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Abstract. We characterize convexity of a random compact set X in R
d via polynomial

expected parallel volume ofX. The parallel volume of a compact setA is a function of r ≥ 0
and is defined here in two steps. First we form the parallel set at distance r with respect to
a one- or two-dimensional gauge body B. Then we integrate the volume of this (relative)
parallel set with respect to all rotations of B. We apply our results to characterize convexity
of the typical grain of a Boolean model via first contact distributions.

1. Introduction

Modern data frequently arise as images of (random) structures in R
2 or R

3. It is one
of the main purposes of Stochastic Geometry to provide models for such random
spatial data. The basic, most flexible and frequently used model is still the Boolean
model (see e.g. [6], [13], [19]). A (stationary) Boolean model Z in R

d is a random
closed set

Z =
⋃

n∈N

(Zn + ξn),

where the ξn, n ∈ N, form a stationary Poisson process � in R
d (with intensity

γ > 0, say) and where the grains Z1, Z2, . . . are independent, identically distrib-
uted non-empty random compact sets, which are also independent of�. Throughout
this paper, we assume that there is an underlying probability space (�,A,P) car-
rying all random elements. Then a random closed set in the sense of Matheron
(see [12]) is a measurable map into the space Fd of closed subsets of R

d endowed
with the Borel σ -field generated by the Fell-Matheron “hit-or-miss” topology. In
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particular, a random compact set is a random closed set which is almost surely
compact.

The distribution of the Boolean model Z is determined by γ and the distribu-
tion of the typical grain X, a random compact set having the distribution of the
Zi . In order to fit a Boolean model to given data, the statistical problem consists in
finding appropriate estimates for these two parameters. A simple yet powerful set
of tools which is available with most image analysing equipment is given by the
contact distribution functions; see [10] for a recent survey. For a compact convex
setB ⊂ R

d containing the origin 0, the contact distribution functionHB ofZ (with
structuring element B) is defined as the distribution function of the ‘B-distance’
dB(0, Z) from 0 to Z, given that 0 is not covered by Z, that is,

HB(r) := P(dB(0, Z) ≤ r | 0 /∈ Z), r ≥ 0, (1.1)

with

dB(x, Z) := inf{t ≥ 0 : (x + tB) ∩ Z �= ∅}, x ∈ R
d .

As a consequence of the Poisson properties of the Boolean model Z, one easily
gets

HB(r) = 1 − exp
{−γE

[
Vd(X + rB∗)− Vd(X)

]}
, (1.2)

where E denotes mathematical expectation, Vd is the volume (Lebesgue measure)
in R

d , andX+ rB∗ is the Minkowski sum (vector sum) of the random compact set
X and the reflection of rB in the origin.At this stage, a commonly made assumption
is that the grains are (almost surely) convex. The reason for this is that ifA ⊂ R

d is
a compact convex set, then classical formulas from Convex Geometry (the Steiner
formula, respectively its generalization by Minkowski) can be used to obtain the
polynomial expansion

Vd(A+ rB∗) =
d∑

k=0

rk
(
d

k

)
V (A[d − k], B∗[k]).

The coefficientV (A[d−k], B∗[k]) on the right-hand side is a special mixed volume
of d − k copies of A and k copies of B∗, that is

V (A [d − k], B∗ [k]) := V (A, . . . , A︸ ︷︷ ︸
d−k

, B∗, . . . , B∗
︸ ︷︷ ︸

k

);

see [16] for an introduction to mixed volumes and all notions related to convexity
which are used throughout the following. Thus, for a Boolean model with convex
grains the contact distribution has the following simple form

HB(r) = 1 − exp

{
−

d∑

k=1

rk
(
d

k

)
γEV (X[d − k], B∗[k])

}

= 1 − exp

{
−

d∑

k=1

rk
(
d

k

)
γV d−k,B

}
(1.3)
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with mean values (densities) V d−k,B := EV (X[d − k], B∗[k]) of the mixed vol-
umes of the grains. Fitting a polynomial to an empirical function − ln(1− ĤB) that
arises from given spatial data then yields estimators for γV d−k,B , k = 1, . . . , d.

Popular choices for B are the unit ball Bd (then one obtains the spherical con-
tact distribution) or a unit segment [0, u] with fixed or varying direction u (then
one obtains a linear contact distribution). While − ln(1 −HBd ) is a polynomial of
order d (ifX is almost surely convex) with γVd(Bd) as the leading coefficient and
with the quermass densities of the grains as the other coefficients (see e.g. [18]),
− ln(1 − H[0,u]) is a linear function and the slope is given by γ times the mean
grain projection orthogonal to u (if the latter is averaged over all directions or if Z
is isotropic, we obtain the mean surface area of the grains).

The assumption of convex grains is often connected automatically with a Bool-
ean model. The polynomial behaviour of the function − ln(1 −HB) has even been
suggested as a test for the Boolean model against other model alternatives (see, e.g.,
the discussion in Section 3.3 of [19]). Here one has to check whether, for various
shapes of B, the logarithmic empirical contact distribution function − ln(1 − ĤB)

is well approximated by a polynomial of degree d . As we will show in Subsection
5.3 one has to be careful when applying this method. There are germ-grain models
based on a non-Poisson process {ξn : n ∈ N} and a convex typical grain whose
contact distributions are of the same form as those of the Boolean model.

Our aim in this paper is to explore and clarify the connection between the poly-
nomial behaviour of logarithmic contact distribution functions of a Boolean model
and the convexity of the grains. As we shall show, the polynomial behaviour (or,
more precisely, the linearity) of − ln(1 −H[0,u]) does in fact imply that the grains
are convex, if either Z is isotropic or if we average over all directions u. A simi-
lar result holds for the disc contact distributions HB with certain two-dimensional
convex bodies (disc bodies)B. But a corresponding result is not valid, for example,
if B is a ball of dimension at least three. These two cases of (linear and disc) con-
tact distributions lead to the following definitions. The average logarithmic linear
contact distribution function (ALLC-function) L of a stationary Boolean model Z
is given by

L(r) := −
∫

Sd−1
ln(1 −H[0,u](r))σ (du), r ≥ 0, (1.4)

(σ is the invariant probability measure on the unit sphere S
d−1). Furthermore, a

disc body is defined as a two-dimensional convex body B ⊂ R
d which contains

the origin in its relative interior and has a smooth (of class C1) and strictly con-
vex relative boundary. The average logarithmic disc contact distribution function
(ALDC-function) DB of Z (with respect to B) is then defined as

DB(r) := −
∫

SOd

ln(1 −HϑB(r))ν(dϑ), r ≥ 0, (1.5)

where ν is the Haar probability measure on the rotation group SOd . Note that L(r)
and DB(r) both can be interpreted as mean logarithmic contact distribution func-
tions with a random structuring element. Finally, a compact subset of R

d is called
regular if it is the closure of its interior.
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Theorem 1.1. Assume that the typical grain X of the stationary Boolean model
Z in R

d is almost surely a regular compact set which satisfies the integrability
assumption (5.1). If the ALLC-function L of Z is linear, then X is almost surely
convex.

Theorem 1.2. Assume that the typical grain X of the stationary Boolean model
Z in R

d , d ≥ 3, is almost surely a regular compact set which has a deterministi-
cally bounded diameter. Let B be a disc body. If the ALDC-function DB of Z is a
polynomial, then X is almost surely convex.

It turns out that in the plane the assumptions of Theorem 1.2 can be relaxed.

Theorem 1.3. Let d = 2, and let B ⊂ R
2 be a disc body. Assume that the typical

grain X of the stationary Boolean model Z in R
2 has a deterministically bounded

diameter. If the function ln(1−HB) or the ALDC-functionDB ofZ is a polynomial,
then X is almost surely convex.

Theorems 1.1 and 1.2 are consequences of more general results which will be
established in Section 5. There we also discuss connections to queueing theory and
some possible consequences for spatial statistics. Although our results are mainly
motivated by the analysis of Boolean models, in view of the right-hand side of equa-
tion (1.2) we first establish general results concerning the mean volume of random
dilatations of random compact sets. In Section 3, we study dilatations by random
segments, Section 4 is devoted to the investigation of dilatations by random disc
bodies. The results obtained here are new even in the special case of deterministic
compact sets. For instance, a consequence of Corollary 4.6 is that if A ⊂ R

d is a
compact set (assumed to be regular if d ≥ 3) and B2 ⊂ R

d is a two-dimensional
unit disc such that

t 	→
∫

SOd

Vd(A+ tϑB2)ν(dϑ), r ≥ 0, (1.6)

is a polynomial, then A is convex. Note that in the two-dimensional special case
of this result, which was first established in [8], the integration over the rotation
group has no effect.

2. Tools from geometry

We are working in the d-dimensional space R
d with scalar product 〈·, ·〉 and Euclid-

ean norm | · |. For a set A ⊂ R
d , we denote by int(A) the interior, by cl(A) the

closure, and by ∂A the boundary of A. The i-dimensional Hausdorff measure on
R
d is denoted by Hi . If the i-dimensional Hausdorff measure is applied to subsets

of an i-dimensional subspace, then we also write λi instead of Hi . For z ∈ R
d and

r ≥ 0, Bd(z, r) := {y ∈ R
d : |y − z| ≤ r} is the ball with centre z and radius

r . The unit ball Bd := Bd(0, 1) has volume κd and its boundary S
d−1 (the unit

sphere) has surface content dκd . We denote by Fd , Cd , and Kd the system of all
non-empty subsets of R

d , which are closed, compact, and compact and convex,
respectively. The elements of Kd are called convex bodies. We write conv(A) for
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the convex hull of a set A ⊂ R
d . The set Fd and its subsets are endowed with

the usual Fell-Matheron “hit-or-miss” topology (see [12]). Measurability on any
of these spaces always refers to the Borel σ -field generated by the Fell-Matheron
topology.

2.1. Distances and exoskeleton

Given a convex body B ∈ Kd with 0 ∈ B, we define the B-distance from a closed
set A ⊂ R

d to a point x ∈ R
d by

dB(A, x) := inf{r ≥ 0 : x ∈ A+ rB},
where C +D := {c + d : c ∈ C, d ∈ D} denotes the Minkowski sum of subsets
C,D ⊂ R

d and rB := {rb : b ∈ B} (cf. [16]). If B∗ denotes the reflection of B in
the origin, then clearly

dB(A, x) = inf{r ≥ 0 : (x + rB∗) ∩ A �= ∅}.
Thus, dB∗(A, x) coincides with the distance dB(x,A) that has been used at (1.1).
For a closed set A ⊂ R

d , the exoskeleton exoB(A) of A with respect to B is
defined as the set of all points x ∈ R

d \A for which dB(A, x) < ∞ and card((x+
dB(A, x)B

∗) ∩ A) ≥ 2. It is easy to check that exoB(A) is a countable union of
closed sets and hence a Borel set.

We will need the following extension of Theorem 3.2 in [9]. The assumption of
strict convexity cannot be omitted in Lemma 2.1, even if the set A is convex. This
can be seen by choosing A = B = [−1, 1]d .

Lemma 2.1. Let A ⊂ R
d be a closed set, and let B ∈ Kd be strictly convex with

0 ∈ int(B). Then Vd(exoB(A)) = 0.

Proof. We put ρ := dB(A, ·). Since ρ is Lipschitz (see [7, Lemma 1]), and hence
differentiable for Hd -a.e. x ∈ R

d \A, it is sufficient to show that a point of differ-
entiability of ρ cannot belong to exoB(A). Hence suppose that ρ is differentiable
at x ∈ R

d \ A. We put t := ρ(x). Let bi ∈ ∂B be such that x − tbi ∈ A, i = 1, 2.
Then

ρ(x − εbi) = t − ε, ε ∈ [0, t]. (2.1)

To check this, we first assume that ρ(x − εbi) = s < t − ε. Then it follows that
x − εbi ∈ A+ sB, and hence x ∈ A+ sB + εB = A+ (s + ε)B with s + ε < t ,
a contradiction. This implies that ρ(x − εbi) ≥ t − ε. On the other hand,

ρ(x − εbi) = dB(A, x − εbi)

≤ dB(x − tbi, x − εbi) = dB(0, (t − ε)bi) = t − ε,

which yields the assertion.
Using (2.1) and the differentiability of ρ at x, the differential Dρx(bi) of ρ at

x evaluated at bi satisfies

Dρx(bi) = lim
ε→0+

ρ(x − εbi)− ρ(x)

−ε = lim
ε→0+

t − ε − t

−ε = 1, (2.2)
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i = 1, 2. For any v ∈ R
d , we have

ρ(x + v)− ρ(x) ≤ min{r ≥ 0 : v ∈ rB}. (2.3)

Using (2.2), (2.3), the differentiability of ρ at x and the fact that b := (b1 +b2)/2 ∈
B, we obtain

1 = 1

2
Dρx(b1)+ 1

2
Dρx(b2)

= Dρx(b) = lim
ε→0+

ρ(x + εb)− ρ(x)

ε
≤ min{r ≥ 0 : b ∈ rB} ≤ 1,

hence (b1 + b2)/2 ∈ ∂B. Since B is strictly convex, it follows that b1 = b2. This
shows that x /∈ exoB(A). ��

2.2. L-convex hulls and convexification

For k ∈ {0, . . . , d}, we write Ldk for the set of k-dimensional linear subspaces of
R
d . Then Ldk is a compact subset of Fd and will be endowed with the subspace

topology. This subspace topology coincides with the coarsest topology on Ldk for
which the map SOd → Ldk , ϑ 	→ ϑL0 is continuous, where L0 ∈ Ldk is arbitrary
but fixed (see [18, p. 18-19]). The subspace orthogonal to L ∈ Ldk is denoted by
L⊥ ∈ Ldd−k . Let A ⊂ R

d be a compact set. Then, for L ∈ Ldk and k ∈ {0, . . . , d},
we define the L-convex hull of A by

convL(A) :=
⋃

x∈L⊥
conv(A ∩ (x + L)).

If convL(A) = A, then A is said to be L-convex.

Lemma 2.2. Let k ∈ {0, . . . , d}. For any A ∈ Cd and L ∈ Ldk the set convL(A) is
compact and the map F : Cd × Ldk → Cd , (A,L) 	→ convL(A), is measurable.

Proof. Assume that Ai → A in Cd , where Ai ⊂ Bd(0, R) for all i ∈ N and some
R > 0, and Li → L in Ldk , as i → ∞. We show that if yi ∈ F(Ai, Li), for i ∈ N,
and yi → y ∈ R

d , as i → ∞, then y ∈ F(A,L). This will show, in particular, that
convL(A) is compact. Moreover, by Satz 1.1.4 and Satz 1.1.5 in [18], F is upper
semicontinuous if restricted (in the first component) to compact sets contained in
a fixed ball. But this implies that F is measurable.

To obtain the desired conclusion, observe that, for i ∈ N, there is some xi ∈ L⊥
i

such that yi ∈ conv(Ai ∩ (xi + Li)). By Carathéodory’s theorem, for i ∈ N, there
are numbers λij ∈ [0, 1] and points zij ∈ Ai ∩ (xi + Li), j = 1, . . . , d + 1, such
that

yi =
d+1∑

j=1

λij z
i
j and

d+1∑

j=1

λij = 1.
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The sequence (xi)i∈N is bounded, since (yi)i∈N is a bounded sequence and yi =
xi+vi for some vi ∈ Li . SinceAi,A ⊂ Bd(0, R) for i ∈ N, the sequences (zij )i∈N

are also bounded. Hence, along a subsequence we get

xi → x ∈ L⊥, zij → zj ∈ A ∩ (x + L) and λij → λj ∈ [0, 1],

for j = 1, . . . , d + 1, where we used that Ai → A and Li → L as i → ∞. Thus
we arrive at

y =
d+1∑

j=1

λj zj and
d+1∑

j=1

λj = 1.

This shows that y ∈ conv(A ∩ (x + L)), and therefore y ∈ F(A,L). ��
The concept of L-convex hulls provides a (partial) convexification of a given

compact set A ⊂ R
d with respect to a subspace. We now discuss a different kind

of convexification, mainly for d = 2 and for a restricted class of compact sets
A ⊂ R

2, which is based on the surface area measure of a convex body. First, we
describe the notion of a measure theoretic outer unit normal of a given set and a
general version of the Gauss-Green theorem.

We recall a few concepts from analysis adapted to the present needs, for further
details and explicit definitions we refer to [2], [5], [22]. Let A ⊂ R

d be a set, and
let µ be a (outer) measure over R

d (cf. [5, p. 53]). The restriction µ�A of µ to
A is the outer measure (µ�A)(B) := µ(A ∩ B), where B ⊂ R

d . Moreover, the
d-dimensional density of µ at x ∈ R

d is defined by

�d(µ, x) := lim
r→0+

µ(Bd(x, r))

κdrd

if the limit exists. These densities can be used to introduce a measure theoretic
notion of exterior unit normal. First we define, for x ∈ R

d and u ∈ S
d−1, the half

spaces H+(x, u) := {y ∈ R
d : 〈y − x, u〉 ≥ 0} and H−(x, u) := {y ∈ R

d :
〈y − x, u〉 ≤ 0} with common boundary hyperplane H(x, u). Let A ⊂ R

d be
compact and x ∈ R

d . Then a unit vector u ∈ S
d−1 is said to be a measure theoretic

outer unit normal of A at x, if

�d(Hd�(H+(x, u) ∩ A), x) = 0 and �d(Hd�(H−(x, u) \ A), x) = 0.

If a measure theoretic outer unit normal of A at x exists, then it is unique and
x ∈ ∂A. This outer unit normal of A at x will then be denoted by ν(A, x) ∈ S

d−1

(see [5, Sect. 4.5]). If it doesn’t exist we define ν(A, x) := 0.
In the following, we consider a compact setA ⊂ R

d which satisfiesHd−1(∂A) <

∞ (although a somewhat weaker assumption would be sufficient). This condition
implies that A has finite perimeter in the sense of calculus of variations. Hence, a
general version of the Gauss-Green theorem holds, i.e.

∫

A

div ϕ(z)Hd(dz) =
∫

〈ϕ(x), ν(A, x)〉Hd−1(dx)
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for all vector fields ϕ : R
d → R

d of class C1. In particular, the map R
d → R

d ,
x 	→ ν(A, x), is Hd−1-measurable (cf. [5, Theorem 4.5.6 (2)]). Therefore, we can
define a measure µA on the Borel subsets of S

d−1 by

µA :=
∫

1{ν(A, x) ∈ ·}Hd−1(dx).

The Gauss-Green theorem then shows that
∫

Sd−1
uµA(du) = 0, (2.4)

i.e., µA is centred. In the special case of a convex body L ∈ Kd with nonempty
interior, the (top order) surface area measure Sd−1(L, ·) of L can be defined as
Sd−1(L, ·) := µL. However, the surface area measures of convex bodies are usu-
ally introduced in a less technical way as coefficients of a local Steiner formula
(see [16, Chapter 4]). It is known that L is uniquely determined by its (top order)
surface area measure up to a translation. We can fix a translation e.g. by requiring
L to have its Steiner point s(L) at the origin (cf. [16, Equation (1.7.3)]).

Let A ⊂ R
d be a general compact set with Hd−1(∂A) < ∞. Assume in addi-

tion thatµA is not concentrated on a great subsphere (i.e.µA is non-degenerate). In
view of (2.4) we can then apply Minkowski’s existence theorem (see [16, Section
7.1]) which yields the existence of a unique convex body co(A) ∈ Kd with non-
empty interior and Steiner point at the origin such that Sd−1(co(A), ·) = µA. We
call co(A) the convexification of A. For less general classes of sets, the convexifi-
cation has been introduced and studied for d = 2 in [4] and [20], and for arbitrary
dimension in [1], but in a slightly different manner. It is in fact not obvious that
the two approaches lead to the same convexification. We shall show this now, but
only in the case which we need later, namely for two-dimensional sets with some
additional regularity.

In the following, a compact set A ⊂ R
d will be called a star body with respect

to the origin, if there is a positive continuous function ρA : S
d−1 → (0,∞), the

radial function of A, such that A = {λρA(u)u : λ ∈ [0, 1], u ∈ S
d−1}. Since ρA is

continuous, we have ∂A = {ρA(u)u : u ∈ S
d−1}. Finally, we say that A is a star

body if a translate of A is a star body with respect to the origin.
We are going to prove the existence and some additional properties of the con-

vexification of a planar star body with finite boundary length. The proof requires
some preparations. Let A ⊂ R

2 be a star body with respect to the origin. Put
u(s) := cos(s)e1 + sin(s)e2, s ∈ [0, 2π ], where (e1, e2) is the standard basis. Then
the map J0 : [0, 2π ] → R

2, s 	→ ρA(u(s))u(s), provides a parametrization of ∂A.
In addition, we assume that A also has finite boundary length L := H1(∂A), i.e.
the curve J0 is rectifiable (cf. [3, Lemma 3.2]). Then there is a reparametrization
by arc-length, denoted by J , of J0 which is oriented in the same way as J0. We
define functions ρ : [0, L] → (0,∞) and v : [0, L] → S

1 by ρ := |J | and
v := J/|J |, hence J = ρv. Since J is Lipschitz and parametrized by arc-length,
J is differentiable at s and |J ′(s)| = 1, for H1-a.e. s ∈ [0, L]. Here we call J
differentiable at s = 0 and s = L if the one-sided derivatives at s = 0 and s = L
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exist and coincide. The chosen orientation of J implies that det(v(s), v′(s)) ≥ 0
for H1-a.e. s ∈ [0, L]. Moreover, 〈v(s), v′(s)〉 = 0 for H1-a.e. s ∈ [0, L].

By Theorem 3.2.22 (1) in [5] and since J ′(s) �= 0 for H1-a.e. s ∈ [0, L], the
approximate tangent space Tan1(H1�∂A, J (s)) of ∂A at J (s) is a one-dimensional
linear subspace spanned by J ′(s), for H1-a.e. s ∈ [0, L]. The coarea formula also
yields that, for H1-a.e. x ∈ ∂A, J is differentiable at s = J−1(x), Tan1(H1�∂A, x)
is the linear subspace spanned by J ′(s), and |J ′(s)| = 1. Any such point x ∈ ∂A
will be called a smooth boundary point of A. If x is a smooth boundary point of A
and s = J−1(x), we put t (x) := J ′(s) and define ν(x) as the uniquely determined
vector such that (ν(x), t (x)) is a positively oriented orthonormal basis of R

2. The
following lemma implies that ν(A, x) = ν(x) for H1-almost all x ∈ ∂A.

Lemma 2.3. Let A ⊂ R
2 be a star body with respect to the origin. Assume that

A has finite boundary length. If x is a smooth boundary point of A, then ν(x) =
ν(A, x).

Proof. We adopt the notation preceding the statement of the lemma. Let x0 be
a smooth boundary point of A, assume that s0 := J−1(x0) ∈ (0, L), and put
ν0 := ν(x0), w0 := t (x0) = J ′(s0). For any ε ∈ (0, 1), we define the cone

C(x0, w0, ε) := {x0 + λw : |〈w,w0〉| ≥ 1 − ε, λ ∈ R, w ∈ S
1}.

Then, for r ∈ (0, 1), we have

H2(C(x0, w0, ε) ∩ B2(x0, r)) = πh(ε)r2, (2.5)

where h(ε) := 4 arccos(1 − ε) → 0 as ε → 0.
In view of the equation J ′(s0) = ρ′(s0)v(s0) + ρ(s0)v

′(s0), we distinguish
three cases.

(a) v′(s0) �= 0. Let ε ∈ (0, 1) be sufficiently small so that {λx0 : λ ≥ 0} ∩
C(x0, w0, ε) = {x0}. Here we use that v(s0) and J ′(s0) are linearly indepen-
dent. Since J is differentiable at s0, there is a positive number δ > 0 such that
J (s) ∈ C(x0, w0, ε) for s ∈ [s0 − δ, s0 + δ]. Choose r0 ∈ (0, 1) such that

B2(x0, r0) ⊂ pos{J (s0 − δ), J (s0 + δ)},
where pos(M) denotes the positive hull of a set M ⊂ R

d , i.e. the smallest convex
cone containing M . Then, for r ∈ (0, r0), the intermediate value theorem shows
that if

z ∈ B2(x0, r0) ∩H−(x0, ν0) \ C(x0, w0, ε), (2.6)

then

{λz : λ ≥ 1} ∩ J ([s0 − δ, s0 + δ]) �= ∅, (2.7)

and therefore z ∈ A. Hence, we get

H−(x0, ν0) ∩ B2(x0, r) \ A ⊂ B2(x0, r) ∩ C(x0, w0, ε). (2.8)
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From (2.8) and (2.5) we conclude that

H2(H−(x0, ν0) \ A ∩ B2(x0, r))/(πr
2) ≤ h(ε),

which implies that

�2(H2�(H−(x0, ν0) \ A), x0) = 0. (2.9)

A similar reasoning leads to

H+(x0, ν0) ∩ B2(x0, r) ∩ A ⊂ B2(x0, r) ∩ C(x0, w0, ε),

from which we deduce that

�2(H2�(H+(x0, ν0) ∩ A), x0) = 0.

(b1) v′(s0) = 0 and ρ′(s0) > 0. Let ε ∈ (0, 1) be fixed. Choose δ > 0 and
r0 > 0 as in (a). If r ∈ (0, r0) and z satisfies (2.6), then (2.7) holds, and hence z ∈ A.
Therefore, (2.8) again implies (2.9). The remaining argument is also essentially the
same as in case (a).

(b2) v′(s0) = 0 and ρ′(s0) < 0. The argument is similar to the one for (b1). ��
Let J : [0, L] → R

2 denote a continuous map which is injective on [0, L) and
satisfies J (0) = J (L). As usual we call such a map a Jordan curve. The image set
J ([0, L])will be denoted as a Jordan arc. As mentioned before, the Jordan curve J
is rectifiable if and only if J ([0, L]) has finite one-dimensional Hausdorff measure.

Proposition 2.4. Let A ⊂ R
2 be a star body with finite boundary length. Then the

convexification co(A) of A exists and contains some translate of conv(A).

Proof. The idea of the proof is to approximate the boundary of A by a sequence
of inscribed polygonal Jordan arcs which bound star bodies An. We show that the
measures µAn converge weakly to µA as n → ∞. To verify this, it is useful to
work with tangent vectors rather than with exterior normal vectors. For this part of
the argument, Lemma 2.3 is needed. The required assertions of the proposition can
easily be established for the sets An. A compactness argument and the established
weak continuity will then allow us to deduce the corresponding assertions for the
set A itself.

We adopt the notation of Lemma 2.3. Clearly, we can assume that A is a star
body with respect to the origin. LetL = H1(∂A) < ∞ denote the boundary length
of A. For any n ≥ 3, we consider a partition sn,i := iL/n, i = 0, 1, . . . , n, of
[0, L] and define a piecewise affine map Jn : [0, L] → R

2 by

Jn(s) = sn,i+1 − s

L/n
J (sn,i)+ s − sn,i

L/n
J (sn,i+1), (2.10)

for s ∈ [sn,i , sn,i+1]. Then, if n ∈ N is sufficiently large, Jn is a polygonal Jordan
curve, and the enclosed point set An converges to A, as n → ∞, in the Hausdorff
metric. Since we are considering star bodies with respect to the origin, this fol-
lows from the uniform continuity of the chosen parametrization J . In particular,
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0 ∈ int(An) if n ∈ N is sufficiently large, and hence An is a star body with respect
to the origin. Let these conditions be satisfied for n ≥ n0. For x ∈ ∂An such that
s := J−1

n (x) /∈ {sn,i : n ≥ n0, i ∈ {0, . . . , n}}, we put tn(x) := J ′
n(s) and define

νn(x) as the uniquely determined unit vector such that (νn(x), tn(x)) is a positively
oriented orthonormal basis of R

2. As in the proof of Lemma 2.3 it follows that
νn(x) = ν(An, x) (the condition |J ′| = 1 can be replaced by J ′

n �= 0, in the proof
of Lemma 2.3). In order to show that the measures µAn converge weakly to µA, as
n → ∞, we take a continuous function f : S

1 → R and prove that

lim
n→∞

∫

∂An

f (νn(x))H1(dx) =
∫

∂A

f (ν(x))H1(dx). (2.11)

To verify (2.11), we define a continuous map f̃ : S
1 → R by f̃ (u) := f (σ0(u)),

where σ0 is the rotation by −π/2. Then, by the coarea formula and since ∂An =
Jn([0, L]) and ∂A = J ([0, L]),

∫

Jn([0,L])
f (νn(x))H1(dx) =

∫ L

0
f (νn(Jn(s)))|J ′

n(s)|ds

=
∫ L

0
f̃ (tn(Jn(s)))|J ′

n(s)|ds (2.12)

and
∫

J ([0,L])
f (ν(x))H1(dx) =

∫ L

0
f̃ (t (J (s)))ds. (2.13)

Here we used |J ′(s)| = 1, for H1-a.e. s ∈ [0, L], and the injectivity of J and Jn.
We will apply Lebesgue’s dominated convergence theorem to infer that

lim
n→∞

∫ L

0
f̃ (tn(Jn(s)))|J ′

n(s)|ds =
∫ L

0
f̃ (t (J (s)))ds. (2.14)

Subsequently, we verify that Lebesgue’s theorem can be applied so that the required
conclusion is obtained by combining (2.12), (2.13) and (2.14).

Let s ∈ [0, L] \ {sn,i : n ≥ n0, i ∈ {0, . . . , n}} be chosen such that J is differ-
entiable at s and J ′(s) = t (J (s)) is a unit vector. For any n ≥ n0, there is some
i ∈ {0, . . . , n− 1} such that s ∈ (sn,i , sn,i+1). From (2.10) we get

J ′
n(s) = n

L

(
J (sn,i+1)− J (sn,i)

)

= n

L

(
J ′(s)

(
sn,i+1 − s

) + o(1/n)
) − n

L

(
J ′(s)

(
sn,i − s

) + o(1/n)
)

= J ′(s)+ no(1/n),

and thus

lim
n→∞ J

′
n(s) = J ′(s). (2.15)
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Moreover,

tn(Jn(s)) = J (sn,i+1)− J (sn,i)

|J (sn,i+1)− J (sn,i)| =
L
n
J ′(s)+ o(1/n)

|L
n
J ′(s)+ o(1/n)| ,

and therefore

lim
n→∞ tn(Jn(s)) = J ′(s) = t (J (s)). (2.16)

Thus, (2.15), (2.16) and the continuity of f̃ yield that

lim
n→∞ f̃ (tn(Jn(s)))|J

′
n(s)| = f̃ (t (J (s))),

for H1-a.e. s ∈ [0, L]. Moreover, s 	→ f̃ (tn(s))|J ′
n(s)| is almost everywhere

bounded on [0, L], uniformly in n, since J is Lipschitz. Hence (2.11) is proved.
For n ≥ n0, the measure µAn of the set An enclosed by Jn is non-degenerate

so that the convexification co(An) is well-defined. Since µAn has finite support,
co(An) is a polytope. As shown in [20, p. 328] we have

conv(An) ⊂ Pn, (2.17)

where Pn is a suitable translate of co(An). The construction leading to Pn can be
described as follows: If An is not convex, let i ∈ {0, . . . , n − 1} be the smallest
integer such that (J (sn,i), J (sn,i+2)) ∩ An = ∅, where sn,n+1 := sn,1. We then
reflect J ([sn,i , sn,i+2]) in the midpoint (J (sn,i) + J (sn,i+2))/2 and thus obtain a
new polygonally bounded Jordan arc which bounds a setA′

n that is again a star body
with respect to the origin. This new setA′

n has the same surface area measure asAn,
and therefore the same convexification co(An), and fulfills An ⊂ A′

n. Repeating
this procedure with A′

n, we obtain an increasing sequence of sets with the same
convexification. Since the reflections used increase the ‘clockwise ordering’ of the
boundary segments, the algorithm ends after finitely many steps and the terminal set
is a translate, Pn, of the convexification co(An). HenceAn ⊂ conv(An) ⊂ Pn. It is
easy to see that the polytopesPn have uniformly bounded diameter. Since 0 ∈ Pn for
all n, the polytopesPn are uniformly bounded. But thenPn converges towards some
A′ ∈ K2 along a subsequence. By (2.11), and the weak continuity of the surface
area measures of convex bodies, we obtain that S1(co(A), ·) = µA = S1(A

′, ·).
Hence co(A) is a translate ofA′. Moreover, (2.17), the continuity of the convex hull
operation and the convergence of An towards A show that conv(A) ⊂ A′. Since
co(A) is a translate of A′, we have now proved the proposition. ��

2.3. Differentiation of relative parallel volume

In this subsection we consider a compact set A ⊂ R
d and a convex body B ⊂ R

d

and derive some auxiliary results on the relative parallel sets A + rB, r ≥ 0, and
their boundaries.
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Lemma 2.5. Let A ⊂ R
d be compact, and let B ∈ Kd with 0 ∈ int(B). Let

A ⊂ rB∗ for some r ≥ 0. Then, for any t > r , A+ tB is a star body with respect
to the origin and ∂(A + tB) is homeomorphic to S

d−1. Moreover, if A ⊂ R
d is a

star body, then A+ tB is a star body for all t ≥ 0.

Proof. If x ∈ A+ tB, then there is some a ∈ A with x ∈ a + tB. By assumption,
we also have a ∈ rB∗, i.e. 0 ∈ a + rB. Then, for any λ ∈ [0, 1), we obtain

λx ∈ λa + λtB + (1 − λ)0

⊂ λa + λtB + (1 − λ)a + (1 − λ)rB

= a + (λt + (1 − λ)r)B

⊂ a + tB,

where λt + (1 − λ)r < λt + (1 − λ)t = t was used. Hence λx is contained in the
interior of a + tB. Therefore, for any u ∈ S

d−1, there is a unique point ϕ(u) ∈ R
d

such that

∂(A+ tB) ∩ {su : s ≥ 0} = {ϕ(u)}.
The map ϕ : S

d−1 → ∂(A+ tB) is bijective and the inverse map x 	→ ϕ−1(x) =
x/|x| is continuous. Since ∂(A + tB) is compact, ϕ is a homeomorphism. The
remaining assertion can be proved by similar arguments. ��

For t > 0, we put

[dB(A, ·) = t] := {z ∈ R
d : dB(A, z) = t}.

If A is a compact convex set, one clearly has

[dB(A, ·) = t] = ∂(A+ tB). (2.18)

In the case of a general compact set, this is no longer true as the following very
simple counterexample shows.

Example 2.6. Let A := S
d−1. Then

∂(Sd−1 + Bd) = 2S
d−1 ⊂ 2S

d−1 ∪ {0} = [dBd (S
d−1, ·) = 1].

As a weak substitute for (2.18), we have the next lemma, which is sufficient for
the proof of the subsequent proposition.

Lemma 2.7. Let A ⊂ R
d be compact, and let B ∈ Kd be strictly convex with

0 ∈ int(B). Then

(a) ∂(A+ tB) ⊂ [dB(A, ·) = t] for all t > 0,
(b) Hd−1([dB(A, ·) = t] \ ∂(A+ tB)) = 0 for H1-a.e. t > 0.

Proof. (a) Let x ∈ ∂(A+ tB) be given. Then x ∈ A+ tB and there is a sequence
of points xi , i ∈ N, with xi /∈ A+ tB and xi → x as i → ∞. Hence dB(A, x) ≤ t

and dB(A, xi) > t for i ∈ N. The latter implies that dB(A, x) ≥ t , and thus
x ∈ [dB(A, ·) = t].
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(b) By Lemma 2.1, Hd(exoB(A)) = 0. The coarea formula, applied to the Lipschitz
distance function dB(A, ·) (cf. [7, Lemma 1]) then shows that

0 =
∫

exoB(A)
J1dB(A, ·)(x)Hd(dx)

=
∫ ∞

0

∫

[dB(A,·)=t]
1{y ∈ exoB(A)}Hd−1(dy)dt,

where J1dB(A, ·) denotes the one-dimensional approximate Jacobian of dB(A, ·).
Hence, for H1-a.e. t > 0,

Hd−1(exoB(A) ∩ [dB(A, ·) = t]) = 0. (2.19)

Let t > 0 be chosen such that (2.19) is satisfied, and choose any x ∈ [dB(A, ·) =
t] \ exoB(A). Then x ∈ A+ tB, and we have to show that x /∈ int(A+ tB). Since
x /∈ exoB(A), we have (x + tB∗) ∩A = {y}, i.e. x = y + tb for a uniquely deter-
mined point b ∈ ∂B. A continuity argument shows (cf. [16, Theorem 1.8.8]) that
there is some ε0 > 0 such that, for s ∈ (0, ε0] and a ∈ Bd(y, ε0) \ int(x + tB∗),
we have a − sb /∈ x + tB∗, and therefore x + sb /∈ a + tB. Next we choose
ε1 > 0 sufficiently small such that A ∩ (x + tB∗ + ε1B) ⊂ Bd(y, ε0). Hence, if
a ∈ A∩(x+tB∗+ε1B), then a ∈ Bd(y, ε0)\int(x+tB∗), and thus x+sb /∈ a+tB
for s ∈ (0, ε0]. Moreover, if a ∈ A \ (x + tB∗ + ε1B), then x + sb /∈ a + tB

for s ∈ (0, ε1]. Hence, we finally get x + sb /∈ A + tB for all s ∈ (0, ε2], where
ε2 := min{ε0, ε1}. This proves the existence of a sequence xi /∈ A + tB, i ∈ N,
such that xi → x as i → ∞. ��

We will now investigate the differentiation of the volume of the relative parallel
sets A + tB, t > 0, where A ⊂ R

d is compact and B ∈ Kd is strictly convex
with 0 ∈ int(B). The set of all strictly convex B ∈ Kd with 0 ∈ int(B) will be
denoted by Kd∗ . Let A ∈ Cd and let B ∈ Kd∗ . If x ∈ R

d \ A and ρ := dB(A, ·) is
differentiable at x, then we define

νB(A, x) := ∇ρ(x)/|∇ρ(x)|;
in all other cases, we define νB(A, x) as the zero vector. Then the map Cd × Kd∗ ×
R
d → R

d , (A,B, x) 	→ νB(A, x), is Borel measurable. The proof of this assertion
is based on the fact that Cd×Kd∗ ×R

d → R
d , (A,B, x) 	→ dB(A, x) is continuous

and the set of all (A,B, x) such that dB(A, ·) is differentiable at x, can be written
as a countable intersection of a countable union of closed sets.

A heuristic argument for the first assertion of the following proposition is given
in [7, Remark 3]. As usual, the support function h(B, ·) : R

d → R of a compact,
convex set B ⊂ R

d is defined by h(B, u) := max{〈x, u〉 : x ∈ B} for u ∈ R
d .

Proposition 2.8. Let A ⊂ R
d be compact, and let B ∈ Kd be strictly convex with

0 ∈ int(B). Then, for any non-negative measurable function f : R
d → R,

∫

Rd\A
f (z)Hd(dz) =

∫ ∞

0

∫

∂(A+sB)
f (x)h(B, ν(A+ sB, x))Hd−1(dx)ds.
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For H1-a.e. t > 0, Hd−1(∂(A+ tB)) < ∞ and

d

dt
Vd(A+ tB) =

∫

∂(A+tB)
h(B, ν(A+ tB, x))Hd−1(dx). (2.20)

Moreover, ν(A+ tB, x) = νB(A, x) ∈ S
d−1 is satisfied for Hd−1-a.e. x ∈ ∂(A+

tB) and H1-a.e. t > 0.

Proof. We put ρ := dB(A, ·). We already used that ρ is Lipschitz. The Jacobian
of ρ satisfies J1ρ(x) > 0 for Hd -a.e. x ∈ R

d \ A; cf. the proof of Lemma 2.1.
The coarea formula and Lemma 2.7 then imply the assertions of the proposition, if
we can show that J1ρ(x)

−1 = h(B, νB(A, x)) and νB(A, x) = ν(A+ ρ(x)B, x)

whenever ρ is differentiable at x ∈ R
d \ A.

For the proof, let ρ be differentiable at x ∈ R
d \ A. We put t := ρ(x) and

u := νB(A, x). The proof of Lemma 2.1 shows that x /∈ exoB(A). But then the
argument provided for Lemma 2.7 (b) yields that x ∈ ∂(A + tB). Using again
that x /∈ exoB(A), we obtain the existence of a unique point a ∈ A such that
x ∈ ∂(a + tB). Let λ0 > 0 be fixed and let v ∈ H(0, u) ∩ S

d−1. Then, for any
s > 0 and λ ∈ [0, λ0],

ρ(x + s(u+ λv)) = t + s|∇ρ(x)| + R(s(u+ λv))s
√

1 + λ2,

where R(w) → 0 as w → 0; hence,

ρ(x + s(u+ λv))− t = s
(
|∇ρ(x)| + R(s(u+ λv))

√
1 + λ2

)
. (2.21)

If s > 0 is sufficiently small (depending on λ0), then the right-hand side of (2.21) is
positive for all v ∈ H(0, u)∩S

d−1 and λ ∈ [0, λ0], hence x+ s(u+λv) /∈ A+ tB.
In particular, x+ s(u+λv) /∈ a+ tB, first for λ ∈ [0, λ0], v ∈ H(0, u)∩S

d−1 and
sufficiently small s > 0, but then for all s > 0, by the convexity of a + tB. Since
λ0 > 0 can be chosen arbitrarily large, it follows that u is an exterior unit normal
vector of a + tB at x, hence h(a + tB, u) = 〈x, u〉. As x ∈ ∂(a + tB), there is a
unique point b ∈ ∂B with x = a + tb, and thus h(B, u) = 〈b, u〉.

Sinceρ(x−εb) = t−ε for ε ∈ (0, t) (cf. the proof of Lemma 2.1) andρ is differ-
entiable at x, we deduce thatDρ(x)(b) = 1. Writing b in the form b = b̃+〈b, u〉u
with 〈b̃, u〉 = 0, we get Dρ(x)(u) = Dρ(x)(〈b, u〉−1b) = 〈b, u〉−1 = h(B, u)−1.
This finally shows that J1ρ(x) = |∇ρ(x)| = |Dρ(x)(u)| = h(B, u)−1.

From (2.21) we can further deduce that, for given λ0 > 0, suitably chosen
s0 = s0(λ0) > 0 and r ∈ (0, s0),
H+(x, u) ∩ Bd(x, r) ∩ (A+ tB) ⊂ H+(x, u) ∩ Bd(x, r) \ C̃(x, u, λ0, s0),

where

C̃(x, u, λ0, s0) := {x + s(u+ λv) : v ∈ H(0, u) ∩ S
d−1, λ ∈ [0, λ0], s ∈ [0, s0]}.

For r ∈ (0, s0),f (λ0) := Hd(H+(x, u)∩Bd(x, r)\C̃(x, u, λ0, s0))/r
d is indepen-

dent of s0 and r , andf (λ0) → 0 asλ0 → ∞. This implies that�d(Hd�(H+(x, u)∩
(A+ tB)), x) = 0. Similarly, we have

H−(x, u) ∩ Bd(x, r) \ (A+ tB) ⊂ H−(x, u) ∩ Bd(x, r) \ C̃(x,−u, λ0, s0),
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where s0 = s0(λ0) and r ∈ (0, s0). Hence�d(Hd�(H−(x, u)\ (A+ tB)), x) = 0,
which finally shows that ν(A+ tB, x) = νB(A, x). ��

3. Dilatation by random segments and convexity

In this section, we consider the dilatation of a random compact set X by a random
segment t[0, U ] of length t ≥ 0, where U is a random unit vector. We prove that
if the average volume of such a dilatation is a polynomial in the parameter t , then,
with probability one, almost all sections of X by lines parallel to U are convex.

For a unit vector u ∈ Sd−1, we put û := span{u} and define u⊥ as the subspace
orthogonal to û. We denote the û-convex hull of a set A ∈ Cd by Au := convû(A).
Further, for C ∈ Cd and L ∈ Ldk , we write C|L for the orthogonal projection of C
on L. The measurability of the map Cd × Ldk → Cd , (C,L) 	→ C|L is established
in [12, Lemma 3-5-3].

In the following theorem, we consider a random compact set X in R
d and a

random unit vector U . Assuming that t 	→ EVd(X + t[0, U ]), for t ≥ 0, is a
polynomial, we aim at showing that X must satisfy some convexity property. We
need to assume that

EVd(conv(X)+ t[0, U ]) < ∞ (3.1)

holds for some (and thus for all) t > 0. This follows, for instance, if

EVd(conv(X)+ Bd) < ∞ (3.2)

is satisfied.

Theorem 3.1. LetX be a random compact set in R
d , and letU be a random vector

in S
d−1 such that (3.1) is satisfied. Assume that

t 	→ EVd(X + t[0, U ]), t ≥ 0,

is a polynomial. Then, with probability one,X∩ (x+ Û ) is a segment for λd−1-a.e.
x ∈ U⊥.

Proof. We consider functions

φ(t) := EVd(X + t[0, U ]), t ≥ 0,

and

ψ(t) := EVd(XU + t[0, U ]), t ≥ 0.

Since X ⊂ XU , we obtain

φ(t) ≤ ψ(t), t ≥ 0. (3.3)

Next we prove that ψ is a polynomial of degree one. For this, we apply Fubini’s
theorem to get
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Vd(XU + t[0, U ]) =
∫

U⊥
V1((XU + t[0, U ]) ∩ (x + Û ))λd−1(dx)

=
∫

U⊥
V1(conv(X ∩ (x + Û ))+ t[0, U ])λd−1(dx)

=
∫

U⊥
V1(conv(X ∩ (x + Û )))λd−1(dx)

+ t
∫

U⊥
1{X ∩ (x + Û ) �= ∅}λd−1(dx)

= Vd(XU)+ tλd−1(X|U⊥). (3.4)

Using (3.4), we obtain

ψ(t) = EVd(XU)+ tEλd−1(X|U⊥) =: b0 + tb1, t ≥ 0, (3.5)

where b0, b1 ∈ R due to the integrability condition (3.1).
By the assumption of polynomial volume growth, we have

φ(t) =
m∑

i=0

ait
i , t ≥ 0, (3.6)

where ai ∈ R and m ∈ N. Since φ(t) ≥ 0 for t ≥ 0, we get am ≥ 0. From (3.3),
(3.5) and (3.6), it follows that we can choose m ≤ 1 and that 0 ≤ a1 ≤ b1. On the
other hand,

0 ≤ E [Vd(XU + t[0, U ])− Vd(X + t[0, U ])] = (b0 − a0)+ (b1 − a1)t,

where again we have used the integrability assumption (3.1). For any t ≥ 0, we
define the non-negative random variable

f (t) := Vd(XU + t[0, U ])− Vd(X + t[0, U ])

=
∫

U⊥
V1

((
conv(X ∩ (x + Û ))+ t[0, U ]

)
\

(
X ∩ (x + Û )+ t[0, U ]

))

λd−1(dx).

If we write conv(X∩(x+Û )) = [x1, x2] for some x1, x2 ∈ R
d , thenX∩(x+Û ) =:

I ⊂ [x1, x2] and x1, x2 ∈ I . Therefore,

([x1, x2] + t[0, U ]) \ (I + t[0, U ]) = [x1, x2] \ (I + t[0, U ])

is non-increasing as t increases and is the empty set for t > |x1 − x2|. This shows
that t 	→ f (t) is non-increasing and f (t) → 0 as t → ∞. From this we conclude
that b1 ≤ a1, and hence a1 = b1. Moreover, since f (0) is integrable, we obtain

0 = lim
t→∞ E [f (t)] = lim

t→∞ [(b0 − a0)+ (b1 − a1)t] = b0 − a0,

whence a0 = b0. But this implies that φ(t) = ψ(t) for all t ≥ 0, and thus

E

∫

U⊥
V1(conv(X ∩ (x + Û ))+ t[0, U ])λd−1(dx)

= E

∫

U⊥
V1(X ∩ (x + Û )+ t[0, U ])λd−1(dx). (3.7)
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The required measurability follows from the auxiliary results provided in [17, p.
192-3]. From

V1(X ∩ (x + Û )+ t[0, U ]) ≤ V1(conv(X ∩ (x + Û ))+ t[0, U ])

and (3.7), we deduce that, for λd−1-a.e. x ∈ U⊥ and P-a.s.

V1(conv(X ∩ (x + Û ))+ t[0, U ]) = V1(X ∩ (x + Û )+ t[0, U ])

for all t ∈ (0,∞) ∩ Q. Moreover, conv(X ∩ (x + Û )) + t[0, U ] is the closure of
its relative interior whenever X ∩ (x + Û ) �= ∅. Hence, P-a.s. and for λd−1-a.e.
x ∈ U⊥, the setX∩ (x+ Û )+ t[0, U ] is convex for all t ∈ (0,∞)∩Q, and hence
for all t > 0. This yields the assertion of the theorem. ��

From Theorem 3.1 we can deduce various results as special cases. First we note
that in case d = 1 and under the hypothesis of Theorem 3.1 the set X is almost
surely convex. To come to the same conclusion also in case d ≥ 2 we need to
assume that X is regular and that the distribution of U charges almost all direc-
tions. Clearly, the integrability assumption could be weakened slightly as in the
statement of Theorem 3.1.

Theorem 3.2. Let X ⊂ R
d be a random regular compact set for which (3.2) is

satisfied, and let τ be a finite measure on S
d−1 which dominates spherical Lebesgue

measure. Assume that

t 	→ E

∫

Sd−1
Vd(X + t[0, u])τ (du), t ≥ 0,

is a polynomial. Then X is almost surely convex.

Proof. We may assume that τ is a probability measure. Let U be a random unit
vector with distribution τ and independent of X. Recall that σ denotes normal-
ized spherical Lebesgue measure. Then, by Theorem 3.1, the assumption, and by
independence, the random set X ∩ (y + û) is a.s. convex for σ -a.e. u ∈ S

d−1 and
λd−1-a.e. y ∈ u⊥. Since X is a regular compact set, an approximation argument
yields the almost sure convexity of X. ��

As further special consequences of Theorem 3.1, we obtain the following cor-
ollaries which deal with the case of a deterministic compact set.

Corollary 3.3. Let A ⊂ R
d be a regular compact set. Assume that

t 	→
∫

Sd−1
Vd(A+ t[0, u])σ (du), t ≥ 0,

is a polynomial. Then A is convex.

Corollary 3.4. LetA ⊂ R
d be a regular compact set. Assume that Vd(A+ t[0, u]),

t ≥ 0, is a polynomial in t , for σ -a.e. vector u ∈ S
d−1. Then A is convex.

Theorem 3.1 in particular holds for a fixed (deterministic) unit vectoru. But even
ifX is also deterministic and regular, we cannot conclude that all linear sections of
X in direction u are convex if we merely know that t 	→ Vd(X+ t[0, u]), t ≥ 0, is
a polynomial. Consider, for instance, the deterministic setX := conv{0,−e1, e2}∪
conv{−e2,−2e2, e1 −e2} and the direction u = e2. In particular, we haveX �= XU
in this case.
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4. Dilatation by random disc bodies and convexity

We recall from the introduction that a two-dimensional convex body containing the
origin in its relative interior is a disc body, if its relative boundary is smooth (of
classC1) and strictly convex. In analogy to the previous section, we now investigate
the dilatation of a random compact set X by a random disc body tY , where Y is a
given random disc body and t ≥ 0 is a scaling parameter. If the average volume of
such a dilatation is a polynomial in the parameter t , then we can show that, with
probability one, almost all planar sections ofX by two-dimensional planes parallel
to Y are convex.

4.1. The two-dimensional deterministic case

The aim of this subsection is to establish the following generalization of Theo-
rem 1 in [8]. The result will be extended to higher dimensions and to random sets
subsequently.

Theorem 4.1. Let A ⊂ R
2 be compact, and let B ∈ K2 be a disc body. Assume

that

t 	→ V2(A+ tB), t ≥ 0,

is a polynomial. Then A is convex.

Proof. The proof is divided into three steps. The general aim is to show that A
coincides with its convex hull C := conv(A). For this we can assume that A �= ∅.
By translation invariance, we can also assume that 0 ∈ int(B). Further, let r0 be
the smallest number r ≥ 0 such that A ⊂ z + rB∗ for some z ∈ R

d . Then again
by translation invariance, we can assume that A ⊂ r0B

∗.
I. Since C is convex,

V2(C + tB) = V2(C)+ 2tV (C,B)+ t2V2(B), t ≥ 0, (4.1)

where V (C,B) is the mixed area of C and B (see e.g. [16]). Taking some a ∈ A ⊂
C, we deduce that {a} + tB ⊂ A+ tB ⊂ C + tB, and hence

t2V2(B) ≤ V2(A+ tB) ≤ V2(C + tB). (4.2)

From (4.1), (4.2) and the assumption, we can conclude that V2(A+ tB) is a poly-
nomial in t ≥ 0 of degree at most two, i.e. there are constants c0, c1, c2 ∈ R such
that

V2(A+ tB) = c0 + c1t + c2t
2, t ≥ 0. (4.3)

A comparison of (4.1), (4.2) and (4.3) shows that

c2 = V2(B) and c1 ≤ 2V (C,B),
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and therefore,

d

dt
V2(A+ tB) = c1 + 2c2t ≤ 2V (C,B)+ 2V2(B)t

= d

dt
V2(C + tB). (4.4)

Combining (4.4) and (2.20), we obtain, for H1-a.e. t > 0,
∫

∂(A+tB)
h(B, ν(A+ tB, x))H1(dx)

≤
∫

∂(C+tB)
h(B, ν(C + tB, x))H1(dx). (4.5)

II. We fix t > r0 such that (4.5) is satisfied and put A′ := A + tB. Then, in
particular, H1(∂A′) < ∞. Since t > r0, Lemma 2.5 shows that A′ = A + tB

is a star body with respect to the origin. Using Proposition 2.4 and the notation
preceding it, we can rewrite (4.5) in the form

∫

S1
h(B, u)S1(co(A′), du) ≤

∫

S1
h(B, u)S1(C

′, du), (4.6)

where C′ := C + tB is the convex hull of A′ = A + tB. Proposition 2.4 ensures
the existence of a translate K of co(A′) satisfying C′ = conv(A′) ⊂ K . By the
translation invariance of mixed areas, using a special case of formula (5.1.18) in
[16], and by (4.6), we obtain V (B,K) ≤ V (B,C′). Hence, the symmetry of mixed
areas yields

∫

S1

[
h(C′, u)− h(K, u)

]
S1(B, du) ≥ 0. (4.7)

Since C′ ⊂ K , equality must hold in (4.7), and thus h(C′, u) = h(K, u) for all
u ∈ S

1 which are in the support of S1(B, ·). As B is smooth, we conclude that
K = C′ = conv(A′). But then

H1(∂A′) = S1(K,S
1) = S1(C

′,S1) = H1(∂C′),

and we can infer as in [8] that A′ is convex.
III. So far we have shown that A + rB is convex for H1-a.e. r > r0. Hence

A+ rB is convex for every r > r0, and thus A+ rB = conv(A+ rB) = C + rB

whenever r > r0. In particular, V2(A+ rB) = V2(C + rB) for r > r0, and hence
by (4.3) and the convexity of C and B,

V2(A)+ c1r + V2(B)r
2 = V2(C)+ 2V (C,B)r + V2(B)r

2, (4.8)

first for r > r0, but then also for any r ∈ R. But this shows that V2(A + rB) =
V2(C + rB) for all r ≥ 0. Since A + rB is compact and C + rB has non-empty
interior for r > 0, we deduce that A+ rB = C+ rB is convex for any r > 0. This
implies the convexity of A. ��
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From the proof of Theorem 4.1 we can extract the following result, which will
be needed later for establishing an extension in general dimensions.

Lemma 4.2. Let A ⊂ R
2 be a star body with finite boundary length, and let

C := conv(A). Let B ∈ K2 be a disc body. Then
∫

∂C

h(B, ν(C, z))H1(dz) ≤
∫

∂A

h(B, ν(A, z))H1(dz),

with equality if and only if A is convex.

The following example shows that the regularity assumptions on B cannot be
completely omitted in the statement of Theorem 4.1.

Example 4.3. Let T1 := conv{0, e1 + (
√

3/3)e2, e1 − (
√

3/3)e2} denote a unilat-
eral triangle and let T2 := −T1. Then we define A := T1 ∪ T2. Further, we define
a parallelogram by B := (T1 − e1) ∪ (T2 + e1). Then A is not convex, but

V2(A+ tB) = V2(T1 + tB)+ V2(T2 + tB)− V2(tB)

= 2V2(T1)+ 2tV (T1 + T2, B)+ t2V2(B)

is a polynomial for t ≥ 0.

4.2. General dimensions and random compact sets

We now extend the results and arguments of the previous subsection to random com-
pact sets and random disc bodies in general dimensions. For a disc body B ⊂ R

d ,
we denote by B̂ the linear subspace spanned by B and by B⊥ = B̂⊥ the orthogo-
nal complement of B (recall that 0 ∈ B). As in the case of dilatations by random
segments, we need some integrability hypothesis. If X is a random compact set in
R
d and Y is a random disc body, then we will have to assume that

EVd(conv(X)+ tY ) < ∞ (4.9)

for some (and hence for all) t > 0. If Y is almost surely contained in a ball of
fixed radius, then (4.9) follows from (3.2). In particular, (4.9) is satisfied if also X
is almost surely contained in a ball of fixed radius. In order to be able to apply in
Lemma 4.2 to the Y -parallel sets of the sections (X − x) ∩ Ŷ , we need that there
exists a non-negative constant r0 ≥ 0 such that, with probability one,

(X − x) ∩ Ŷ + r0Y is a star body in Ŷ (4.10)

for λd−2-a.e. x ∈ Y⊥. By Lemma 2.5, a sufficient condition for this is that, with
probability one,

(X − x) ∩ Ŷ ⊂ r0Y
∗ (4.11)

for λd−2-a.e. x ∈ Y⊥. For instance, if there are positive constants r1, r2 > 0 such
that X ⊂ r1B

d and r2(Bd ∩ Ŷ ) ⊂ Y , then (4.11), and therefore also (4.10), is
satisfied.

Hypothesis (4.10) is somewhat disturbing. We believe that the next theorem
does in fact hold just under der integrability assumption (4.9). However, the proof
would then probably require different methods.
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Theorem 4.4. LetX ⊂ R
d be a random compact set, and let Y ⊂ R

d be a random
disc body such that (4.9) and (4.10) are satisfied. Assume that

t 	→ EVd(X + tY ), t ≥ 0,

is a polynomial. Then, with probability one, X ∩ (x + Ŷ ) is convex for λd−2-a.e.
x ∈ Y⊥.

Proof. For a compact set A ⊂ R
d and a disc body B, we abbreviate the B̂-convex

hull of A by AB , hence

AB =
⋃

x∈B⊥
conv(A ∩ (x + B̂)).

In the following, we will compare the functions

�(t) := EVd(X + tY ), t ≥ 0,

and

�(t) := EVd(XY + tY ), t ≥ 0.

Since X ⊂ XY , we obtain

�(t) ≤ �(t), t ≥ 0. (4.12)

We show that � is a polynomial of degree at most two. By Fubini’s theorem, we
get

Vd(XY + tY ) =
∫

Y⊥
V2((XY + tY ) ∩ (x + Ŷ ))λd−2(dx)

=
∫

Y⊥
V2(conv(X ∩ (x + Ŷ ))+ tY )λd−2(dx). (4.13)

Here we used the definition of XY and the relation

(A+ tY ) ∩ (x + Ŷ ) = A ∩ (x + Ŷ )+ tY, (4.14)

which holds for any compact setA ⊂ R
d . Relation (4.14) will be applied repeatedly.

For a compact set A ⊂ R
d and a two-dimensional convex body B ∈ Kd , we

define

Ṽ (A,B) := 2
∫

B⊥
V (conv(A ∩ (x + B̂)), B)λd−2(dx).

Here we use the mixed area V (K,M) of two-dimensional convex bodies
K,M ⊂ R

d being parallel to a two-dimensional subspace L, say. It is defined
as the (two-dimensional) mixed volume of the orthogonal projections K and M
onto L. Furthermore we put V (K,M) := 0 ifK = ∅ andM ∈ Kd lies in an affine
plane.
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By the basic linearity properties of mixed areas, we deduce from (4.13)

Vd(XY+tY )=Vd(XY )+t Ṽ (X, Y )+t2V2(Y )

∫

Y⊥
1{X ∩ (x + Ŷ ) �=∅}λd−2(dx)

=Vd(XY )+ t Ṽ (X, Y )+ t2V2(Y )λd−2(X|Y⊥). (4.15)

By the measurability results established so far and by [17, p. 192–3], each term on
the right-hand side of (4.15) is a measurable function. Thus, taking expected values
on both sides, we find

�(t) = EVd(XY )+ tEṼ (X, Y )+ t2E[V2(Y )λd−2(X|Y⊥)]
=: b0 + b1t + b2t

2, t ≥ 0,

with finite constants bi ∈ R, since (4.9) is satisfied and Ṽ (X, Y ) ≥ 0. By assump-
tion,

�(t) =
m∑

i=0

ait
i , t ≥ 0,

with ai ∈ R. From (4.12) it follows that we can choosem ≤ 2 and that 0 ≤ a2 ≤ b2.
On the other hand,

�(t) = EVd(X + tY )

= E

∫

Y⊥
V2((X + tY ) ∩ (x + Ŷ ))λd−2(dx)

≥ E

∫

Y⊥
V2(tY )1{X ∩ (x + Ŷ ) �= ∅}λd−2(dx)

= t2E[V2(Y )λd−2(X|Y⊥)] = t2b2.

Therefore, we also have a2 ≥ b2, and thus a2 = b2. But then (4.12) yields that
a1 ≤ b1. Furthermore, for all t > 0,

d

dt
�(t) = a1 + 2a2t ≤ b1 + 2b2t = d

dt
�(t). (4.16)

Our next aim is to derive a converse estimate to (4.16). First, however, we
have to discuss some measurability issues. For a closed set A ∈ F2 and a Borel
measurable function f : R

2 → [0,∞), we define
∫

∂A

f (z)H1(dz) := 0

if H1(∂A) = ∞. By Theorem 2.1.3 in [21], the set {A ∈ F2 : H1(∂A) < ∞}
is Borel measurable. With the above convention, another application of Theorem
2.1.3 in [21] yields that the map F2 → [0,∞), A 	→ H1(∂A ∩ C), is Borel
measurable for any compact set C ⊂ R

d . Arguing as in [17, p. 192–3] and by the
considerations preceding Proposition 2.8, we find that the map

(ω, x, t) 	→
∫

∂((X(ω)−x)∩Ŷ (ω)+tY (ω))
h(Y (ω), νY(ω)((X(ω)−x) ∩ Ŷ (ω), z))H1(dz)
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is Borel measurable on�× R
d × (0,∞), where we recall that� is the underlying

sample space. For a function g : [0,∞) → [0,∞), we define

d

dt

∗
g(t) := lim inf

n→∞ n(g(t + n−1)− g(t)).

Note that this definition is related to the lower-right derivative of g at t . Now, if
(ω, x) ∈ �× Y (ω)⊥ is fixed, then Proposition 2.8 shows that

d

dt

∗
V2((X − x) ∩ Ŷ + tY ) =

∫

∂((X−x)∩Ŷ+tY )
h(Y, νY ((X − x) ∩ Ŷ , z))H1(dz)

(4.17)

for H1-a.e. t > 0. Moreover, both sides of (4.17) are Borel measurable functions
of (ω, x, t). Hence, Fubini’s theorem implies that (4.17) holds for H1-a.e. t > 0,
λd−2-a.e. x ∈ Y⊥, and P-a.s. For any such t > 0, Fatou’s lemma and (4.17) yield
that

d

dt
�(t) = lim

n→∞ nE[Vd(X + (t + n−1)Y )− Vd(X + tY )]

= lim
n→∞ E

∫

Y⊥
n[V2((X + (t + n−1)Y ) ∩ (x + Ŷ ))

−V2((X + tY ) ∩ (x + Ŷ ))]λd−2(dx)

= lim
n→∞ E

∫

Y⊥
n[V2((X − x) ∩ Ŷ + (t + n−1)Y )

−V2((X − x) ∩ Ŷ + tY )]λd−2(dx)

≥ E

∫

Y⊥

d

dt

∗
V2((X − x) ∩ Ŷ + tY )λd−2(dx)

= E

∫

Y⊥

∫

∂((X−x)∩Ŷ+tY )
h(Y, νY ((X − x) ∩ Ŷ , z))H1(dz). (4.18)

In addition, for any t > 0 we obtain from the linearity properties of mixed areas

d

dt
�(t) = lim

n→∞ nE[Vd(XY + (t + n−1)Y )− Vd(XY + tY )]

= lim
n→∞ E

∫

Y⊥
n
[
V2((XY − x) ∩ Ŷ + (t + n−1)Y )

−V2((XY − x) ∩ Ŷ + tY )
]
λd−2(dx)

= lim
n→∞ E

∫

Y⊥

[
2V ((XY − x) ∩ Ŷ + tY, Y )

+n−1V2(Y )1{(XY − x) ∩ Ŷ �= ∅}]λd−2(dx)

= E

∫

Y⊥

∫

∂(conv((X−x)∩Ŷ )+tY )
h(Y, νY (conv((X − x) ∩ Ŷ ), z))

H1(dz)λd−2(dx). (4.19)
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Let r0 > 0 be as in (4.10). By Lemma 2.5 and Proposition 2.8, we obtain for
H1-a.e. t ≥ r0 that (X − x) ∩ Ŷ + tY is a star body in Ŷ with finite bound-
ary length for λd−2-a.e. x ∈ Y⊥ and P-a.s. Thus we can apply Lemma 4.2 with
A = (X − x) ∩ Ŷ + tY and B = Y whenever (X − x) ∩ Ŷ �= ∅. Using Fubini’s
theorem and again Proposition 2.8, we hence get, for λd−2-a.e. x ∈ Y⊥, P-a.s. and
for H1-a.e. t > r0,

∫

∂(conv((X−x)∩Ŷ )+tY )
h(Y, νY (conv((X − x) ∩ Ŷ ), z))H1(dz)

≤
∫

∂((X−x)∩Ŷ+tY )
h(Y, νY ((X − x) ∩ Ŷ , z))H1(dz), (4.20)

with equality if and only if (X− x)∩ Ŷ + tY is convex. Combining (4.18), (4.19)
and (4.20), we obtain

d

dt
�(t) ≤ d

dt
�(t), (4.21)

for H1-a.e. t > r0. From (4.16) and (4.21), we conclude that (4.21) indeed holds
with equality, for H1-a.e. t > r0. Therefore equality must hold in (4.20), for λd−2-
a.e. x ∈ Y⊥, P-a.s. and for H1-a.e. t > r0. Hence, (X− x)∩ Ŷ + tY is convex, for
λd−2-a.e. x ∈ Y⊥, P-a.s. and for H1-a.e. t > r0. The same conclusion is then also
available for all t > r0.

Next we prove the convexity of (X − x) ∩ Ŷ + tY , for all t > 0, λd−2-a.e.
x ∈ Y⊥, and P-a.s. This implies the assertion of the theorem. In fact, for t > r0,

a0 + a1t + a2t
2 = �(t) = E

∫

Y⊥
V2((X − x) ∩ Ŷ + tY )λd−2(dx)

= E

∫

Y⊥
V2(conv((X − x) ∩ Ŷ )+ tY )λd−2(dx)

= �(t) = b0 + b1t + b2t
2.

Since two polynomials, which are equal for t > r0, must be equal for all t ≥ 0, we
infer that

V2((X − x) ∩ Ŷ + tY ) = V2(conv((X − x) ∩ Ŷ )+ tY ), (4.22)

for λd−2-a.e. x ∈ Y⊥, P-a.s. and for t ∈ (0,∞) ∩ Q. The convex set conv((X −
x) ∩ Ŷ )+ tY is the closure of its interior (for t > 0), the set (X − x) ∩ Ŷ + tY is
compact, and therefore (4.22) implies the required assertion. ��

As a consequence of Theorem 4.4, we obtain the following theorem. Instead
of a general random disc body Y , we now consider a random disc body which is
generated by randomly rotating (independently of the random compact set X) a
fixed disc body B.
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Theorem 4.5. Let X ⊂ R
d be a random compact set, and let B ⊂ R

d be a disc
body. Assume that X ⊂ r0B

d almost surely, for some r0 > 0. Further, assume that
µ is a non-trivial finite measure on SOd such that

t 	→ E

∫

SOd

Vd(X + tϑB)µ(dϑ), t ≥ 0,

is a polynomial. Then X is almost surely convex if either d = 2 or d ≥ 3, X is
regular and µ dominates the Haar measure ν on SOd .

Proof. Let ζ be a random rotation that is independent of X and whose distribution
is the normalized µ. It is easy to check that the assumptions of Theorem 4.4 are
fulfilled. The required result then follows from Theorem 4.4 applied to Y := ζB

and (in case d ≥ 3) by a straigthforward approximation argument. ��
Again we consider the special case of a deterministic compact set A.

Corollary 4.6. Assume that A ⊂ R
d is a regular compact set, and let B ⊂ R

d be
a disc body. If

t 	→
∫

SOd

Vd(A+ tϑB)ν(dϑ), t ≥ 0,

is a polynomial, then A is convex.

5. Characterization of convexity in Boolean models

In this section, we consider a stationary Boolean model

Z =
⋃

n∈N

(Zn + ξn),

where the ξn, n ∈ N, form a stationary Poisson process in R
d with positive and

finite intensity γ and where the grainsZ1, Z2, . . . form a sequence of independent,
identically distributed random elements in Cd which is independent of {ξn : n ∈ N}.
We assume that

EVd(conv(X)+ Bd) < ∞, (5.1)

where X denotes a typical grain, i.e. a random compact set with the distribution
of Z1. Assumption (5.1) guarantees that each compact set is intersected by only a
finite number of the (shifted) grains Zn + ξn, n ∈ N. Hence Z is indeed a random
closed set (see [12] and [19] for more details). For the latter result, a weaker con-
dition than (5.1) would be sufficient, but we shall need (5.1) later when we apply
Theorem 3.1. The capacity functional of the Boolean model is given by

P(Z ∩ C �= ∅) = 1 − exp
[−γEVd(X + C∗)

]
, C ∈ Cd . (5.2)

By (5.1), this function is strictly less than 1. In particular, we obtain for the volume
fraction p := P(0 ∈ Z) that

p = 1 − exp
[−γEVd(X)

]
< 1. (5.3)
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We consider the contact distribution function HB as given by (1.1), with a struc-
turing element B ∈ Kd containing the origin. Equations (5.2) and (5.3) imply the
representation (1.2). If X is almost surely convex, then HB is given by (1.3).

5.1. Linear sections

We take some u ∈ S
d−1 and consider the linear contact distribution H[0,u] of the

Boolean model Z. If the typical grain X is almost surely convex, we obtain from
(1.3) that

H[0,u](r) = 1 − exp

{
−γ r

2

∫

Sd−1
|〈u, v〉|S̄d−1(dv)

}
, (5.4)

where

S̄d−1 := ESd−1(X, ·)

is the mean surface area measure of the typical grain. Here we have used the first
of the two equations

dV (X[d − 1], [0, u][1]) = 1

2

∫

Sd−1
|〈u, v〉|Sd−1(X, dv) = λd−1(X|u⊥).

More generally, in case X = Xu holds almost surely, (3.4) implies that

H[0,u](r) = 1 − exp
{
−γ rEλd−1(X|u⊥)

}
.

This is an exponential distribution whose parameter is determined by the intensity
γ and – in the convex case – by the cosine transform of S̄d−1. IfX is isotropic (i.e.
distributionally invariant under rotations), then Hl := H[0,u] is independent of u.
For a convex typical grain X, we then obtain

Hl(r) = 1 − exp

{
−γ r 2κd−1

dκd
EVd−1(X)

}
.

For a general stationary Boolean model, we consider the LLC-functionL(r) defined
by (1.4). If X is convex, (5.4) implies that

L(r) = 2κd−1

dκd
γ rEVd−1(X), r ≥ 0.

In view of (1.2) we can apply Theorem 3.2 to obtain Theorem 1.1. Actually,
Theorem 3.1 provides the following more detailed information.

Theorem 5.1. Assume that the typical grain X of the stationary Boolean model
Z satisfies (5.1), and let u ∈ S

d−1. Assume that the linear contact distribution
functionH[0,u] is exponential. Then, with probability one,X∩ (û+x) is a segment
for λd−1-a.e. x ∈ u⊥.
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Theorem 5.1 is a purely one-dimensional result making an assertion about the
section of Z with a line. For a more detailed discussion of this theorem and related
issues, we assume that the Boolean model Z has a regular typical grain and fix
some u ∈ Sd−1. For any x ∈ ∂Z ∩ û we define the length of the external chord
starting at x by

ζ(x) := inf{t > 0 : x + tu ∈ Z}.
We assume that N := {x ∈ ∂Z ∩ û : ζ(x) > 0} is almost surely locally finite.
Hence N is a stationary point process in û and we assume in addition that N has a
finite intensity.

We now consider the mark distribution of the stationary marked point process
{(x, ζ(x)) : x ∈ N} and its associated distribution function Cu, describing the
statistics of a typical external chord in direction u. By a classical point process
argument (see e.g. [19]) we have that

H[0,u](r) = 1

mu

∫ r

0
(1 − Cu(s))ds, r ≥ 0, (5.5)

where mu is the mean of Cu. This mean is finite since it is less than the reciprocal
of the (positive) intensity of N . In particularH[0,u] is exponential if and only if Cu
is exponential. Therefore Theorem 5.1 implies the following result.

Theorem 5.2. Assume that the typical grain X of the stationary Boolean model Z
satisfies (5.1). Let u ∈ S

d−1 and assume that {x ∈ ∂Z ∩ û : ζ(x) > 0} is almost
surely locally finite and of finite intensity. If the external chord length distribution
function Cu in direction u is exponential, then, with probability one, X ∩ (û + x)

is a segment for λd−1-a.e. x ∈ u⊥.

It can easily be shown that

Z ∩ û =
⋃

n∈N

(Z′
n + ξ ′

n),

where the pairs (ξ ′
n, Z

′
n), n ∈ N, form an independently marked Poisson process

(with points in û and compact subsets of û as marks) such that (Zn + ξn) ∩ û =
(Z′
n+ ξ ′

n). Hence Z∩ û is a Boolean model in û. We may interpret this model as an
infinite server system with û denoting the time axis (cf. [11]). A customer arriving
at epoch ξ ′

n requires service during the time epochs covered by the random set Z′
n.

All customers that are in the system are being served with rate 1. In contrast to the
classical case the sets Z′

n need not be intervals. Instead the service of a customer
can be interrupted several times. The complement of Z (in û) can be written as
countable union of successive idle times. Under the assumptions of Theorem 5.2,
the length of a typical idle time is exponentially distributed if and only if the service
of the individual customers is never interrupted.

While the above relationships between the idle times of an infinite server (with a
Poisson input stream and independent and i.i.d. service periods) and a one-dimen-
sional Boolean model are of course well-known, we are not aware of a result
characterizing connected service periods via exponential idle times. Apparently,
Theorem 1.1 does not seem to allow a queueing interpretation.
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5.2. Planar sections

We take some disc body B ⊂ R
d and consider the contact distribution HB of the

Boolean model Z. If the typical grain X is almost surely convex, then we can use
(4.15) to deduce from (1.2) that

HB(r) = 1 − exp
{
−γ rEṼ (X,B∗)− γ r2V2(B)Eλd−2(X|B⊥)

}
. (5.6)

Actually this formula remains true if we merely assume thatX = XB almost surely.
Returning to the case of a general typical grain, we now consider the ALDC-

function of Z as given by (1.5). In view of (1.2), Theorem 4.5 implies Theorems
1.2 and 1.3 while Theorem 4.4 yields the following more detailed result.

Theorem 5.3. Assume that the typical grain X of the stationary Boolean model Z
has a deterministically bounded diameter. Let B ⊂ R

d be some disc body such that
ln(1 −HB) is a polynomial. Then, with probability one, X ∩ (B̂ + x) is convex for
λd−2-almost all x ∈ B⊥.

5.3. Concluding remarks

We consider a stationary point process M := {ξn : n ∈ N} in R
d . Furthermore,

let Z1, Z2, . . . be independent, identically distributed non-empty random compact
sets which are also independent of M . If the particle process {Zn + ξn : n ∈ N} is
locally finite, then

Z :=
⋃

n∈N

(Zn + ξn)

is a random closed set that is called a germ-grain model. The statistical properties of
a general germ-grain model are complicated. Explicit analytic formulas are almost
never available, even for the most simple characteristics such as volume fraction
or mean surface area. An important exception is the Boolean model, where M is a
Poisson process. If X (a typical grain with the distribution of Z1) is convex, then a
common tool for checking a Boolean hypothesis is to use the empirical contact dis-
tribution functions ĤB for suitable gauge bodies B (see [14], [19, 3.3]). According
to (1.3), plotting r 	→ ln(1 − ĤB(r)) should approximately yield a polynomial of
degree d with vanishing absolute term.

As we will show by means of examples, one has to be careful when applying
this method. Our first example is a germ-grain model on the line with all contact dis-
tributions being exponential (as in the Boolean model) but having a lattice process
of germs far away from a Poisson process.

Example 5.4. Let Y ≥ 0 and U ≥ 0 be independent random variables where Y
has density f (x) = xe−x , x ≥ 0, and U is uniformly distributed on [0, 1]. Then
M := {(U + k)Y : k ∈ Z} is a stationary point process on the line. A straightfor-
ward calculation shows that UY has density t 	→ ∫ ∞

t
f (x)/xdx = e−t . Hence,

for any a ∈ R and r > 0,

P(M ∩ [a, a + r] = ∅) = P(M ∩ [0, r] = ∅) = P(UY > r) = e−r .
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These are the same probabilities as in case of a Poisson process of unit inten-
sity.

We now consider the germ-grain model Z based on M and the deterministic
typical grain X := [0, 1]. Then we have for any interval [a, b] with b− a = 1 and
0 ∈ [a, b] and any r ≥ 0 that

P(Z ∩ [ra, rb] = ∅ | 0 /∈ Z) = P(Z ∩ [ra, rb] = ∅)
P(0 /∈ Z) = P(Z ∩ [0, r] = ∅)

P(0 /∈ Z)
= P(M ∩ [−1, r] = ∅)

P(M ∩ [−1, 0] = ∅) = e−r .

Hence all contact distribution functions of Z are exponential.

There are other examples of stationary point processes M on the line (closer
to the Poisson process) so that M(I) is even Poisson distributed for all intervals
I . Moran (see [15]) has found a planar non-Poisson process M such that M(L) is
Poisson distributed for all compact, convex sets L ⊂ R

2:

Example 5.5. We consider the process M constructed in [15]. This is a stationary
point process in the plane that is not Poisson and such that, for anyL ∈ K2,M(L) is
Poisson distributed with parameter V2(L). We consider the germ-grain grain model
Z based on M and a deterministic typical grain K ∈ K2. Then, for any B ∈ K2

with 0 ∈ B and any r ≥ 0,

P(0 /∈ Z + rB∗) = P(0 ∈ M + (K + rB∗)) = P(M ∩ (K∗ + rB) = ∅)
= exp[−V2(K + rB∗)]
= exp[−V2(K)− 2rV (K,B∗)− r2V2(B)].

Therefore

1 −HB(r) = P(0 /∈ Z + rB∗ | 0 /∈ Z) = exp[−2rV (K,B∗)− r2V2(B)],

which coincides with the corresponding result for a Boolean model with typical
grain K . This example can be generalized to any dimension.

Moran’s example has still much in common with a Poisson process. Our final
example is a stationary lattice germ process M such that a germ-grain model with
deterministic spherical grains has a spherical contact distribution function that is
of the same form as in a Boolean model with the same typical grain.

Example 5.6. Let Y1, Y2, U1 and U2 be independent non-negative random vari-
ables. Assume that U1, U2 are uniformly distributed on [0, 1] and that Y1, Y2 have
density f (x) = 4π−1/2x2e−x2

, x ≥ 0. We consider the stationary point process

M := {((U1 +m)Y1, (U2 + n)Y2) : m, n ∈ Z}.
We would like to compute the probability of {M ∩ rB2 = ∅} for any r ≥ 0.

On the event {U1 ≥ 1/2, U2 ≥ 1/2} we have M ∩ rB2 = ∅ if and only if

(1 − U1)
2Y 2

1 + (1 − U2)
2Y 2

2 > r2.
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Hence

P(M ∩ rB2, U1 ≥ 1/2, U2 ≥ 1/2)

= P((1 − U1)
2Y 2

1 + (1 − U2)
2Y 2

2 > r2, U1 ≥ 1/2, U2 ≥ 1/2)

= 1

4
P(U2

1W
2
1 + U2

1W
2
1 > r2),

where Wi := Yi/2, i = 1, 2. The random variables UiWi have density

t 	→
∫ ∞

t

2f (2x)/xdx = 32√
π

∫ ∞

t

x exp[−4x2]dx = 4√
π

exp[−4t2].

This is the density of |V |/√8, where V is a standard normal random variable.
From the well-known convolution property of Gamma distributions, we now obtain
P(U2

1W
2
1 +U2

2W
2
2 > t) = e−4t for all t ≥ 0. Treating the other cases (for instance

U1 ≥ 1/2 and U2 ≤ 1/2) in the same way, we finally obtain that

P(M ∩ rB2 = ∅) = e−4r2
, r ≥ 0,

just as in case of a Poisson process of rate 4/π .
We now consider the germ-grain model Z based on M and the deterministic

typical grain Bd . Then

1 −HBd (r) = P(0 /∈ M + (r + 1)Bd)

P(0 /∈ M + Bd)
= e−4(r+1)2+4 = e4r2−8r ,

as in a Boolean model.

The above examples reveal problems that may arise in using contact distribu-
tions to identify a Boolean model within germ-grain models with convex (determin-
istic) grains. However, the results of the present paper show that contact
distribution functions could be used to identify Boolean models with convex typ-
ical grains within the much larger class of Boolean models with compact typical
grains. If the empirical logarithmic distribution functions ln(1− Ĥ[0,u]), u ∈ S

d−1,
are approximately linear for all directions u within a preferably large finite set,
then there is no reason to reject a convexity hypothesis. The same can be said if
ln(1 − ĤϑB) is approximately quadratic for some disc body B and for all rotations
ϑ within a preferably large finite set. Both ideas are in good agreement with the
fact that in many applications only linear or planar sections of a three-dimensional
set are available.
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1. Böröczky, K., Bárány, I., Makai Jr., E. Pach, J.: Maximal volume enclosed by plates and
proof of the chessboard conjecture. Discrete Math. 60, 101–120 (1986)

2. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. CRC Press,
Boca Raton, 1992

3. Falconer, K.J.: The geometry of fractal sets. Cambridge University Press, Cambridge,
1985



200 D. Hug et al.
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