
Digital Object Identifier (DOI) 10.1007/s00440-005-0454-3
Probab. Theory Relat. Fields 135, 15–52 (2006)

M. Thaler · R. Zweimüller

Distributional limit theorems in infinite ergodic
theory

Received: 23 June 2004 / Revised version: 22 April 2005 /
Published online: 17 August 2005 – c© Springer-Verlag 2005

Abstract. We present a unified approach to the Darling-Kac theorem and the arcsine laws
for occupation times and waiting times for ergodic transformations preserving an infinite
measure. Our method is based on control of the transfer operator up to the first entrance to
a suitable reference set rather than on the full asymptotics of the operator. We illustrate our
abstract results by showing that they easily apply to a significant class of infinite measure
preserving interval maps. We also show that some of the tools introduced here are useful in
the setup of pointwise dual ergodic transformations.

1. Introduction

The study of ergodic and probabilistic properties of dynamical systems with an
infinite invariant measure has recently led to a number of interesting results which
generalize classical theorems for null-recurrent Markov chains to the weakly depen-
dent processes generated by certain types of infinite measure preserving transfor-
mations. In the present paper we shall focus on three distributional limit theorems,
the Darling-Kac theorem for ergodic sums of integrable functions, the arcsine law
for occupation times of sets of infinite measure, and the (Dynkin-Lamperti) arcsine
law for waiting times, and present a natural unified approach to them. The follow-
ing example illustrates the limit theorems we are going to consider by specializing
them to the case of Boole’s transformation on R, where we obtain results analogous
to well known classical facts about the coin tossing random walk (cf. Chapter III
of [Fe1]).

Example 1.1 (Distributional limit theorems for Boole’s transformation). The map
T : R → R given by T x := x − 1

x
preserves Lebesgue measure λ and is con-

servative ergodic, cf. [AW] or [Sch]. For measurable functions f : R → R let
Sn(f ) := ∑n−1

j=0 f ◦ T j , n ∈ N. Fix any Borel probability measure ν � λ.
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The Darling-Kac theorem shows that for the occupation times of any Borel subset
E ⊆ R of finite positive measure, as n → ∞,

ν

({
π√
2n

Sn(1E) ≤ λ(E) t

})

−→ 2

π

∫ t

0
e− y2

π dy, t ≥ 0.

(Here 1E may be replaced by any integrable function f with λ(f ) = ∫
R

f dλ > 0.)
The arcsine law for occupation times implies that the proportion of time spent on
a half-line converges to the classical arcsine distribution,

ν

({
1

n
Sn(1A) ≤ t

})

−→ 2

π
arcsin

√
t , t ∈ [0, 1],

where A is any Borel set with λ(A 
 (0, ∞)) < ∞. The arcsine law for waiting
times finally provides us with a similar result for Zn(E)(x), the time of the last visit
of the orbit (T kx)k≥0 to the set E up to step n (and 0 if there was no visit at all),
showing that

ν

({
1

n
Zn(E) ≤ t

})

−→ 2

π
arcsin

√
t , t ∈ [0, 1],

for every bounded E ⊆ R with λ(E) > 0.

For the specific transformation T of the example, these statements follow from
earlier work in [A1], [T6], and [T4] respectively. The purpose of the present paper
is to develop an approach to these limit theorems in a general abstract setup, based
on, and improving, ideas from [T6]. Our assumptions are of a different type than
those used in [A1], [T4], and constitute a generalization of the abstract condition
which can be extracted from [T6]. They allow simple direct verification for an
important class of examples. Moreover, the proofs themselves have a very clear
and natural common structure. In the final section we point out that some of the
ideas employed here are also of interest in the setup of [A1] and [T4] (pointwise
dual ergodic transformations).

2. Preliminaries

In order to formulate our results, we need to fix some notation and recall a number
of important concepts. Throughout the paper, all measures are understood to be
σ -finite. The key to an understanding of the stochastic properties of a (typically
non-invertible) nonsingular transformation T on a measure space (X, A, m), i.e.
of a measurable map T : X → X for which m◦T −1 � m, often lies in the study of
the long-term behaviour of its transfer operator T̂ : L1(m) → L1(m) describing
the evolution of measures under the action of T on the level of densities: T̂ u :=
d(ν ◦ T −1)/dm, where ν has density u w.r.t. m. Equivalently,

∫
X

u · (v ◦ T ) dm =
∫
X

T̂ u · v dm for all u ∈ L1(m) and v ∈ L∞(m), i.e. v �−→ v ◦ T is the dual of T̂ .
The operator T̂ naturally extends to {u : X → [0, ∞) A-measurable}. It is a linear
Markov operator,

∫
X

T̂ u dm = ∫
X

u dm for u ≥ 0. The system is conservative
and ergodic iff

∑
k≥0 T̂ ku = ∞ a.e. for all u ∈ L+

1 (m) := {u ∈ L1(m) : u ≥ 0
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and m(u) > 0}. Invariance of m under T means that T̂ 1 = 1, and we will denote
the measure by µ in this case. When dealing with L1-functions, uniform conver-
gence will always be understood mod m. Similarly, we will simply write inf for
the essential infimum etc.

If, for some measurable function H ≥ 0 supported on Y ∈ A, there is some
K ∈ N0 such that infY

∑K
k=0 T̂ kH > 0, then H will be called uniformly sweeping

(in K steps) for Y .
If ν is a probability measure on (X, A), (Rn)n≥1 is a sequence of measurable

real-valued functions on X, and R is a random variable taking values in R :=
R∪{±∞}, then distributional convergence of (Rn)n≥1 to R w.r.t. ν will be denoted

by Rn
ν⇒ R. Strong distributional convergence Rn

L(m)⇒ R on (X, A, m) means
that Rn

ν⇒ R for all probability measures ν � m.
A function a : (L, ∞) → (0, ∞) is regularly varying of index ρ ∈ R at infin-

ity, written a ∈ Rρ , if a is measurable and a(ct)/a(t) → cρ as t → ∞ for any
c > 0, and we shall interpret sequences (an) as functions on R+ via t �−→ a[t].
Slow variation means regular variation of index 0. Rρ(0) is the family of functions
r : (0, ε) → R+ regularly varying of index ρ at zero (same condition as above, but
for t ↘ 0). We refer to Chapter 1 of [BGT] for a collection of basic results.

Let T be a conservative ergodic measure preserving transformation (c.e.m.p.t.)
on (X, A, µ). For any Y ∈ A, µ(Y ) > 0, the first entrance (resp. return) time of Y

is1 ϕ : X → N ∪ {∞}, given by ϕ(x) := min{n ≥ 1 : T nx ∈ Y }, x ∈ X, and we
let TY x := T ϕ(x)x, x ∈ X. The restricted measure µ |Y∩A is invariant under the
first return map, TY restricted to Y . On the level of densities this means that

1Y =
∑

k≥1

T̂ k1Y∩{ϕ=k} a.e. (2.1)

If µ(Y ) < ∞, it is natural to regard ϕ as a random variable on the probability space
(X, A, µY ), where µY (E) := µ(Y )−1µ(Y ∩ E), and µ(X) = ∞ is equivalent to∫

ϕ dµY = ∞ by Kac’ formula (integrate (2.3) below).
If µ(X) = ∞, a good understanding of T frequently depends on its behaviour

relative to a suitable reference set Y of finite measure, defined through some dis-
tinctive property. Specifically, the asymptotic behaviour of the return distribution of
Y , i.e. that of the (first) return probabilities fk(Y ) := µY ({ϕ = k}), k ∈ N, is a cru-
cial feature determining the stochastic properties of the system. For distributional
limit theorems to hold, regular variation of fk(Y ) or, more generally, of the tail
probabilities qn(Y ) := ∑

k>n fk(Y ) = µY ({ϕ > n}), n ∈ N0, or the wandering
rate of Y , given by wN(Y ) := µ(Y )

∑N−1
n=0 qn(Y ) = ∑N−1

n=0 µ(Y ∩ {ϕ > n}) =∫
Y
(ϕ ∧ N) dµ, N ≥ 1, is decisive.
To formulate the key assumption characterizing our reference sets Y ∈ A,

0 < µ(Y ) < ∞, we define

Y0 := Y and Yn := Y c ∩ {ϕ = n}, n ≥ 1.

1 We suppress the dependence of ϕ on the usually fixed set Y in our notation.
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The standard proof of TY -invariance of µ |Y∩A shows that µ(Yn) = µ(Y ) qn(Y )

for n ≥ 0. We will need a pointwise version of this. Notice that for any A ∈ A we
have 1A = T̂ 1T −1A a.e., and hence

1Yn = T̂ 1Y∩{ϕ=n+1} + T̂ 1Yn+1 a.e. for n ∈ N0. (2.2)

Since Yn ⊆ T −nY and µ(Y ) < ∞ we have µ(Yn) ↘ 0, and repeated application
of (2.2) yields

1Yn =
∑

k>n

T̂ k−n1Y∩{ϕ=k} a.e. for n ∈ N0, (2.3)

generalizing (2.1). Observing that
⋃N−1

n=0 T −nY = ⋃N−1
n=0 Yn (pairwise disjoint),

we see

wN(Y ) = µ

(
N−1⋃

n=0

T −nY

)

=
∫

Y

(
N−1∑

n=0

T̂ n1Yn

)

dµ for N ≥ 1. (2.4)

The condition we are going to impose on the reference set Y is that

1

wN(Y )

N−1∑

n=0

T̂ n1Yn converges uniformly on Y as N → ∞. (2.5)

The limit function H : Y → [0, ∞), the asymptotic entrance density of Y , auto-
matically is a bounded probability density w.r.t. µ. (It is the uniform limit of a
sequence of bounded functions.) In addition, we will assume that H is uniformly
sweeping for Y .

The examples discussed in Section 8 actually have the property that

1

fk(Y )
· T̂ k1Y∩{ϕ=k} converges uniformly on Y as k → ∞. (2.6)

By (2.3), this implies uniform convergence of 1
qn(Y )

· T̂ n1Yn , n ≥ 1, which in turn
entails (2.5).

3. Main results

We are now ready to state the abstract distributional limit theorems which are the
main results of the present paper.

Perhaps the most basic question about some c.e.m.p.t. T on (X, A, µ) is that
for the asymptotic behaviour of ergodic sums Sn(f ) := ∑n−1

k=0 f ◦ T k , n ≥ 1, of
measurable functions f . If µ is finite (and w.l.o.g. normalized), Birkhoff’s ergodic
theorem provides us with a strong law of large numbers asserting thatn−1Sn(f ) −→
µ(f ) a.e. for any f ∈ L1(µ). The picture is fundamentally different if T pre-
serves an infinite measure µ: Not only will we have n−1Sn(f ) −→ 0 a.e. for any
f ∈ L1(µ), but it is in fact impossible to find any sequence (an) of normalizing
constants for which a−1

n Sn(f ) has nontrivial a.e. limits for f ∈ L+
1 (µ), cf. Section
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2.4 of [A0]. However, the Darling-Kac theorem shows that there may still be (an)

such that a−1
n Sn(f ) converges in distribution.

We let Mα , α ∈ [0, 1], denote a non-negative real random variable distributed
according to the (normalized) Mittag-Leffler distribution of order α, which can be
characterized by its moments

E
[Mr

α

] = r!
(	(1 + α))r

	(1 + rα)
, r ∈ N0.

Our Darling-Kac theorem for infinite m.p.t.s reads as follows:

Theorem 3.1 (Darling-Kac theorem). Let T be a c.e.m.p.t. on the σ -finite mea-
sure space (X, A, µ), and assume there is some Y ∈ A, 0 < µ(Y ) < ∞, such
that

1

wN(Y )

N−1∑

n=0

T̂ n1Yn → H
uniformly on Y as N → ∞, with
H : Y → [0, ∞) uniformly sweeping,

(3.1)

and that

(wN(Y )) ∈ R1−α for some α ∈ [0, 1]. (3.2)

Then

1

an

Sn(f )
L(µ)⇒ µ(f ) · Mα for all f ∈ L1(µ) s.t. µ(f ) �= 0, (3.3)

where

an := 1

µ(Y )

∫

Y

Sn(1Y ) dµY ∼ 1

	(1 + α)	(2 − α)
· n

wn(Y )
as n → ∞.

Remark 3.1 (Weak law and dual statement). Notice that M1 = 1, so that for α = 1
the result provides us with a generalized weak law of large numbers. For α ∈ (0, 1)

the conclusion (3.3) of the theorem is equivalent to strong distributional conver-
gence

1

bj

j−1∑

i=0

ϕE ◦ T i
E

L(µE)⇒ (µ(E) · 	(1 + α))−
1
α · Gα

of the j -th return time of an arbitrary E ∈ A, 0 < µ(E) < ∞, ϕE(x) := min{i ≥
1 : T ix ∈ E}, where b is asymptotically inverse to a, and Gα is a random variable
distributed according to the one-sided stable law of index α, characterized by

E

[
e−sGα

]
= e−sα

, s > 0.
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Ergodic sums of non-integrable functions will exhibit a different behaviour. We
shall content ourselves with occupation times Sn(1A) of sets with µ(A) = ∞. The
situation µ(Ac) < ∞ being trivial, we are going to compare pairs A1, A2 of dis-
joint sets of infinite measure. The additional structure enabling us to derive a strong
result again involves the dynamics relative to a reference set Y : As in [ATZ] we say
that two disjoint sets A1, A2 ⊆ X are dynamically separated by Y ⊆ X (under the
action of T ) if x ∈ A1 and T nx ∈ A2 (resp. x ∈ A2 and T nx ∈ A1) imply the
existence of some k = k(x) ∈ {0, . . . , n} for which T kx ∈ Y (i.e. T -orbits can’t
pass from one set to the other without visiting Y ). In the present paper, Y will always
be disjoint from A1 ∪A2, with all these sets measurable and µ(Y ) < ∞. The latter
condition prevents, for example, trivial periodicities between components of infi-
nite measure (like A1 = 2Z and A2 = 2Z+1 in the case of the simple random walk
on the integer lattice). Defining wN(Y, Ai) := ∑N−1

n=0 µ(Y ∩ T −1Ai ∩ {ϕ > n}),
N ≥ 1, we will see (cf. (6.6) below) that if X = A1 ∪ Y ∪ A2 (disjoint), then

wN(Y, Ai) = µ(Y ∩ T −1Ai) +
N−1∑

n=1

µ(Yn ∩ Ai). (3.4)

For α, β ∈ (0, 1) we let Lα,β denote a random variable with (values in [0, 1]
and) distribution given by

Pr({Lα,β ≤ t}) = b sin πα

π

∫ t

0

xα−1(1 − x)α−1

b2x2α + 2bxα(1 − x)α cos πα + (1 − x)2α
dx

= 1

πα
arccot

(
((1 − t)/t)α

b sin πα
+ cot πα

)

, t ∈ (0, 1],

where b := (1 − β)/β. Continuously extending this family, we let Lα,1 := 1 and
Lα,0 := 0, α ∈ [0, 1], and L1,β := β, Pr(L0,β = 1) = β = 1 − Pr(L0,β = 0).
These variables satisfy E[Lα,β ] = β and Var[Lα,β ] = (1−α)β(1−β), cf. [L1] and
Section 3 of [T6], where the relation to one-sided stable variables Gα is discussed,
too.

Theorem 3.2 (Arcsine law for occupation times). Let T be a c.e.m.p.t. on the σ -
finite measure space (X, A, µ), µ(X) = ∞, and Y be as in Theorem 3.1, satisfying
(3.1) and (3.2). Assume further that X = A1 ∪ Y ∪ A2 (measurable and pairwise
disjoint), where µ(A1) > 0 and Y dynamically separates A1 and A2, and that

1

wN(Y, A1)

N−1∑

n=0

T̂ n1A1∩Yn → H1
uniformly on Y as N → ∞, with
H1 : Y → [0, ∞) uniformly sweeping,

(3.5)

and

wN(Y, A1)

wN(Y )
−→ β ∈ [0, 1] as N → ∞. (3.6)
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Then

1

n
Sn(1A)

L(µ)⇒ Lα,β (3.7)

for all A ∈ A satisfying µ(A 
 A1) < ∞.

Remark 3.2. In the α = 1, β ∈ (0, 1) case this gives a non-trivial weak law of
large numbers for the occupation times of the infinite measure set A. The question
of the pointwise (a.e.) behaviour in such situations has been discussed in [ATZ].

The following observations are very useful in applying the theorems, cf. Section
8 below. The first enables us to deduce our conditions if we know about smaller
components partitioning Y c.

Remark 3.3. Let T be a c.e.m.p.t. on (X, A, µ), µ(X) = ∞, X = Y ∪ ⋃
j∈J Bj

(measurable and pairwise disjoint), where 0 < µ(Y ) < ∞, J is finite, and µ(Bj ) >

0 for all j ∈ J . Suppose that Y dynamically separates Bi and Bj whenever i �= j .
If, for all j ∈ J ,

1

wN(Y, Bj )

N−1∑

n=0

T̂ n1Bj ∩Yn → Dj
uniformly on Y as N → ∞, with
Dj : Y → [0, ∞) uniformly sweeping,

(3.8)

and

wN(Y, Bj )

wN(Y )
−→ βj ∈ [0, 1] as N → ∞, (3.9)

thenT satisfies (3.1) withH = ∑
j∈J βjDj . Moreover, for any partitionJ =J1∪J2,

the sets Ai := ⋃
j∈Ji

Bj are dynamically separated by Y , and if
∑

j∈J1
βj > 0,

then A1 satisfies (3.5) and (3.6) with β = ∑
j∈J1

βj and H1 = β−1 ∑
j∈J1

βjDj .

The second provides us with an important way to find or recognize good com-
ponents Ai in systems known to have property (3.1).

Remark 3.4. Let T be a c.e.m.p.t. on the σ -finite measure space (X, A, µ), µ(X) =
∞, and Y be as in Theorem 3.1, satisfying (3.1). Assume further that X = A1 ∪
Y ∪A2 (measurable and pairwise disjoint), and that there are disjoint sets E1, E2 ∈
A ∩ Y with T Aj \ Aj ⊆ Ej , j ∈ {1, 2}. Then Y separates A1 and A2, and
if 1E1 · H is uniformly sweeping for Y , then (3.5) and (3.6) are satisfied with
β = ∫

E1
H dµ > 0 and H1 = β−11E1H . Moreover, Aj = ⋃

n≥1 Yn ∩ T −nEj

(mod µ), j ∈ {1, 2}, which indicates how to construct dynamically separated pairs
starting from subsets of Y . (To see this, verify that Aj ∩ Yn = Yn ∩ T −nEj and
hence T̂ n1Aj ∩Yn = 1Ej

T̂ n1Yn for n ≥ 1.)

In many situations (see Example 1.1 and Section 8 ) there are natural candidates
Ai which can be shown to fulfill the conditions of Theorem 3.2. Still we will show,
using the preceding remark, that in the situation of our Darling-Kac theorem there
are always sets satisfying the arcsine law:
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Proposition 3.1 (Existence of sets satisfying the arcsine law). LetT be a c.e.m.p.t.
on the nonatomic σ -finite measure space (X, A, µ), µ(X) = ∞, and Y be as in
Theorem 3.1, satisfying (3.1) and (3.2). Then, for any β ∈ (0, 1), there are pairs
(A1, A2) satisfying the assumptions of Theorem 3.2.

The second arcsine limit theorem we discuss involves the times at which orbits
visit a good set. For Y ∈ A, 0 < µ(Y ) < ∞, we define the N0-valued variables
Zn(Y ), n ∈ N0, on X by Zn(Y )(x) := max({0} ∪ {1 ≤ k ≤ n : T kx ∈ Y }). In the
language of renewal theory, n − Zn(Y ) is the spent waiting time if the process is
inspected at time n. If µ is a probability measure, the ergodic theorem immediately
shows2 that

1

n
Zn(Y ) −→ 1 a.e.

The Dynkin-Lamperti arcsine theorem describes the asymptotic behaviour of these
renewal-theoretic random variables in infinite measure preserving situations: For
α ∈ (0, 1) we let Zα denote a random variable (with values in [0, 1]) distributed
according to the B(α, 1−α)-distribution (sometimes called the generalized arcsine
distribution), i.e.

Pr ({Zα ≤ t}) = sin πα

π

∫ t

0

dx

x1−α(1 − x)α
, t ∈ [0, 1].

Continuously extending this family to α ∈ [0, 1] we let Z0 := 0 and Z1 := 1. We
are going to prove the following version of the Dynkin-Lamperti theorem for the
reference set Y . (For more specific maps, like the one in Example 1.1, it is easy
to extend the result to a large family of sets, see Proposition 7.1 and Remark 8.1
below.)

Theorem 3.3 (Arcsine law for waiting times). Let (X, A, µ), T , and Y be as in
Theorem 3.1, satisfying (3.1) and (3.2). Then

1

n
Zn(Y )

L(µ)⇒ Zα . (3.10)

Remark 3.5 (Alternative formulations). Statement (3.10) is equivalent to assertions
about other renewal theoretic variables (cf. [Dy], [T4]): Let T be a c.e.m.p.t. on
(X, A, µ), and for Y ∈ A, 0 < µ(Y ) < ∞, define Yn(Y )(x) := min{k > n :
T kx ∈ Y } = ϕ(T nx)+n, x ∈ X, n ∈ N0, so that Yn(Y )−n is the residual waiting
time. Due to {Zn(Y ) ≤ k} = {Yk(Y ) > n}, (3.10) holds iff

1

n
Yn(Y )

L(µ)⇒ Z−1
α , (3.11)

or, equivalently, (ϕ ◦ T n)/n
L(µ)⇒ Z−1

α − 1. Moreover, letting Vn(Y ) := Yn(Y ) −
Zn(Y ) denote the total waiting time, (3.10) and (3.11) imply

1

n
Vn(Y )

L(µ)⇒ Vα, (3.12)

2 Since Zn(Y ) = ∑Sn−1
i=0 ϕ ◦ T i

Y with Sn := ∑n

j=1 1Y ◦ T j .
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where V0 := ∞, V1 := 0, and Vα , α ∈ (0, 1), has distribution given by

Pr ({Vα ≤ t}) = sin πα

π

∫ t

0

1 − (max(1 − x, 0))α

x1+α
dx, t ≥ 0.

(In the situation of [T4] the converse implication holds as well.)

For a c.e.m.p.t. T on (X, A, µ) the asymptotics of the wandering rate (wN(Y ))

in general depends on the set Y , and there are no sets with maximal rate, provided
µ is non-atomic (cf. Proposition 3.8.2 of [A0]). Still, there may be sets Y ∈ A, 0 <

µ(Y )<∞, with minimal wandering rate, meaning that lim N→∞wN(Z)/wN(Y )≥1
for all Z ∈ A, 0 < µ(Z) < ∞. If such sets Y exist, wN(T ) := wN(Y ), N ≥ 1,
defines the wandering rate of T (up to asymptotic equivalence), whose asymptotic
proportionality class is an isomorphism invariant (cf. [T2]). The following result
shows that (wN(Y )) may be replaced by (wN(T )) in the assumptions of Theorems
3.1, 3.2, and 3.3 (compare Theorem 3 in [T2] and Theorem 4.1 in [ADU]).

Proposition 3.2 (Minimal wandering rates). Let T be a c.e.m.p.t. on the σ -finite
measure space (X, A, µ), µ(X) = ∞. If Y ∈ A, 0 < µ(Y ) < ∞, satisfies (3.1),
then Y has minimal wandering rate.

Proof. Take any Z ∈ A, 0 < µ(Z) < ∞, and let YN := ⋃N−1
n=0 T −nY =

⋃N−1
n=0 Yn, ZN := ⋃N−1

n=0 T −nZ, N ≥ 1. Then,

wN(Y ) = µ(YN) ≤ µ(ZN) + µ(YN \ ZN) = wN(Z) + µ(YN \ ZN).

Taking into account that ZN ⊇ T −nZ, 0 ≤ n < N , we get

µ(YN \ ZN) =
N−1∑

n=0

µ(Yn \ ZN)

≤
N−1∑

n=0

µ(Yn ∩ T −n(Y \ Z)) =
∫

Y\Z

(
N−1∑

n=0

T̂ n1Yn

)

dµ.

Therefore, for all N ≥ 1,

wN(Z)

wN(Y )
≥ 1 −

∫

Y\Z
gN dµ ≥ 1 − sup

l≥1

∫

Y\Z
gl dµ,

where gN := wN(Y )−1 ∑N−1
n=0 T̂ n1Yn , N ≥ 1. Applying this estimate to ZL for

fixed L ≥ 1 and using wN(ZL) ≤ wN(Z) + L µ(Z), we obtain

wN(Z)

wN(Y )
≥ 1 − sup

l≥1

∫

Y\ZL

gl dµ − L µ(Z)

wN(Y )
for N ≥ 1,

and thus

lim
N→∞

wN(Z)

wN(Y )
≥ 1 − sup

l≥1

∫

Y\ZL

gl dµ.
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By (3.1), however,

lim
L→∞

sup
l≥1

∫

Y\ZL

gl dµ = 0,

and our result follows. ��

Remark 3.6. This argument shows in fact that uniform integrability of the sequence
(wN(Y )−1 ∑N−1

n=1 T̂ n1Yn)N≥1 is sufficient for Y to have minimal wandering rate.

We finally emphasize the difference to earlier work on Darling-Kac and
Dynkin-Lamperti-type results for m.p.t.s: The original proof (cf. [A0], [A1]) of the
dynamical Darling-Kac theorem applies to c.e.m.p.t.s T on (X, A, µ), which are
pointwise dual ergodic (p.d.e.), meaning that there exists a sequence (an) = (an(T ))

in R+ (the return sequence of T ) such that

1

an

n−1∑

k=0

T̂ ku −→ µ(u) a.e. on X for each u ∈ L1(µ). (3.13)

The same is true for the Dynkin-Lamperti theorem (cf. [T4]) which in addition
requires the sets under consideration to be uniform sets, i.e. the convergence in
(3.13) has to be uniform on Y for some u ∈ L+

1 (µ). These are conditions about the
full asymptotics of the transfer operator. Checking them for specific systems like
interval maps with indifferent fixed points is a nontrivial matter, cf. [A2], [T3], and
[Z2]. (We shall revisit the proof of the Darling-Kac theorem for p.d.e. transforma-
tions in Section 9.)

In [T6] a different approach, based on property (2.6), has been used to derive a
version of the arcsine law for occupation times for certain infinite measure preserv-
ing interval maps (including Boole’s transformation). Here, we will develop this
method more systematically, showing that the weaker condition (2.5) is a suitable
starting point for all three limit theorems. On the other hand, we demonstrate that
for a large class of infinite measure preserving interval maps these conditions which
only concern the dynamics up to the first entrance to Y can be verified with little
effort.

4. Outline of the approach and analytic tools

We give a brief sketch of our method and provide a few auxiliary results which will
be used in the sequel. To begin with, we recall an important fact concerning strong
distributional convergence: Given distributional convergence w.r.t. some probabil-
ity measure ν � m, strong distributional convergence is automatic if the random
variables are asymptotically invariant in measure3 under an ergodic nonsingular
transformation T on (X, A, m).

3 On a σ -finite measure space (X, A, m) convergence in measure w.r.t. m, Vn

m−→ V ,
means convergence in measure, Vn

ν−→ V , for all probability measures ν � m.
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Proposition 4.1 (Strong distributional convergence). Let T be a nonsingular
ergodic transformation on the σ -finite measure space (X, A, m). Assume that Rn :
X → R, n ≥ 1, are measurable functions satisfying

Rn ◦ T − Rn
m−→ 0 or

Rn ◦ T

Rn

m−→ 1. (4.1)

If Rn
ν⇒ R for some probability measure ν � m and some random variable R

taking values in R, then Rn
L(m)⇒ R.

(See [Ea] for the probability preserving case, and [A1] or Section 3.6 of [A0]
for the case of nonsingular T and ergodic sums Rn = a−1

n Sn(f ). As pointed out in
[T4], the argument given in the latter reference actually applies to the more general
situation considered here.) This remarkable observation shows that many distribu-
tional limit theorems for dynamical systems, which are usually formulated in terms
of the invariant measure, extend at once to arbitrary absolutely continuous initial
distributions ν. Moreover, we shall see that it also is a strong tool for establishing
distributional limit theorems in the first place.

The random variables occurring in our results all satisfy the asymptotic invari-

ance condition Rn ◦ T − Rn
µ−→ 0. Therefore it is enough to prove distributional

convergence w.r.t. one particular initial distribution ν � µ, which we will choose
to be concentrated on the reference set Y . Since in each case the distribution of
the limiting variable R is determined by its moments, Rn

ν⇒ R follows as soon
as the moments of the Rn converge to the moments of R, i.e.

∫
X

Rr
n dν → E[Rr ]

as n → ∞ for all r ≥ 1. All variables Rn we are going to consider here are
non-negative.

To establish convergence of moments, we are essentially going to use the fol-
lowing scheme: We dissect trajectories of points in the reference set Y at their
first return to Y , thus obtaining a recursion formula which, on each Y ∩ {ϕ = k},
expresses Rn in terms of Rn−k ◦ T k , and automatically gives corresponding for-
mulae for the Rr

n. These dissection identities being convolution-like, we pass to
Laplace transforms, turning them into product form. The implicit recursive rela-
tions for the Laplace transforms of the moments involve the T̂ k1Y∩{ϕ=k} and T̂ n1Yn .
Our condition (2.5) together with regular variation now enables us to derive explicit
asymptotic recursions for the transforms. Technically, this step is taken care of by
Lemmas 4.2 and 4.3 below.

We will, however, encounter a problem with the asymptotic recursions thus
obtained: They involve a change of measure, and express the moments of the Rn

w.r.t. one probability measure in terms of its lower-order moments w.r.t. a different
measure. This will be resolved by means of an important consequence of Propo-
sition 4.1, the equivalent moments principle, Lemma 4.4 below. Employing this
we end up with a proper asymptotic recursion formula for the transforms of the
moments w.r.t. one particular measure. Completing the proofs then is a matter of
asymptotic analysis.
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We supply a number of important analytic tools. Throughout we use the con-
vention that for an, bn ≥ 0 and ϑ ∈ [0, ∞),

an ∼ ϑ · bn as n → ∞ means bn > 0 for n ≥ n0 and lim
n→∞

an

bn

= ϑ ,

even if ϑ = 0 (and analogously for functions and f (s) ∼ ϑ · g(s) as s ↘ 0).
We shall heavily depend on Karamata’s Tauberian theorem for discrete Laplace
transforms and the Monotone Density theorem for regularly varying functions, cf.
Corollary 1.7.3 of [BGT]. We will need the following version:

Proposition 4.2 (Karamata’s Tauberian Theorem, KTT). Let (bn) be a se-
quence in [0, ∞) such that for all s > 0, B(s) := ∑

n≥0 bn e−ns < ∞. Let
� ∈ R0 and ρ, ϑ ∈ [0, ∞). Then

B(s) ∼ ϑ

(
1

s

)ρ

�

(
1

s

)

as s ↘ 0, (4.2)

iff

n−1∑

k=0

bk ∼ ϑ

	(ρ + 1)
nρ�(n) as n → ∞. (4.3)

If (bn) is eventually monotone and ρ > 0, then both are equivalent to

bn ∼ ϑρ

	(ρ + 1)
nρ−1�(n) as n → ∞. (4.4)

Remark 4.1. In Corollary 1.7.3 of [BGT], the last equivalence is stated under the
additional assumption ϑ > 0. This is, however, an unnecessary restriction. The
way we have written the constant in (4.4), the implication (4.3)⇒(4.4) remains
true even for ρ = 0 (but to conclude that (bn) ∈ Rρ−1 one clearly needs ϑρ > 0).
The implication (4.4 )⇒(4.3) requires ρ > 0, but does not depend on the monoto-
nicity condition.

We will also exploit the Monotone Density theorem in the form of the following
differentiation rules. To formulate them, define

cρ,r := ρ(ρ + 1) . . . (ρ + r − 1) = (−1)r r!

(−ρ

r

)

for ρ ∈ R and r ∈ N0, and let cρ,−1 := 0. Notice that

cρ,r − r cρ,r−1 = cρ−1,r for all r ∈ N0. (4.5)

Lemma 4.1 (Differentiation lemma). a) Let f : (0, η) → (0, ∞) be continu-
ously differentiable, g ∈ R0(0), and let ρ ∈ R, ϑ ∈ [0, ∞). If f ′ is monotone,
then

f (s) ∼ ϑ · sρg(s) as s ↘ 0
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implies

f ′(s) ∼ ϑρ · sρ−1g(s) as s ↘ 0.

b) Consequently, if bn ≥ 0, n ≥ 0, are such that B(s) := ∑
n≥0 bne

−ns < ∞ for
s > 0, and if

B(s) ∼ ϑ · G(s) as s ↘ 0

with G ∈ R−ρ(0), and ρ, ϑ ∈ [0, ∞), then, for r ∈ N0,

(−1)rB(r)(s) =
∑

n≥0

nrbn e−ns ∼ ϑ · cρ,r

(
1

s

)r

G(s) as s ↘ 0. (4.6)

(Unless explicitely stated otherwise, We agree that 00 := 1 in coefficients of
power series.) Next, we provide the two lemmas mentioned above.

Lemma 4.2 (Integrating transforms I). Let T be a nonsingular transformation
on the σ -finite measure space (X, A, m), Y ∈ A with 0 < m(Y) < ∞, and H a
nonnegative measurable function, supported on and uniformly sweeping in K ∈ N0
steps for Y . Suppose that Rn : X → [0, ∞), n ≥ 0, are measurable satisfying

0 <
∑

n≥0

(∫

Y

Rn · H dm

)

e−ns < ∞ for all s > 0,

and that for all k ∈ {0, . . . , K},
∫

Y

Rn ◦ T k · H dm = O

(∫

Y

Rn+k · H dm

)

as n → ∞.

Let vn : Y → [0, ∞), n ≥ 0, be bounded measurable functions such that for all
s > 0 we have 0 <

∑
n≥0(

∫
Y

vn dm) e−ns < ∞. If

∑n
k=0 vk

∑n
k=0

∫
Y

vn dm
−→ H uniformly on Y as n → ∞, (4.7)

then

∫

Y




∑

n≥0

vn e−ns



 ·



∑

n≥0

Rn e−ns



 dm

∼
∑

n≥0

(∫

Y

vn dm

)

e−ns ·
∑

n≥0

(∫

Y

Rn · H dm

)

e−ns as s ↘ 0.

Condition (4.7) obviously holds if
∫
Y

vn dm is eventually positive and

∑

n≥0

∫

Y

vn dm = ∞ and
vn∫

Y
vn dm

−→ H uniformly on Y . (4.8)
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Proof. We have to show that

∫

Y

Hs ·
∑

n≥0

Rn e−ns dm ∼
∑

n≥0

(∫

Y

Rn · H dm

)

e−ns as s ↘ 0,

where

Hs :=
∑

n≥0 vn e−ns

∑
n≥0(

∫
Y

vn dm) e−ns
=

∑
n≥0

(∑n
k=0 vk

)
e−ns

∑
n≥0

(∑n
k=0

∫
Y

vk dm
)
e−ns

.

Recalling that the functions vn (and hence also H ) are bounded, it is straightforward
to verify that

Hs −→ H uniformly on Y as s ↘ 0.

Therefore, given ε > 0 there is some sε > 0 such that for s ∈ (0, sε),

∣
∣
∣
∣
∣
∣

∫

Y

Hs ·
∑

n≥0

Rn e−ns dm−
∑

n≥0

(∫

Y

Rn · H dm

)

e−ns

∣
∣
∣
∣
∣
∣
≤ ε

∑

n≥0

(∫

Y

Rn dm

)

e−ns ,

and the proof will be complete if we show that

∑

n≥0

(∫

Y

Rn dm

)

e−ns = O




∑

n≥0

(∫

Y

Rn · H dm

)

e−ns



 as s ↘ 0.

Since H is uniformly sweeping in K steps for Y , we have C
∑K

k=0 T̂ kH ≥ 1 a.e.
on Y for some C > 0. Therefore, for all n ≥ 0,

∫

Y

Rn dm ≤ C

K∑

k=0

∫

Y

(Rn ◦ T k) · H dm ≤ C̃

K∑

k=0

∫

Y

Rn+k · H dm,

which implies

∑

n≥0

(∫

Y

Rn dm

)

e−ns ≤
(

C̃

K∑

k=0

eks

)
∑

n≥0

(∫

Y

Rn · H dm

)

e−ns for s > 0.

��

Besides this elementary observation, we will also make use of a more sophis-
ticated version which covers derivatives and also provides us with a monotone
density result. This result also turns out to be useful in other situations, see Section
9. We state it as a separate lemma since it is worth pointing out that the easy Lemma
4.2 suffices if we content ourselves with the stronger assumption (2.6) instead of
(2.5) in the arcsine theorems.
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Lemma 4.3 (Integrating transforms II). Let (X, A, m), T , Y , H , and (Rn) be
as in Lemma 4.2, and let vn : Y → [0, ∞), n ≥ 0, be bounded measurable
functions with

∫
Y

∑
n≥0 vn dm > 0, and bn ≥ 0, n ≥ 0, be constants such that

B(s) := ∑
n≥0 bn e−ns ∈ R−ρ(0) for some ρ ∈ [0, ∞).

a) Assume that

∑n
k=0 vk

∑n
k=0

∫
Y

vk dm
−→ H

uniformly on Y

as n → ∞,
(4.9)

and that for some ϑ ∈ [0, ∞),

n∑

k=0

∫

Y

vk dm ∼ ϑ ·
n∑

k=0

bk as n → ∞. (4.10)

Then, for all r ∈ N0,

∫

Y




∑

n≥0

nrvn e−ns



 ·



∑

n≥0

Rn e−ns



 dm (4.11)

∼ ϑ · (−1)r r!

(−ρ

r

)(
1

s

)r

B(s)
∑

n≥0

(∫

Y

Rn · H dm

)

e−ns as s ↘ 0.

b) If, moreover, vn ↘ 0 a.e. on Y as n → ∞, so that vn = ∑
k>n uk with un ≥ 0,

n ≥ 1, measurable, then, for all r ≥ 1,

∫

Y




∑

n≥1

nrun e−ns



 ·



∑

n≥0

Rn e−ns



 dm (4.12)

∼ ϑ · (−1)r−1r!

(
1 − ρ

r

)(
1

s

)r−1

B(s)

·
∑

n≥0

(∫

Y

Rn · H dm

)

e−ns as s ↘ 0.

Proof. a) Suppose first that r = 0. By Lemma 4.2 and (4.10) we find

∫

Y




∑

n≥0

vn e−ns



 ·



∑

n≥0

Rn e−ns



 dm

∼



∑

n≥0

(∫

Y

vn dm

)

e−ns




∑

n≥0

(∫

Y

Rn · H dm

)

e−ns

∼ ϑ · B(s)
∑

n≥0

(∫

Y

Rn · H dm

)

e−ns as s ↘ 0.
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If r ≥ 1 we let Vn := ∑n
k=0 vk , Bn := ∑n

k=0 bk , n ≥ 0. On Y we have, for
s > 0,
∑

n≥1

nrvn e−ns = (1−e−s)
∑

n≥0

(n + 1)rVn e−ns −
∑

n≥0

(
(n + 1)r − nr

)
Vn e−ns .

Since

Vn∫
Y

Vn dm
−→ H uniformly on Y as n → ∞ (4.13)

(and (n + 1)r ∼ nr ), Lemma 4.2 implies

∫

Y




∑

n≥0

(n + 1)rVn e−ns



 ·



∑

n≥0

Rn e−ns



 dm

∼



∑

n≥0

nr

(∫

Y

Vn dm

)

e−ns




∑

n≥0

(∫

Y

Rn · H dm

)

e−ns as s ↘ 0.

Now

∑

n≥0

Bne
−ns = 1

1 − e−s
B(s) ∼ 1

s
B(s) ∈ R−(ρ+1)(0)

as s ↘ 0, so that by (4.10) and part b) of Lemma 4.1,

∑

n≥0

nr

(∫

Y

Vn dm

)

e−ns ∼ ϑ ·
∑

n≥0

nrBn e−ns ∼ ϑ · cρ+1,r

(
1

s

)r+1

B(s)

as s ↘ 0. Consequently,

(1 − e−s)

∫

Y




∑

n≥0

(n + 1)rVn e−ns



 ·



∑

n≥0

Rn e−ns



 dm

∼ ϑ · cρ+1,r

(
1

s

)r

B(s)
∑

n≥0

(∫

Y

Rn · H dm

)

e−ns as s ↘ 0.

Due to (4.13) and ((n + 1)r − nr) ∼ r nr−1 as n → ∞, we can conclude
analogously that

∫

Y




∑

n≥0

(
(n + 1)r − nr

)
Vn e−ns



 ·



∑

n≥0

Rn e−ns



 dm

∼ ϑ · r cρ+1,r−1

(
1

s

)r

B(s)
∑

n≥0

(∫

Y

Rn · H dm

)

e−ns as s ↘ 0.
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Therefore
∫
Y

(∑
n≥1 nrvn e−ns

) · (∑n≥0 Rn e−ns
)

dm
( 1

s

)r
B(s)

∑
n≥0

(∫
Y

Rn · H dm
)
e−ns

−→ ϑ · (cρ+1,r − r cρ+1,r−1)

= ϑ · cρ,r

as s ↘ 0, which completes the proof of (4.11).
b) We need to sharpen (4.11) to get (4.12) for r ≥ 1. To do so, we use the identity

∑

n≥1

nrun e−ns=e−s
r−1∑

j=0

(
r

j

)∑

n≥0

njvn e−ns − (1−e−s)
∑

n≥0

nrvn e−ns on Y ,

which is straightforward from un = vn−1 − vn, n ≥ 1. According to (4.11) we
have, as s ↘ 0,

e−s
r−1∑

j=0

(
r

j

)∫

Y




∑

n≥0

njvn e−ns



 ·



∑

n≥0

Rn e−ns



 dm

∼ ϑ ·
r−1∑

j=0

(
r

j

)

cρ,j

(
1

s

)j

B(s)
∑

n≥0

(∫

Y

Rn · H dm

)

e−ns

∼ ϑ · r cρ,r−1

(
1

s

)r−1

B(s)
∑

n≥0

(∫

Y

Rn · H dm

)

e−ns

and

(1 − e−s)

∫

Y




∑

n≥0

nrvn e−ns



 ·



∑

n≥0

Rn e−ns



 dm

∼ ϑ · s cρ,r

(
1

s

)r

B(s)
∑

n≥0

(∫

Y

Rn · H dm

)

e−ns .

Combinings these observations with r cρ,r−1 − cρ,r = −cρ−1,r = (−1)r−1r!
(1−ρ

r

)
, our claim (4.12) follows.

��
To conclude this preparatory section we prove the crucial equivalent moments

principle (cf. Lemma 4 of [T6]). As it is of some independent interest we give a
version which is somewhat more general than what we actually need below.

Lemma 4.4 (Equivalent moments principle). Let T be a nonsingular ergodic
transformation on the σ -finite measure space (X, A, m), and let Rn : X → [0, ∞),
n ≥ 1, be measurable, satisfying (4.1). Suppose that ν, ν∗ � m are probability
measures on (X, A) such that for all r ∈ N0 the sequences (

∫
X

Rr
n dν)n≥1 and

(
∫
X

Rr
n dν∗)n≥1 are bounded, and assume that limn→∞

∫
X

Rn dν > 0. Then

lim
n→∞

∫
X

Rr
n dν∗

∫
X

Rr
n dν

= 1 for all r ∈ N0.
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Proof. Take some p ∈ N and let (nk) be a subsequence of indices such that

ρ := lim
k→∞

∫
X

R
p
nk

dν∗
∫
X

R
p
nk

dν
∈ [0, ∞]

exists. We show that necessarily ρ = 1. By Helly’s compactness theorem and
Proposition 4.1 there is some subsequence (ml) of (nk) and some random variable

R taking values in [0, ∞] such that Rml

L(m)⇒ R. Since supn≥1

∫
X

Rr
n dν < ∞

for each r ∈ N0, we conclude that E[Rr ] < ∞ and liml→∞
∫
X

Rr
ml

dν = E[Rr ]
for all r ≥ 0. The same is true for ν∗. As lim n→∞

∫
X

Rn dν > 0, we know that
E[R] ∈ (0, ∞), and hence E[Rr ] ∈ (0, ∞) for all r ∈ N0 (and in particular for
r = p). Hence ρ = 1. ��

5. The Darling-Kac theorem

Suppose that the assumptions of Theorem 3.1 are satisfied. As a consequence of
Proposition 4.1 for Rn := a−1

n Sn(f ) and Hopf’s ratio ergodic theorem (see [KK]
or [Z5] for short proofs), the conclusion of our theorem follows as soon as there
is any f ∈ L+

1 (µ) and any ν � µ for which a−1
n Sn(f )

ν⇒ µ(f ) Mα , and
we will choose f = 1Y and ν := µY , thus considering the occupation times4

Sn := ∑n
j=1 1Y ◦ T j , n ≥ 0. As the Mittag-Leffler laws are determined by their

moments, the theorem can be proved by showing that

∫

Y

(
Sn

an

)r

dµY −→ µ(Y )r E[Mr
α] = µ(Y )r r!

(	(1 + α))r

	(1 + rα)
, r ∈ N0. (5.1)

We proceed along the lines sketched above. The dissection identity is

Sn =
{

1 + Sn−k ◦ T k on Y ∩ {ϕ = k}, 1 ≤ k ≤ n,
0 on Y ∩ {ϕ > n}, for n ≥ 0, (5.2)

which leads to

Lemma 5.1 (Splitting moments at the first return). Let T be a c.e.m.p.t. of
(X, A, µ), consider Y ∈ A, 0 < µ(Y ) < ∞, and define Sn := ∑n

j=1 1Y ◦ T j ,
n ≥ 0. For all r ≥ 1 and s > 0 we then have

∫

Y




∑

n≥0

T̂ n1Yn e−ns



 ·



∑

n≥0

Sr
n e−ns



 dµ

= 1

1 − e−s

r−1∑

j=0

(
r

j

)∫

Y




∑

n≥1

T̂ n1Y∩{ϕ=n} e−ns



 ·



∑

n≥0

S
j
n e−ns



 dµ.

4 Working with Sn rather than Sn(1Y ) leads to slightly nicer formulae.
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Proof. According to the dissection identity (5.2) and the fact that T̂ k1Y∩{ϕ=k} = 0
a.e. on Y c, we obtain for n ≥ 0 and r ≥ 1,

∫

Y

Sr
n dµ =

n∑

k=1

∫

Y∩{ϕ=k}
(1 + Sn−k)

r ◦ T k dµ

=
n∑

k=1

∫

Y

T̂ k1Y∩{ϕ=k} · (1 + Sn−k)
r dµ

=
n∑

k=1

∫

Y

T̂ k1Y∩{ϕ=k} ·



r∑

j=0

(
r

j

)

S
j
n−k



 dµ

=
r∑

j=0

(
r

j

)∫

Y

n∑

k=1

T̂ k1Y∩{ϕ=k} · S
j
n−k dµ.

Passing to generating functions, and separating the j = r term from the rest of the
sum, we conclude that for s > 0,

∑

n≥0

(∫

Y

Sr
n dµ

)

e−ns

=
r−1∑

j=0

(
r

j

)∫

Y




∑

n≥1

T̂ n1Y∩{ϕ=n} e−ns



 ·



∑

n≥0

S
j
n e−ns



 dµ

+
∫

Y




∑

n≥1

T̂ n1Y∩{ϕ=n} e−ns



 ·



∑

n≥0

Sr
n e−ns



 dµ.

Observe that the first expression on the right-hand side agrees with the one in the
identity we wish to prove. Recalling (2.1) and (2.3), we see that

1Y −
∑

n≥1

T̂ n1Y∩{ϕ=n} e−ns =
∑

n≥1

T̂ n1Y∩{ϕ=n} −
∑

n≥1

T̂ n1Y∩{ϕ=n} e−ns

= (1 − e−s)
∑

n≥0

(
∑

k>n

T̂ k1Y∩{ϕ=k}

)

e−ns

= (1 − e−s)
∑

n≥0

T̂ n1Yn e−ns a.e. (5.3)

and our assertion follows. ��
Condition (3.1) now enables us to convert this implicit recursion formula into

a simpler explicit asymptotic recursion formula. The price we pay is a change of
measure.

Lemma 5.2 (Asymptotic recursion). If, in the situation of the previous lemma,

1

wN(Y )

N−1∑

n=0

T̂ n1Yn → H
uniformly on Y as N → ∞, with
H : Y → [0, ∞) uniformly sweeping,
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then, for any r ≥ 1,

∑

n≥0

(∫

Y

Sr
n · H dµ

)

e−ns ∼ r

s QY (s)

∑

n≥0

(∫

Y

Sr−1
n dµY

)

e−ns ,

as s ↘ 0, where QY (s) := ∑
n≥0 qn(Y ) e−ns , s > 0.

Proof. As a consequence of Lemma 4.2 applied to Rn := Sr
n and vn := T̂ n1Yn , we

find for the left-hand side of Lemma 5.1 that

∫

Y




∑

n≥0

T̂ n1Yn e−ns



 ·



∑

n≥0

Sr
n e−ns



 dµ (5.4)

∼ µ(Y )QY (s)
∑

n≥0

(∫

Y

Sr
n · H dµ

)

e−ns

as s ↘ 0. To deal with the right-hand side, we use (5.3 ) and the identity

(1 − e−s)QY (s) = 1 − FY (s)

for FY (s) := ∑
k≥1 fk(Y ) e−ks , s > 0, to see that

1Y −
∑

n≥1

T̂ n1Y∩{ϕ=n} e−ns = (1 − FY (s))

∑
n≥0 T̂ n1Yn e−ns

QY (s)
a.e. (5.5)

As in the proof of Lemma 4.2 we have
∑

n≥0 T̂ n1Yn e−ns

QY (s)
−→ µ(Y ) · H uniformly on Y as s ↘ 0,

and since 1 − FY (s) → 0 as s ↘ 0, we conclude from (5.5) that
∑

n≥1

T̂ n1Y∩{ϕ=n} e−ns −→ 1 uniformly on Y as s ↘ 0.

Hence, for 0 ≤ j < r , we obtain as s ↘ 0,

∫

Y




∑

n≥1

T̂ n1Y∩{ϕ=n} e−ns



 ·



∑

n≥0

S
j
n e−ns



 dµ ∼
∫

Y




∑

n≥0

S
j
n e−ns



 dµ.

(5.6)

We claim that on the right-hand side of Lemma 5.1 the term with j = r − 1
dominates the others, thus determining the asymptotics. To see this, notice that for
0 ≤ j < r − 1 we have

∫
Y

S
j
n dµ = o(

∫
Y

Sr−1
n dµ) as n → ∞ since Sn → ∞ a.e.

on X. Combining this with (5.4) and (5.6) our assertion follows. ��
The proof of the theorem makes use of the second of the following simple

observations (see also 2.10.2 and 2.10.3 of [BGT]).
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Lemma 5.3. Let (bn)n≥0 be a non-negative sequence and letB(s) :=∑
n≥0 bn e−ns ,

s > 0. Then

N−1∑

n=0

bn = O

(

B

(
1

N

))

as N → ∞.

If, moreover, (bn) is increasing, then

bn = O

(
1

n
B

(
1

n

))

as n → ∞.

Proof. For n ≥ 1,

N−1∑

n=0

bn ≤ e

N−1∑

n=0

bn e− n
N ≤ e B

(
1

N

)

.

If the sequence is increasing, then

n bn ≤
2n∑

k=n

bk ≤ e2
2n∑

k=n

bk e−k/n ≤ e2B

(
1

n

)

.

��
Proof of Theorem 3.1. We are going to convert the formula of Lemma 5.2 into an
actual recursion formula by showing that for all r ≥ 1,

∫

Y

Sr
n · H dµ ∼

∫

Y

Sr
n dµY as n → ∞. (5.7)

In view of Lemma 5.2 and the fact that trivially
∑

n≥0

(∫
Y

S0
n dµY

)
e−ns ∼ s−1,

this immediately implies that for all r ≥ 0,

∑

n≥0

(∫

Y

Sr
n dµY

)

e−ns ∼ r!

s

(
1

s QY (s)

)r

as s ↘ 0. (5.8)

To establish (5.7), we apply the equivalent moments principle, Lemma 4.4. We
first claim that for all r ∈ N0,

∫

Y

Sr
n · H dµ �

∫

Y

Sr
n dµY as n → ∞, (5.9)

i.e. that the ratio is asymptotically bounded away from zero and infinity. Choose
K ∈ N0 such that

∑K
k=0 T̂ kH is bounded away from zero (mod µ) on Y . Since

this function is also bounded above, we obviously have

∫

Y

Sr
n ·
(

K∑

k=0

T̂ kH

)

dµ �
∫

Y

Sr
n dµY as n → ∞ for any r ∈ N0.
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On the other hand,

∫

Y

Sr
n · H dµ ≤

∫

Y

Sr
n ·
(

K∑

k=0

T̂ kH

)

dµ ≤
K∑

k=0

∫

Y

Sr
n ◦ T k · H dµ

≤
K∑

k=0

∫

Y

(Sn + k)r · H dµ ≤ Cr

∫

Y

Sr
n · H dµ + Kr

for constants Cr and Kr , r ∈ N0, and (5.9) follows.
Using (5.9) and Lemma 5.2 we see by induction that

∑

n≥0

(∫

Y

Sr
n dµY

)

e−ns = O

(
1

s

(
1

sQY (s)

)r)

as s ↘ 0

for each r ∈ N0. As a consequence of the second statement of Lemma 5.3, therefore
∫

Y

Sr
n dµY = O

((
n

QY (1/n)

)r)

as n → ∞ for any r ∈ N0. (5.10)

Since (wn(Y )) is regularly varying of index 1 − α, α ∈ [0, 1], we have, for s > 0,

QY (s) =
(

1

s

)1−α

�

(
1

s

)

, and wn(Y ) ∼ µ(Y )n1−α�(n)

	(2 − α)
as n → ∞

(5.11)

with � slowly varying at infinity. Thus
∫

Y

Sr
n dµY = O

((
nα

�(n)

)r)

as n → ∞ for any r ∈ N0. (5.12)

The r = 1 case of Lemma 5.2 together with monotonicity of (
∫
Y

Sn · H dµ)n≥1
yields, via KTT,

∫

Y

Sn · H dµ ∼ 1

	(1 + α)

nα

�(n)
as n → ∞. (5.13)

In view of (5.9), (5.12), and (5.13) the sequence given by Rn := n−α�(n)Sn, n ≥ 1,
satisfies the conditions of Lemma 4.4 with respect to the probability measures in
question and we conclude that (5.7), and hence also (5.8), holds.

Using (5.11) we thus have

∑

n≥0

(∫

Y

Sr
n dµY

)

e−ns ∼ r!

(
1

s

)1+αr
(

1

�( 1
s
)

)r

as s ↘ 0

for all r ≥ 0. By KTT and monotonicity of the sequences (
∫
Y

Sr
n dµY )n≥1, therefore

(5.1) holds, where, due to (5.11), (an) is any sequence satisfying

an ∼ nα

µ(Y )	(1 + α) �(n)
∼ 1

	(1 + α)	(2 − α)
· n

wn(Y )
as n → ∞.

Taking r = 1 in (5.1) we see that (an) can be chosen as stated in the theorem. ��
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6. The arcsine law for occupation times

Suppose that the assumptions of Theorem 3.2 are satisfied. If µ(A1) < ∞, then
clearly β = 0 and the conlusion follows from the ergodic theorem. We therefore
assume that µ(A1) = ∞. Again appealing to the ergodic theorem we see that it is
enough to consider A := A1. Due to Proposition 4.1 we need only prove distribu-
tional convergence w.r.t. the particular probability measure ν � µ with density H .
By boundedness of the variables under consideration, it suffices to prove conver-
gence of the moments, i.e.

∫

Y

(
Sn

n

)r

· H dµ −→ E[Lr
α,β ] as n → ∞ for all r ≥ 1. (6.1)

The dissection identity for Sn := ∑n
j=1 1A ◦ T j , n ≥ 0, reads as follows

Sn =






k−1+Sn−k ◦ T k on Y ∩T −1A ∩ {ϕ=k}, 1≤k≤n,
Sn−k ◦ T k on Y ∩T −1Ac ∩ {ϕ=k}, 1≤k≤n,
n on Y ∩T −1A ∩ {ϕ > n},
0 on Y ∩T −1Ac ∩ {ϕ > n},

for n≥0, (6.2)

which results in

Lemma 6.1 (Splitting moments at the first return). Let T be a c.e.m.p.t. of
(X, A, µ), and assume that X = A ∪ Y ∪ B (measurable and pairwise disjoint)
such that Y ∈ A, 0 < µ(Y ) < ∞, dynamically separates A and B. Let Sn :=∑n

j=1 1A ◦ T j , n ≥ 1, then, for r ≥ 1 and s > 0,

(1 − e−s)

∫

Y




∑

n≥0

T̂ n1Yn e−ns








∑

n≥0

Sr
n e−ns



 dµ

= e−s
r−1∑

j=0

(
r

j

)∫

Y




∑

n≥1

nr−j T̂ n+11Y∩T −1A∩{ϕ=n+1} e−ns








∑

n≥0

S
j
n e−ns



 dµ

+
∑

n≥1

nrµ(Y ∩ T −1A ∩ {ϕ > n}) e−ns .

Proof. Analogous to Lemma 5.1, compare Lemma 1 of [T6]: For n ≥ 0 and r ≥ 1,
∫

Y

Sr
n dµ =

n∑

k=1

∫

Y∩T −1A∩{ϕ=k}
(k − 1 + Sn−k)

r ◦ T k dµ

+
n∑

k=1

∫

Y∩T −1Ac∩{ϕ=k}
Sr

n−k ◦ T k dµ + nrµ(Y ∩ T −1A ∩ {ϕ > n})

=
r−1∑

j=0

(
r

j

)∫

Y

n∑

k=1

(k − 1)r−j · T̂ k1Y∩T −1A∩{ϕ=k} S
j
n−k dµ

+
∫

Y

n∑

k=1

T̂ k1Y∩{ϕ=k} · Sr
n−k dµ + nrµ(Y ∩ T −1A ∩ {ϕ > n}).
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Therefore, for s > 0,

∑

n≥0

(∫

Y

Sr
n dµ

)

e−ns

= e−s
r−1∑

j=0

(
r

j

)∫

Y




∑

n≥1

nr−j T̂ n+11Y∩T −1A∩{ϕ=n+1} e−ns








∑

n≥0

S
j
n e−ns



 dµ

+
∫

Y




∑

n≥1

T̂ n1Y∩{ϕ=n} e−ns








∑

n≥0

Sr
n e−ns



 dµ

+
∑

n≥1

nrµ(Y ∩ T −1A ∩ {ϕ > n}) e−ns .

Using (5.3), the assertion follows. ��
Lemma 6.2 (Asymptotic recursion). Under the assumptions of Theorem 3.2, we
have for r ≥ 1, as s ↘ 0,

1

r!

∑

n≥0

(∫

Y

Sr
n · H dµ

)

e−ns

∼ (−1)rβ




r−1∑

j=0

(−1)j+1
(

α

r − j

)(
1

s

)r−j

· 1

j !

∑

n≥0

(∫

Y

S
j
n · H1 dµ

)

e−ns

+
(

α − 1

r

)(
1

s

)r+1
]

.

Proof. As, in particular, all assumptions of Theorem 3.1 are fulfilled, we find for
the left-hand side of Lemma 6.1, exactly as in the proof of Lemma 5.2, that

(1 − e−s)

∫

Y




∑

n≥0

T̂ n1Yn e−ns



 ·



∑

n≥0

Sr
n e−ns



 dµ (6.3)

∼ µ(Y ) s QY (s)
∑

n≥0

(∫

Y

Sr
n · H dµ

)

e−ns , as s ↘ 0.

Turning to the right-hand side of Lemma 6.1, we first consider the rightmost sum.
Letting QY,A(s) := ∑

n≥0 µY (Y ∩ T −1A ∩ {ϕ > n}) e−ns , s > 0, we have

QY,A(s) ∼ β · QY (s) as s ↘ 0,

since wn(Y, A) ∼ β · wn(Y ) as n → ∞. Due to (wn(Y )) ∈ R1−α , we have

QY (s) =
(

1

s

)1−α

�

(
1

s

)

, s > 0,
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with � slowly varying at infinity, and thus

QY,A(s) ∼ β ·
(

1

s

)1−α

�

(
1

s

)

, as s ↘ 0.

Therefore, according to Lemma 4.1, as s ↘ 0,

∑

n≥1

nrµ(Y ∩ T −1A ∩ {ϕ > n}) e−ns ∼ (−1)rβ r!

(
α − 1

r

)(
1

s

)r

µ(Y ) QY (s).

(6.4)

For the other summands on the right-hand side of Lemma 6.1, we fix some j ∈
{0, . . . , r − 1}. We claim that we can apply part b) of Lemma 4.3 with Rn := S

j
n ,

un := T̂ n+11Y∩T −1A∩{ϕ=n+1}, ϑ := β, and ρ := 1 − α, thereby obtaining

∫

Y




∑

n≥1

nr−j T̂ n+11Y∩T −1A∩{ϕ=n+1} e−ns








∑

n≥0

S
j
n e−ns



 dµ

∼ (−1)r−j−1β (r − j)!

(
α

r − j

)(
1

s

)r−j−1

µ(Y ) QY (s)

·
∑

n≥0

(∫

Y

S
j
n · H1 dµ

)

e−ns

as s ↘ 0. Combining this with (6.3) and (6.4), our assertion then follows.
It remains to check that the assumptions of Lemma 4.3 are satisfied. We claim

that for n ≥ 1,

vn−1 =
∑

k>n

T̂ k1Y∩T −1A∩{ϕ=k} = T̂ n1A∩Yn a.e. for n ≥ 1. (6.5)

To verify this, notice that for 1 ≤ l ≤ k − 1, k ≥ 2, we have, due to dynamical
separation,

Y ∩ T −1A ∩ {ϕ = k} = Y ∩ T −lA ∩ {ϕ = k},
and hence T̂ l1Y∩T −1A∩{ϕ=k} = 1AT̂ l1Y∩{ϕ=k} a.e.. Consequently, by (2.3),

1A∩Yn =
∑

k>n

1AT̂ k−n1Y∩{ϕ=k} =
∑

k>n

T̂ k−n1Y∩T −1A∩{ϕ=k} a.e. for n ≥ 1,

(6.6)

as required (hence (3.4)). It is then clear from our assumption (3.5) that
∑n

k=0 vk
∑n

k=0

∫
Y

vk dµ
=

∑n+1
k=1 T̂ k1A∩Yk

∑n+1
k=1 µ(A ∩ Yk)

−→ H1
uniformly on Y

as n → ∞.

Moreover,
∑n

k=0

∫
Y

vk dµ ∼ β · wn(Y ) as n → ∞ with (wn(Y )) ∈ R1−α , and
B(s) = µ(Y )QY (s). The remaining assumptions of Lemma 4.3 clearly being
fulfilled, we are done. ��
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Proof of Theorem 3.2. We first recall that according to Proposition 1 of [T6] (and
by elementary considerations for the boundary cases), if α, β ∈ [0, 1],

E[Lr
α,β ]=(−1)rβ




r−1∑

j=0

(−1)j+1
(

α

r − j

)

E[Lj
α,β ] +

(
α − 1

r

)


 , r ≥1. (6.7)

(Conversely, for α, β ∈ (0, 1), the density of Lα,β can be reconstructed from this
by inverting its Stieltjes transform which can be calculated explicitely from (6.7),
compare [L1].) Taking r = 1 in the conclusion of the previous lemma, we see that

∑

n≥0

(∫

Y

Sn · H dµ

)

e−ns ∼ β ·
(

1

s

)2

as s ↘ 0. (6.8)

Due to monotonicity of (
∫
Y

Sn · H dµ)n≥1 we can conclude (cf. KTT) that
∫

Y

Sn · H dµ ∼ β · n as n → ∞. (6.9)

For β = 0 this means n−1
∫
Y

Sn · H dµ → 0, and hence n−1Sn
L(µ)⇒ Lα,β = 0, as

required.
Assume now that β > 0. To obtain a proper recursion formula from Lemma

6.2, we apply Lemma 4.4 to the sequence given by Rn := n−1Sn, n ≥ 1. As (Rn)

is uniformly bounded and by (6.9) satisfies lim
n→∞

∫
Y

Rn · H dµ > 0, we obtain

∫

Y

Sr
n · H dµ ∼

∫

Y

Sr
n · H1 dµ as n → ∞ for r ≥ 0. (6.10)

Hence the recursion obtained in Lemma 6.2 becomes

1

r!

∑

n≥0

(∫

Y

Sr
n · H dµ

)

e−ns ∼ (−1)rβ

[(
α − 1

r

)(
1

s

)r+1

+
r−1∑

j=0

(−1)j+1
(

α

r − j

)(
1

s

)r−j

· 1

j !

∑

n≥0

(∫

Y

S
j
n · H dµ

)

e−ns





for r ≥ 1 as s ↘ 0. (This is also true in the cases α ∈ {0, 1} since not all of the(
α
r

)
, . . . ,

(
α
1

)
,
(
α−1

r

)
vanish simultaneously.) Starting from the trivial r = 0 case,

∑
n≥0(

∫
Y

S0
n · H dµ) e−ns ∼ s−1, induction on r together with (6.7) then shows

that

∑

n≥0

(∫

Y

Sr
n · H dµ

)

e−ns ∼ r! E[Lr
α,β ]

(
1

s

)r+1

as s ↘ 0. (6.11)

(Since we assumed β > 0, all the E[Lr
α,β ] are positive.) KTT and monotonicity of

(
∫
Y

Sr
n · H dµ)n≥1 now show that (6.11) implies (6.1) as required. ��
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We conclude this section showing that there are many situations in which
Theorem 3.2 applies.

Proof of Proposition 3.1. Suppose that the bounded function H : Y → [0, ∞) is
uniformly sweeping in K steps. Due to Remark 3.4, it is enough to show that for
any β ∈ (0, 1) there is some set E1 ⊆ Y with

∫
E1

H dµ = β for which 1E1 · H

is uniformly sweeping, and since the latter property is preserved if we enlarge the
set, we need only check that

∫
E1

H dµ can be made arbitrarily small.
Fix ε > 0 and take any C ∈ Y ∩ A with 0 <

∫
C

H dµ < ε/2. As T is con-
servative ergodic, we have

∑
l≥0 T̂ l(1C · H) = ∞ a.e., implying that there are

L ∈ N0 and Z ∈ Y ∩ A satisfying infY\Z
∑L

l=0 T̂ l(1C · H) > 0 and µ(Z) <

ε/(2(K + 1) sup H). By assumption,
∑K

k=0 T̂ k(1T −kZ · H) = 1Z

∑K
k=0 T̂ kH has

positive infimum on Z, and hence the same is true for
∑K

k=0 T̂ k(1F · H), where
F := Y ∩⋃K

k=0 T −kZ. Since µ(F) ≤ (K + 1)µ(Z) < ε/(2 sup H), we see that∫
F

H dµ < ε/2, and E1 := C ∪ F is a suitable choice. ��

7. The arcsine law for waiting times

Suppose that the assumptions of Theorem 3.3 are satisfied. Due to our Proposition
4.1 and Lemma 1 in [T4], it is enough to prove that n−1Zn(Y )

ν⇒ Zα for one
probability measure ν � µ. We shall use the measure ν given by the asymptotic
entrance density H of Y , and henceforth abbreviate Zn := Zn(Y ). Since for any
α ∈ [0, 1], Zα is a bounded random variable, its distribution is determined by its
moments E[Zr

α] = (−1)r
(−α

r

)
, r ∈ N0, and it suffices to prove

∫

Y

(
Zn

n

)r

· H dµ −→ E[Zr
α] as n → ∞. (7.1)

The dissection identity for Zn is

Zn =
{

k + Zn−k ◦ T k on Y ∩ {ϕ = k}, 1 ≤ k ≤ n,
0 on Y ∩ {ϕ > n}, for n ≥ 0, (7.2)

leading to

Lemma 7.1 (Splitting moments at the first return). Let T be a c.e.m.p.t. of
(X, A, µ), consider Y ∈ A, 0 < µ(Y ) < ∞, and define Zn := Zn(Y ). For all
r ≥ 1 and s > 0 we then have

∫

Y




∑

n≥0

T̂ n1Yn e−ns



 ·



∑

n≥0

Zr
n e−ns



 dµ

= 1

1 − e−s

r−1∑

j=0

(
r

j

)∫

Y




∑

n≥1

nr−j T̂ n1Y∩{ϕ=n} e−ns



 ·



∑

n≥0

Z
j
n e−ns



 dµ.
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Proof. Due to the dissection identity (7.2) and the fact that T̂ k1Y∩{ϕ=k} = 0 a.e.
on Y c, we get for n ≥ 1 and r ≥ 1, by the same calculation as in the proof of
Lemma 5.1 ,

∫

Y

Zr
n dµ =

n∑

k=1

∫

Y∩{ϕ=k}
(k + Zn−k)

r ◦ T k dµ

=
r∑

j=0

(
r

j

)∫

Y

n∑

k=1

kr−j T̂ k1Y∩{ϕ=k} · Z
j
n−k dµ.

Consequently, for s > 0,

∑

n≥0

(∫

Y

Zr
n dµ

)

e−ns

=
r−1∑

j=0

(
r

j

)∫

Y




∑

n≥1

nr−j T̂ n1Y∩{ϕ=n} e−ns



 ·



∑

n≥0

Z
j
n e−ns



 dµ

+
∫

Y




∑

n≥1

T̂ n1Y∩{ϕ=n} e−ns



 ·



∑

n≥0

Zr
n e−ns



 dµ.

Recalling identity (5.3), the assertion follows easily. ��

We now exploit our condition (3.1) together with regular variation of the wander-
ing rate to turn this implicit recursion formula into an explicit asymptotic recursion
formula (again involving a change of measure).

Lemma 7.2 (Asymptotic recursion). If, in the situation of the previous lemma,

1

wN(Y )

N−1∑

n=0

T̂ n1Yn → H
uniformly on Y as N → ∞, with
H : Y → [0, ∞) uniformly sweeping,

and (wN(Y )) ∈ R1−α , α ∈ [0, 1], then, for any r ≥ 1, as s ↘ 0,

1

r!

∑

n≥0

(∫

Y

Zr
n · H dµ

)

e−ns

∼
r−1∑

j=0

(−1)r−j−1
(

α

r − j

)(
1

s

)r−j

· 1

j !

∑

n≥0

(∫

Y

Z
j
n · H dµ

)

e−ns .

Proof. Observe first that

Zn ◦ T k ≤ Zn+k for all n, k ∈ N0. (7.3)
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Lemma 4.2, with Rn := Zr
n and vn := T̂ n1Yn as in the proof of Lemma 5.2, yields

∫

Y




∑

n≥0

T̂ n1Yn e−ns



 ·



∑

n≥0

Zr
n e−ns



 dµ (7.4)

∼ µ(Y )QY (s)
∑

n≥0

(∫

Y

Zr
n · H dµ

)

e−ns

as s ↘ 0. Turning to the right-hand side of the preceding lemma, we fix j ∈
{0, . . . , r − 1} and apply part b) of Lemma 4.3 with un := T̂ n1Y∩{ϕ=n}, n ≥ 1 (so
that vn = T̂ n1Yn ), ρ := 1 − α, and ϑ := 1, to see that

∫

Y




∑

n≥1

nr−j T̂ n1Y∩{ϕ=n} e−ns



 ·



∑

n≥0

Z
j
n e−ns



 dµ

∼ (−1)r−j−1(r − j)!

(
α

r − j

)(
1

s

)r−j−1

µ(Y ) QY (s)·
∑

n≥0

(∫

Y

Z
j
n · H dµ

)

e−ns

as s ↘ 0. Combining these observations with Lemma 7.1, our assertion follows. ��
Here the measure changed on both sides, and we can immediately continue to

exploit the recursion formula.

Proof of Theorem 3.3. Using the identity
∑r

j=0

(
α

r−j

)(−α
j

) = 0, r ∈ N, we see that
the moments of Zα satisfy the recursion formula

E[Zr
α] =

r−1∑

j=0

(−1)r−j−1
(

α

r − j

)

E[Zj
α ] for r ∈ N. (7.5)

An induction based on Lemma 7.2 therefore shows that for any r ∈ N0,

∑

n≥0

(∫

Y

Zr
n · H dµ

)

e−ns ∼ r!

(
1

s

)r+1

E[Zr
α] as s ↘ 0. (7.6)

By KTT and monotonicity of the sequence (
∫
Y

Zr
n · H dµ)n≥1, this asymptotic

equation implies (7.1), as required. ��
To deal with subsets of our reference set Y , we will use the following obser-

vation. To formulate it, we note that TY is a nonsingular map from (X, A, µ) to
(Y, Y ∩ A, µ |Y∩A), with transfer operator T̂Y : L1(µ) → L1(µ |Y∩A).

Proposition 7.1 (Dynkin-Lamperti law for subsets). Let T be a c.e.m.p.t. on
(X, A, µ), and assume that Y ∈ A, 0 < µ(Y ) < ∞ satisfies

1

n
Zn(Y )

L(µ)⇒ Zα
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for some α ∈ [0, 1]. If there is some probability density u such that the sequence
(
T̂Y

(
T̂ nu

))
n∈N

is uniformly integrable, (7.7)

then every E ∈ Y ∩ A with µ(E) > 0 satisfies

1

n
Zn(E)

L(µ)⇒ Zα .

Proof. Fix any E ∈ Y ∩A with µ(E) > 0, and let τ denote its first entrance (return)

time. Recalling Remark 3.5, our assertion is equivalent to (τ ◦T n)/n
L(µ)⇒ Z−1

α −1.

Since it is easy to check that (τ ◦ T n+1 − τ ◦ T n)/n
µ→ 0 (notice τ ◦ T − τ =

(1Y τ) ◦ T − 1), this is the same as

τ ◦ T n

n

ν⇒ Z−1
α − 1,

where ν is the measure with density u, cf. Proposition 4.1. Observe that τ =
ϕ + (1Y\E τ) ◦ TY . Since, by assumption, (ϕ ◦ T n)/n

ν⇒ Z−1
α − 1, it suffices to

check that

τ ◦ T n − ϕ ◦ T n

n
= (1Y\E τ) ◦ TY ◦ T n

n

ν−→ 0 as n → ∞,

or, equivalently, that for any c > 0,
∫

Y∩{1Y\E τ>c n}
T̂Y

(
T̂ nu

)
dµ −→ 0 as n → ∞.

Due to (7.7) this is an immediate consequence of µ(Y ∩ {1Y\E τ > c n}) → 0. ��

8. Application to interval maps with indifferent fixed points

An important family of infinite measure preserving dynamical systems is given by
piecewise C2 interval maps with indifferent (neutral) fixed points. We are going
to show that the approach developed above applies to them in a very natural way.
The following class of transformations has been studied in [Z1], [Z2] generalizing
earlier work from [A0], [A2], [ADU], and [T1]-[T3]. Notations and terminology
below are the same as in [Z1], [Z2], except that (as above) T̂ denotes the trans-
fer operator w.r.t. the invariant measure µ. Throughout this section λ will denote
one-dimensional Lebesgue measure, and B will be the Borel-σ -field of the space
under consideration. If E ⊆ R is a finite union of intervals, we let BV(E) denote
the space of real-valued functions of bounded variation on E.

A piecewise monotonic system is a triple (X, T , ξ), where X is the union of
some finite family of disjoint bounded open intervals, ξ is a collection of nonempty
pairwise disjoint open subintervals with λ(X\⋃ ξ) = 0, and T : X → X is a
map such that T |Z is continuous and strictly monotonic for each Z ∈ ξ . We let
ξn denote the family of cylinders of rank n, that is, the nonempty sets of the form⋂n−1

i=0 T −iZi with Zi ∈ ξ . If W ⊆ Z ∈ ξn, we let fW := (T n |W)−1 be the inverse
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of the branch T n |W . Our maps will be C2 on each Z ∈ ξ and satisfy Adler’s
condition

T ′′/(T ′)2 is bounded on
⋃

ξ , (8.1)

as well as the finite image condition

T ξ = {T Z : Z ∈ ξ} is finite. (8.2)

There is a finite set ζ ⊆ ξ of cylinders Z having an indifferent fixed point xZ as an
endpoint (i.e. limx→xZ,x∈Z T x = xZ and limx→xZ,x∈Z T ′x = 1), and each xZ is a
one-sided regular source, i.e.

for x ∈ Z, Z ∈ ζ , we have (x − xZ)T ′′(x) ≥ 0. (8.3)

The second endpoint of Z ∈ ζ will be denoted by yZ . Our maps are uniformly
expanding on sets bounded away from {xZ : Z ∈ ζ }, in the sense that letting
Xε := X\⋃Z∈ζ ((xZ − ε, xZ + ε) ∩ Z) we have

∣
∣T ′∣∣ ≥ ρ(ε) > 1 on Xε for each ε > 0. (8.4)

Following [Z1], [Z2], we call (X, T , ξ) an AFN-system if it satisfies (8.1)-(8.4).
Henceforth we assume that T is conservative ergodic and ζ �= ∅ (a basic AFN-

system in the sense of [Z2]). (See Theorem 1 in [Z1] for ergodic decompositions.)
The system then has an invariant measure µ � λ with µ(X) = ∞ whose density
dµ/dλ has a version h(x) = h0(x)G(x), where

G(x) :=
{ x−xZ

x−fZ(x)
for x ∈ Z ∈ ζ

1 for x ∈ X \⋃ ζ ,

and 0 < infX h0 ≤ supX h0 < ∞, and h0 has bounded variation on each Xε,
ε > 0. For Z ∈ ζ we let BZ := fZ(Z), Z ∈ ζ , and Z(1) := Z \ BZ . We are going
to show that

Y = Y (T ) := X \
⋃

Z∈ζ

BZ =
⋃

W∈ξ\ζ
W ∪

⋃

Z∈ζ

Z(1) (mod λ), (8.5)

is a suitable reference set for T . It is clear that Y dynamically separates the (infinite
measure) components BZ = Y c ∩ Z, Z ∈ ζ , of its complement, so that we are
in the situation of Remark 3.3 with X = Y ∪ ⋃

Z∈ζ BZ . Our aim is to check the
sufficient conditions (3.8) and (3.9) given there.

The first one is taken care of by the following stronger result. For B ∈ B ∩ Y c

we define fk(Y, B) := µY (Y ∩ T −1B ∩ {ϕ = k}), k ≥ 1.

Theorem 8.1 (Return properties of AFN maps). Let (X, T , ξ) be a basic AFN-
system, and Y as in (8.5). Then for each Z ∈ ζ there is some probability density
DZ ∈ BV(Y ), positive on Z(1), such that

1

fk(Y, BZ)
· T̂ k

(
1Y∩T −1BZ∩{ϕ=k}

) −→ µ(Y ) DZ
uniformly on Y

as k → ∞,
(8.6)

and any D ∈ BV(Y ) with D ≥ 0 and
∫
Y

D dλ > 0 is uniformly sweeping for Y .
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The key to this theorem is a lemma about the asymptotic behaviour of high
iterates of (the inverse branch of) T near an indifferent fixed point, cf. Lemma 2 of
[T6], or Theorem 17 of [Z3].

Lemma 8.1 (Asymptotic shape of high iterates at a regular source). Let f :
[0, y] → R be C1, satisfying 0 < f (x) < x, f ′(x) > 0 on (0, y], f ′(0) = 1, and
let f be concave on [0, η] for some η > 0. Then there exists a positive continuous
function g on (0, y], non-increasing on (0, η], such that

(i) (f n)′ ∼ (f n(y) − f n+1(y)) · g as n → ∞ uniformly on each (ε, y], ε > 0,

(ii) f ′(x)
x−f (x)

≤ g(x) ≤ 1
x−f (x)

on (0, η], and

(iii)
∫ x

f (x)
g(t) dt = 1 for all x ∈ (0, y].

Proof of Theorem 8.1. Instead of directly using T̂ it will be convenient to deal with
the dual operator P of T w.r.t. Lebesgue measure λ (the Perron Frobenius oper-
ator). The two are related via T̂ nu = Pn(hu)/h, n ∈ N0, and Pn has an explicit
representation Pnu = ∑

Z∈ξn
(u ◦ fZ)· | f ′

Z |. We shall henceforth use the version
given by the expression on the right-hand side. Fix any Z ∈ ζ .

a) By the finite image condition (8.2), there are L ∈ N (w.l.o.g. L ≥ 2) and
∅ �= η ⊆ ξ such that if l ≥ L, then T (W ∩ Y ) ⊇ Z ∩ {ϕ ≥ l} for W ∈ η, while
T (W ∩Y )∩ (Z∩{ϕ ≥ l}) = ∅ for W ∈ ξ \η. Clearly, Z∩{ϕ ≥ l} = BZ ∩{ϕ ≥ l}
if l ≥ 2. For k > L therefore

P
(
1Y∩T −1BZ∩{ϕ≥k} · h

) = 1Z∩{ϕ≥k−1}
∑

W∈η

P (1W h)

= 1Z∩{ϕ≥k−1}
∑

W∈η

(h ◦ fW)· | f ′
W |

(for all W ∈ η we have 1Z∩{ϕ≥k−1}P (1W∩Y h) = 1Z∩{ϕ≥k−1}P (1W h)). Observe
that the restriction to Z ∩ {ϕ ≥ k − 1} of each h ◦ fW , W ∈ η, is of bounded
variation with positive infimum. Adler’s condition (8.1) implies that the same is
true for the restriction of the sum V := ∑

W∈η(h ◦ fW)· | f ′
W | on the right-

hand side. (As sup | f ′
W |≤ e−λ(X)a inf | f ′

W | with a := sup | T ′′/(T ′)2 |, and∫
T W

| f ′
W | dλ = λ(W).) Now, on Y ,

T̂ k
(
1Y∩T −1BZ∩{ϕ=k}

) = h−1 · Pk
(
1Y∩T −1BZ∩{ϕ≥k} · h

)

= h−1 · Pk−1 (P
(
1Y∩T −1BZ∩{ϕ≥k} · h

))

= h−1 · Pk−1 (1Z∩{ϕ≥k−1} · V
)

= 1Z(1) h−1 ·
(
V ◦ f k−1

Z

) (
f k−1

Z

)′
.

Notice that the limit V (xZ) := limx→xZ,x∈Z V (x) ∈ (0, ∞) exists since V ∈
BV(Z ∩ {ϕ ≥ k − 1}), and recall that h is bounded on Y . By Lemma 8.1,

there is some positive continuous function gZ on Z(1) such that
(
f k−1

Z

)′ ∼
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∣
∣
∣f k

Z(yZ) − f k+1
Z (yZ)

∣
∣
∣ · gZ uniformly on Z(1) as k → ∞. Consequently, we also

have

T̂ k
(
1Y∩T −1BZ∩{ϕ=k}

) ∼ 1Z(1) h−1 · V (xZ)

∣
∣
∣f k

Z(yZ) − f k+1
Z (yZ)

∣
∣
∣ · gZ

uniformly on Y as k → ∞, and letting DZ := 1Z(1) (gZ/h)/
∫
Z(1)

(gZ/h) dµ ∈
BV(Y ) completes the proof of (8.6).

b) We check that D is uniformly sweeping for Y by showing that there is
some K ∈ N0 such that infY

∑K
k=0 PkD > 0, which suffices since 0 < infY h ≤

supY h < ∞. Due to our assumptions on D, there is some nondegenerate interval
I ⊆ Y such that infI D > 0 (by bounded variation, D is lower semicontinuous
mod λ). As T has bounded derivative on each cylinder and satisfies (8.2), we have
infT k(I ) PkD > 0 for all k ∈ N0. Our claim therefore follows once we prove that

for any interval I ⊆ Y there is some K = K(I) ∈ N0 s.t.
K⋃

k=0

T kI ⊇ Y . (8.7)

Standard arguments (compare e.g. Lemma 10 of [Z1]) show that the induced map
TY on Y is uniformly expanding and satisfies (8.1) and (8.2), implying that for any
interval I ⊆ Y there is some L ∈ N s.t.

⋃L−1
l=0 T l

Y I ⊇ Y . However, as T satisfies
(8.2), we see that given any interval I ⊆ Y , we have TY I ⊆ ⋃M

m=1 T mI for some
M = M(I) ∈ N, and that T j I and TY I are finite unions of intervals. Together,
these observations yield (8.7). ��
Given a basic AFN system (X, T , ξ) we take Y as in (8.5). To ensure regular vari-
ation of wandering rates and condition (3.9), we assume that for each Z ∈ ζ there
are aZ �= 0 and pZ ∈ [1, ∞) such that

T x = x + aZ |x − xZ|1+pZ + o
(
|x − xZ|1+pZ

)
as x → xZ in Z, (8.8)

and let p := max{pZ : Z ∈ ζ }. Then (as in [T2] or Theorem 3 of [Z2]), as n → ∞,

wN(Y, BZ) ∼ h0(Z)

|aZ|1/pZ
·
{

log N if pZ = 1,
p

−1/pZ

Z
pZ

pZ−1 · N1−1/pZ if pZ > 1,

whereh0(Z) := limx→xZ,x∈Z h0(x)=|aZ| limx→xZ,x∈Z |x − xZ|pZ h(x)∈(0, ∞)

exists, cf. [Z2], p. 1534. Of course, wN(Y ) ∼ ∑
Z∈ζ wN(Y, BZ). (For the asymptot-

ics of fk(Y, BZ) see e.g. Remark 1 in [Z4].) In particular, condition (3.9) is satisfied,
and we can apply our abstract Theorem 3.1 to obtain a Darling-Kac theorem for
AFN-systems (compare Theorem 5 of [Z2]).

Corollary 8.1 (Darling-Kac theorem for AFN maps). Let (X, T , ξ) be a basic
AFN-system satisfying (8.8), and α := 1/p. Then

1

an

Sn(f )
L(µ)⇒ µ(f ) · Mα for all f ∈ L1(µ) s.t. µ(f ) �= 0,

where an ∼ 1
	(1+α)	(2−α)

· n
wn(Y )

, n ≥ 1.
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Again appealing to Remark 3.3, we can also apply Theorem 3.2 to extend the arc-
sine law of [T6] to a considerably larger family of AFN-systems. Given ∅ � η ⊆ ζ

we let Aη := ⋃
Z∈η BZ .

Corollary 8.2 (Arcsine law for neighbourhoods of neutral fixed points). Let
(X, T , ξ) be a basic AFN-system satisfying (8.8) and let α := 1/p. Suppose that
∅ � η ⊆ ζ . Then

wN(Y, Aη)

wN(Y )
−→ β :=

∑
Z∈η,pZ=p h0(Z) |aZ|−α

∑
Z∈ζ,pZ=p h0(Z) |aZ|−α

∈ [0, 1] as N → ∞,

and

1

n
Sn(1A)

L(µ)⇒ Lα,β

for all A ∈ B with µ(A 
 Aη) < ∞. Here β /∈ {0, 1} iff max{pZ : Z ∈ η} =
max{pZ : Z ∈ ζ \ η} (and hence = p).

While unions of neighbourhoods of different xZ , Z ∈ ζ , are the most obvious
candidates for components of infinite measure in the regime of the arcsine law for
occupation times, Remark 3.4 provides us with a very general method for finding
further examples. In fact, Proposition 3.1 promises sets satisfying the arcsine law
even for maps with a single indifferent fixed point, and our general construction
amounts to splitting neighbourhoods in this case. We illustrate this in the simplest
setup:

Example 8.1 (Arcsine law for split neighbourhoods). For fixed p ≥ 1 let

T x :=
{

x + 2px1+p for x ∈ (0, 1/2)

2x − 1 for x ∈ (1/2, 1),

which defines a basic AFN map satisfying (8.8) for its single indifferent fixed point
at x = 0. For γ ∈ (0, 1) we let z := 1 − γ /2 ∈ (1/2, 1), denote the inverse of
T |(0,1/2) by f , and consider the set

A :=
⋃

n≥0

f n(z, 1).

Employing Remark 3.4, we see that

1

n
Sn(1A)

L(λ)⇒ Lα,β

where α := 1/p and β = β(γ ) with β an increasing homeomorphism of (0, 1)

onto itself. To obtain examples with α = 0 and arbitrary β ∈ (0, 1), play the same
game using the map

T x :=
{

x + 2x2e2−1/x for x ∈ (0, 1/2)

2x − 1 for x ∈ (1/2, 1).
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We finally turn to the arcsine theorem for waiting times of AFN-maps. Our
abstract Theorem 3.3 immediately implies

Corollary 8.3 (Dynkin-Lamperti law for AFN reference sets). Let (X, T , ξ) be
a basic AFN-system satisfying (8.8) and let α := 1/p. Then

1

n
Zn(Y )

L(µ)⇒ Zα .

Remark 8.1 (Extension to a larger class of sets). In Corollary 8.3, the set Y can be
replaced by any E ∈ E(T ) := {E ∈ B : E ⊆ Xε for some ε > 0} with µ(E) > 0,
cf. [T4] and Theorem 11 of [Z2]. This sharper statement can also be recovered in
our setup. For example, in the Markov case it is not hard to see that (T̂Y (T̂ n1Y ))

is uniformly bounded, hence satisfying condition (7.7) of Proposition 7.1 (and we
may assume w.l.o.g. that E ⊆ Y ).

9. Distributional limit theorems for pointwise dual ergodic transformations

Earlier work on distributional limit theorems for infinite measure preserving trans-
formations in [A0], [A1], and [T4] assumed T to be pointwise dual ergodic (p.d.e.),
cf. (3.13). Some of the tools developed above can be used to simplify the arguments
there. We demonstrate this for the p.d.e. version of the Darling-Kac theorem.

Theorem 9.1 (Darling-Kac theorem for p.d.e. systems; [A0],[A1]). Let T be a
c.e.m.p.t. on the σ -finite measure space (X, A, µ). If T is pointwise dual ergodic
with return sequence (an) ∈ Rα , α ∈ [0, 1], then

1

an

Sn(f )
L(µ)⇒ µ(f ) · Mα for all f ∈ L1(µ) s.t. µ(f ) �= 0. (9.1)

We first review our proof of Theorem 3.1 in the light of the account of Theorem
9.1 given in [A0]: Let T be a c.e.m.p.t. on (X, A, µ) and call Y ∈ A, 0 < µ(Y ) <

∞, a moment set (for T ), if there exists some U : (0, η) → (0, ∞) such that

∑

n≥0

(∫

Y

Sr
n dµY

)

e−ns ∼ r!

s
U(s)r as s ↘ 0 for all r ∈ N0. (9.2)

Choosing r = 1 we see that necessarily U(s) ∼ UY (s) := ∑
n≥0 un(Y ) e−ns ,

where un(Y ) := µY (T −nY ), n ≥ 0. Hence we may w.l.o.g. replace U by UY in
the definition of a moment set (as in Section 3.6 of [A0]). By KTT one sees that
(9.2) implies (5.1) if UY ∈ Rα(0) (cf. [DK] or Theorem 3.6.4 of [A0]):

If T has a moment set Y with UY ∈ Rα(0), then
(9.1) holds with an := µ(Y )−1 ∑n−1

j=0 uj (Y ), n ≥ 1.
(9.3)

If T is p.d.e., then there are sets Y ∈ A, 0 < µ(Y ) < ∞, satisfying
∥
∥
∥
∥
∥
∥

1

an

n−1∑

j=0

T̂ j 1Y

∥
∥
∥
∥
∥
∥

L∞(Y )

≤ M < ∞ for n ≥ 0,
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and the main step of the proof of Theorem 9.1 in [A0] is to show (cf. Theorem
3.7.2 there) that any such Y is a moment set. Applying Theorem 9.1 to examples
like those of Section 8 requires in addition to show that (wN(Y )) ∈ R1−α implies
UY ∈ Rα(0) (cf. Proposition 3.8.7 of [A0]).

Our argument includes both steps and can be summarized as follows: If Y ∈ A,
0 < µ(Y ) < ∞, satisfies (3.1) and (3.2), then Y is a moment set with U(s) =
1/(s QY (s)).

Finally, we show that the equivalent moments principle, Lemma 4.4, offers a
way to overcome the main difficulty in the proof of Theorem 9.1.

Proof of Theorem 9.1 (revised). An Egorov-type argument shows that there is some
Y ∈ A, 0 < µ(Y ) < ∞, with

1

an

n−1∑

k=0

T̂ ku −→ 1 uniformly on Y as n → ∞ (9.4)

for a bounded probability density u satisfying infY u > 0.
Let Sn := ∑n

k=1 1Y ◦ T k , n ≥ 0, and fix some r ∈ N. Using

(
Sn

r

)

=
n∑

k=1

(

1Y

(
Sn−k

r − 1

))

◦ T k , for n ∈ N0,

(cf. [A0], [A1]), and Lemma 4.2 (vn = T̂ nu, H = µ(Y )−11Y , K = 0), we obtain

∑

n≥0

(∫

X

(
Sn

r

)

· u dµ

)

e−ns =
∫

Y




∑

n≥1

T̂ nu e−ns








∑

n≥0

(
Sn

r − 1

)

e−ns



 dµ

∼ U(s) ·
∑

n≥0

(∫

Y

(
Sn

r − 1

)

dµY

)

e−ns (9.5)

as s ↘ 0, where U(s) := ∑
n≥0

(∫
T −nY

u dµ
)
e−ns , s > 0. Since Sn → ∞ a.e., it

is easy to check that
∫
X

Sr
n · u dµ ∼ r!

∫
X

(
Sn

r

) · u dµ as n → ∞ (and analogously
for dµY ), showing that (9.5) is equivalent to

∑

n≥0

(∫

X

Sr
n · u dµ

)

e−ns ∼ rU(s) ·
∑

n≥0

(∫

Y

Sr−1
n dµY

)

e−ns as s ↘ 0. (9.6)

The point now is to replace u dµ by dµY on the left-hand side via Lemma 4.4,
which can be achieved in much the same way as in the proof of Theorem 3.1,
noting that there is some C > 0 such that

∫
X

Sr
n dµY ≤ C · ∫

X
Sr

n · u dµ for all
r, n ∈ N0. Thus (9.6) becomes a recursion formula showing that Y is a moment set,
and (9.3) finishes the proof. ��
Remark 9.1 (The arcsine law for waiting times of p.d.e. systems; [T4]). The thesis
[Eb] contains a short proof of the Dynkin-Lamperti arcsine law for Markov chains.
Part a) of Lemma 4.3 enables us to use the same argument for p.d.e. transformations.
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