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Abstract. In this work, we construct a degree two Brownian Sheet in dimension three which
is obtained from the ordinary Brownian Sheet in R

2 in the same way that Paul Lévy has
obtained his two-parameter Brownian motion from the ordinary Brownian motion.

1. Introduction

There are two different generalizations of the notion of Brownian motion to the two
dimensional parameters space. The first one is Paul Lévy’s two-parameter Brown-
ian motion (See [6]). It is a centered Gaussian field (Bx)x∈R2 defined by the facts
that the variance of Bx is equal to the Euclidean length ‖x‖, and that the R

2 action
S on the space of the trajectories B = (Bx)x∈R2 defined by (SuB)x = Bx+u − Bu
preserves the law of the Gaussian field (Bx)x∈R2 . It has the following property: for
any 1-dimensional linear subspace D ⊂ R

2 and any u ∈ R
2, the Gaussian process

(SuBx)x∈D has the law of the standard 1-parameter Brownian motion (the question
of the continuity being not considered). The second generalization is the (degree
2) Brownian sheet (See [9]), which is usually defined as a centered Gaussian field
(Bx)x∈R

2+ with covariance cov(Bx, Bx′) equal to min(x1, x
′
1) · min(x2, x

′
2), where

x = (x1, x2) and x′ = (x′
1, x

′
2). Let us note that cov(Bx, Bx′) is the area of the

intersection of the rectangles [0, x1] × [0, x2] and [0, x′
1] × [0, x′

2]. The Brownian
sheet may also be defined as the Gaussian field indexed by the set of triangular
surfaces, with covariance equal to the area of the intersection of the triangles. In
this paper, we will generalize the notion of degree 2 Brownian sheet on triangles, to
dimension 3. Following Paul Lévy’s way, it is a centered Gaussian field which has
the property that any of its restriction to a 2-dimensional subspace of R

3 has the
law of the degree 2 Brownian sheet on R

2 described above. This Brownian sheet is
used as a typical example of cocycle of degree 2 in the theory developed in [3]. The
main part of the work is to determine an extension, to dimension 3, of the function
of covariance of the Brownian sheet in R

2, and to check that it is of positive type.

2. Degree two Brownian sheet in R
2

As we said in Introduction, we will consider the Brownian sheet on triangles in the
plan (instead of rectangles with sides parallel to the axes).
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Fig. 1. The two descriptions of degree 2 Brownian sheet in R
2

Definition 1. The degree 2 Brownian sheet in R
2 is a centered Gaussian field

(Bx,y)x,y∈R2×R2 , such that the covariance cov(Bx,y, Bx′,y′) is the signed area
of the intersection of the oriented triangle of vertices 0, x, x + y with the ori-
ented triangle of vertices 0, x′, x′ + y′, the sign being positive if the two triangles
have the same orientation, negative otherwise.

In order to be sure that the preceding definition makes sense, it is necessary to
check that the function which defines the covariance is of positive type. It will be
a particular case of Theorem 1 of the next section.

The connection between our definition of the Brownian sheet and the standard
one can be deduced from the following remark: for x = (x1, x2) ∈ R

2+, the rect-
angle [0, x1] × [0, x2] can be decomposed in two triangles, the positively oriented
triangle of vertices 0, (0, x1) and x, and the negatively oriented triangle of vertices
0, (x2, 0) and x. This leads to the following formula. Let (Bx,y)x,y∈R2×R2 be a
degree 2 Brownian sheet as above defined. Let (Bx)x∈R

2+ be the Gaussian field
defined by

For x = (x1, x2), Bx = B(x1,0),(0,x2) − B(0,x2),(x1,0)

Then (Bx)x is a standard degree 2 Brownian sheet as defined in Introduction. Indeed,
for x = (x1, x2), let us denote temporarilyB1 = B(x1,0),(0,x2),B2 = −B(0,x2),(x1,0),
and similarly B ′

i , i = 1, 2, for x′ = (x′
1, x

′
2). We have to calculate cov(Bx, Bx′) =

cov(B1 + B2, B
′
1 + B ′

2). Expanding this covariance leads to

cov(B1, B
′
1)+ cov(B2, B

′
1)+ cov(B1, B

′
2)+ cov(B2, B

′
2).

Let us denote by ci , i = 1, . . . , 4 each of the four above covariances, and
suppose for example that x1 > x′

1 and x2 < x′
2. By Definition 1, these covariances

are respectively equal to the areas drawn on the figure 1 (and c3 = 0). Hence we
have

∑4
i=1 ci = x′

1x2, as excepted. The proofs of the other cases are similar. This
checks that (Bx)x is a standard Brownian sheet.

We need the analog of the shift Su defined in Introduction. It is given by the
following proposition:

Proposition 1. The R
2 action T defined on the space of the trajectories B =

(Bx,y)x,y∈R2 by

(TuB)x,y = Bu,x + Bu+x,y − Bu,x+y (1)
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Fig. 2. Shift of triangles

preserves the law of the Brownian sheet (Bx,y)x,y∈R2 . More precisely, the covari-
ance cov((TuB)x,y, (Tu′B)x′,y′) is the signed area of the intersection of the oriented
triangle of vertices u, u + x, u + x + y with the oriented triangle of vertices u′,
u′ + x′, u′ + x′ + y′.

Proof. The fact that T is an action of the group R
2 can be checked by a simple

calculus. The expanding of (Tv(Tu(B)))x,y leads to 3 ×3 = 9 terms; 6 of them can
be simplified, and the 3 other ones give (Tu+vB)x,y . Before getting into the details
of the proof of the stationarity of T , let us give its geometrical interpretation. Let
us denote T (u, x, y) the plane surface delimited by the triangle of first vertex u
and edges x and y, that is to say of vertices u, u + x and u + x + y. Let χu,x,y
be its signed characteristic function: χu,x,y(z) = ±1 if z ∈ T (u, x, y) and = 0
otherwise, the sign being the sign of the determinant of (x, y). This leads to the
formula

z− a.e. χu,x,y(z) = χ0,u,x(z)+ χ0,u+x,y(z)− χ0,u,x+y(z). (2)

as we can check it on Figure 2. Hence the transformation Tu defined in the above
proposition is the analog of the shift of the triangles T , for the trajectories B.

The stationarity of T will be proved if we check that

cov(Bx,y, Bx′,y′) = cov((TuB)x,y, (TuB)x′,y′). (3)

But we have, by definition of the law of (Bx,y)x,y ,

cov(Bx,y, Bx′,y′) =
∫

χ0,x,y · χ0,x′,y′ dλ, (4)

where λ is Lebesgue measure on R
2. This formula can be generalized as following:

cov((TuB)x,y, (Tu′B)x′,y′) =
∫

χu,x,y · χu′,x′,y′ dλ. (5)

Indeed, using (2), the right member leads to 3 × 2 = 6 terms. Applying (4) to each
of them, we obtain the expanding of

cov(Bu,x + Bu+x,y − Bu,x+y, Bu′,x′ + Bu′+x′,y′ − Bu′,x′+y′).

Then, using (1), assertion (5) follows.
Now (3) is a readily consequence of the invariance of λ under the shift. ��
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We now establish an other expression of the covariance cov(Bx,y, Bx′,y′)which
can easily be generalized to dimension 3.

Lemma 1. Let (Bx,y)x,y be the degree 2 Brownian sheet in R
2. We have

cov(Bx,y, Bx′,y′) = −1

2π

∫

∂T (0,x,y)

∫

∂T (0,x′,y′)
ln(‖M −N‖) 〈d ��(M), d ��′(N)〉

where d �� and d ��′ are respectively the infinitesimal tangential fields of the bound-
ary of triangles T (0, x, y) and T (0, x′, y′), and 〈d ��, d ��′〉 is the tensor-product
of theses two-dimensional valued one-forms (see the explicit expression at line (6)
below).

Proof. Note that the function t 
→ ln |t | is integrable on the neighborhood of 0 in R,
hence the above integral is well defined. Let u 
→ (M1(u),M2(u)), u ∈ [0, 1] (resp.
v 
→ (N1(v),N2(v)), v ∈ [0, 1]) be a parameterization of the boundary ∂T (0, x, y)
(resp. ∂T (0, x′, y′)). We have to prove that the signed area of the intersection of
the triangles T (0, x, y) and T (0, x′, y′) can be expressed as

−1

2π

∫ 1

u=0

∫ 1

v=0

1

2
ln

( 2∑

i=1

(
Mi(u)−Ni(v)

)2
)
(

2∑

i=1

dMi

du

dNi

dv
) dudv. (6)

Integrating first in dv, we have to calculate

Ji(u) =
∫ 1

v=0

1

2
ln

((
M1(u)−N1(v)

)2 + (
M2(u)−N2(v)

)2
)dNi

dv
dv,

for i = 1, 2. Assume that T (0, x′, y′) is positively oriented. By the Green-Riemann
formula

∫

∂T (0,x′,y′)

(
P dN1 +Q dN2

)
=

∫∫

T (0,x′,y′)

( ∂Q

∂N1
− ∂P

∂N2

)
dN1dN2,

the integrals Ji(u) become

J1(u) =
∫∫

T (0,x′,y′)

M2(u)−N2
(
M1(u)−N1

)2 + (
M2(u)−N2

)2 dN1dN2,

J2(u) = −
∫∫

T (0,x′,y′)

M1(u)−N1
(
M1(u)−N1

)2 + (
M2(u)−N2

)2 dN1dN2.

Hence, the integral I = −1
2π

∫ 1
0

∑2
i=1 Ji(u)

dMi

du
du above can be written

1

2π

∫∫

T (0,x′,y′)

∫ 1

u=0

−(M2(u)−N2)
dM1
du

+ (M1(u)−N1)
dM2
du

(
M1(u)−N1

)2 + (
M2(u)−N2

)2 du dN1dN2.

Note that the function of the variable u inside the integral is

d

du
arctan

M2(u)−N2

M1(u)−N1
.
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Then the integral in du is equal to ±2π if the point (N1, N2) is inside the curve
∂T (0, x, y), and 0 otherwise. This means that

I =
∫∫

T (0,x′,y′)
χ0,x,x+y(N1, N2) dN1dN2

which is the excepted equality, since the triangle T (0, x′, y′) was supposed posi-
tively oriented. ��

3. Generalization of the degree two Brownian sheet to R
3

The notions of plane triangular surface T (u, x, y), of centered Gaussian field
(Bx,y)x,y , and the definition of the action (Tu)u by formula (1) can be general-
ized to R

3 without modifications. But the geometrical interpretation of (Tu)u is
changed. Indeed, formula (2) is replaced by

∂T (u, x, y) = ∂T (0, u, x)+ ∂T (0, u+ x, y)− ∂T (0, u, x + y). (7)

This formula has rigorous sense in the abelian free group generated by the family
of the oriented segments ([v, v+ z])v,z∈R3×R3 . A little picture shows that it is true:
in Figure 2, suppose that the points 0, u, u + x and u + x + y are not necessary
in the same plan, and look at the oriented boundaries of the triangles. Hence Tu is
analogous, for trajectories of B, to the shift of the boundaries of the triangles, not
of the surfaces themselves.

The generalization of the degree two Brownian sheet to dimension 3 can be
defined as follows:

Definition 2. A degree 2 Brownian sheet in dimension 3 is a centered Gaussian
field (Bx,y)x,y∈R3×R3 with the following properties:

1. the law of the Gaussian field B = (Bx,y)x,y∈R3×R3 is preserved by the action
(Tu)u∈R3 ;

2. for any 2 dimensional linear subspace P ⊂ R
3 and any u ∈ R

3, the Gaussian
field (TuBx,y)x,y∈P×P has the law of the degree 2 Brownian sheet in dimension
2 described above.

For any points u, x, y, u′, x′, y′ in R
3, let us denote c(u, x, y, u′, x′, y′) the

following integral:

c(u, x, y, u′, x′, y′) = −1

2π

∫

∂T (u,x,y)

∫

∂T (u′,x′,y′)
ln(‖M −N‖) 〈d ��(M), d ��′(N)〉

We will prove the following assertion:

Theorem 1. The moment condition

cov(Bx,y, Bx′,y′) = c(0, x, y, 0, x′, y′) (8)

defines a centered Gaussian field (Bx,y)x,y∈R3×R3 which is a degree 2 Brownian
sheet in dimension 3.
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The proof of this theorem is presented in three steps:

– For the 2 dimensional restriction property, we have to check that, if x, y, x′, y′
belong to the same linear plan of R

3, then c(0, x, y, 0, x′, y′) is the signed area
of the intersection of the oriented triangles T (0, x, y) and T (0, x′, y′).

– For the stationarity, we have to check that

cov(Bx,y, Bx′,y′) = cov((TuB)x,y, (TuB)x′,y′). (9)

– For the compatibility condition of Kolmogorov theorem (see [1], or [2] for the
Gaussian version), we have to prove that for any finite family of real coefficients
(ai)i≤n, and any finite families of points (xi)i≤n and (yi)i≤n, the double sum

n∑

i=1

n∑

j=1

aiaj c(0, xi, yi, 0, xj , yj ) (10)

is non negative (note that c is obviously symmetric).

The first step is a direct consequence of Lemma 1.
The second directly follows from Formula (7), and from the fact that the inte-

gral which defines c(u, x, y, u′, x′, y′) is taken on the boundaries of the triangles:
we use (7) to calculate c(u, x, y, u′, x′, y′), and (1) to calculate cov((TuB)x,y,
(Tu′B)x′,y′). Applying (8) to each terms, we obtain

c(u, x, y, u′, x′, y′) = cov((TuB)x,y, (Tu′B)x′,y′).

But, in the case u = u′, it is easy to see that

c(u, x, y, u, x′, y′) = c(0, x, y, 0, x′, y′)

which gives (9). ��

The third step is the most delicate one. We begin with a smooth version of it.

Lemma 2. For any vector fields �f , �g of class C∞ with compact support, let b( �f , �g)
be the integral

b( �f , �g) = 1

2π

∫

R3

∫

R3
− ln(‖M −N‖) · 〈curl �f (M), curl�g(N)〉 dMdN, (11)

where curl �f is the vector field whose coordinates are defined by curlk �f (v) =
∂fj
∂vi

− ∂fi
∂vj

for any cyclic permutation (i, j, k) of (1, 2, 3). Then, for any vector field

�f of class C∞ with compact support, b( �f , �f ) is non negative.

The function v 
→ − ln ‖v‖ and its partial derivatives of order one and two are
locally integrable in R

3. Hence, expanding the above scalar product to

3∑

i=1

( 3∑

j=1
j �=i

∂fi

∂vj
(M)

∂gi

∂vj
(N)

)
−

3∑

i,j=1
i �=j

∂fj

∂vi
(M)

∂gi

∂vj
(N),
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and using two integrations by parts, we get

b( �f , �g) = 1

2π

∫

R3

∫

R3

3∑

i,j=1

fi(M)Ki,j (M −N)gj (N) dMdN (12)

where Ki,j (v) is defined for v = (vi)1≤i≤3 by

Ki,j (v) =






− ∂2

∂vi∂vj
(ln ‖v‖) if i �= j ;

3∑

k=1
k �=i

∂2

∂vk∂vk
(ln ‖v‖) if i = j.

(13)

This leads toKi,j (v) = 2
vivj

‖v‖4 . The proof of Lemma 2 will be obtained by Fourier

analysis. Also we first calculate the Fourier transform of the function Ki,j . For
k ≥ 0 integer, and α ∈]0, n[, where n = 3 for us, we denote by γk,α the following
constant:

γk,α = ikπn/2−α �(k/2 + α/2)

�(k/2 + n/2 − α/2)
.

We also use the following standard notation: δi,j = 1 if i = j and = 0 if not. For
any function φ on R

3, let us denote φ̂ its Fourier transform, defined by:

φ̂(η) =
∫

R3
φ(v)e2iπ〈η,v〉 dv.

Lemma 3. We have K̂i,j (η) = π

‖η‖ (δi,j − ηiηj

‖η‖2 ), where η = (ηi)1≤i≤3, in the

sense that for any function φ of class C∞ with compact support,
∫

R3
Ki,j (M)φ(M) dM =

∫

R3

π

‖η‖ (δi,j − ηiηj

‖η‖2 )φ̂(η) dη. (14)

For a function ψ of class C∞ with compact support, let us define the function
Ki,j (ψ) by

Ki,j (ψ)(M) =
∫

R3
Ki,j (M −N)ψ(N) dN.

Then its Fourier transform is Ki,j (ψ)ˆ(η) = π
‖η‖ (δi,j − ηiηj

‖η‖2 )ψ̂(η), in the sense

that for any function φ of class C∞ with compact support, we have
∫

R3
Ki,j (ψ)(M)φ(M) dM =

∫

R3

π

‖η‖ (δi,j − ηiηj

‖η‖2 )ψ̂(η)φ̂(η) dη. (15)

Proof of Lemma 3. The equality (14) of this lemma is a direct corollary of the
lemma page 73 of [10], which can be cited as follows:



464 J. Depauw

Lemma(Stein). Let k be a non negative integer. Let Pk be a homogeneous polyno-
mial of degree k, defined on R

n. Let us suppose that Pk = 0, where  denotes
the standard Laplacian operator. Let α ∈]0, n[. Then for any function φ of class
C∞ with compact support, we have

∫

Rn

Pk(x)

‖x‖n+k−α φ(x) dx = γk,α

∫

Rn

Pk(η)

‖η‖k+α φ̂(η) dη.

In the case i �= j , Stein’s lemma can be applied directly, with n = 3, k = 2, α = 1
and the homogeneous polynomial P(v) = 2vivj of degree 2, which is harmonic.
Since γ2,1 = −π/2, its gives

K̂i,j (η) = −π ηiηj‖η‖3 .

In the case i = j (= 1 for example) the polynomial P(v) = 2v2
1 is not harmonic,

but K1,1(v) can be decomposed as follows:

K1,1(v) = 2

3

2v2
1 − v2

2 − v2
3

‖v‖4 + 2

3

1

‖v‖2 .

Stein’o lemma can be applied to the first member with k = 2, α = 1 and P(v) =
2v2

1 − v2
2 − v2

3, and to the second member with k = 0, α = 1 and P(v) = 1. Since
γ0,1 = π , this leads to

K̂1,1(η) = π
η2

2 + η2
3

‖η‖3 .

These are the desired equalities. This proves (14). Note that (14) can be rewritten
as

∫

R3
Ki,j (N)ψ(M −N) dN =

∫

R3

π

‖η‖ (δi,j − ηiηj

‖η‖2 )ψ̂(η)e
−2iπ〈η,M〉 dη;

multiplying by φ(M) and integrating in dM , we obtain (15). The proof Lemma 3
is complete. ��

For a vector field �f = (fi)1≤i≤j , let us denote f̂ = (f̂i)1≤i≤3 the vector field
of its Fourier transforms. It follows from (12) that

b( �f , �f ) = 1

2π

∫

R3

3∑

i,j=1

fi(M)Ki,j (fj )(M) dM;

hence (15) leads to b( �f , �f ) = 1

2π

∫

R3

3∑

i,j=1

π

‖η‖ (δi,j − ηiηj

‖η‖2 )f̂i(η)f̂j (η) dη. This

can be rewritten as

b( �f , �f ) = 1

2π

∫

R3

π

‖η‖
(
〈f̂ (η), f̂ (η)〉2 − |〈 η

‖η‖ , f̂ (η)〉|
2
)
dη
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where 〈, 〉 denotes the standard Hermitian product on C
3. This is clearly positive,

by the Cauchy-Schwarz inequality in C
3, hence Lemma 2 is proved. ��

The fact that the function c(0, x, y, 0, z, t) is of positive type can be deduced
from Lemma 2 by an approximation argument. We will use the following lemma
of approximation.

Lemma 4. Let x, y, z and t be points in R
3. For any ζ > 0, there exists two vector

fields of class C∞ with compact support �f and �g such that |c(0, x, y, 0, z, t) −
b( �f , �g)| < ζ .

In this lemma, the vector fields �f and �g will respectively be close to the fields of
normal vectors of the triangles T (0, x, y) and T (0, z, t), and curl �f and curl�g will
respectively be close to the fields of tangential vectors of the boundaries ∂T (0, x, y)
and ∂T (0, z, t). Let us construct �f for example. Letψ be a infinitely derivable non
negative function of integral 1, whose support is compact and contains 0. For any
ε > 0, let ψε be the function defined by ψε(v) = 1

ε3ψ(
v
ε
). Up to a rotation, we can

suppose that the points x = (xi)i and y = (yi)i are such that x3 = 0 and y3 = 0.
For a point M = (Mi)i of R

3, let �f (M) = (fi(M))i be defined by f1 = f2 = 0
and

f3(M) = ±
∫

T (0,x,y)
ψε(M1 −M ′

1,M2 −M ′
2,M3) dM

′
1dM

′
2,

the sign being the sign of x1y2 − x2x1. Let us suppose it is positive. This mean that
the triangle T (0, x, y), which is contained in the plan M ′

3 = 0, has the orientation
given by the axes ((0,M ′

1), (0,M
′
2)). By derivation under the integral, we have

curl �f = (curli �f )i with

curl1 �f (M) =
∫

T (0,x,y)

∂ψε

∂v2
(M1 −M ′

1,M2 −M ′
2,M3) dM

′
1dM

′
2;

curl2 �f (M) = −
∫

T (0,x,y)

∂ψε

∂v1
(M1 −M ′

1,M2 −M ′
2,M3) dM

′
1dM

′
2;

curl3 �f (M) = 0. (16)

By the Green-Riemann formula applied separately on these integrals, it leads to

curli �f (M) =
∫

u

ψε(M1 −M ′
1(u),M2 −M ′

2(u),M3)
d

du
M ′
i (u) du (17)

for i = 1, 2 and curl3 �f (M) = 0, where M ′(u) is a parameterization of the bound-
ary ∂T (0, x, y). If the triangle T (0, x, y) is not in the planM ′

3 = 0, these formulas
may be generalized as follows

�f (M) =
(∫

0<r<s<1
ψε(M − rx − sy) drds

)
· x × y;

curli �f (M) =
∫

u

ψε(M −M ′(u))
d

du
M ′
i (u) du, i = 1, . . . , 3, (18)



466 J. Depauw

where x×y is the cross-product on R
3. In the same way, we associate to the second

triangle T (0, z, t) the function �g defined by

�g(N) =
(∫

0<r<s<1
ψε(N − rz− st) drds

)
· z× t;

curli �g(N) =
∫

v

ψε(N −N ′(v))
d

dv
N ′
i (v) dv, (19)

where v 
→ N ′(v) is a parameterization of ∂T (0, z, t). We consider the integral

b( �f , �g) = −1

2π

∫

R3

∫

R3
ln ‖M −N‖

( 3∑

i=1

curli �f (M)curli �g(N)
)
dMdN.

Let us replace curli �f (M) and curli �g(N) by the expressions obtained from (18) and
(19). By the Fubini theorem, it can be written as an integral in dudv of an integral
in dMdN :

b( �f , �g) = −1

2π

∫

u

∫

v

I (u, v)

3∑

i=1

dM ′
i

du

dN ′
i

dv
dudv. (20)

with

I (u, v) =
∫

R3

∫

R3
ln(‖M −N‖) · ψε(M −M ′(u)) · ψε(N −N ′(v)) dMdN.

By change of variables (M,N) 
→ (P,Q) defined by

{
M = P +M ′(u)
N = P −Q+N ′(v)

,

this leads to

I (u, v) =
∫

R3

∫

R3
ln ‖Q+M ′(u)−N ′(v)‖ψε(P )ψε(P −Q) dPdQ.

Let us replace it in (20) and use again Fubini theorem, we obtain

b( �f , �g) =
∫

R3
φε(Q)H(Q) dQ (21)

with

H(Q) = −1

2π

∫

u

∫

v

ln ‖Q+M ′(u)−N ′(v)‖
3∑

i=1

dM ′
i

du

dN ′
i

dv
dudv,

φε(Q) =
∫

R3
ψε(P )ψε(P −Q) dP. (22)

ButH is a continuous function ofQ. Hence, when ε goes to zero, the integral (21)
tends to H(0), which is c(0, x, y, 0, z, t). This proves Lemma 4. ��

We will now deduce that (10) is non negative. Let us consider a finite family
of real coefficients (ai)i≤n, and a finite family of points (xi)i≤n and (yi)i≤n. For
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any ε > 0, let �fi be the vector field associated to the triangle T (0, xi, yi) as in the
proof of Lemma 4. For a fixed ζ > 0, we choose ε small enough such that for any
i, j ≤ n,

|b( �fi, �fj )− c(0, xi, yi, 0, xj , yj )| < ζ.

Let �f = ∑n
i=1 ai

�fi . The above inequality implies

|b( �f , �f )−
∑

i

∑

j

aiaj c(0, xi, yi, 0, xj , yj )| < (
∑

i

|ai |)2ζ.

By the non negativity of b( �f , �f ) stated by Lemma 2, it follows
∑

i

∑

j

aiaj c(0, xi, yi, 0, xj , yj ) ≥ −(
∑

i

|ai |)2ζ.

Since it is true for any ζ , the double sum is non negative. This proves the third and
last step of Theorem 1. ��

4. Remarks and Comments

A natural question after the construction presented is this paper concerns the
uniqueness of the determination of the degree 2 Brownian sheet in R

3. The covari-
ance of Lévy’s two-parameter Brownian motion readly follows from its definition:
cov(Bx, By) = 1

2 (‖x‖ + ‖y‖ − ‖x − y‖). The analogue calculus doesn’t work
for the degree two Brownian sheet. Indeed, from Definition 2 it follows that the
variance ‖Bx,y‖2

2 is equal to the area 1
2‖x ∧ y‖ of the triangle T (0, x, y). Since the

law of the field (Bx,y)x,y is preserved by Tu, we have also

1

2
‖x ∧ y‖ = ‖Bu,x + Bu+x,y − Bu,x+y‖2

2

= cov(Bu,x, Bu+x,y)− cov(Bu,x, Bu,x+y)− cov(Bu+x,y, Bu,x+y)

+1

2
‖u ∧ x‖ + 1

2
‖(u+ x) ∧ y‖ + 1

2
‖u ∧ (x + y)‖. (23)

But this formula doesn’t allow us to determinate cov(Bx,y, Bz,t ). It is an open ques-
tion to know whether the definition of the degree 2 Brownian sheet in dimension 3
implies the moment condition of Theorem 1 or not.

There are other representations of the degree 2 Brownian sheet in dimension
3. For example, geometrically, it can be viewed as being a centered Gaussian field
indexed by the set S of the compact two-dimensional oriented C1-sub-manifolds
with boundary. For �, �′ ∈ S, the covariance cov(B�,B�′) is

cov(B�,B�′) = −1

2π

∫

∂�

∫

∂�′
ln(‖M −N‖) 〈d ��(M), d ��′(N)〉. (24)

Note that B� depends only on the boundary ∂�. Indeed, the variance of B� −B�′
is equal to

cov(B�,B�)+ cov(B�′ , B�′)− 2cov(B�,B�′).
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If ∂� = ∂�′, this variance is zero and we have B� = B�′ . In the same way, if
the manifold � has no boundary (a sphere for instance), then B� = 0. Hence, by
lemma 1, if �,�′ ∈ S are such that there boundaries are contained in the same
plan, then the covariance cov(B�,B�′) is the signed area of the intersection of �̄
and �̄′, where �̄ and �̄′ are the plane surfaces such that ∂� = ∂�̄ and ∂�′ = ∂�̄′.

Let us come back to the Gaussian field (Bx,y)x,y on triangles studied in this
paper. It has connexion with homology theory. Indeed, let us denote � the space
of trajectories B = (Bx,y)x,y , and define the function G on � × R

3 × R
3 by

G(B, x, y) = Bx,y . We have, by definition of T

G(TuB, x, y) = G(B, u, x)+G(B, u+ x, y)−G(u, x + y).

This is the equation which defines the algebraic notion of cocycle of degree 2 for
the action T (see [4], [7] or [3]). This fact is analogous to the fact that, for the
2-parameter Lévy’s Brownian motion (Bx)x defined in Introduction, the function
F defined by F(B, x) = Bx − B0 verifies the equation

F(B, u+ x) = F(B, u)+ F(SuB, x).

This means exactly that F is an algebraic cocycle of degree 1 for the action S. Let
us note that the more “natural” degree in dimension 3 is the degree 3: the Brownian
cocycle of degree 3 in dimension 3 is obtained from the ordinary Brownian sheet
on tetrahedra of R

3. Indeed, this field is the centered Gaussian field (Bx,y,z)x,y,z∈R3

such that the covariance cov(Bx,y,z, Bx′,y′,z′) is the signed volume of the intersec-
tion of the tetrahedron of vertices 0, x, x + y, x + y + z with the tetrahedron of
vertices 0, x′, x′ + y′, x′ + y′ + z′. Since the R

3-action (Uu)u defined by

(UuB)x,y,z = Bu+x,y,z − Bu,x+y,z + Bu,x,y+z − Bu,x,y

is analogous, on trajectories B, to the shift of tetrahedra, it is stationary. Now the
function H defined by H(B, x, y, z) = Bx,y,z is, by definition of U , a cocycle of
degree 3 for U , that is to say satisfies

H(UuB, x, y, z) = H(B, u+ x, y, z)−H(B, u, x + y, z)

+H(B, u, x, y + z)−H(B, u, x, y).

A natural extension of this work is the case of higher dimension, and higher
degree. Following the same method, with some harder calculus on the matrixK =
(Ki,j )i,j , we have checked the case of the degree 2 in dimension n. Concerning the
higher degree, and using for example the geometrical point of view, we propose the
following function of covariance: a degree k Brownian sheet in dimension n (k ≤ n)
may be a centered Gaussian field indexed by the set S of compact k-dimensional
oriented C1-sub-manifolds of R

n with boundary such that for �, �′ ∈ S,

cov(B�,B�′) =
∫

∂�

∫

∂�′
Gk(M −N) 〈d �σ(M), d �σ ′(N)〉 (25)



Degree two Brownian Sheet in Dimension three 469

where Gk is the extension to R
n of the radial decreasing Green function of R

k:

Gk(v) =






−‖v‖/2 if k = 1;
−(ln ‖v‖)/(2π) if k = 2;
(
�(k/2−1)

4πk/2
)/(‖v‖k−2) if k ≥ 3.

The detailed check of the fact that the equality (25) is appropriate is in progress.
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