(y, t) is increasing for 0 < y < 2t/en. Therefore,

sup
0<y<2t/en

fn(y, t) ≤ fn(2t/en, t) = gn(t) .

Clearly, fn(y, 1/4) = 1. For y ≥ 1/4, it follows from (4.8) and the fact that
y �→ hn(y, t) is decreasing on (0, 2t/en) that y �→ fn(y, t) is decreasing for
0 < y < 1/en. Hence

sup
0<y< 2t

en
∧ 1
en

fn(y, t) = f (0, t) := lim
y→0

fn(y, t) = 1 .

The integrability statement of the lemma is obvious. 
�

Theorem 4.7. We have

G(n)(x) ∼ 	(d/2)

2απd/2|x|dLn−1(1/|x|2)ln(1/|x|2)2 , |x| → 0.
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Proof. We apply Lemma 3.1 with v(t) = u(n)(t), the potential density of S(n). By
(4.5),

u(n)(t) ∼ 2

αtLn−1(1/t)ln(1/t)2
, t → 0+,

so we take c0 = 2/α and �(t) = Ln−1(t)ln(t)
2. By Remark 4.3, u(n)(t) is of order

t (α/2)
n−1 as t → ∞, so we may take γ = (α/2)n < d/2. Choose β = 1/2. The

result follows from Lemma 3.1 and Lemma 4.6 
�
Remark 4.8. The asymptotic behavior ofG(n)(x) as |x| → ∞ was proved in [17],
Theorem 3.3. Denote αn = α(α/2)n−1. Then

G(n)(x) ∼ 1

πd/22αn
	(d−αn2 )

	(αn2 )
|x|αn−d , |x| → ∞ .

Although we could not get the exact asymptotic behaviors of J (n), the following
result about J (n) will be useful later.

Proposition 4.9. For any α ∈ (0, 2) and n ≥ 1, there exists a positive constant c
such that

J (n)(r) ≤ cJ (n)(2r), for all r > 0 (4.9)

and

J (n)(r) ≤ cJ (n)(r + 1), for all r > 1. (4.10)

Proof. Using Theorem 4.4 and repeating the proof of (4.6) in [17], we can easily
prove (4.10). We omit the details. Now we prove (4.9). Recall that pα(t, x) is the
transition density of a symmetric α-stable process in R

d . It is well known (see
Theorem 2.1 of [5]) that there exist positive constants C1 and C2 such that

C1(1 ∧ |x|−(d+α)) ≤ pα(1, x) ≤ C2(1 ∧ |x|−(d+α)), for all t > 0 and x ∈ R
d .

Using this one can easily see that there exists C3 > 0 such that

pα(t, x) ≤ c3pα(t, 2x), for all t > 0 and x ∈ R
d . (4.11)

Recall that

J (1)(x) = 1

2

∫ ∞

0
pα(t, x)t

−1e−t dt, for all t > 0 and x ∈ R
d .

Similarly as in (3.8) we have

q(1)α (t, x) =
∫ ∞

0
pα(s, x)

1

	(t)
st−1e−sds, for all t > 0 and x ∈ R

d .

Combining the two displays above with (4.11) we immediately get that

J (1)(x) ≤ C3J
(1)(2x), for all x ∈ R

d , (4.12)

q(1)α (t, x) ≤ C3q
(1)
α (t, 2x), for all t > 0 and x ∈ R

d . (4.13)
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We have further that

J (2)(x) = 1

2

∫ ∞

0
p(1)(t, x)µα/2(t)dt, for all > 0 and x ∈ R

d

and

q(2)α (t, x) =
∫ ∞

0
pα(s, x)fα/2(t, s)ds, for all t > 0 and x ∈ R

d ,

where µα/2(t) is the Levy density of the geometric α/2-subordinator. Combining
the two displays above with (4.13) we immediately get that

J (2)(x) ≤ C3J
(2)(2x), for all x ∈ R

d , (4.14)

q(2)α (t, x) ≤ C3q
(2)
α (t, 2x), for all t > 0 and x ∈ R

d . (4.15)

Now we can use induction to get that

J (n)(x) ≤ C3J
(n)(2x), for all x ∈ R

d , (4.16)

q(n)α (t, x) ≤ C3q
(n)
α (t, 2x), for all t > 0 and x ∈ R

d . (4.17)


�

5. Capacity and exit time estimates for some symmetric Lévy processes

The purpose of this section is to establish lower and upper estimates for the capacity
of balls and the exit time from balls, with respect to a class of general symmetric
Lévy processes.

Suppose that X = (Xt ,Px) is a transient symmetric Lévy process on R
d . We

will assume that the potential kernel of X is absolutely continuous with a density
G(x, y) = G(|y−x|)with respect to the Lebesgue measure. This implies that (see
Theorem 4.1.2 of [8]) the transition semigroup ofX has a density with respect to the
Lebesgue measure.We will assume the following conditions:G : [0,∞) → (0,∞]
is a positive and decreasing function satisfying G(0) = ∞. We will have need of
the following elementary lemma.

Lemma 5.1. There exist a positive constant C1 = C1(d) such that for every r > 0
and all x ∈ B(0, r),

C1

∫
B(0,r)

G(|y|) dy ≤
∫
B(0,r)

G(x, y) dy ≤
∫
B(0,r)

G(|y|) dy .

Moreover, the supremum of
∫
B(0,r) G(x, y) dy is attained at x = 0, while the infi-

mum is attained at any point on the boundary of B(0, r).
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Proof. The proof is elementary. We only present the proof of the left-hand side
inequality for d ≥ 2. Consider the intersection of B(0, r) and B(x, r). This inter-
section contains the intersection of B(x, r) and the cone with vertex x of aperture
equal to π/3 pointing towards the origin. Let C(x) be that intersection. Then∫

B(0,r)
G(|y − x|) dy ≥

∫
C(x)

G(|y − x|) dy

≥ c1

∫
B(x,r)

G(|y − x|) dy = c1

∫
B(0,r)

G(|y|) dy

where the constant c1 depends only on the dimension d. It is easy to see that the
infimum of

∫
B(0,r) G(x, y) dy is attained at any point on the boundary of B(0, r).


�
Let Cap denote the (0-order) capacity with respect toX. For a measureµ denote

Gµ(x) :=
∫
G(x, y) µ(dy) .

For any compact subset K of R
d , let PK be the set of probability measures

supported by K . Define

e(K) := inf
µ∈PK

∫
Gµ(x)µ(dx) .

Since the kernel G satisfies the maximum principle (see, for example, Theorem
5.2.2 in [6]), it follows from ([7], page 159) that for any compact subset K of R

d

Cap(K) = 1

infµ∈PK
supx∈Supp(µ) Gµ(x)

= 1

e(K)
. (5.1)

Furthermore, the infimum is attained at the capacitary measure µK . The following
lemma is essentially proved in [14].

Lemma 5.2. Let K be a compact subset of R
d . For any probability measure µ on

K , it holds that

inf
x∈Supp(µ)

Gµ(x) ≤ e(K) ≤ sup
x∈Supp(µ)

Gµ(x) . (5.2)

Proof. The right-hand side inequality follows immediately from (5.1). In order to
prove the left-hand side inequality, suppose that for some probability measureµ on
K it holds that e(K) < infx∈Supp(µ) Gµ(x). Then e(K)+ ε < infx∈Supp(µ) Gµ(x)

for some ε > 0. We first have∫
K

Gµ(x)µK(dx) >

∫
K

(e(K)+ ε) µK(dx) = e(K)+ ε .

On the other hand,∫
K

Gµ(x)µK(dx) =
∫
K

GµK(x)µ(dx) =
∫
K

e(K)µ(dx) = e(K) ,

where we have used the facts that GµK = e(K) quasi everywhere in K and that a
measure of finite energy does not charge sets of capacity zero. This contradiction
proves the lemma. 
�
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Proposition 5.3. There exist positive constants C2 < C3 depending only on d,
such that for all r > 0

C2r
d∫

B(0,r) G(|y|) dy
≤ Cap(B(0, r)) ≤ C3r

d∫
B(0,r) G(|y|) dy

.

Proof. Let mr(dy) be the normalized Lebesgue measure on B(0, r). Thus,
mr(dy) = dy/(c1r

d), where c1 is the volume of the unit ball. Consider Gmr =
supx∈B(0,r) G mr(x). By Lemma 5.1, the supremum is attained at x = 0, and so

Gmr = 1

c1rd

∫
B(0,r)

G(|y|)dy

Therefore from Lemma 5.2

Cap(B(0, r)) ≥ c1r
d∫

B(0,r) G(|y|)dy
(5.3)

For the right-hand side of (5.2), it follows from Lemma 5.1 and Lemma 5.2 that

Cap(B(0, r)) ≤ 1

Gmr(z)
= c1r

d∫
B(0,r) G(z, y)

dy ≤ c1r
d

C1
∫
B(0,r) G(|y|)

dy ,

where in the first line, z ∈ ∂B(0, r). 
�
In the remaining part of this section we assume in addition that G is regularly

varying at 0 with index β < 0. This implies that

lim
u→0

G(2u)

G(u)
= 2β .

Therefore, there exists a constant r0 such that

1

2
(2β + 1)G(u) ≥ G(2u) , 0 < u < r0 . (5.4)

Proposition 5.4. There exists a positive constantsC4 such that for all r ∈ (0, r0/2)

C4

∫
B(0,r/6)

G(|y|) dy ≤ inf
x∈B(0,r/6)

ExτB(0,r)

≤ sup
x∈B(0,r)

ExτB(0,r) ≤
∫
B(0,r)

G(|y|) dy . (5.5)

Proof. Let GB(0,r)(x, y) denote the Green function of the process X killed upon
exiting B(0, r). Clearly, GB(0,r)(x, y) ≤ G(x, y), for x, y ∈ B(0, r). Therefore,

ExτB(0,r) =
∫
B(0,r)

GB(0,r)(x, y) dy

≤
∫
B(0,r)

G(x, y) dy ≤
∫
B(0,r)

G(|y|) dy .
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For the left-hand side inequality, let r ∈ (0, r0/2), and let x, y ∈ B(0, r/6). Then,

GB(0,r)(x, y) = G(x, y)− ExG(X(τB(0,r)), y)

≥ G(|y − x|)−G(2|y − x|) .
The last inequality follows because |y − X(τB(0,r))| ≥ 2

3 r ≥ 2|y − x|. Let c1 =
(1 − 2β)/2. By (5.4) we have that for all u ∈ (0, r0), G(u) − G(2u) ≥ c1G(u).
Hence,G(|y−x|)−G(2|y−x|) ≥ c1G(|y−x|), which implies thatGB(0,r)(x, y) ≥
c1G(x, y) for all x, y ∈ B(0, r/6). Now, for x ∈ B(0, r/6),

ExτB(0,r) =
∫
B(0,r)

GB(0,r)(x, y) dy

≥
∫
B(0,r/6)

GB(0,r)(x, y) dy

≥ c1

∫
B(0,r/6)

G(x, y) dy

≥ c1C1

∫
B(0,r/6)

G(|y|) dy ,

where the last inequality follows from Lemma 5.1. 
�
Example 5.5. We illustrate the last two propositions for the process X(n) studied
in Section 4. Hence, we assume that d > 2(α/2)n. By a slight abuse of notation
we define a function G(n) : [0,∞) → (0,∞] by G(n)(|x|) = G(n)(x). Note that
by Theorem 4.7, G is regularly varying at zero with index β = −d. Let r0 be
the constant from (5.4) with this β. Let us first look at the asymptotic behavior of∫
B(0,r) G

(n)(|y|) dy for small r . We have
∫
B(0,r)

G(n)(|y|) dy = cd

∫ r

0
ud−1G(n)(u) du

∼ cd	(d/2)

απd/2

∫ r

0

ud−1

udLn−1(1/u)ln(1/u)2
du

= cd	(d/2)

απd/2

∫ r

0

1

uLn−1(1/u)ln(1/u)2
du

= cd	(d/2)

απd/2

1

ln(1/r)
, r → 0 .

It follows from Proposition 5.3 that there exist positive constants C5 ≤ C6 such
that for all r ∈ (0, 1/en),

C5r
d ln(1/r) ≤ Cap(B(0, r)) ≤ C6r

d ln(1/r) .

Similarly, it follows from Proposition 5.4 that there exist positive constantsC7 ≤ C8
such that for all r ∈ (0, (1/en) ∧ (r0/2)),

C7

ln(1/r)
≤ inf
x∈B(0,r/6)

ExτB(0,r) ≤ sup
x∈B(0,r)

ExτB(0,r) ≤ C8

ln(1/r)
. (5.6)

Here we also used the fact that ln is slowly varying.
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By use of Remark 4.8 and Proposition 5.3, we can estimate capacity of large
balls. It easily follows that as r → ∞, Cap(B(0, r) is of the order rα(α/2)

n−1
.

6. Harnack inequality

In this section we indicate the main steps in the proof of Harnack inequality for
nonnegative harmonic functions for the subordinate process. We do not provide all
of the details, because they have already appeared in some other papers. The meth-
odology was introduced in [2] and refined in [1]. We are going to use the notation
and the approach from [20], combined with some results and ideas from [17] and
[22].

Let S(n) be a subordinator whose Laplace exponent φ(n) is defined in Section
4. For the case α = 2 we assume that n = 1. Let Y be a d-dimensional Brownian
motion independent of S(n), and letX(n)(t) = Y (S

(n)
t ). As in Section 4, we assume

that d > 2(α/2)n. A nonnegative Borel function h on R
d is said to be harmonic

with respect to X(n) in a domain (i. e., a connected open set) D ⊂ R
d if it is not

identically infinite in D and if for any bounded open subset B ⊂ B ⊂ D,

h(x) = Ex[h(X(n)(τB))], ∀x ∈ B,
where τB = inf{t > 0 : X(n)t /∈ B} is the first exit time of B.

We say that the Harnack inequality holds for X(n) if for any domain D ⊂ R
d

and any compact subset K of D, there is a constant C > 0 depending only on D
and K such that for any nonnegative function h harmonic with respect to X(n) in
D,

sup
x∈K

h(x) ≤ C inf
x∈K

h(x).

The following auxiliary results are needed for the proof of Harnack inequality.
Let r0 be the constant from Example 5.5.

Lemma 6.1. There exists a positive constant C1 such that for any r ∈ (0, (1/en)∧
(r0/2)) we have

sup
z∈B(0,r)

EzτB(0,r) ≤ C1 inf
z∈B(0,r/6)

EzτB(0,r) .

Proof. This follows immediately from the estimate (5.6). 
�
Note that it follows from Theorem 4.7 that there exist two positive constants

C2 and C3 such that

C2

|x|dLn−1(1/|x|2)ln(1/|x|2)2 ≤ G(n)(x)

≤ C3

|x|dLn−1(1/|x|2)ln(1/|x|2)2 , |x| < 1

en+1

(6.1)
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Let us define

g(n)(u) := 1

udLn−1(1/u2)ln(1/u2)2
, u <

1

en+1
.

It follows by calculus that there exists ρn, 0 < ρn < 1/en+1, such that u → g(n)(u)

is decreasing on (0, ρn). Define

c := max

{
1

3

(
4C3

C2

)1/d

, 1

}
. (6.2)

Since u → Ln−1(1/u2)ln(1/u2)2 is slowly varying as u → 0, there exists ρ̃n,
0 < ρ̃n < 1/en+1, such that

1

2
≤ Ln−1(

1
u2 )ln(

1
u2 )

2

Ln−1(
1

36c2u2 )ln(
1

36c2u2 )
2

≤ 2 , u < ρ̃n . (6.3)

Let

Rn := min

{
1

en+1
, ρn, ρ̃n,

r0

2

}
. (6.4)

Then u → g(n)(u) is decreasing on (0, Rn), and both (6.1) and (6.3) are valid for
|x| < Rn and u < Rn respectively.

Lemma 6.2. Let β ∈ (0, 1). There exists C4 > 0 such that for any r ∈ (0, (7c)−1

Rn), any closed subset A of B(0, r), and any y ∈ B(0, r)

Py(TA < τB(0,7cr)) ≥ C4r
β Cap(A)

Cap(B(0, r))
.

Proof. Without loss of generality we may assume that Cap(A) > 0. Let G(n)B(0,7cr)
be the Green function of the process obtained by killing X(n) upon exiting from
B(0, 7cr). If ν is the capacitary measure of A with respect to X(n), then we have
for all y ∈ B(0, r),

G
(n)
B(0,7cr)ν(y) = Ey[G(n)B(0,7cr)ν(X

(n)
TA
) : TA < τB(0,7cr)]

≤ sup
z∈Rd

G
(n)
B(0,7cr)ν(z)Py(TA < τB(0,7cr))

≤ Py(TA < τB(0,7cr)).

On the other hand we have for all y ∈ B(0, r),

G
(n)
B(0,7cr)ν(y) =

∫
G
(n)
B(0,7cr)(y, z)ν(dz) ≥ ν(A) inf

z∈B(0,r)
G
(n)
B(0,7cr)(y, z)

= Cap(A) inf
z∈B(0,r)

G
(n)
B(0,7cr)(y, z) .
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In order to estimate the infimum in the last display, note that G(n)B(0,7cr)(y, z) =
G(n)(y, z) − Ey[G(n)(X(n)τB(0,7cr) , z)]. Since |y − z| < 2r < Rn, it follows by (6.1)
and the monotonicity of g(n) that

G(n)(y, z) ≥ C2g
(n)(|z− y|) ≥ C2g

(n)(2r) . (6.5)

Now we considerG(n)(X(n)τB(0,7cr) , z). First note that |X(n)τB(0,7cr) −z| ≥ 7cr−r ≥ 6cr .

If |X(n)τB(0,7cr) − z| ≤ Rn, then by (6.1) and the monotonicity of g(n)

G(n)(X(n)τB(0,7cr) , z) ≤ C3g
(n)(|z−X(n)τB(0,7cr) |) ≤ C3g

(n)(6cr) .

If, on the other hand, |X(n)τB(0,7cr) − z| ≥ Rn, then G(n)(X(n)τB(0,7cr) , z) ≤ G(n)(w),
where w ∈ R

d is any point such that |w| = Rn. Here we have used the monotonic-
ity of G(n). For |w| = Rn we have that G(n)(w) ≤ C3g

(n)(|w|) = C3g
(n)(Rn) ≤

C3g
(n)(6cr). Therefore

Ey[G(n)(X(n)τB(0,7cr) , z)] ≤ C3g
(n)(6cr) . (6.6)

By use of (6.5) and (6.6) we obtain

G(n)(y, z) ≥ C2g
(n)(2r)− g(n)(6cr)

= g(n)(2r)

(
C2 − C3

(2r)dLn−1(1/4r2)ln(1/4r2)2

(6cr)dLn−1(1/36c2r2)ln(1/36c2r2)2

)

= g(n)(2r)

(
C2 − C3

(
1

3c

)d
Ln−1(1/4r2)ln(1/4r2)2

Ln−1(1/36c2r2)ln(1/36c2r2)2

)

≥ g(n)(2r)

(
C2 − C3

(
1

3c

)d
2

)

≥ g(n)(2r)

(
C2 − 2C3

C2

4C3

)

= C2

2
g(n)(2r) = C2

2

1

4rdLn−1(1/4r2)ln(1/4r2)2
,

where in the fourth line we used (6.3). From Example 5.5 we have that Cap
(B(0, r)) ≥ c5r

d/ ln(1/r). By using this in the previous display, we get

G(n)(y, z) ≥ C2

8

1

Ln−1(1/4r2)ln(1/4r2)2

c5

ln(1/r)

1

Cap(B(0, r))

= C2c5

8

1

Ln−1(1/4r2)ln(1/4r2)2ln(1/r)

1

Cap(B(0, r))

≥ C4r
β 1

Cap(B(0, r))

To finish the proof, note that

Py(TA < τB(0,7cr)) ≥ G
(n)
B(0,7cr)ν(y) ≥ C4r

β Cap(A)

Cap(B(0, r))
.


�
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Remark 6.3. It is clear from the proof that the function r → rβ can be replaced by
a function which approaches zero more slowly.

Using Proposition 4.9 and Lemma 3.5 of [20] we immediately get the following
result.

Lemma 6.4. There exist positive constants C5 and C6 such that if r ∈ (0, r0/2),
z ∈ B(0, r) and H is a nonnegative function with support in B(0, 2r)c, then

EzH(X
(n)(τB(0,r))) ≤ C5(EzτB(0,r))

∫
H(y)J (n)(y)dy

and

EzH(X
(n)(τB(0,r))) ≥ C6(EzτB(0,r))

∫
H(y)J (n)(y)dy.

It follows from Lemma 6.1 and Lemma 6.4 that there exists a positive constant
C7 such that for any r ∈ (0, Rn), any y, z ∈ B(0, r/2) and any nonnegative function
H supported in B(0, 2r)c

EzH(X
(n)(τB(0,r))) ≤ C7EyH(X

(n)(τB(0,r))) . (6.7)

Lemma 6.5. Let β ∈ (0, 1). There exists a positive constant C8 such that for all
0 < ρ < r < 1/en+1

Cap(B(0, ρ))

Cap(B(0, r))
≥ C8

(ρ
r

)d
ρβ .

Proof. By Example 5.5

c5r
d

ln(1/r)
≤ Cap(B(0, r)) ≤ c6r

d

ln(1/r)

for every r < 1/en+1. Therefore,

Cap(B(0, ρ))

Cap(B(0, r))
≥ c5ρ

d(ln(1/ρ)

c6rd/ ln(1/r)
= c5

c6

(ρ
r

)d ln(1/r)
ln(1/ρ)

.

Note that 1/r > en+1 and hence ln(1/r) > ln(en+1) = 1. Further, there exists a
constant c7 > 0 such that

1

ln(1/ρ)
≥ c7ρ

β for all ρ ∈ (0, 1/en+1) .

The lemma is proved by taking C8 = c5c7/c6. 
�

The following Harnack inequality is proved along the same lines as the ones in
Theorem 3.1 in [22] and Theorem 4.5 in [17]. We omit the details.
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Theorem 6.6. Let Rn and c be defined by (6.4) and (6.2) respectively. Let r ∈
(0, (14c)−1Rn). There exists a constant C9 > 0 such that for every z0 ∈ R

d and
every nonnegative bounded function u in R

d which is harmonic with respect toX(n)

in B(z0, 14cr) we have

h(x) ≤ C9h(y), x, y ∈ B(z0, r/2).

Following the well-known arguments, this theorem can be improved to

Theorem 6.7. For any domain D of R
d and any compact subset K of D, there

exists a constant C10 > 0 such that for any function h which is nonnegative in R
d

and harmonic with respect to X(n) in D, we have

h(x) ≤ C10h(y), x, y ∈ K.
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20. Song, R., Vondraček, Z.: Harnack inequalities for some classes of Markov processes.
Math. Z. 246, 177–202 (2004)
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