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Abstract. We consider the problem of testing hypotheses on the regression function from
n observations on the regular grid on [0, 1]. We wish to test the null hypothesis that the
regression function belongs to a given functional class (parametric or even nonparametric)
against a composite nonparametric alternative. The functions under the alternative are sepa-
rated in theL2-norm from any function in the null hypothesis. We assume that the regression
function belongs to a wide range of Hölder classes but as the smoothness parameter of the
regression function is unknown, an adaptive approach is considered. It leads to an optimal
and unavoidable loss of order

√
log(log n) in the minimax rate of testing compared with the

non-adaptive setting. We propose a smoothness-free test that achieves the optimal rate, and
finally we prove the lower bound showing that no test can be consistent if in the distance
between the functions under the null hypothesis and those in the alternative, the loss is of
order smaller than the optimal loss.

1. Introduction

Discrete regression models are frequently used in statistics and econometrics. If the
model is misspecified, it can lead to very inaccurate results. Therefore, the prob-
lem of hypothesis testing about regression function f is essential since it allows
us to check the specification of the model. Nonparametric methods seem to be
natural if you do not have in mind specific departures from the model. There have
been a number of papers, initiated by Ingster (1982), concerning nonparametric
hypothesis testing on the signal function in the regression model or in the Gauss-
ian white noise model, via an asymptotical minimax approach : Ermakov (1990),
Ingster (1990, 1993), Härdle and Mammen (1993), Lepskii (1993), Suslina (1993),
Hart (1997), Härdle and Kneip (1999), Lepskii and Spokoiny (1999), Lepskii and
Tsybakov (2000), Gayraud and Pouet (2001). In all of these papers, the authors
specify a functional class to which f belongs; the considered functional classes

G. Gayraud: CREST, Timbre J340, 3 av. P. Larousse, 92241 Malakoff Cedex, and Labora-
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are characterized by a smoothness parameter. Then, the goal of these papers is to
determine the minimal (optimal) distance between the null hypothesis and the set
of alternatives for which testing with prescribed error probabilities is still possible.
We refer the reader to the paper of Lepskii and Tsybakov (2000) for an accurate
definition of the minimax setup testing, including also the definition of the exact
separation constants. However, the test procedures depend heavily on the smooth-
ness assumption which is typically unknown as well as the regression function f :
this makes them unnatural and unattractive from a practical point of view. It is our
first motivation to extend the non-adaptive case of our previous paper (Gayraud
and Pouet 2001) to the adaptive case i.e. the case where the smoothness parameter
is also supposed unknown. Other papers must be mentioned here in the context
of adaptive hypothesis testing about the regression function : in Baraud, Huet and
Laurent (2003), no assumption on f is required since the distance they used to sep-
arate the null hypothesis and the alternative is a discrete one; it avoids to quantify
the approximation of the L2-norm, when it is used as the distance as in our study,
by a discrete sum of squared terms. The same occurs in Horowitz and Spokoiny
(2001) and in Fromont and Lévy-Leduc (2003). Horowitz and Spokoiny (2001)
give results for a composite null hypothesis and for Hölder spaces. Here, we con-
sider a functional class of Hölderian functions with a smoothness parameter ranging
over a wide scale. But we are more general than Horowitz and Spokoiny (2001)
in the choice of the class under the null hypothesis since they take a parametric
family of given functions whereas in our study only a control of the entropy of
the class which could even be nonparametric is required. Fromont and Lévy-Leduc
(2003) consider the problem of periodic signal detection in a Gaussian fixed design
regression framework, assuming that the signal belongs to some periodic Sobolev
balls. Fan, Zhang and Zhang (2001) give adaptive results when the alternatives lie
in a range of Sobolev ball; their test statistic is based on generalized likelihood
ratio and they obtain the asymptotic distribution of their test statistic under the
null hypothesis, which is free of any nuisance parameter (this result is referred as
Wilks phenomenon). Fan and Zhang (2004) extend Fan, Zhang and Zhang (2001)
paper in the sense that they consider unspecified distribution of the errors instead
of assuming a parametric structure for their distribution. The closest paper to our
approach is Spokoiny (1996) and also its extension Spokoiny (1998) (the nontrivial
extension of this second paper is to consider an arbitrary Lr–norm instead of the
L2–norm), although its model is the Gaussian white noise and its null hypothesis
is defined by the unique null function. In our study, we do not specify the law of
the errors except for the resolution of the lower bound and we get the upper bound
under an assumption on the control of the tail distribution of the errors. Moreover
Spokoiny (1996, 1998) consider a collection of Besov balls; it allows to decom-
pose the regression function f on an orthonormal basis of wavelets which gives
interesting properties of independence for the resolution of the lower bound.

To summarize, this paper is devoted to obtain the optimal minimax adaptive rates
in testing F0, a given functional class of regression functions, against a functional
class composed of Hölder balls. Our study gives the possibility to consider a rich
class F0 since only a control of its entropy is required : parametric but also nonpara-
metric functional classes are allowed. On the contrary of other papers (Horowitz
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and Spokoiny (2001), Guerre and Lavergne (2002)) in which a parametric family
under the null hypothesis is considered, no existence of an estimate under the null
hypothesis is needed. Concerning the upper bound, we do not specify the law of
the errors; just a control of the tail distribution is required. It is worth mentioning
an interesting link between the distribution tail of the errors and the entropy of the
class F0. Besides, we prove that the adaptive case leads to a loss of efficiency of
order

√
log(log n).

The paper is organized as follows. In Section 2, we state the testing problem and
the minimax approach to solve it. In Section 3, we explain the proposed adaptive
test procedure. Section 4 is devoted to the statement of the results. In Section 5,
some comments are given, in addition with some figures which illustrate the link
between the distribution tail of the error and the control of the entropy of F0. The
proofs are postponed in Section 6 and those of the lemmas are given in Appendix.

2. Model and adaptive minimax framework

We consider the usual regression model

Yi = f (xi)+ ξi, i = 1, . . . , n,

where f defined on [0, 1] belongs to the class �(β,C,M), β > 1/4, C > 0,
M > 0, which is defined as follows :

�(β,C,M) =
{ {f ∈ H(β,C) : ‖f ‖∞ ≤ M} if 1

4 < β ≤ 1,
{f ∈ H(β,C) : ‖f ‖∞ ≤ M, ‖f ′‖∞ ≤ M} if β > 1,

where H(β,C) denotes the Hölderian class of functions with β as the smoothness
parameter and C as the Hölder constant and ‖ · ‖∞ denotes the supremum norm.
Besides, the real random variables ξi, i ∈ {1, . . . , n} are i.i.d. with zero mean and
unknown variance σ 2 > 0, and the points xi are deterministic equispaced on [0, 1]

and numbered in such a way that |xi − xi−1| = 1

n
,∀i = 2, . . . , n.

Given the sample Y1, . . . , Yn, if we suppose β known and for a given functional
class F0, one could consider the following test problem

H0 : f ∈ F0 ⊂ �(β,C,M),

against

H1 : f ∈ �(v(n, β)) =
{
f ∈ � (β,C,M) : inf

f0∈F0

‖f − f0‖2 ≥ v(n, β)

}
,

where ‖ · ‖2 denotes the L2-norm and v(n, β) is a sequence of positive numbers
decreasing to zero as n goes to infinity. Note that �(v(n, β)) is defined by three
parameters : the class�(β,C,M), theL2–norm and v(n, β). It can be shown (Ing-
ster 1993) that given�(β,C,M) and the L2-norm, v(n, β) cannot be chosen in an
arbitrary way. It turns out that, if v(n, β) is too small, then it is not possible to test
the hypothesis H0 against H1 with a given summarized errors of the first and the
second type. On the other hand, if v(n, β) is very large, such a testing is possible;
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assuming β known, the problem is to find the smallest sequence v(n, β) for which
such a test is still possible and to indicate the corresponding test functions. More
precisely, let�n be a test statistic that is an arbitrary function with values 0, 1 which
is measurable with respect to Y1, . . . , Yn and such that we acceptH0 if�n = 0 and
we reject H0 if �n = 1. This smallest sequence v(n, β) is said to be the minimax
rate of testing if it satisfies relations (1), (2) in Definition 1.

Definition 1. (1) For any given τ1 ∈ (0, 1), there exists a positive constant a such
that as n large enough

inf
�̃n

{ sup
f0∈F0

IPf0(�̃n = 1)+ sup
f∈�(av(n,β))

IPf (�̃n = 0)} ≥ τ1 + on(1), (1)

where inf�̃n is the infimum over all possible test functions; relation (1) is called
relation of the lower bound.

(2) For any given τ2 in (0, 1), there exist a positive constantA and test functions
�n such that as n large enough

sup
f0∈F0

IPf0(�n = 1)+ sup
f∈�(Av(n,β))

IPf (�n = 0) ≤ τ2 + on(1), (2)

Relation (2) is called relation of the upper bound.

In the case of β known, the minimax rate of testing is v(n, β) = n−2β/(4β+1)

and the test function which achieves the minimax rate of testing is a statistic which
depends obviously on β (Gayraud and Pouet, 2001). But since the regression func-
tion itself is unknown the a priori knowledge of its smoothness β could appear
unrealistic.

The purpose of this paper is to solve the previous problem of testing in an
adaptive framework i.e. supposing that β is unknown. Following the terminology
of Spokoiny (1996), we assume that β belongs to a set T = {β : 1/4 < β� ≤
β ≤ β�}, where β� and β� are fixed. We suppose that the given functional class F0
under H0 is included in the greatest regular class �(β�, C,M). We thus give the
smallest sequence which separates the null hypothesis and the alternatives when
the alternatives contain the whole scale of classes �(β,C,M), β ∈ T so that we
extend the result of Gayraud and Pouet (2001).

More precisely, we search for universal test functions �n (free of β) such that
for n large enough and for any given α0 in (0, 1), it exists a positive constantA > 0
such that

sup
f0∈F0

IPf0(�n = 1)+ sup
β∈T

sup
f∈�(Av(nt−1

n ,β))

IPf (�n = 0) ≤ α0 + on(1) (3)

where tn is a sequence of positive numbers increasing to infinity with n as slow as
possible.

One could ask if there is a possibility to get (3) with alternatives defined in a
closer neighborhood of H0 for example with an order of o(v(nt−1

n , β)) i.e. if one
could distinguish the null hypothesis and the alternative when the alternative is
much closer to the null hypothesis. The answer is negative and it is done by proving
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the relation of the lower bound i.e. for n large enough and for any α1 ∈ (0, 1), there
exists a positive constant a such that

inf
�̃n

{ sup
f0∈F0

IPf0(�̃n = 1)+ sup
β∈T

sup
f∈�(av(nt−1

n ,β))

IPf (�̃n = 0)} ≥ α1 + on(1), (4)

where inf
�̃n

denotes the infimum under all possible test statistics.

Actually, relations (3) and (4) mean that the non–adaptive rate v(n, β) is con-
taminated by the term tn in the adaptive setting and it could not be avoided.

Definition 2. The sequence v(nt−1
n , β) satisfying relations (3) and (4) is said to be

the adaptive minimax rate of testing. And the test functions �n for which relation
(3) holds is said to be the adaptive minimax test functions.

3. Test Procedure

In the case of unknown β in T , and for some f0 in F0, we consider

Tn,β,f0 = 1√
mβ

mβ∑

k=1

mβ

nσ̂ 2
n

∑

i∈Ik, j∈Ik
i 
=j

(Yi − f0(xi))(Yj − f0(xj )), (5)

where mβ = (t−1
n n)2/(4β+1) with tn = √log(log n), σ̂ 2

n = 1
2(n−1)

∑n
i=2(Yi −

Yi−1)
2 is an estimate of σ 2 and Ik = {i : xi ∈ Ak}, with Ak = [ k−1

mβ
, k
mβ

[, ∀k ∈
{1, . . . , mβ−1} andAmβ = [mβ−1

mβ
, 1]. The quantitymβ is supposed to be integer, if

it is not the case,mβ will be chosen equal to the integer part of (t−1
n n)2/(4β+1); there-

fore one could prove that if any β1 and β2 in T are much closer in distance than the
order 1

log n , both of them provide the samemβ1 . Consequently, the range of adapta-
tion T can be translated into a range M of the form M = {mβ : mβ� ≤ mβ ≤ mβ�}
in which two consecutivemβj andmβj+1 correspond to a subset T � ⊂ T of β ∈ T
which are at least distant from c 1

log n where c is an adapted positive constant which
makes mβj+1 an integer and it depends on β�, β� and n. Since β� and β� are fixed,
the cardinality of the set M is of order log n as n large enough. Now we are able
to define the adaptive test :

�n = 1Isupmβ∈M inff0∈F0 Tn,β,f0 ≥ρn, (6)

where ρn = √8 log(log n) and Tn,β,f0 is given by relation (5).
The heuristic idea of this test procedure is the following : if β known, the test

statistic σ̂ 2
n

√
m̃β

n
Tn,β,f0 estimates the squared L2-norm ‖f − f0‖2

2. Under H1 this

quantity must be greater than m̃−2β
β (the bias error), and than

√
m̃β

n
and ‖f−f0‖2√

n

(the stochastic errors), in order to detect the signals in the alternative. This leads

to an optimal choice of m̃β = n
2

4β+1 which appears in the non-adaptive setting. If
β unknown, since the range of adaptation in β is of order log n and since the tail
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of the stochastic term has a gaussian behavior, the minimal loss of optimality due
to adaptation is an extra log(log n) term. This leads to an optimal choice of the

bandwidth mβ = (t−1
n n
) 2

4β+1 , where tn = √log(log n).
It is to be noted that the optimal test procedure cannot be the plug-in of an

efficient estimator for ‖f − f0‖2
2. Indeed Fan (1991) gives an efficient estimator

of the squared L2-norm which entails a rate of testing of order n− 1
4 . This rate is

worse than the minimax rate of testing. As it is mentioned in Lepski, Nemirovski
and Spokoiny (1999), estimating the L2-norm is not equivalent to estimating the
squared L2-norm. Thus our test procedure relies on an efficient estimator of the
L2-norm.

4. Assumptions and Results

Assume the following :

(A1.Sup) The random variables ξ1, . . . , ξn are i.i.d., with zero mean, an unknown
finite variance σ 2 > 0 and an unknown finite fourth order moment.

(A1.Inf) The random variables ξ1, . . . , ξn are i.i.d. centered Gaussian with vari-
ance equal to σ 2 > 0.

(A2.Sup) lim
y→+∞ IP (|ξi | ≥ y) y

1
κ
(2+ 1

2β�
) = 0, ∀i ∈ {1, . . . , n}, where κ < 1 is a

positive constant.
(A3) The δ–entropy of the class F0 calculated in the supremum norm is bounded

by δ−r , where r is less than
2β�(1 − κ)(1 + 4β�)

(16 + 8κ)β�β� + 2(2β� + κβ�)
.

Remark 1. Assumption (A2.Sup) deals with the distribution tail of the ξi’s. One
must note that there exists a relation between the weight of the distribution tail
(A2.Sup) and the entropy of the class F0. This point will be developed in Section 5.

Theorem 1 deals with the upper bound. It states that our test can achieve asymp-
totically any given first-type and second-type errors under some conditions.

Theorem 1. (Behavior of �n under the null hypothesis and under the alternative)
Let �n be the test functions defined by relation (6). Then,

- according to (A1.Sup) and as n goes to infinity,

sup
f0∈F0

IPf0(�n = 1) = on(1), (7)

- according to assumptions (A1.Sup), (A2.Sup) and (A3), there exists a constant
A > 0 large enough such that as n goes to infinity

sup
β∈T

sup
f∈�(Av(nt−1

n ,β))

IPf (�n = 0) = on(1), (8)

where tn =
√

log log n is the loss due to adaptivity andv
(
nt−1
n , β

)
=
(
nt−1
n

) −2β
4β+1

is the adaptive minimax rate of testing.

This means that relation (3) holds with α0 = 0.
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Theorem 2 deals with the lower bound which is stated in the Gaussian case. It
gives the optimal rate of testing H0 against the range of alternatives when β ∈ T ,
which could not be improved without losing the distinguishability between the
hypotheses.

Theorem 2. (Lower bound) Suppose that (A1.Inf)–(A3) hold and that there exists
f̃0 ∈ F0 such that ∃(C′,M ′) : C′ < C, M ′ < M such that f̃0 belongs to
�(β,C′,M ′), for all β ∈ T . Then, for any given α2 ∈ (0, 1), there exists a positive
constant a such that as n large enough,

inf
�̃n

{ sup
f0∈F0

IPf0(�̃n = 1)+ sup
β∈T

sup
f∈�(av(nt−1

n ,β))

IPf (�̃n = 0)} ≥ α2 + on(1), (9)

where inf
�̃n

means the infimum under all possible test functions.

Proposition 1. Under Assumption (A1.Sup), the estimate σ̂ 2
n satisfies

∀γ > 0 sup
β∈T

sup
f∈�(β,C,M)

IPf (| σ̂
2
n

σ 2 − 1| > γ ) −→
n→∞ 0.

5. Comments

Calculation of the test statistics

The test statistics defined in (5) is rather general. One can wonder whether it can
be implemented in practice as inf

f0∈F0

has to be computed. When the null hypothesis

is parametric, the calculation can be done. For instance, let us consider F0 as the
class of polynoms of order less than p ∈ IN. One can see that

Tn,β,f0 = 1√
mβ

mβ∑

k=1

mβ

nσ̂ 2
n






∑

i,j∈Ik
j 
=i

YiYj +
∑

i,j∈Ik
j 
=i

f0 (xi) f0
(
xj
)− 2

∑

i,j∈Ik
j 
=i

f0 (xi) Yj






= 1√
mβ

mβ∑

k=1

mβ

nσ̂ 2
n






∑

i,j∈Ik
j 
=i

YiYj +



∑

i∈Ik
f0 (xi)





2

−
∑

i∈Ik
f 2

0 (xi)

−2




∑

i∈Ik
f0 (xi)








∑

j∈Ik
Yj



+ 2
∑

i∈Ik
f0 (xi) Yi



 .

The first summand plays no role in the minimization. Thus one has to minimize



∑

i∈Ik
f0 (xi)





2

−
∑

i∈Ik
f 2

0 (xi)− 2




∑

i∈Ik
f0 (xi)








∑

j∈Ik
Yj



+ 2
∑

i∈Ik
f0 (xi) Yi,
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where the quantities




∑

i∈Ik
f0 (xi)





2

,
∑

i∈Ik
f 2

0 (xi),
∑

i∈Ik
f0 (xi) and

∑

i∈Ik
f0 (xi) Yi can

be easily computed in the case of polynoms.
For example, let us choosep = 2 and denote θ0, θ1, θ2 the coefficients of the polyn-
oms. It leads to minimize over θ0, θ1, θ2 ∈ � ⊂ IR3 (� must satisfy Assumption
(A3)) the following expression



θ0card (Ik)+ θ1

∑

i∈Ik
xi + θ2

∑

i∈Ik
x2
i





2

− 1

2

∑

i∈Ik

(
θ0 + θ1xi + θ2x

2
i

)2

− 2



(θ0card (Ik)+ θ1

∑

i∈Ik
xi + θ2

∑

i∈Ik
x2
i

∑

j∈Ik
)Yj

+2θ0

∑

i∈Ik
Yi + 2θ1

∑

i∈Ik
xiYi + 2θ2

∑

i∈Ik
x2
i Yi



 ,

where card (Ik) = n

mβ
. One can see that the minimization can be made with a

computer or even by hand.
In the case of more complicated parametric families one can use numerical

methods (see Clarke (1990), Lemaréchal (1976) or Hiriart-Urruty and Lemaréchal
(1993a–1993b)). For instance, non-differentiable objective functions are associ-
ated with non-differentiable regression functions lying in the class defined under
the null hypothesis (non-differentiability with respect to the parameter). It has to
be stressed that even in this case the test statistics can be computed with numeri-
cal methods (subgradient and ε-subgradient methods). This generalizes the results
obtained by Horowitz and Spokoiny (2001) who make differentiability assumptions
for the regression function.

In the case of nonparametric null hypothesis, the computation of the test sta-
tistics is much more involved and has to take into account the structure of the
associated class. As one can see in the proofs, the main device is to define a grid
on F0 which approximates well the functions in F0.

Lower bound

The construction of the lower bound is rather classical. Yet, there is a significative
difference with Spokoiny (1996). In his paper, the parametric subset in the alterna-
tives is built using wavelets. It provides good property of independence through the
orthogonality between the different levels of resolution. Here we have no natural
basis for constructing the parametric family in the alternative, which makes the
proof rather technical. As we are considering the discrete regression model, it is
almost useless to build the parametric subset in the alternatives through an orthog-
onal basis such as wavelets. Indeed, the advantage to use wavelets in the Gaussian
noise model is to get independence for the sets of random variables corresponding
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to different values for the smoothness parameter. Here the orthogonality does not
lead to independence of the random variables. To cope with the dependence we met,
we split the main sum over the range of β into several sums where the summands
are almost independent.

About the distribution of the test statistics under the null hypothesis

In Fan, Zhang and Zhang (2001) and in Fan and Zhang (2004), the interesting Wilks
phenomenon occurs. Here, this property is not needed since one just want to bound
from above the first type error, therefore the asymptotic distribution under the null
hypothesis of the test statistics is not required. However the upper bound of the
first type error displays a probability which is free of the underlying regression
function.

Link between the smoothness parameter, the entropy and the distribution tail
of the errors

In this part, the link between the smoothness parameter, the entropy and the distri-
bution tail of the errors is highlighted by several points of view. First, some general
comments : one could consider the distribution of the errors as well as some param-
eters characterizing the class F0 as nuisance parameters. But unlike Fan, Zhang and
Zhang (2001), Horowitz and Spokoiny (2001) and Fan and Zhang (2004), those
parameters do not need to be estimated. Actually, the effect of the nuisance param-
eters appears in the constraints on the entropy, the distribution tail of the errors and
the smoothness parameter. For instance the more nuisance parameters there are in
F0, the stronger are the constraints on the distribution tail of the errors and the
smoothness parameter.

Second, three figures below illustrate the link between the smoothness, the
entropy and the tail distribution.

Figure 1. When the behavior of the tail is known (i.e. κ is given), there is a rela-
tionship between the minimum smoothness, also the maximum one and the entropy
of F0. In the case of κ = 0.95 (heavy tail), r must be much smaller than in the
case of κ = 0.05 (light tail). This phenomenon indicates that the behavior of the
tail plays an important role in the problem. If a class is rich, light tails are needed
in order to provide good localization. The role of β� and β� are important in the
small values domain. When β� is large, it seems to be almost no difference for r .
We have to keep in mind another condition : F0 is included inH(β�, C). It leads to

a link between r and β� defined by r <
1

β�
(see Chapter 15 in Lorentz, Golitschek

and Makovoz (1996) for the calculation of the entropy of a Hölder ball).

Figure 2. We suppose that the true smoothness is β0 = 1.2 and we illustrate the
effect of the smoothness range on r and κ . First, in all cases the heavier the tail
is, the poorer the class F0 has to be. A small range for β allows large values for
r . Also, we can see that the choice of β� is much more important than the choice
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of β�. Thus the statistician has to be more careful in the choice of β� than in the
choice of β�.

Figure 3. We consider different situations that can be encountered. We show the
effect of the assumptions (A2.Sup) and (A3) on the choice of β� and β�. For a
given pair of (κ, r), the allowed area for (β�, β�) is the intersection between the

part of the plane under the horizontal line (β� <
1

r
), the one over the line β� = β�

since β� ≤ β� and the one under the third curve (Assumption (A3)). The range
of adaptation is restricted by those assumptions. For example it is impossible to
consider a rich class (r = 0.3) and a heavy tail (κ = 0.912) since Assumption (A3)
is never satisfied (this is the reason why it does not appear on the graph). On the
contrary for a poor class (r = 0.03) and a light tail (κ = 0.15), Assumption (A3)
is always satisfied (this is the reason why it does not appear in the graph), we have
a wide choice of (β�, β�). For the two other graphs (a rich class and a light tail or
a poor class and a heavy tail), Assumption (A3) plays a role for small values of β�.

6. Proofs

6.1. Proof of Theorem 1

The first type error : for any function f0 in F0, we get
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IPf0(�n = 1) = IPf0

(

sup
mβ∈M

inf
f∈F0

Tn,β,f ≥ ρn

)

≤ IPf0

(

sup
mβ∈M

Tn,β,f0 ≥ ρn

)

≤ IPf0

(

{ sup
mβ∈M

σ̂ 2
n

σ 2 Tn,β,f0 ≥ σ̂ 2
n

σ 2 ρn} ∩ {| σ̂
2
n

σ 2 − 1| ≤ γ }
)

+IPf0

(
| σ̂

2
n

σ 2 − 1| > γ

)

≤
∑

mβ∈M
IPf0

(
σ̂ 2
n

σ 2 Tn,β,f0 ≥ ρn(1 − γ )

)
+ IPf0

(
| σ̂

2
n

σ 2 − 1| > γ

)
.

(10)

Due to Proposition 1, the second term in right hand side of (10) is of order on(1)

as n large enough, and since (10) holds for any γ > 0, we take it equal to
1

2
. Next,

we focus only on the first term in the right hand side of (10).
Note that under IPf0 , the test statistics can be written in the following way

σ̂ 2
n

σ 2 Tn,β,f0 = 1

σ 2

1√
mβ

mβ∑

k=1

mβ

n

∑

i∈Ik, j∈Ik
i 
=j

ξiξj ,

= 1

σ 2

1√
mβ

mβ∑

k=1

ηk, (11)

where ηk = mβ

n

∑

i∈Ik, j∈Ik
i 
=j

ξiξj are independent random variables. In order to bound

the probability, we are going to use the Berry-Esseen inequality (Petrov (1996),
Theorem 5.4 p. 149). First, let us check the conditions.
The random variables ηk are independent and centered.
The variance of ηk is

Var (ηk) = 2
(

1 − mβ

n

)
σ 4,

and the sum of the variances is

2mβ
(

1 − mβ

n

)
σ 4.

Finally, the third order absolute moment of the random variable ηk is of inter-
est. Let us compute a upper bound for the fourth order moment since IE(|ηk|3) ≤
IE(|ηk|4)3/4.
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IE
(
(ηk)

4
)

=
(mβ
n

)4 ∑

i1,j1,i2,j2,i3,j3,i4,j4,∈Ik
j1 
=i1,j2 
=i2,j3 
=i3,j4 
=i4

IE
[(
ξi1ξj1

) (
ξi2ξj2

) (
ξi3ξj3

) (
ξi4ξj4

)]
.

Here, note that the power of any variable ξi can be only 2, 3 or 4. Indeed the non-zero
summands are

IE(ξ4
i1
ξ4
i2
), IE(ξ4

i1
ξ2
i2
ξ2
i3
), IE(ξ3

i1
ξ3
i2
ξ2
i3
), IE(ξ2

i1
ξ2
i2
ξ2
i3
ξ2
i4
).

The numbers of the summands described above is less than C1

(
n

mβ

)4

(with C1

a fixed positive constant). Thus, the fourth order moment is bounded by a fixed
constant which does not depend on the values of n,mβ, β. The third order moment
exists and is also bounded by a fixed constant which does not depend on the values
of n,mβ, β.
Denote

Lmβ =
( mβ∑

k=1

Var(ηk)

)−3/2 mβ∑

k=1

IE(|ηk|3),

and note thatLmβ ≤ C1mβ
(
2mβ

(
1 − mβ

n

)
σ 4
) 3

2

. Now, the result of Berry-Esseen inequal-

ity (Theorem 5.4 in Petrov (1996)) entails

IP

(
1√
mβ

mβ∑

k=1

ηk >
ρn

2

)

≤ 1 −�
(ρn

2

)
+ C2mβ
(
mβ
(
1 − mβ

n

)
σ 4
) 3

2

,

where C2 is an absolute positive constant. The well-known inequality for the stan-
dard Gaussian distribution function leads to

IP

(
1√
mβ

mβ∑

k=1

ηk >
ρn

2

)

≤ 2

ρn
e−

ρ2
n
8 + C2mβ

(
mβ
(
1 − mβ

n

)
σ 4
) 3

2

,

≤ 2

ρn log n
+ C2

√
mβ
((

1 − mβ
n

)
σ 4
) 3

2

.

Thus a rough upper bound for the sum is

∑

mβ∈M
IPf0

(
σ̂ 2
n

σ 2 Tn,β,f0 ≥ ρn

2

)
≤ C1c log(n)
(
t−1
n n
) 1

4β∗+1

+ 2c log(n)

ρn log n
. (12)

The right-hand side of (12) goes to 0 as n goes to +∞.
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The second type error : For all β ∈ T , we have

sup
f∈�(Av(nt−1

n ,β))

IPf ( sup
mβ∈M

inf
f0∈F0

Tn,β,f0 ≤ ρn)

≤ sup
f∈�(Av(nt−1

n ,β))

IPf (| σ̂
2
n

σ 2 − 1| > γ )

+ sup
f∈�(Av(nt−1

n ,β))

IPf

(

sup
mβ∈M

inf
f0∈F0

σ̂ 2
n

σ 2 Tn,β,f0 ≤ ρn(1 + γ )

)

. (13)

Due to Proposition 1, the first term in the right hand side of (13) is on(1) as n large
enough and we could take γ equal to 1; therefore we focus only on the second term
in the right hand side of (13) :

sup
f∈�(Av(nt−1

n ,β))

IPf

(

sup
mβ∈M

inf
f0∈F0

σ̂ 2
n

σ 2 Tn,β,f0 ≤ 2ρn

)

≤ sup
f∈�(Av(nt−1

n ,β))

IPf

(
inf
f0∈F0

σ̂ 2
n

σ 2 Tn,βL,f0 ≤ 2ρn

)

= sup
f∈�(Av(nt−1

n ,β))

IPf

(
inf
f0∈F0

√
mL

n

σ̂ 2
n

σ 2 Tn,βL,f0 ≤ 2ρn
√
mL

n

)
, (14)

where βL in Tn,βL,f0 is βj ∈ T � since the true regularity β of the function f ,
belongs to [βj , βj+1], mL is associated with βL. Under f ∈ �(Av(nt−1

n , β)),

rewrite
√
mL

n

σ̂ 2
n

σ 2 Tn,βL,f0 in the following way

√
mL

n

σ̂ 2
n

σ 2 Tn,βL,f0 = 1

mL

mL∑

k=1

m2
L

σ 2n2






∑

i∈Ik, j∈Ik
i 
=j

(ξi + f (xi)− f0 (xi))
(
ξj + f

(
xj
)− f0

(
xj
))






= 1

mL

mL∑

k=1

m2
L

n2σ 2






∑

i∈Ik, j∈Ik
i 
=j

ξiξj






+2
1

mL

mL∑

k=1

m2
L

n2σ 2






∑

i∈Ik, j∈Ik
i 
=j

(f (xi)− f0 (xi))ξj





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+ 1

mL

mL∑

k=1

m2
L

σ 2n2






∑

i∈Ik, j∈Ik
i 
=j

(f (xi)− f0 (xi))(f
(
xj
)− f0

(
xj
)
)





.

Set

Tn,1,βL = 1

mL

mL∑

k=1

m2
L

n2σ 2






∑

i∈Ik, j∈Ik
i 
=j

ξiξj





,

Tn,2,βL,f0 = 2
1

mL

mL∑

k=1

m2
L

σ 2n2






∑

i∈Ik, j∈Ik
i 
=j

(f (xi)− f0 (xi))ξj





,

Tn,3,βL,f0 = 1

mL

mL∑

k=1

m2
L

n2σ 2






∑

i∈Ik, j∈Ik
i 
=j

(f (xi)− f0 (xi))(f
(
xj
)− f0

(
xj
)
)





.

Now, define the event

D1,β =
{

inf
f0∈F0

(
Tn,2,βL,f0 + Tn,3,βL,f0

)
<

5

2
ρn

√
mL

n

}
,

and consider again relation (14), ∀f ∈ �(Av(nt−1
n , β)),

IPf

(
inf
f0∈F0

√
mL

n

σ̂ 2
n

σ 2 Tn,βL,f0 ≤ 2ρn

√
mL

n

)

= IPf

(
Tn,1,βL + inf

f0∈F0

(
Tn,2,βL,f0 + Tn,3,βL,f0

) ≤ 2ρn

√
mL

n

)

≤ IPf

({
Tn,1,βL + inf

f0∈F0

(
Tn,2,βL,f0 + Tn,3,βL,f0

) ≤ 2ρn

√
mL

n

}
∩Dc1,β

)

+IPf
(
D1,β
)

≤ IP

(
1√
mL

mL∑

k=1

ηk ≤ −ρn
2

)

+ IPf
(
D1,β
)
, (15)

where the ηk’s are defined in relation (11) in the proof of the first type error. Note
that the first term in the right-hand side (RHS) of (15) is independent of f and
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is similar to the one considered in the proof of the first type error; therefore act-
ing exactly as in the proof of the first type error, the limit as n goes to infinity of

IP

(
1√
mL

mL∑

k=1

ηk ≤ −ρn
2

)

is on(1). The proof follows provided that for all β ∈ T ,

sup
f∈�(Av(nt−1

n ,β))

IPf (D1,β) = on(1), as n → +∞.

Lemma 1. For a sufficiently large positive constant A and under (A1.Sup)–
(A2.Sup)–(A3), we get

sup
β∈T

sup
f∈�(Av(nt−1

n ,β))

IPf
(
D1,β
) = on(1), as n → +∞.

The proof of Lemma 1 is given in Appendix. From (13), (14), (15) and applying
Lemma 1, there exists a positive constant A large enough such that relation (8)
holds.

6.2. Proof of Theorem 2

First, let φ be a function belonging to all H (β, 1), for β ∈ T , with support in IR
which satisfies φ(x) = 0 for x /∈ ]0, 1[,

∫ 1
0 φ (x) dx = 0 and

∫ 1
0 φ (x)

2 dx = λ2.

Letκ2
n,β = [1 + (v(nt−1

n , β))1/(4β)]

λ2

(
av(nt−1

n , β)
)2

. Denote�β = {−1;+1}mβ ,

where mβ = [h−1
β ] ([·] denotes the integer part), hβ will be chosen later and

is a sequence of positive numbers decreasing to zero as n goes to infinity. De-
fine ηβ = (η1,β , . . . , ηmβ,β

) ∈ �β , zk,β = (k − 1)hβ and Ak,β = [zk,β, zk+1,β
]

for k = 1, . . . , mβ − 1 and Amβ,β = [zmβ−1,β , 1
]
. Let Ik,β = {i : xi ∈ Ak,β

}
for

k = {1, . . . , mβ}. Set

fηβ (x) = f̃0(x)+
mβ∑

k=1

ηk,βκn,βφ

(
x − zk,β

hβ

)
,

where f̃0 is the function belonging to F0 whose properties are specified in Theorem
2. The considered parametric set of functions, Fβ , is

{
fηβ , ηβ ∈ �β

}
. Clearly, there

is a one-to-one application between �β and Fβ .
Second, let us define the set of β’s say T ′ on which we will consider the

whole parametric family F . Recall that β� is the greatest regularity and consider
h0 := hβ� = (nt−1

n )−2/(4β�+1) the length of each Ak,β�, k ∈ {1, . . . , mβ�}. Next,
let us define the scale on hβ, β ∈ T ′ such as h0 = 2hβ1 and hβj = 2hβj+1 , for all
j ∈ {1, . . . , c log n}, where c is a positive constant depending only on β�, β� and
n. Then the whole parametric family is defined as follows

F =
⋃

j∈{0,... ,c log n}
Fβj .
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We have to check two conditions on the set F : for all j ∈ {0, . . . , c log n},

sup
0≤x≤1

∣∣∣fηβj (x)
∣∣∣ ≤ M, and also if βj > 1 sup

0≤x≤1

∣∣∣f ′
ηβj
(x)

∣∣∣ ≤ M, (16)

fηβj
∈ �
(
βj , L,M

)
. (17)

Relations (16) and (17) are derived from hypotheses onφ and f̃0 exactly as relations
(16) and (17) in Gayraud and Pouet (2001).

Third, we define a probability measure π on F as

π = 1

1 + c log n

∑

j∈{0,... ,c log n}
πβj ,

where πβj is the probability measure on Fβj . For all j ∈ {0, . . . , c log n}, let
η1, . . . , ηmβj

be i.i.d. taking values 1 and −1 with probability 1/2, and let πβj
be the corresponding probability measure. Note that π is such that

dIPπ
dIP

f̃0

= 1

1 + c log n

∑

j∈{0,... ,c log n}

dIPπβj
dIP

f̃0

,

where
dIPπβj
dIP

f̃0

= Eπβj

[dIPfηβj
dIP

f̃0

]

and IPπ =
∫

IPf dπ(f )

Fourth, for any j ∈ {0, . . . , c log n}, denote �n,βj = Fβj ∩�(av(nt−1
n , βj )).

For any test function �̃n, the term sup
f0∈F0

IPf0

(
�̃n = 1

)
+ sup
j∈{0,... ,c log n}

sup
f∈�n,βj

IPf
(
�̃n = 0

)
is bounded from below by

IP
f̃0

(
�̃n = 1

)
+ 1

c log n+ 1

∑

j∈{0,... ,c log n}
sup

f∈�n,βj
IPf
(
�̃n = 0

)

≥ IP
f̃0

(
�̃n = 1

)
+ 1

c log n+ 1

∑

j∈{0,... ,c log n}

∫

�n,βj

IPf
(
�̃n = 0

)
dπβj (f )

= IP
f̃0

(
�̃n = 1

)
+ 1

c log n+ 1

∑

j∈{0,... ,c log n}

{∫
IPf
(
�̃n = 0

)
dπβj (f )

−
∫

(�n,βj )
c

IPf
(
�̃n = 0

)
dπβj (f )

}

≥ 1 − var
(

IP
f̃0
, IPπ
)

− 1

c log n+ 1

∑

j∈{0,... ,c log n}

∫

(�n,βj )
c

dπβj (f )

= (1 − var
(

IP
f̃0
, IPπ
)
)(1 + on(1)), as n large enough, (18)
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where var (P,Q) is the total variation distance between the distributions P and Q
(see Le Cam (1986), Chapter 4 for definition and properties) and where relation
(18) holds provided that

lim
n→∞ inf

j∈{0,... ,c log n}
πβj (f ∈ �n,βj ) = 1, (19)

and

lim
n→∞ 1 − var

(
IP
f̃0
, IPπ
)


= 0. (20)

Relation (20) is proven later. The proof of (19) follows from relation (19) in Gay-
raud and Pouet (2001) : we replace ψn by v(nt−1

n , βj ) and we consider the subset
F�

0,j ⊂ F0 defined by F�
0,j = {f ∈ F0 : ‖f̃0 − f ‖2 ≤ 2κn,βj λ} instead of �′. We

construct an n−b-net N �
0,βj in the supremum norm on the subset F�

0,j with b > 1/2
and following the calculations until the inequality (22) in Gayraud and Pouet (2001),
we get

inf
j∈{0,... ,c log n}

πβj (f ∈ �n,βj ) ≥ 1 − exp(nbr ) exp(−n 1
4β�+1 ), (21)

where the last inequality is coarse since the diameter of the set F�
0,j is not taken

into account to calculate the entropy. The constraint b <
1

r(4β� + 1)
is compatible

with b > 1
2 since a lower bound for the term

1

r(4β� + 1)
is

1

2r
which is strictly

larger than
1

2
(equivalent to r < 1). Therefore, the RHS of (21) tends to 1 as n goes

to infinity : relation (19) is then satisfied.
Fifth, we define a partition on T ′ into Mn sets Tl , each containing Nn β’s with

the following property :

for all β, γ ∈ Tl : |β − γ | ≥ c1
log(log n)

log n
,

where c1 is a positive integer. Then, Nn is of order
log n

log(log n)
and Mn is of order

log(log n).
To conclude, it remains to prove that relation (20) holds or equivalently that

var
(

IP
f̃0
, IPπ
)

goes to zero as n goes to infinity. We have,

var
(

IP
f̃0
, IPπ
)

= 1

2

∫ ∣∣∣∣∣
dIPπ
dIP

f̃0

− 1

∣∣∣∣∣
dIP

f̃0
.

∫ ∣∣∣∣∣
dIPπ
dIP

f̃0

− 1

∣∣∣∣∣
dIP

f̃0
≤ 1

Mn

Mn∑

l=1

∫
∣∣∣∣∣∣

1

Nn

∑

β∈Tl

dIPπβ
dIP

f̃0

− 1

∣∣∣∣∣∣
dIP

f̃0
,

≤ 1

Mn

Mn∑

l=1

√√√√√
∫


 1

Nn

∑

β∈Tl

dIPπβ
dIP

f̃0

− 1





2

dIP
f̃0
.
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We focus only on the quantity

∫


 1

Nn

∑

β∈Tl

dIPπβ
dIP

f̃0

− 1





2

dIP
f̃0

= T1,n + T2,n,

where T1,n = 1

N2
n

∑

β∈Tl

∫ (
dIPπβ
dIP

f̃0

− 1

)2

dIP
f̃0

and T2,n = 1

N2
n

∑

β,γ∈Tl
β 
=γ

∫ (
dIPπβ
dIP

f̃0

− 1

)(
dIPπγ
dIP

f̃0

−1

)

dIP
f̃0
.

Let us study separatelyT1,n andT2,n. One must first note that for any l ∈ {1, . . . ,Mn}
and for any β in Tl ,

dIPπβ
dIP

f̃0

= Eπβ

(
dIPfηβ
dIP

f̃0

)

= Eπβ

(
n∏

i=1

exp

(
1

σ 2 κn,β(Yi − f̃0(xi))

mβ∑

s=1

ηs,βφ

(
xi − zs,β

hβ

)

− 1

2σ 2 κ
2
n,β

( mβ∑

s=1

ηs,βφ

(
xi − zs,β

hβ

))2








=
mβ∏

s=1

exp



− 1

2σ 2 κ
2
n,β

∑

i∈Is,β
φ2
(
xi − zs,β

hβ

)



Eπβ



exp



 1

σ 2 κn,β
∑

i∈Is,β
(Yi − f̃0(xi))ηs,βφ

(
xi − zs,β

hβ

)





 (22)

=
mβ∏

s=1

exp



− 1

2σ 2 κ
2
n,β

∑

i∈Is,β
φ2
(
xi − zs,β

hβ

)



cosh



 1

σ 2 κn,β
∑

i∈Is,β
(Yi − f̃0(xi))φ

(
xi − zs,β

hβ

)

 . (23)

Set
1

σ 2 κn,β
∑

i∈Is,β
(Yi − f̃0(xi))φ

(
xi − zs,β

hβ

)
= Zsκn,β

1

σ

√√√√
∑

i∈Is,β
φ2

(
xi − zs,β

hβ

)
,

whereZs is under IP
f̃0

a standard normal real variable. Next applying the following
equality,

∫
cosh2 (ux)

1√
2π

exp

(
−x

2

2

)
dx = 1

2

(
1 + exp

(
2u2
))
,
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we obtain

∫ (
dIPπβ
dIP

f̃0

)2

dIP
f̃0

=
mβ∏

s=1

cosh



κ2
n,β

1

σ 2

∑

i∈Is,β
φ2
(
xi − zs,β

hβ

)

 .

Then, from (23) and applying a classical majoration concerning cosh (see Ingster
1993), we get

∫ (
dIPπβ
dIP

f̃0

)2

dIP
f̃0

≤
mβ∏

s=1

exp




c2κ

4
n,β

1

σ 4




∑

i∈Is,β
φ2
(
xi − zs,β

hβ

)



2



 . (24)

Then, since φ is bounded, the choice of mβ and κn,β yields the order of the right–
hand side term in (24) as n large enough

exp

(

c3mβκ
4
n,β

1

σ 4

n2

m2
β

)

= O
(
(log n)c4

)
,

where c4 is a positive constant depending on σ , ‖φ‖∞, λ and a. Therefore if we
choose a small enough so that c4 is strictly less than one, we get

T1,n −→
n→+∞ 0. (25)

Rewrite T2,n as follows

T2,n = 1

N2
n

∑

β,γ ∈Tl
β 
=γ

∫ (
dIPπβ
dIP

f̃0

dIPπγ
dIP

f̃0

− dIPπβ
dIP

f̃0

− dIPπγ
dIP

f̃0

+ 1

)

dIP
f̃0

= 1

N2
n

∑

β,γ ∈Tl
β 
=γ

∫ (
dIPπβ
dIP

f̃0

dIPπγ
dIP

f̃0

− 1

)

dIP
f̃0
.

Since the number of pairs (β, γ ) ∈ Tl × Tl is of order N2
n as n is large enough, we

want to treat for any pair Tl × Tl , the term
∫ (

dIPπβ
dIP

f̃0

dIPπγ
dIP

f̃0

)

dIP
f̃0

which will be

denoted T2,γ,β,n and we want to show that for any pair (β, γ ) ∈ Tl × Tl , the term
T2,γ,β,n goes to 1 as n is increasing which implies that

T2,n = 1

N2
n

∑

β,γ ∈Tl
β 
=γ

∫ (
dIPπβ
dIP

f̃0

dIPπγ
dIP

f̃0

− 1

)

dIP
f̃0

≤ sup
β,γ ∈Tl
β 
=γ

T2,γ,β,n − 1

= on(1), as n → +∞. (26)

Without loss of generality, suppose that β < γ so that by construction, there
exists a positive integer uγ,β satisfying hγ = uγ,βhβ and mγ < mβ . For all k ∈
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{1, . . . , mγ }, the interval Ak,γ contains uγ,β intervals (As,β)s , then denote

I
k,γ
s,β = {i : xi ∈ As,β ⊂ Ak,γ } and obviously card(I k,γs,β ) = n

mβ
. Denote (As,β,γ )s

the intervals included in Ak,γ and denote also by zs,β,γ the endpoints of these
(As,β,γ )s . From previous calculations (22) and applying Fubini, we get

T2,γ,β,n =
∫ mβ∏

s=1

exp



− 1

2σ 2 κ
2
n,β

∑

i∈Is,β
φ2
(
xi − zs,β

hβ

)



Eπβ



exp



 1

σ 2 κn,β
∑

i∈Is,β
(Yi − f̃0(xi))ηs,βφ

(
xi − zs,β

hβ

)







×
mγ∏

k=1

exp



− 1

2σ 2 κ
2
n,γ

∑

i∈Ik,γ
φ2
(
xi − zk,γ

hγ

)



Eπγ



exp



 1

σ 2 κn,γ
∑

i∈Ik,γ
(Yi − f̃0(xi))ηk,γ φ

(
xi − zk,γ

hγ

)





 dIP
f̃0

=
mγ∏

k=1

uγ,β∏

s=1

exp




− 1

2σ 2

∑

i∈I k,γs,β

{
κ2
n,βφ

2
(
xi − zs,β,γ

hβ

)
+κ2

n,γ φ
2
(
xi − zk,γ

hγ

)}





×EπβEπγ
∫

exp






1

σ 2

∑

i∈I k,γs,β

(Yi − f̃0(xi)){κn,βηs,βφ
(
xi − zs,β,γ

hβ

)

+κn,γ ηk,γ φ
(
xi − zk,γ

hγ

)
}
)

dIP
f̃0

=
mγ∏

k=1

uγ,β∏

s=1

EπβEπγ exp






1

σ 2

∑

i∈I k,γs,β

κn,βηs,βφ

(
xi − zs,β,γ

hβ

)
κn,γ ηk,γ

φ

(
xi − zk,γ

hγ

))

=
mγ∏

k=1

uγ,β∏

s=1

cosh






1

σ 2

∑

i∈I k,γs,β

κn,βφ

(
xi − zs,β,γ

hβ

)
κn,γ φ

(
xi − zk,γ

hγ

)





≤ exp

(

c5mγ uγ,βκ
2
n,βκ

2
n,γ

n2

m2
β

)

, (27)

where the last inequality holds due to (24), and the positive constant c5 depends

on ‖φ‖∞ and σ 2. Since for any β we have κ2
n,γ

n√
mβ

= c6tn where c6 is a positive
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constant depending on a and λ, the right hand side in (27) becomes

exp

(

c6mγ uγ,βκ
2
n,βκ

2
n,γ

n2

m2
β

)

= exp

(

c6mγ
mβ

mγ
κ2
n,βκ

2
n,γ

n√
mβ

n√
mγ

1

mβ

√
mγ

mβ

)

= exp

(
c7t

2
n

√
mγ

mβ

)

= exp

(
c7t

2
n

√
mγ

mβ

)

= on
(
(log(log n))(log n)−δ

)
as n → ∞, (28)

where δ is a positive constant depending on the positive integer appearing in the
difference separating β and γ , and c7 depends on c5 and c6. Relation (28) implies
(26), which together with (25) yield the result and if we take a sufficiently small
(9) holds with α2 = 1.

6.3. Proof of Proposition 1

For any β ∈ T and for any f in � (β,C,M), we get

σ̂ 2
n = 1

2(n− 1)

n∑

i=2

(Yi − Yi−1)
2

= 1

2(n− 1)

n∑

i=2

(ξi − ξi−1)
2 + 1

2(n− 1)

n∑

i=2

(f (xi)− f (xi−1))
2

+ 1

(n− 1)

n∑

i=2

(f (xi)− f (xi−1))(ξi − ξi−1). (29)

It can be shown that under (A1.Sup), the first part in the RHS of (29) tends to σ 2

in probability as n goes to infinity. Indeed, if we split the first term in the RHS
of (29) into two terms which depend on the quantities (ξi − ξi−1)

2 with i even
and with i odd respectively, then both terms are empirical mean of i.i.d. variables
with expectation equal to σ 2/2; the weak large numbers law achieves the proof.
For the third part, Chebyshev’s inequality yields for any β ∈ T and for any f in
� (β,C,M) and any τ > 0 :

IPf

(
1

(n− 1)

n∑

i=2

(ξi − ξi−1)(f (xi)− f (xi−1)) > τ

)

= on(1) as n goes to + ∞.

Finally, for the second part,

|f (xi)− f (xi−1)|2 ≤
{
C2 |xi − xi−1|2β ≤ C2n−2β� if β ≤ 1,
M2 |xi − xi−1|2 ≤ M2n−2 if β > 1.
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Therefore,

1

2(n− 1)

n∑

i=2

(f (xi)− f (xi−1))
2 ≤ n− 1

2(n− 1)
(sup(M,C))2n−2β�,

which goes to zero as n → +∞.

APPENDIX

Proof of Lemma 1. For all β ∈ T and for all f ∈ � (Av(nt−1
n , β)

)
, denote βL ∈

T � satisfying βL ≤ β < βL+1, where βL+1 is also in T �; the proof of the lemma
will be made in three steps :

– (a) First, we replace the infimum over F0 by an infimum over a set N0 whose
cardinality is controlled by Assumption (A3). The set N0 will be defined later.

– (b) Second, we obtain a lower bound for Tn,3,βL,f N0
, f N0 ∈ N0.

– (c) Third, we use Bernstein’s inequality.

(a) According to Assumption (A3), for all f0 ∈ F0 there exists f N0 ∈ N0 such that
sup
x∈[0,1]

|f0(x)− f N0 (x)| ≤ δ, with δ = n−4β�/(4β�+1)−κ2β�/(4β�+1). The functional

set N0 is the smallest set of functions f N0 which are needed to cover F0. Then,

|Tn,2,βL,f0 − Tn,2,βL,f N0
| =
∣∣∣∣∣∣
2

1

mL

mL∑

k=1

m2
L

σ 2n2




∑

i∈Ik,j∈Ik,i 
=j
[f N0 (xi)−f0 (xi)]ξj





∣∣∣∣∣∣

≤ 2

σ 2 δ sup
i∈{1,... ,n}

|ξi |. (30)

The same occurs for Tn,3,βL,f0 i.e.

|Tn,3,βL,f0 − Tn,3,βL,f N0
| =
∣∣∣∣∣∣

1

mL

mL∑

k=1

m2
L

σ 2n2

∑

i∈Ik, j∈Ik, i 
=j
[f (xi)− f N0 (xi)]

[f
(
xj
)− f N0

(
xj
)
] −

[f (xi)− f N0 (xi)+ f N0 (xi)− f0 (xi)][f
(
xj
)

−f N0
(
xj
)+ f N0

(
xj
)− f0

(
xj
)
]
∣∣∣

≤ δ2 2

σ 2 + δ
4

σ 2 (2M + δ)

= δ2 6

σ 2 + δ
8M

σ 2 , (31)

whereM is one of the constants which characterizes the functional class under the
alternative. Thus relations (30) and (31) lead to

inf
f0∈F0

(
Tn,2,βL,f0 + Tn,3,βL,f0

)

≥ inf
f N0 ∈N0

(

Tn,2,βL,f N0
+ Tn,3,βL,f N0

− 2

σ 2 δ sup
i=1,... ,n

|ξi | − δ2 6

σ 2 − δ
8M

σ 2

)

.
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Denote B(n) = n
κ

2β�
4β�+1 , where κ < 1 is the positive constant defined in Assump-

tion (A2.Sup). Next, consider D2 = { sup
i=1,... ,n

|ξi | > B(n)}, then by Assumption

(A2.Sup) and the choice of B(n), IP(D2) → 0 as n → +∞. Moreover the choice

of B(n) entails that 2
σ 2 δB(n)+ δ2 6

σ 2 + δ 8M
σ 2 = on(ρn

√
mL
n
). To conclude step (a),

just note that for all β ∈ T and uniformly over�(Av(nt−1
n , β)), we have as n large

enough

IPf
(
D1,β
) ≤ IPf

(

inf
f N0 ∈N0

(
Tn,2,βL,f N0

+ Tn,3,βL,f N0

)
< 3ρn

√
mL

n

)

. (32)

(b) For all β ∈ T and for all f ∈ �(Av(nt−1
n , β)), we get following from Gayraud

and Pouet (2001), in both cases β > 1 and β ≤ 1,

Tn,3,βL,f N0
= Tn,3,βL,f N0

− Tn,3,βL,f0 + Tn,3,βL,f0

≥ C̃2A2m
−2β
L − δ

≥ C̃2

4
A2m

−2β
β , (33)

where the last inequality holds due to the value of δ and provided that βL ≤ β; the

positive constant C̃ depends on β, βL, C,M . For simplicity sake, denote c2 = C̃2

4 .
Then from (33),

inf
f N0 ∈N0

(
Tn,2,βL,f N0

+ Tn,3,βL,f N0

)
≥ cAm−β

β inf
f N0 ∈N0




Tn,2,βL,f N0√
Tn,3,βL,f N0

+
√
Tn,3,βL,f N0





≥ cAm
−β
β



 inf
f N0 ∈N0

Tn,2,βL,f N0√
Tn,3,βLf N0

+ cAm
−β
β



 .

Then, as − sup(−x) = inf(x), we obtain

IPf
(
D1,β
) ≤ IPf



3ρn
√
mL
n

cAm
−β
β

≥ − sup
f N0 ∈N0

∣∣∣∣∣∣

Tn,2,βL,f N0√
Tn,3,βL,f N0

∣∣∣∣∣∣
+ cAm

−β
β





= IPf



 sup
f N0 ∈N0

∣∣∣∣∣∣

Tn,2,βL,f N0√
Tn,3,βL,f N0

∣∣∣∣∣∣
≥cAm−β

β − 3
√

8(log(log n))1/2

cAm
−β
β

√
mL

n





≤
∑

f N0 ∈N0

IPf





∣∣∣∣∣∣

Tn,2,βL,f N0√
Tn,3,βL,f N0

∣∣∣∣∣∣
≥cAm−β

β − 3
√

8(log(log n))1/2
√
mL

ncAm
−β
β



 .

(34)

(c) Let us consider the eventD3,β=
{∣∣∣∣∣

T
n,2,βL,f

N
0√

T
n,3,βL,f

N
0

∣∣∣∣∣
≥cAm−β

β − 3
√

8(log(log n))1/2
√
mL

ncAm
−β
β

}

.

We use the following lemma to prove that the event is negligible in probability.
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Lemma 2. For all β ∈ T and for any f ∈ �(Av(nt−1
n , β)), we get as n large

enough,

∑

f N0 ∈N0

IPf (D3,β ∩Dc2) = on(1),

where Dc2 is the complement of the event D2 = { sup
i=1,... ,n

|ξi | > B(n)} and

B(n) = n
κ

2β�
4β�+1 .

Then, from relation (34) in step (b), and applying Lemma 2, Lemma 1 is proved.

Proof of Lemma 2. The main device is Bernstein’s inequality. Let

Zj = mL

n2σ 2

∑

i∈Ik
i 
=j

f (xi)− f N0 (xi)√
Tn,3,βL,f N0

ξj , if j ∈ Ik.

The random variables Z1, . . . , Zn are independent with zero mean since IE(ξi) =
0, ∀i ∈ {1, . . . , n}. Similarly to Gayraud and Pouet (2001), we obtain an upper
bound for Zj , for all j = 1, . . . , n, that is

∣∣Zj
∣∣ ≤ K1B(n)

√
mL

σ 2n
, (35)

where K1 is a positive constant. Also, we get

n∑

j=1

IEf
((
Zj − IEf

(
Zj
))2) ≤ K2

n
, (36)

where K2 is a positive constant.
Next from (35) and (36) and applying Bernstein’s inequality, we get an expo-

nential upper bound,

IPf





∣∣∣∣∣∣

Tn,2,βL,f N0√
Tn,3,βL,f N0

∣∣∣∣∣∣
≥ cAm

−β
β − 3

√
8(log(log n))1/2

√
mL

ncAm
−β
β

)

≤ exp






−

(
cAm

−β
β − 3

√
8(log(log n))1/2

√
mL

ncAm
−β
β

)2

K2
n

+
(cAm

−β
β − 3

√
8(log(log n))1/2

√
mL

ncAm
−β
β

)K1
B(n)

√
mL

σ2n

3





, (37)

where B(n) = n
κ

2β�
4β�+1 and with κ satisfying Assumption (A2.Sup). Such a choice

for B(n) yields IP( sup
i=1,... ,n

|ξi | > B(n)) = on(1) as n → +∞.
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Let us consider the squared term in the numerator of the exponential term in
the previous inequality and let us denote it N2 and show that N is of order m−β

β :

N = m
−β
β [cA− 3

√
8t (4β+1)/(4β+1)
n (cA)−1n1/(4βL+1)n−(4β+1)/(4β+1)n4β/(4β+1)

t
−1/(4βL+1)
n t

−4β/(4β+1)
n ]

= m
−β
β [cA− 3

√
8(cA)−1n1/(4βL+1)n−1/(4β+1)t

−1/(4βL+1)
n t

1/(4β+1)
n ]

= m
−β
β [cA− 3

√
8(cA)−1 exp{log(n)4(β − βL)/ι}t−4(β−βL)/ι

n ]

= m
−β
β [cA− 3

√
8(cA)−1 exp{4a0} exp{−2(log(log(log n)))(β − βL)/ι}]

≥ m
−β
β c

A

2
,

where ι = (4βL+1)(4β+1) and a0 are positive constants and where the last relation
holds since we can chooseA sufficiently large enough and since the last exponential
term in the above equation is a constant smaller than one as n is large enough. Actu-
ally choose A sufficiently large such that cA− 3

√
8(cA)−1 exp{4a0} exp{−4/ι} ≥

A/2. Then we obtain

(cAm
−β
β − 3

√
8
√

log(log n)mL

ncAm
−β
β

)2

K2
n

∼ n1/(4β+1)t
4β/(4β+1)
n ,

(cAm
−β
β − 3

√
8
√

log(log n)mL

ncAm
−β
β

)2

(cAm
−β
β − 3

√
8
√

log(log n)mL

ncAm
−β
β

)K1
B(n)

√
mL

σ2n

3

∼ n(2β)/(4β+1)n4(βL−β)/ι(B(n))−1

t
2β/(4β+1)
n t

1/(4βL+1)
n .

The choice ofm, tn and B(n) entails that the right-hand side in (37), which is inde-
pendent of the regression function f , is decreasing to 0 exponentially. Finally, due
to the previous argument and due to Assumption (A3), Lemma 2 follows. More
precisely, the RHS in (37) is at least of order

exp(−n 2β�
4β�+1 −κ 2β�

4β�+1 ),

which would be compared to the cardinality of N0 which is exp(δ−r ), with δ =
n

− 4β�

4β�+1 −κ 2β�
4β�+1 . Denote R(β�, β�) = 4β�

4β�+1 + κ
2β�

4β�+1 = (16+8κ)β�β�+2(2β�+κβ�)
(4β�+1)(4β�+1) .

Then the relation between r , and β�, β� and κ is

R(β�, β
�)r <

2β�(1 − κ)

4β� + 1
⇔

r <
2β�(1 − κ)(1 + 4β�)

(16 + 8κ)β�β� + 2(2β� + κβ�)
. (38)

Relation (38) is exactly the required condition in Assumption (A3).
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20. Lemaréchal, C.: Nondifferentiable optimisation subgradient and ε-subgradient methods.
Optimization and operations research. Proc. Conf., Oberwolfach, (1975), pp. 191–199.
Lecture Notes in Econom. Math. Systems, Vol. 117, Springer, Berlin, 1976



558 G. Gayraud, C. Pouet

21. Lepskii, O.V.: On asymptotically exact testing of nonparametric hypotheses. Discussion
paper, Université de Louvain 1993
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