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Abstract. We investigate the behavior of the empirical minimization algorithm using var-
ious methods. We first analyze it by comparing the empirical, random, structure and the
original one on the class, either in an additive sense, via the uniform law of large numbers,
or in a multiplicative sense, using isomorphic coordinate projections. We then show that a
direct analysis of the empirical minimization algorithm yields a significantly better bound,
and that the estimates we obtain are essentially sharp. The method of proof we use is based
on Talagrand’s concentration inequality for empirical processes.

1. Introduction

Let F be a class of real-valued functions defined on a set X , and suppose that
X1, . . . , Xn, X ∈ X are independent and identically distributed. An empirical
minimizer f̂ ∈ F is a function that minimizes

Enf = 1

n

n∑

i=1

f (Xi).

In case no such minimum exists, we consider ρ-approximate empirical minimizers,
which are functions f̂ ∈ F satisfying

Enf̂ ≤ inf
f ∈F

Enf + ρ,

where ρ ≥ 0.
In this article, we study the expectation of the empirical minimizer, defined as

E

[
f̂ (X)|X1, . . . , Xn

]
,
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and for brevity, we write this conditional expectation as Ef̂ . For reasons that will
be made clear immediately, it is natural to assume that for every f ∈ F , Ef ≥ 0,
although functions in F can take negative values.

The study of bounds on Ef̂ that hold with high probability arises in many ap-
plied areas, including the analysis of randomized optimization methods involving
Monte Carlo estimates of integrals, and prediction problems that arise in machine
learning and nonparametric statistics. We focus on the latter motivation here: Sup-
pose that a learning algorithm is presented with a sequence of observation-out-
come pairs (x, y) ∈ X × Y , and the aim is to choose a function g : X →
Y that accurately predicts the outcome given the observation. We assume that
(X, Y ), (X1, Y1), . . . , (Xn, Yn) are chosen independently from a probability dis-
tribution P on X ×Y , but P is unknown. The difference between the true outcome
and the prediction is measured using a loss function, � : Y2 → [0, 1], where
�(ŷ, y) represents the cost incurred by predicting ŷ when the true outcome is y.
The risk of a function g : X → Y is defined as E�(g(X), Y ), and the aim is to
use the sequence (X1, Y1), . . . , (Xn, Yn) to choose a function g with minimal risk.
For f (x, y) = �(g(x), y), this task corresponds to minimizing Ef . In empirical
risk minimization, one chooses g from a set G to minimize the sample average
of �(g(x), y), which corresponds to choosing f ∈ F to minimize Enf , where
F = {(x, y) �→ �(g(x), y) : g ∈ G}. More frequently, we are concerned with
excess loss functions,

f (x, y) = �(g(x), y) − �(g∗(x), y),

where g∗ ∈ G satisfies E�(g∗(X), Y ) = infg∈G E�(g(X), Y ). Since g∗ is fixed,
choosing g ∈ G to minimize risk (respectively, empirical risk) again corresponds
to choosing f ∈ F to minimize Ef (respectively, Enf ), where

F = {(x, y) �→ �(g(x), y) − �(g∗(x), y) : g ∈ G
}
.

Notice that Ef ≥ 0 for all f ∈ F , but functions in F can take negative values.
Indeed, the case of functions that can be negative is prevalent; if � is a metric and
for each x, y there is a g ∈ G with g(x) = y, the assumption that every f ∈ F

is nonnegative corresponds to assuming that Y = g∗(X) almost surely. The exis-
tence of such a g∗ is typically an unreasonable assumption about the probability
distribution P , even more so that this function is in the class G.

For most of the remainder of the paper, we ignore the underlying Y-valued
class G, and consider classes F of uniformly bounded real functions. The follow-
ing lemma shows that, under mild conditions, such a class corresponds to an excess
loss class. The proof is presented in the appendix.

Lemma 1.1. Suppose that (X , F) is a measurable space, F ⊆ [−1, 1]X is a set of
measurable functions, 0 ∈ F , and x �→ inf{f (x) : f ∈ F } is measurable. Suppose
also that � : Y2 → R

+ is such that for some y0 ∈ Y , {�(y, y0) : y ∈ Y} contains
a closed interval of length sup{f1(x) − f2(x) : x ∈ X , f1, f2 ∈ F }. Then there is
a class G ⊆ YX and a function g∗ ∈ G for which

F = {x �→ �(g(x), y0) − �(g∗(x), y0) : g ∈ G}
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and x �→ �(g(x), y0) is measurable for each g ∈ G. Thus, if the distribution of X

is such that Ef ≥ 0 for all f ∈ F , then g∗ ∈ G minimizes E�(g(X), y0) and F is
the excess loss class for G.

One case in which Lemma 1.1 clearly applies is when Y = [−1, 1] and
�(y, y0) = (y − y0)

2 when one takes y0 = 0. Thus, subject to mild measurability
assumptions, every class of functions bounded by 1 with a nonnegative expectation
is a squared excess loss of some class G.

We consider several approaches to estimating the expectation of the empirical
minimizer, all of which depend on expectations of the following centered empirical
processes, indexed by certain subsets of F .

ξn(r1, r2) = E sup {Ef − Enf : f ∈ F, r1 ≤ Ef < r2} ,

ξn(r) = E sup {Ef − Enf : f ∈ F, Ef = r} .

The first two approaches are based on the ability to relate the empirical (random)
structure endowed on F by the measure Pn = n−1∑n

i=1 δXi
with the real one,

endowed by µ. In the classical approach, which involves a uniform law of large
numbers argument, one estimates the “worst deviation” of Ef from Enf over the
entire class. It is possible to show that typically the dominant term in the upper
bound for Ef̂ is in this case

sup {r > 0 : ξn(0, 1) − r ≥ 0} . (1.1)

Essentially equivalent results were presented in [11, 1, 20].
If the class F satisfies an additional regularity condition (namely that it is star-

shaped around zero—see Section 2.2 for the definition) and if variances of functions
in F are bounded by their expectations, then this result can be improved. Indeed,
one can show that for 0 < ε < 1, with high probability (which depends on ε), for
a “large portion” of F , which contains the functions with “large expectations",

(1 − ε)Enf ≤ Ef ≤ (1 + ε)Enf.

Note that this notion of similarity is multiplicative, and means that, for a large
subset of F , the empirical and actual structures are equivalent, in the sense that a
random coordinate projection of that portion of F preserves the L1 structure. In
this case, the dominant term in the estimate on Ef̂ becomes

sup {r > 0 : ξn(r) − θr ≥ 0}
for some 0 < θ < 1.

This is an improvement on the estimate (1.1) (that is, on ξn(0, 1)). Indeed, it
is possible to show under the star-shape assumption on F the sets A = {r ≥ 0 :
ξn(r) ≥ θr} and B = {r ≥ 0 : ξn(0, r) ≥ θr} are intervals containing 0 (see
Lemma 2.10). Denote by a∗ = sup A and b∗ = sup B and observe that, a∗ ≤ b∗,
without loss of generality, b∗ > 0 and (again, by lemma 2.10), ξn(0, r) is continuous
and monotone. Thus, ξn(0, b∗) = θb∗, implying that θb∗ ≤ θξn(0, b∗) ≤ ξn(0, 1),
and in particular, that θa∗ ≤ ξn(0, 1).
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This estimate also improves earlier related error bounds from [18, 19, 12, 2,
16]. In particular, the function ξn(r) = E sup {Ef − Enf : f ∈ F, Ef = r} that
appears in our bound is replaced in these earlier results by various upper bounds on
the larger function E sup

{
Ef − Enf : f ∈ F, Ef 2 ≤ r

}
. It is important to empha-

size that the bound obtained in Section 2.2 using the indexing set {f : Ef = r} is
significantly sharper than any bound that could be established using the localization
{f : Ef 2 ≤ r}, and can lead to improved convergence rates in some examples.
The reason is that the latter set can be much larger than the former for small val-
ues of r . Moreover, in some applications (see, for example, [22]), the fact that the
indexing set is determined by the expectation rather than the second moment plays
an integral part in obtaining the error bound for a squared loss class.

The same comments apply in comparison with convergence rate results for M-
estimators in terms of a fixed point of the modulus of continuity of the relevant
empirical process (see [26, 29, 28, 27]).

The proof of the error bound in Section 2.2 is surprisingly simple (particularly in
light of the considerable effort required for the proofs of the results it improves), and
is based on a ratio limit theorem type of argument. Although the ratio limit theorem
we prove is new and could have implications in other areas of mathematics (e.g. vari-
ous embedding problems in the local theory of normed spaces), it is close in nature to
other ratio limit theorems [7, 13]. The main novelty is the way in which the ratio limit
theorem, combined with the mild structural assumptions on F , yield the required
bound on Ef̂ , which is the optimal estimate one can obtain using this strategy.

It turns out that the latter estimate can be improved even further, using a direct
analysis of the empirical minimization algorithm, rather than by means of a struc-
tural result which holds for every function in the class. We show that the dominant
term in the upper bound on Ef̂ is, roughly,

arg max
r>0

(ξn(r) − r) ,

and that this bound is essentially sharp. Moreover, it significantly improves the
structural estimates. To that end, we present an example where the upper bound
decreases from 1/4 using the structural approach to 1/n using the direct analysis.

1.1. Concentration inequalities

In this section we present the concentration inequalities we require. The first is
Bernstein’s inequality (see, for example, [29]).

Theorem 1.2. Let P be a probability measure on X and set X1, ..., Xn to be inde-
pendent random variables distributed according to P . Given a function f : X →
R, set Z =∑n

i=1 f (Xi), let b = ‖f ‖∞ and put σ 2 = nEf 2. Then

Pr {|Z − EZ| ≥ x} ≤ 2 exp

(
− x2

2(σ 2 + bx/3)

)
.

The second concentration result is a functional version of Bernstein’s inequal-
ity, due to Talagrand [25, 14]. The random variable Z defined by a single function
in Bernstein’s inequality becomes the supremum of a centered empirical process.
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Theorem 1.3. Let F be a class of functions defined on X and set P to be a
probability measure such that for every f ∈ F , ‖f ‖∞ ≤ b and Ef = 0. Let
X1, ..., Xn be independent random variables distributed according to P and set
σ 2 = n supf ∈F var [f ]. Define

Z = sup
f ∈F

n∑

i=1

f (Xi),

Z̄ = sup
f ∈F

∣∣∣∣∣

n∑

i=1

f (Xi)

∣∣∣∣∣ .

Then, for every x > 0,

Pr ({|Z − EZ| ≥ x}) ≤ C exp

(
− x

Kb
log

(
1 + bx

σ 2 + bEZ̄

))
, (1.2)

where C and K are absolute constants. The same inequality is also true when Z̄

replaces Z in (1.2).

In most of the applications we explore, it is easier to use the following version
of Talagrand’s inequality.

Theorem 1.4. There is an absolute constant K for which the following holds. Let
F , Z and Z̄ be as in Theorem 1.3. Then, for every x > 0 and every α > 0,

Pr
({

Z ≥ (1 + α)EZ + σ
√

Kx + K(1 + α−1)bx
})

≤ e−x,

P r
({

Z ≤ (1 − α)EZ − σ
√

Kx − K(1 + α−1)bx
})

≤ e−x,

and the same inequalities hold for Z̄.

The inequality for Z̄ is due to Massart [17]. The one sided versions were shown
by Rio [24] and Klein [10]. The best estimates on the constants in all cases are due
to Bousquet [5].

Finally, a notational convention. We use C, c, K , k to denote positive absolute
constants. Their values may change from line to line.

2. Comparing the empirical and actual structures

In this section we investigate various notions of similarity and conditions which
ensure that with high probability, the empirical and the actual structures on a class
(that is, the expectations and empirical means) are sufficiently close. This is impor-
tant from our point of view because, when the two structures are comparable, an
empirical minimizer must have a small expectation.
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2.1. The uniform law of large numbers

The first notion of similarity we explore is based on the uniform law of large num-
bers. Recall that a class of functions F satisfies the uniform law of large numbers
with respect to a probability measure P if, for every ε > 0,

lim
n→∞ Pr ({‖P − Pn‖F ≥ ε}) = 0,

where

‖P − Pn‖F = sup
f ∈F

|Ef − Enf | ,

Enf = 1

n

n∑

i=1

f (Xi),

X1, ..., Xn are independent random variables distributed according to P , and Pn =
n−1∑n

i=1 δXi
, which is the empirical measure supported on X1, ..., Xn.

This leads to the first notion of similarity between the empirical and actual
structures.

Definition 2.1. Given an integer n and a probability measure P , we say that the
empirical and actual structures on F are (λ, δ)-close if

Pr ({‖P − Pn‖F ≥ λ}) ≤ δ.

In this case, the measure of similarity is additive, uniformly on the entire class.
Observe that if 0 ∈ F , the empirical and actual structures are (λ, δ)-close, and f

satisfies Enf ≤ inff ∈F Enf +ρ, then with probability at least 1 − δ, Ef ≤ λ+ρ.
In particular, if f̂ is an empirical minimizer then with probability larger than 1 − δ,
Ef̂ ≤ λ.

The following results reveal the benefits and limitations of this notion of simi-
larity. Although they are not new, we present them for the sake of completeness.

Theorem 2.2. There exists an absolute constant C for which the following holds.
For any class of functions F , and every 0 < δ < 1, the empirical and actual
structures are (λn, δ) close, provided that

λn ≥ C max

{
E ‖P − Pn‖F , σF

√
log(1/δ)

n
,
b log(1/δ)

n

}
,

where σ 2
F = supf ∈F var [f ] and b = supf ∈F ‖f ‖∞.

The proof of this claim follows immediately from Theorem 1.4, and is omitted.
The following theorem shows that the estimates in Theorem 2.2 cannot be

improved by more than a constant factor, unless n is small.
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Theorem 2.3. There are absolute constants c, c′ and C for which the following
holds. Let F be a class of functions satisfying supf ∈F ‖f ‖∞ ≤ 1 and set σ 2

F =
supf ∈F var [f ]. Then,

E ‖P − Pn‖F ≥ c
σF√

n
.

Furthermore, for every integer n ≥ 1/σ 2
F , with probability at least c′,

‖P − Pn‖F ≥ CE ‖P − Pn‖F .

Theorem 2.3 is most likely not new, but we could not locate an appropriate
reference. We include the proof in the appendix.

These upper and lower bounds clearly reveal the limitation of this notion of
similarity. Even for “very small” classes, one cannot hope to have λn decay to 0
faster than O(1/

√
n), while for larger classes, the dominating term becomes the

“global” average E ‖P − Pn‖F . In particular, it would be impossible to use this
notion of similarity to obtain an asymptotic result stronger than Ef̂ ≤ 1/

√
n with

high probability.
As an example (which is also well known), consider a class of binary-valued

functions which has a finite Vapnik-Chervonenkis dimension (see [30]).

Lemma 2.4. There exist absolute constants C and c for which the following holds.
Let F be a class of {0, 1}-valued functions, such that vc(F ) ≤ d. Then for any
probability measure and every integer n,

E ‖P − Pn‖F ≤ C

√
d

n
,

In particular, for every probability measure P , the empirical and actual structures
are (λn, δ)-close, provided that

λn ≥ C max

{√
d

n
,

√
log(1/δ)

n

}
.

On the other hand, for any two integers n and d , there exists a probability measure
P for which

E ‖P − Pn‖F ≥ c min

{√
d

n
, 1

}
.

The proof of Lemma 2.4 is standard and thus omitted.
Finally, notice that E‖P − Pn‖F = ξn(0, 1) for supf ∈F ‖f ‖∞ ≤ 1. To con-

clude, this notion of similarity involves bounding E ‖P − Pn‖F . No significant
structural assumptions (other than an L∞ bound on the elements of F ) are required,
and the empirical and actual structures are “close” on the entire class. Unfortunately,
λn cannot decrease faster than 1/

√
n, which limits the usefulness of this approach

to estimate Ef̂ .
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2.2. Isomorphic coordinate projections

Here, we focus on a slightly different notion of similarity of the empirical and
actual structures. The question we investigate is when “most” random coordinate
projections are isomorphisms.

Definition 2.5. For τ = (X1, . . . , Xn), we say that the coordinate projection
�τ : f �→ (f (X1), . . . , f (Xn)) is an ε-isomorphism if for every f ∈ F ,

(1 − ε)Ef ≤ Enf ≤ (1 + ε)Ef.

The reason for the name ε-isomorphism is that if F = {|g1 − g2| : g ∈ G},
then �τ is an ε-isomorphism if and only if

(1 − ε)‖f ‖L1(P ) ≤ ‖�τf ‖Ln
1

≤ (1 + ε)‖f ‖L1(P ),

and thus the random projection �τ : (G, L1 (P )) → (G, Ln
1) is a bi-Lipschitz

function.
Observe that �τ is an ε-isomorphism on F in the sense of Definition 2.5 if and

only if the same holds for the linear span of F .
In order to ensure that a coordinate projection is a good isomorphism for a

single function, the “mass” of the function must be more-or-less evenly spread on
the space (�, P ). To that end, it suffices to have a lower bound on the expectation
of the function (total mass) and an upper bound on, say, the L∞ norm of the func-
tion. Thus, the mass can not be concentrated on “few” atoms in � and a random
choice of coordinates is a good representation of the function. The use of a random
coordinate projection approach for individual functions is common in asymptotic
geometry, most notably, in the context of embedding finite dimensional subspaces
of Lp in �n

p (see [9] and references therein). Here, we establish a similar bound
that holds uniformly over a set of functions and not just for an individual function.
More significantly, we use this approach to obtain an improved error bound with a
simple proof.

It turns out that while most projections are not ε-isomorphisms for the entire
class F in the sense of Definition 2.5, most projections are ε-isomorphisms for a
large portion of F , which suffices for our investigation.

We make three mild structural assumptions about the class. The first, as in the
previous section, is the assumption that functions in F are bounded by b. The sec-
ond is that the class F is star-shaped around 0, that is, for every 0 ≤ a ≤ 1 and any
f ∈ F , af ∈ F . For the third assumption, we require the following definition.

Definition 2.6. We say that F is a (β, B)-Bernstein class with respect to the prob-
ability measure P (where 0 < β ≤ 1 and B ≥ 1), if every f in F satisfies

Ef 2 ≤ B(Ef )β.

We say that F has Bernstein type β with respect to P if there is some constant B

for which F is a (β, B)-Bernstein class.
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Observe that if f belongs to a Bernstein class then Ef ≥ 0. The name “Bern-
stein class” arises because this property allows better concentration, and thus a faster
rate of convergence via “function class” generalizations of Bernstein’s inequality.
Obviously, if F consists of nonnegative functions bounded by b then F is a (1, b)-
Bernstein class with respect to any probability measure. One such example is when
F is a loss class, that is, F = {(x, y) �→ �(g(x), y) : g ∈ G} for some function
� : R

2 → [0, ∞) satisfying supf ∈F ‖f ‖∞ = b < ∞. In fact, many loss classes
that do not consist of nonnegative functions have similar properties. For example,
let G be a convex class of functions bounded by 1. Let � : R × Y → [0, 1] be a
loss function for which, for some constants L, c, r , and for all y ∈ Y , the function
ŷ �→ �(ŷ, y) is L-Lipschitz and has modulus of convexity satisfying δ(ε) ≥ cεr .
Here, the modulus of convexity of a function f : R → R is defined as

δ(ε) = inf {(f (x) + f (y))/2 − f ((x + y)/2) : |x − y| ≥ ε} .

Recall that for a probability distribution P on X × Y , g∗ ∈ G is the minimizer of
E�(g(X), Y ), and the excess loss class is defined by

F = {(x, y) �→ �(g(x), y) − �(g∗(x), y) : g ∈ G
}
.

Then F is a β-Bernstein class, with β = min{1, 2/r}. This is true, in particular, for
�(ŷ, y) = (y − ŷ)p, where β = 1 for 1 ≤ p ≤ 2 and β = 2/p for 2 < p < ∞.
See [15, 19, 23, 3].

Theorem 2.7. There is an absolute constant c for which the following holds. Let F

be a class of functions, such that for every f ∈ F , Ef = λ and ‖f ‖∞ ≤ b. Assume
that F is a (β, B)-Bernstein class, and suppose that 0 < ε < 1 and 0 < θ < 1
satisfy

λ ≥ c max

{
bx

nθ2ε
,

(
Bx

nθ2ε2

)1/(2−β)
}

.

1. If E ‖P − Pn‖F ≥ (1 + θ)λε, then

Pr {�τ is not an ε-isomorphism of F } ≥ 1 − e−x.

2. If E ‖P − Pn‖F ≤ (1 − θ)λε, then

Pr {�τ is an ε-isomorphism of F } ≥ 1 − e−x.

For example, if F consists of nonnegative functions bounded by 1, then β = 1
and b = B = 1, and the condition on λ becomes

λ ≥ x

nθ2ε2 .
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Proof. The proof follows in a straightforward way from Theorem 1.4. Define Z =
n ‖P − Pn‖F , set σ 2 = n supf ∈F var [f ] and note that �τ is an ε-isomorphism of
F if and only if Z ≤ ελn.

To prove the first part of our claim, recall that by Theorem 1.4, for every α, x >

0, with probability larger than 1 − e−x ,

Z > (1 − α)EZ − σ
√

Kx − K

(
1 + 1

α

)
bx.

To ensure that Z > ελn, select α = θ/(2(1 + θ)), and observe that by the assump-
tion that F is a Bernstein class, it suffices to show that

1

2
θnλε ≥ (BnλβKx)1/2 + K

(
1 + 2(1 + θ)

θ

)
xb,

which holds by the condition on λ.
The second part of the claim also follows from Theorem 1.4: for every α, x > 0,

with probability larger than 1 − e−x ,

Z < (1 + α)EZ + σ
√

Kx + K

(
1 + 1

α

)
bx.

Choosing α = θ/(2(1 − θ)), we see that Z < nλε if

1

2
θnλε ≥ (BnλβKx)1/2 + K

(
1 + 2(1 − θ)

θ

)
xb,

so the condition on λ again suffices. �
Next, let us turn to a similar result, without the assumption that all class mem-

bers have the same expectation. From here on, denote Fλ = {f ∈ F : Ef = λ}.
The assumption that F is star-shaped around 0 ensures that the sets Fλ become
“richer” as λ approaches 0. As our results show, there is a critical value of λ below
which the sets Fλ are too rich to allow a comparison between the empirical and
actual structures. In the next lemma we show that if one can control the structures
on the set Fλ, it automatically guarantees the same for {f ∈ F : Ef ≥ λ}.
Lemma 2.8. Let F be star-shaped around 0 and let τ ∈ X n. For any λ > 0 and
0 < ε < 1, the projection �τ is an ε-isomorphism of Fλ if and only if it is an
ε-isomorphism of {f ∈ F : Ef ≥ λ}.

Proof. It suffices to show that if �τ is an ε-isomorphism of Fλ, then the same holds
on {f ∈ F : Ef ≥ λ}. To that end, observe that if Ef = t > λ, and since F is
star-shaped around 0, g = λf/t ∈ Fλ; hence, (1 − ε)Ef ≤ Enf ≤ (1 + ε)Ef if
and only if the same holds for g. �

From this result one easily obtains the following error bound:
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Corollary 2.9. Let F be a class of functions bounded by b, which is star-shaped
around 0 and is a (β, B)-Bernstein class. For 0 < ε, λ, θ < 1 and x > 0, if

λ ≥ c max

{
bx

nθ2ε
,

(
Bx

nθ2ε2

)1/(2−β)
}

,

and E ‖P − Pn‖Fλ
≤ (1 − θ)λε, then with probability at least 1 − e−x , every

f ∈ F satisfies

Ef ≤ max

{
Enf

1 − ε
, λ

}
.

Proof. By our assumption on E ‖P − Pn‖Fλ
and λ, Theorem 2.7 implies that, with

“large” probability, (1 − ε)Ef ≤ Enf ≤ (1 + ε)Ef , for every f ∈ Fλ. By
Lemma 2.8, the same is true for every f ∈ F that satisfies Ef ≥ λ. �

Let us present a similar “one sided” result, which will be used later. Define

ξn(r) = E sup {Ef − Enf : f ∈ F, Ef = r}
= E sup {Ef − Enf : f ∈ Fr} .

Lemma 2.10. If F is star-shaped at 0, then for 0 < α, λ < 1,

ξn(αλ) ≥ αξn(λ).

In particular, if αλ ≤ ξn(λ) then for all 0 < λ′ ≤ λ, αλ′ ≤ ξn(λ
′).

The same result is true for the function ξn(0, r).

Observe that Lemma 2.10 implies that for every 0 < α < 1, the set {0 ≤ r ≤
1 : ξn(r) ≥ αr} is an interval containing 0.

Proof. Fix τ = (X1, ..., Xn) and without loss of generality, suppose that
supf ∈Fλ

Ef − Enf is attained at f . Then for any 0 < α < 1, f ′ = αf ∈ Fαλ

satisfies

Ef ′ − Enf
′ = α sup

f ∈Fλ

Ef − Enf,

and the first part follows.
For the second part, note that if λ′ ≤ λ,

ξn(λ
′) ≥ λ′

λ
ξn(λ) ≥ λ′

λ
αλ = αλ′.

�
Here is a one-sided version of Corollary 2.9.
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Theorem 2.11. There exists an absolute constant c for which the following holds.
Let F be a (β, B)-Bernstein class of functions bounded by b which is star-shaped
around 0. Then for any 0 < θ, ε, λ < 1 satisfying

λ ≥ max

{
ξn(λ)

(1 − θ)ε
, c

bx

nθ2ε
, c

(
Bx

nθ2ε2

)1/(2−β)
}

,

with probability at least 1 − e−x , every f ∈ F satisfies

Ef ≤ max

{
Enf

1 − ε
, λ

}
.

In particular, there is an absolute constant c such that if

r ′ = max

{
inf {r > 0 : ξn(r) ≤ r/4} ,

cbx

n
, c

(
Bx

n

)1/(2−β)
}

,

then with probability at least 1−e−x , a ρ-approximate empirical minimizer f̂ ∈ F

satisfies

Ef̂ ≤ max{2ρ, r ′}.
The way one should interpret Theorem 2.11 is as follows. The second and third

terms in the definition of r ′ are the natural restrictions one has to impose to ensure
that a random coordinate projection is a good isomorphism for a single function.
Indeed, if Ef is larger than those two terms, (combined with the assumption on the
L∞ norm and the second moment of f ), then the mass of f is equally spread on �

and a random coordinate projection would preserve its expectation. The first, and
more significant term, is a complexity measure for the entire class, and is needed
to ensure that a simultaneous coordinate selection is possible.

Proof. The first part of the claim follows a similar path to that of the previous
result (with the one-sided concentration result in Theorem 1.4), and is omitted. The
second part is evident by taking ε = θ = 1/2 and applying the first part for λ = r ′.
In particular, Lemma 2.10 shows that if

r ′ ≥ inf
{
r > 0 : ξn(r) ≤ r

4

}

then ξn(r
′) ≤ r ′/4. Thus, with large probability, if f ∈ F satisfies Ef ≥ r ′, then

Ef ≤ 2Enf . Since f̂ is a ρ-approximate empirical minimizer and F is star-shaped
at 0, it follows that Enf̂ ≤ ρ, so either Ef̂ ≤ r ′ or Ef̂ ≤ 2ρ, as claimed. �

As mentioned in the introduction, this error bound improves previous error
bounds, in which the dominating terms were various upper bounds on the fixed
point of φ(r) = E sup |Ef − Enf |, where the supremum is taken with respect to
{f ∈ F : Ef 2 ≤ r} (see, for example [2, 12, 27–29]).

We end this section with the example of a binary-valued class with a finite VC
dimension. (The first result of this form is due to Vapnik and Chervonenkis; see,
for example, [4]).
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Theorem 2.12. There are absolute constants c and c′ for which the following holds.
Let G be a class of binary-valued functions which contains 0, such that vc(G) ≤ d,
and set F = star(G, 0). Then, for every 0 < ε < 1, E ‖P − Pn‖Fλ

≤ ελ/2
provided that

λ ≥ c

ε2 · d

n
log
( n

ed

)
.

In particular, with probability larger than 1 − ( ed
n

)c′d
, if Enĝ ≤ infg∈G Eng + ρ,

then

Eĝ ≤ c max

{
d

n
log
( n

ed

)
, ρ

}
.

Before presenting the proof, recall that the covering number of a metric space
(X, d) at scale ε is the minimal number of open balls (with respect to the metric d)
of radius ε needed to cover X, and is denoted by N(ε, X, d).

Proof. Since G is a VC class, then by Haussler’s inequality [8],

N (ε, G, L2 (P )) ≤ Cd(4e)dε−2d ,

where d = vc(G).A standard argument shows (see, e.g. [19]) the covering numbers
of the star-shaped hull of G with 0 satisfy

N (ε, F, L2 (P )) ≤ N
(ε

2
, G, L2 (P )

)
·
(⌈

2

ε

⌉
+ 1

)
,

which implies that

log N (ε, F, L2 (P )) ≤ Cd log

(
2

ε

)
.

Applying a symmetrization argument, and since a Rademacher process is subgaus-
sian (see [21] for more details),

E ‖P − Pn‖Fλ
≤ C max

{
d

n
log

(
1

λ

)
,

√
dλ

n
log

(
1

λ

)}
,

and the result follows from an easy computation. �

3. Empirical minimization

In this section we investigate the properties of the empirical minimizer, and com-
pare the estimates we obtain to the ones obtained via the structural results in the
previous section. In particular, we show that there are cases where a direct analysis
of the empirical minimization yields much sharper estimates than the structural
approach. The approach we use bears some similarity to the technique of peeling.
Recall that

ξn(r) = E sup {Ef − Enf : f ∈ F, Ef = r} .
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The main result of this section is that the expectation of the empirical minimizer is
essentially the maximizer of the function ξn(r) − r . For the sake of simplicity, we
shall assume that the supremum is achieved at some s, that is,

ξn(s) − s = sup{ξn(r) − r : r > 0},
and if this is not the case, a standard limiting argument can be applied.

It is easy to verify that this estimate does not violate the upper bounds of the
previous section. By fixing any function in Fr , it is evident that ξn(r) ≥ 0. Hence,
considering r near zero shows that the maximal value of ξn(r) − r must be at least
0. Thus, the maximizer s cannot be larger than

inf {r > 0 : ξn(r) ≤ r} ≤ inf
{
r > 0 : ξn(r) ≤ r

4

}
,

and this is no larger than r ′ introduced in the previous section.
To obtain upper and lower bounds on the expectation of the empirical mini-

mizer, we consider values of r that do not quite maximize ξn(r) − r . Specifically,
for ε > 0, define

rε,+ = sup

{
0 ≤ r ≤ b : ξn(r) − r ≥ sup

s
(ξn(s) − s) − ε

}
,

rε,− = inf

{
0 ≤ r ≤ b : ξn(r) − r ≥ sup

s
(ξn(s) − s) − ε

}
.

Clearly, if s denotes the maximum and either r > rε,+ or r < rε,−, then

ξn(s) − s > ξn(r) − r + ε.

The following theorem shows that, with a suitable choice of ε, the expectation
of the empirical minimizer is approximately between rε,− and rε,+. For the lower
bound, we need an additional condition on the complexity of the subset of functions
in F with “small" expectations. To that end, recall that for r1 < r2,

ξn(r1, r2) = E sup {Ef − Enf : f ∈ F, r1 ≤ Ef < r2} .

Theorem 3.1. For any c1 > 0, there is a constant c (depending only on c1) such
that the following holds. Let F be a (β, B)-Bernstein class that is star-shaped at
0. Define s, rε,+, and rε,− as above, and set

r ′ =max

{
inf {r > 0 : ξn(r) ≤ r/4} ,

cb(x + log n)

n
, c

(
B(x + log n)

n

)1/(2−β)
}

.

For 0 ≤ ρ ≤ r ′/2, let f̂ denote a ρ-approximate empirical risk minimizer. If

ε ≥ c

(
max

{
sup
s>0

(ξn(s) − s) , r ′β
}

(B + b)(x + log n)

n

)1/2

+ ρ,

then
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1. With probability at least 1 − e−x ,

Ef̂ ≤ max

{
1

n
, rε,+

}
.

2. If

ξn(0, c1/n) < sup
s>0

(ξn(s) − s) − ε,

then with probability at least 1 − e−x ,

Ef̂ ≥ rε,−.

It is easy to verify that if F consists of nonnegative functions, then Theorem 3.1
recovers the error bound established in the previous section, but does not improve
it. Also, the lower bound is vacuous in this case, as f = 0 is always an empirical
minimizer, and thus it is impossible to obtain any nontrivial lower bound for such
a class. Of course, as stated in the introduction, classes of nonnegative functions
are not of interest here.

The proof of Theorem 3.1 involves splitting F into the subsets Fr = {f ∈ F :
Ef = r}, and using concentration to show that there is likely to be a function with
Ef = s for which the empirical mean is smaller than any function with Ef > rε,+
or Ef < rε,−. (Here, s is the value which maximizes the difference ξn(r) − r .)
We do this by progressively eliminating subsets Fr . For the upper bound, we first
use the results of the previous section to show that it is unlikely that f̂ ∈ Fr for
r ≥ r ′, and then we split the interval (rε,+, r ′) into intervals of width �, and sep-
arately eliminate each of these. For the lower bound, we first use the condition on
ξn(0, c1/n) to eliminate any r < c1/n, and then separately eliminate intervals of
width � from the interval [c1/n, rε,−). The following lemma is the main tool in
eliminating these intervals.

Lemma 3.2. Let f̂ be a ρ-approximate empirical risk minimizer from F and set
r, s, � ≥ 0 and 0 < α < 1. If

ξn(s) − s ≥ ξn(r, r + �) − r + αξn(s) + αξn(r, r + �)

+
√

BKx

n

(
sβ/2 + (r + �)β/2

)
+ 2K

(
1 + 1

α

)
bx

n
+ ρ

then with probability at least 1 − 2e−x ,

Ef̂ �∈ [r, r + �).

Note that the proof of the lemma uses the full strength of Talagrand’s concen-
tration inequality, particularly the fact that the constant α in Theorem 1.4 can be
made arbitrarily close to 0.
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Proof. By Theorem 1.4 (together with some easy manipulations), it follows that
with probability at least 1 − 2e−x , both

sup {Ef − Enf : Ef = s} − s

> (1 − α)ξn(s) − s −
√

BKxsβ

n
− K

(
1 + 1

α

)
bx

n

and

sup {Ef − Enf : r ≤ Ef < r + �} − r

< (1 + α)ξn(r, r + �) − r +
√

BKx(r + �)β

n
+ K

(
1 + 1

α

)
bx

n
.

In that case, if

(1 − α)ξn(s) − s ≥ (1 + α)ξn(r, r + �) − r +
√

BKxsβ

n
+
√

BKx(r + �)β

n

+2K

(
1 + 1

α

)
bx

n
+ ρ

then

sup {Ef − Enf : Ef = s} − s > sup {Ef − Enf : r ≤ Ef < r + �} − r + ρ

and thus

inf {Enf : Ef = s} < inf {Enf : r ≤ Ef < r + �} − ρ,

as claimed. �
Since the lemma compares ξn(s) − s with ξn(r, r + �) − r , we need to relate

ξn(r, r + �) to ξn(r). The following result will suffice, provided r > 0 and � is
sufficiently small. (For the proof of the lower bound, it does not give a useful bound
on ξn(0, �), and we need to deal with that case separately.)

Lemma 3.3. If F is star-shaped around 0, then for every r, � > 0,

ξn(r) ≤ ξn(r, r + �) ≤ ξn(r)

(
1 + �

r

)
.

Proof. The first inequality is immediate from the definitions. For the second, we
can assume that ξn(r, r + �) > 0. Fix (X1, . . . , Xn), some f ∈ F and δ > 0 for
which r ≤ Ef < r + � and

Ef − Enf ≥ sup {Eg − Eng : r ≤ Eg < r + �} − δ > 0.
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Set f̃ = rf/Ef and note that Ef̃ = r and that

sup {Eg − Eng : Eg = r} ≥ Ef̃ − Enf̃ = r

Ef
(Ef − Enf )

>
r

r + �
(Ef − Enf )

>
1

1 + �/r
(sup {Eg − Eng : r ≤ Eg < r + �} − δ) .

The assertion follows by taking the expectation with respect to X1, . . . , Xn, and
letting δ → 0. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. (1) Fix x > 0, which might be different from the x of the
theorem statement. First, Theorem 2.11 and the fact that ρ ≤ r ′/2 imply that, with
probability at least 1 − e−x ,

Ef̂ ≤ r ′.

Next, for any ε > 0, if r > max{1/n, rε,+}, then ξn(s) − s > ξn(r) − r + ε.
Therefore, by Lemma 3.3,

ξn(s) − s > ξn(r, r + �) − r + ε − �

r
ξn(r).

Let

ε0 = αξn(s) +
(

α

(
1 + �

r

)
+ �

r

)
ξn(r)

+
√

BKx

n

(
sβ/2 + (r + �)β/2

)
+ 2K

(
1 + 1

α

)
bx

n
+ ρ,

and fix � = min{α/n, r ′ − r}, where α ≤ 1 will be specified later.
For any ε ≥ ε0, Lemma 3.2 and Lemma 3.3 show that with probability at least

1 − 2e−x , we have Ef �∈ [r, r + �). Since r ≥ 1/n, then

ε0 ≤ α(ξn(s) − s) + cα(ξn(r) − r) + α(s + cr)

+
√

BKx

n

(
sβ/2 + (r + �)β/2

)
+ 2K

(
1 + 1

α

)
bx

n
+ ρ

≤ c



α(ξn(s) − s) + αr ′ +
√

Bxr ′β

n
+ bx

nα



+ ρ.

Observe that by the definition of r ′, if we select

α =
√

bx

n max{ξn(s) − s, r ′} ,
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then α ≤ 1, hence

ε0 ≤ c max






√
bx(ξn(s) − s)

n
,

√
bxr ′

n
,

√
Bxr ′β

n




+ ρ.

Thus, we have shown that if ε satisfies the condition of the theorem, with prob-
ability at least 1 − 2e−x , we have Ef̂ �∈ [r, r + �). To complete the proof, we
repeatedly apply this result to a grid V of values of r , ranging from max{1/n, rε,+}
to r ′. Clearly,

log |V | ≤ log

⌈
r ′

�

⌉
= log

⌈
r ′n
α

⌉
≤ c log n,

and the result is evident by the union bound.
(2) We start by showing that Ef̂ is probably outside the interval [0, c1/n).

Indeed, since

ξn(0, c1/n) < sup
s>0

(ξn(s) − s) − ε

and by Lemma 3.2, if

ε ≥ c

(
α (ξn(s) − s) + αr ′ +

√
Bx

n
r ′β + bx

αn

)
+ ρ,

then with probability at least 1 − 2e−x , Ef̂ �∈ [0, c1/n). The same argument as in
part (1) shows that it suffices to choose

ε ≥ c max






√
bx(ξn(s) − s)

n
,

√
bxr ′

n
,

√
Bxr ′β

n




+ ρ.

Next, we split the interval [c1/n, rε,−) into smaller intervals, [r, r + �), and
show that Ef̂ is unlikely to be in one of these intervals. For any δ > 0, if r ≤ rε,−−δ

then

ξn(s) − s > ξn(r) − r + ε.

Since c1/n ≤ r < rε,− < r ′, we can use Lemmas 3.2 and 3.3 in the same way as
in part (1). Letting δ approach zero completes the proof. �

4. Direct approach vs. structural results

Finally, we show that a direct analysis of the empirical minimization algorithm can
yield much better estimates than the structural results presented in Section 2.2 under
the assumptions we used throughout this article, namely, that F is a star-shaped
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class of uniformly bounded functions, which satisfies a Bernstein condition (and
in particular, Ef ≥ 0 for every f ∈ F ).

Indeed, for every fixed integer n, we can construct a class and a probability
measure for which every coordinate projection will not be an isomorphism (for
any 0 < ε < 1) on the set {f : Ef ≥ 1/4}, in the sense that for every sample
X1, ..., Xn, there will be a function f , with Enf = 0, but Ef = 1/4. (There is no
magic in the number 1/4; any sufficiently small positive constant will do.) Thus,
any kind of a structural approach will only yield a trivial upper bound on Ef̂ .
On the other hand, we will show that with probability larger than 1 − δ, we have
Ef̂ ≤ 1/n.

Although the theorem in this section is formulated as an existence result, it is
clear that the structural results of Section 2 will be loose whenever the set of func-
tions with expectation near zero is sufficiently rich. We use the following lemma to
construct an example of such a function class.

Lemma 4.1. For every positive integer n and all m ≥ 2(n2 + n), the follow-
ing holds. If P is the uniform probability measure on {1, ..., m}, then for every
1
n

≤ λ ≤ 1/2 there exists a function class Gλ such that

1. For every g ∈ Gλ, −1 ≤ g(x) ≤ 1, Eg = λ and Eg2 ≤ 2Eg.
2. For every set τ ⊂ {1, ..., m} with |τ | ≤ n, there is some g ∈ Gλ such that for

every i ∈ τ , g(i) = −1.

Also, there exist a function class Hλ such that

1. For every h ∈ Hλ, 0 ≤ h(x) ≤ 1, Eh = λ.
2. For every set τ ⊂ {1, ..., m} with |τ | ≤ n, there is some h ∈ Hλ such that for

every i ∈ τ , h(i) = 0.

Proof. Let J ⊂ {1, ..., m}, |J | = n; for every I ⊂ J define g = gI,J in the fol-
lowing manner. For i ∈ I , set g(i) = 1, if i ∈ J\I , set g(i) = −1, and for i �∈ J

put g(i) = t , where

t = λm + |J\I | − |I |
m − n

.

Observe that if m ≥ n2 + 2n, then 0 < t ≤ 2λ ≤ 1 for every I, J . Also, by the
definition of t , EgI,J = λ. Next, note that

Eg2 = 1

m

(
|I | − |J\I | + t2(m − n) + 2|J\I |

)
≤ Eg + 2|J\I |

m

≤ Eg + 2
n

m
< Eg + 1

n
≤ 2Eg,

where the last inequality holds because Eg = λ ≥ 1/n, and m ≥ 2n2.
The second property of Gλ is clear by the construction, and the claims regarding

Hλ can be verified using a similar argument. �
Theorem 4.2. There is an absolute constant c for which the following holds. If
0 < δ < 1 and n > N0(δ) there is a probability measure P and a star-shaped
class F , which consists of functions bounded by 1 and has Bernstein type 1 with
constant 2, such that
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1. For every X1, ..., Xn there is a function f ∈ F with Ef = 1/4 and Enf = 0.
2. For the class F , the function ξn satisfies

ξn(r) =





(n + 1)r if 0 < r ≤ 1/n,
r if 1/n < r ≤ 1/4,
0 if r > 1/4.

Thus, inf {r > 0 : ξn(r) ≤ r/4} = 1/4.
3. If f̂ is a ρ-approximate empirical minimizer, where 0 ≤ ρ < 1/8, then with

probability larger than 1 − δ,

1

n

(
1 − c

√
log n

n
− ρ

)
≤ Ef̂ ≤ 1

n
.

Proof. For any integer n, let m and P be as in Lemma 4.1, put F̃ = H1/4 ∪ G1/n,
and set F = star(F̃ , 0). Observe that H1/4 consists of nonnegative functions and
that G1/n is a Bernstein class of type 1 with constant 2. Thus, as a star-shaped hull
of a Bernstein class, F has type 1 with a constant 2.

Next, we estimate the function ξn(r) associated with F . Clearly, ξn vanishes
for r > 1/4. For r = 1/4, and since |{X1, ..., Xn}| ≤ n, there is a function in
H1/4 which is nonnegative, vanishes on (X1, ..., Xn), but its expectation is 1/4.
Thus, supf ∈F1/4

Ef − Enf = 1/4, and ξn(1/4) = 1/4. It is easy to see that for
1/n < r < 1/4,

Fr = {4rf : f ∈ H1/4},
and thus, on (1/n, 1/4), ξn(r) = r . As for r = 1/n, recall that if τ ⊂ {1, ..., m},
|τ | ≤ n, then there is some f ∈ F1/n which is −1 on τ , implying that

ξn(1/n) = E sup
{
Ef − Enf : f ∈ F1/n

} ≥ 1

n
+ 1.

Clearly, this is also an upper bound on ξn(1/n), and ξn decays linearly to 0 for
r < 1/n.

We next consider the conditions of Theorem 3.1. It is easy to verify that r ′ = 1/4
if n is sufficiently large, and that

sup
s>0

(ξn(s) − s) = 1.

Fix 0 < c1 < 1/2, let c be as in Theorem 3.1 and choose

ε = c

(
log(1/δ) + log n

n

)1/2

+ ρ.

Observe that rε,+ = 1/n and that

rε,− = 1 − ε

n
= 1

n

(
1 − c

(
log(n/δ)

n

)1/2

− ρ

)
.
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Thus, by Theorem 3.1, Ef̂ ≤ 1/n, with probability at least 1 − δ. For the lower
bound, note that ξn(0, c1/n) = c1(1+1/n); hence for suitably largen, ξn(0, c1/n) <

sups>0(ξn(s) − s) − ε, and by Theorem 3.1,

Ef̂ ≥ 1

n

(
1 − c

√
log(n/δ)

n
− ρ

)

with probability at least 1 − δ. �
A. Appendix: Proofs

Proof of Lemma 1.1. Suppose that, a < b ∈ [0, 1] satisfies b − a = sup{f1(x) −
f2(x) : x ∈ X , f1, f2 ∈ F } and [a, b] ⊆ {�(y, y0) : y ∈ Y}. Choose a map-
ping u : [a, b] → Y such that �(u(α), y0) = α for α ∈ [a, b] (for example,
u can be taken as a selection of the pre-image of �(·, y0)). For f ∈ F , define
gf (x) = u(f (x) − inf{f ′(x) : f ′ ∈ F } + a), and note that x �→ �(gf (x), y0) is
measurable by assumption. Let G = {gf : f ∈ F } and set g∗ = g0. Therefore,

{
x �→ �(g(x), y0) − �(g∗(x), y0) : g ∈ G

}

= {x �→ �(gf (x), y0) − �(g0(x), y0) : f ∈ F
}

= F.

If Ef ≥ 0 for everyf ∈ F then clearly the choiceg∗ = g0 minimizes E�(g(X), y0),
as claimed. �

The proof of Theorem 2.3 uses the following lemma.

Lemma A.1. For independent random variables X1, . . . , Xn, define

Y =
n∑

i=1

(Xi − EXi)

and σ 2 = EY 2. If |Xi | ≤ 1 and σ 2 ≥ 1, then

Pr
(
|Y | ≥ σ

2

)
≥ c

for some universal constant c.

Proof. First we show that there is an absolute constant K such that

EY 2χ{|Y |≥Kσ } ≤ σ 2

4
.

Indeed, for every integer k,

EY 2χ{|Y |≥kσ } =
∞∑

m=k

EY 2χ{mσ≤|Y |≤(m+1)σ }

≤ σ 2
∞∑

m=k

(m + 1)2 Pr {(|Y | ≥ mσ })

≤ 2σ 2
∞∑

m=k

(m + 1)2e−3m/8,



332 P.L. Bartlett, S. Mendelson

where the last inequality follows from Bernstein’s inequality and the fact that σ 2 ≥
1. Thus, the assertion follows by taking k sufficiently large.

Since EY 2χ{|Y |≤σ/2} ≤ σ 2/4, then

σ 2 = EY 2

≤ σ 2

4
+ EY 2χ{σ/2≤|Y |≤Kσ } + σ 2

4

≤ σ 2

2
+ K2σ 2Pr

({σ

2
≤ |Y | ≤ Kσ

})
,

and the result follows. �
Proof of Theorem 2.3. Without loss of generality, assume that σ 2

F = var [g] for
some g ∈ F . Let Y = ∑n

i=1 (g(Xi) − Eg) and set v = EY 2 = nσ 2
F . By the

assumption, v ≥ 1, and thus, Lemma A.1 implies that

Pr

({
‖P − Pn‖F ≥ σF

2
√

n

})
≥ Pr

({
1

n
|Y | ≥

√
v

2n

})
≥ c

for some absolute constant c. Integrating, E ‖P − Pn‖F ≥ cσF /(2
√

n). Since
nσ 2

F ≥ 1,

σF

√
x

n
+ x

n
≤ 2σF

√
x

n
≤ 1

4 max
{

3K,
√

K
}E ‖P − Pn‖F ,

where K is the constant in Theorem 1.4, and the last inequality holds for an appro-
priate choice of x, which will be an absolute constant. The claim now follows
from Talagrand’s inequality; by Theorem 1.4, with probability at least 1 − e−x and
selecting α = 1/2,

‖Pn − P ‖F ≥ 1

2
E‖Pn − P ‖F −

√
KσF

√
x

n
− 3

Kx

n

≥ 1

2
E‖Pn − P ‖F − max

{
3K,

√
K
}(

σF

√
x

n
+ x

n

)

≥ 1

4
E‖Pn − P ‖F .

�
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10. Klein, T.: Une inégalité de concentration gauche pour les processus empiriques. [A left
concentration inequality for empirical processes]. C. R. Math. Acad. Sci. Paris 334 (6),
501–504 (2002)

11. Koltchinskii, V.: Rademacher penalties and structural risk minimization. IEEE Trans-
actions on Information Theory 47 (5), 1902–1914 July 2001

12. Koltchinskii, V.I., Panchenko, D.: Rademacher processes and bounding the risk of func-
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