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Abstract. We consider a real random walk Sn = X1 + . . .+Xn attracted (without centering)
to the normal law: this means that for a suitable norming sequence an we have the weak
convergence Sn/an ⇒ ϕ(x)dx, ϕ(x) being the standard normal density. A local refinement
of this convergence is provided by Gnedenko’s and Stone’s Local Limit Theorems, in the
lattice and nonlattice case respectively.

Now let Cn denote the event (S1 > 0, . . . , Sn > 0) and let S+
n denote the random

variable Sn conditioned on Cn: it is known that S+
n /an ⇒ ϕ+(x)dx, where ϕ+(x) :=

x exp(−x2/2)1(x≥0). What we establish in this paper is an equivalent of Gnedenko’s and
Stone’s Local Limit Theorems for this weak convergence. We also consider the particular
case whenX1 has an absolutely continuous law: in this case the uniform convergence of the
density of S+

n /an towards ϕ+(x) holds under a standard additional hypothesis, in analogy
to the classical case. We finally discuss an application of our main results to the asymptotic
behavior of the joint renewal measure of the ladder variables process. Unlike the classical
proofs of the LLT, we make no use of characteristic functions: our techniques are rather
taken from the so–called Fluctuation Theory for random walks.

1. Introduction and results

1.1. The nonlattice case

Let Sn = X1 + . . .+Xn be a real random walk attracted (without centering) to the
normal law. This means that {Xk} is an IID sequence of real random variables, and
for a suitable norming sequence an we have the weak convergence

Sn/an ⇒ ϕ(x) dx , ϕ(x) := 1√
2π

e−x
2/2 . (1.1)

This is the case for example when E(X1) = 0 and E(X2
1) =: σ 2 ∈ (0,∞) with

an := σ
√
n, by the Central Limit Theorem.
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We recall that, by the standard theory of stability [11, §IX.8 & §XVII.5], for
equation (1.1) to hold it is necessary and sufficient that E(X1) = 0, that the truncated
variance V (t) := E(X2

1 1(|X1|≤t)) be slowly varying at ∞ (that is V (ct)/V (t) → 1
as t → ∞ for every c > 0) and that the sequence an satisfy the condition a2

n ∼
nV (an) as n → ∞.

For the moment we assume that the law ofX1 is nonlattice, that is not supported
in (b + cZ) for any b ∈ R, c > 0. Then a local refinement of (1.1) is provided by
Stone’s Local Limit Theorem [17, 18], that in our notations reads as (cf. [2, §8.4])

an P
(
Sn ∈ [x, x + h)

) = hϕ(x/an)+ o(1) (n → ∞) , (1.2)

uniformly for x ∈ R and h in compact sets in R
+.

In this paper we consider the asymptotic behavior of the random walk {Sn}
conditioned to stay positive. More precisely, let Cn := (S1 > 0, . . . , Sn > 0) and
let S+

n denote the random variable Sn under the conditional probability P( · | Cn): if
(1.1) holds then one has an analogous weak convergence result for S+

n /an, namely

S+
n /an ⇒ ϕ+(x) dx , ϕ+(x) := x e−x

2/2 1(x≥0) . (1.3)

This is an immediate consequence of the fact [14, 3, 7] that, whenever (1.1) holds,
the whole process {S	nt
/an}t∈[0,1] under P( · | Cn) converges weakly as n → ∞
to the standard Brownian meander process {B+

t }t∈[0,1], and ϕ+(x) dx is the law of
B+

1 , cf. [16].
Our main result is an analogue of Stone’s LLT for the weak convergence (1.3).

Theorem 1. If X1 is nonlattice and (1.1) holds, then

an P
(
Sn ∈ [x, x + h)

∣∣ Cn
) = hϕ+(x/an)+ o(1) (n → ∞) , (1.4)

uniformly for x ∈ R and h in compact sets in R
+.

The main difficulty with respect to the classical case is given by the fact that
under the conditional probability P( · | Cn) the increments of the walk {Xk} are no
longer independent. This is a major point in that the standard proof of Stone’s LLT
relies heavily on characteristic functions methods. As a matter of fact, we make no
use of characteristic functions: our methods are rather of combinatorial nature, and
we make an essential use of the so–called Fluctuation Theory for random walks.
The core of our proof consists in expressing the law of Sn under P( · | Cn) as a
suitable mixture of the laws of {Sk}0≤k≤n under the unconditioned measure P, to
which Stone’s LLT can be applied. Thus our “Positive LLT” is in a sense directly
derived from Stone’s LLT.

We point out that our methods may in principle be applied to the case when
the random walk is attracted to a generic stable law (the analogue of (1.3) in this
case is also provided by [7]), so that it should be possible to obtain an equivalent
of Theorem 1 in this general setting.
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1.2. The lattice case

Let us consider now the lattice case: we assume that X1 is supported in (b + cZ),
for the least such c. In this case the local version of (1.1) is given by Gnedenko’s
Local Limit Theorem [2, §8.4], which says that

an

c
P
(
Sn = bn+ cx

) = ϕ
(
(bn+ cx)/an

) + o(1) (n → ∞) , (1.5)

uniformly for x ∈ Z.
We can derive the local version of (1.3) also in this setting.

Theorem 2. If X1 is lattice with span 1 and (1.1) holds, then

an

c
P
(
Sn = bn+ cx

∣
∣ Cn

) = ϕ+(
(bn+ cx)/an

) + o(1) (n → ∞) ,

uniformly for x ∈ Z.

The proof is omitted since it can be recovered from the proof of Theorem 1
with only slight modifications (some steps are even simpler).

1.3. The density case

When the law of X1 is absolutely continuous with respect to Lebesgue measure
and (1.1) holds, one may ask whether the density of Sn/an converges to ϕ(x) in
some pointwise sense. However, it is easy to build examples [12, §46] satisfying
(1.1), such that for every n the density of Sn/an is unbounded in any neighborhood
of 0: therefore without some extra–assumption one cannot hope for convergence
to hold at each point. Nevertheless, if one looks for the uniform convergence of
the density, then there is a simple condition which turns out to be necessary and
sufficient.

Assumption 1. The law of X1 is absolutely continuous, and for some k ∈ N the
density fk(x) of Sk is essentially bounded: fk(x) ∈ L∞(R, dx).

It is easy to see that if this assumption holds, then for large n the density fn(x)
admits a bounded and continuous version.A proof thatAssumption 1 yields the uni-
form convergence of the (continuous versions of the) density ofSn/an towardsϕ(x),
namely

sup
x∈R

∣∣anfn(anx)− ϕ(x)
∣∣ → 0 (n → ∞) ,

can be found in [12, §46]. On the other side, the necessity of Assumption 1 for the
above convergence to hold is evident.

We can derive a completely analogous result for S+
n .

Theorem 3. Assume that X1 satisfies Assumption 1, and that (1.1) holds. Then:

(1) S+
n has an absolutely continuous law, whose density f+

n (x) is bounded and
continuous (except at x = 0) for large n;
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(2) the (continuous version of the) density of S+
n /an converges uniformly to ϕ+(x):

sup
x∈R

∣∣anf+
n (anx)− ϕ+(x)

∣∣ → 0 (n → ∞) .

This Theorem can be proved following very closely the proof of Theorem 1: in
fact equation (3.1) in Section 3 provides an explicit expression for f+

n (x), that can
be shown to converge to ϕ+(x) with the very same arguments given in Section 4.
The details are carried out explicitly in [5].

1.4. Asymptotic behavior of the ladder renewal measure

As a by–product of the Local Limit Theorems described above, we have a result on
the asymptotic behavior of the renewal measure of the ladder variables process. For
simplicity we take the arithmetic setting, assuming that X1 is supported by Z and
it is aperiodic, but everything works similarly in the general lattice and nonlattice
cases. The renewal mass function u(n, x) of the ladder variables process is defined
for n ∈ N, x ∈ Z by

u(n, x) :=
∞∑

r=0

P
(
Tr = n,Hr = x

) = P
(
n is a ladder epoch, Sn = x

)
, (1.6)

where {(Tk,Hk)} is the (strict, ascending) ladder variables process associated to
the random walk (the definitions are given in Section 2). Generalizing some earlier
result of [15], in [1] it has been shown that, for {xn} such that xn/an → 0,

u(n, xn) ∼ 1√
2π n an

U(xn − 1) ∼ 1

n
P
(
Sn = xn

)
U(xn − 1) (n → ∞) , (1.7)

where U(x) := ∑∞
r=0 P(Hr ≤ x) is the distribution function of the renewal mea-

sure associated to the ladder heights process (as a matter of fact, the proof of (1.7)
given in [1] is carried out under the assumption that E(X2

1) < ∞, but it can be
easily extended to the general case).

With the methods of the present paper we are able to show that the same relation
is valid for x = O(an), with no further restriction on X1 other than the validity
of (1.1).

Theorem 4. Let X1 be arithmetic with span 1 and such that equation (1.1) holds.
Then for x ∈ Z

u(n, x) = 1

n
P
(
Sn = x

)
U(x − 1)

(
1 + o(1)

)
(n → ∞) , (1.8)

uniformly for x/an ∈ [ε, 1/ε], for every fixed ε > 0.

The proof of this theorem is a direct consequence of Theorem 2: the details are
worked out in Section 2.5.

Notice that in the r.h.s. of (1.8) we could as well writeU(x) instead ofU(x−1),
since x → ∞ as n → ∞. Also observe that putting together equation (1.7) with
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Theorem 4 one has the stronger result that equation (1.8) holds uniformly for
x/an ∈ [0,K], for every fixed K > 0.

We point out that Theorem 4 has been obtained also in [4], where the authors
study random walks conditioned to stay positive in a different sense.

1.5. Outline of the paper

The exposition is organized as follows: in Section 2 we recall some basic facts on
Fluctuation Theory and stable laws, and we set the relative notation; we also give
the proof of Theorem 4. The rest of the paper is devoted to the proof of Theorem 1,
which has been split in two parts. The first one, in Section 3, contains the core of
the proof: using Fluctuation Theory we obtain an alternative expression for the law
of S+

n , see equation (3.1), and we prove a crucial weak convergence result con-
nected to the renewal measure of the ladder variables process. Then in Section 4 we
apply these preliminary results, together with Stone’s LLT, to complete the proof.
Finally, some minor points have been deferred to the appendix.

2. Fluctuation Theory and some applications

In this section we are going to recall some basic facts about Fluctuation Theory for
random walks, especially in connection with the theory of stable laws, and to derive
some preliminary results. Standard references on the subject are [11] and [2].

2.1. Regular variation

A positive sequence dn is said to be regularly varying of index α ∈ R (we denote
this by dn ∈ Rα) if dn ∼ Ln n

α as n → ∞, whereLn is slowly varying at ∞ in that
L	tn
/Ln → 1 as n → ∞, for every t > 0. If dn ∈ Rα with α �= 0, up to asymp-
totic equivalence we can (and will) always assume [2, Th.1.5.3] that dn = d(n),
with d(·) a continuous, strictly monotone function, whose inverse will be denoted
by d−1(·). Observe that if dn ∈ Rα then d−1(n) ∈ R1/α and 1/dn ∈ R−α .

Let us recall two basic facts on regularly varying sequences that will be used a
number of times in the sequel. The first one is a uniform convergence property [2,
Th.1.2.1]: if dn ∈ Rα , then

d	tn
 = tα dn
(
1 + o(1)

)
(n → ∞) , (2.1)

uniformly for t ∈ [ε, 1/ε], for every fixed ε > 0. The second basic fact [2,
Prop.1.5.8] is that if dn ∈ Rα with α > −1, then

n∑

k=1

dk ∼ ndn

α + 1
(n → ∞) . (2.2)
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2.2. Ladder variables and stability

The first (strict ascending) ladder epoch T1 of a random walk Sn = X1 + . . .+Xn
is the first time the random walk enters the positive half line, and the corresponding
ladder height H1 is the position of the walk at that time:

T1 := inf{n > 0 : Sn > 0} H1 := ST1 .

Iterating these definitions one gets the following ladder variables: more precisely,
for k > 1 one defines inductively

Tk := inf{n > Tk−1 : Sn > Hk−1} Hk := STk ,

and for convenience we put (T0, H0) := (0, 0). The weak ascending ladder vari-
ables are defined in a similar way, just replacing > by ≥ in the relations (Sn > 0)
and (Sn > Hk−1) above. In the following we will rather consider the weak descend-
ing ladder variables (T k,Hk), which are by definition the weak ascending ladder
variables of the walk {−Sn}. Observe that, by the strong Markov property, both
{(Tk,Hk)}k and {(T k,Hk)}k are bidimensional renewal processes, that is random
walks on R

2 with step law supported in the first quadrant.
It is known thatX1 is in the domain of attraction (without centering) of a stable

law if and only if (T1, H1) lies in a bivariate domain of attraction, cf. [13, 8, 9]. This
fact will play a fundamental role in our derivation: let us specialize it to our setting.
By hypothesis X1 is attracted to the normal law, that is Sn/an ⇒ ϕ(x) dx, so that
by the standard theory of stability an ∈ R1/2. We define two sequences bn, cn by

log
n√
2

=
∞∑

m=1

ρm

m
e
− m
bn cn := a(bn) , (2.3)

where ρm := P(Sm > 0): then bn ∈ R2, cn ∈ R1 and we have the weak conver-
gence

(
Tn

bn
,
Hn

cn

)
⇒ Z , P

(
Z ∈ (dx, dy)

) = e−1/2x

√
2π x3/2

1(x≥0) dx · δ1(dy) , (2.4)

where δ1(dy) denotes the Dirac measure at y = 1.
Thus the first ladder epoch T1 is attracted to the positive stable law of index 1/2,

as for the simple random walk case:

Tn

bn
⇒ Y, P

(
Y ∈ dx

) = e−1/2x

√
2π x3/2

1(x≥0) dx ,

while for {Hk} one has a generalized law of large numbers, with norming
sequence cn: Hn/cn ⇒ 1 (that is H1 is relatively stable, cf. [2, §8.8]).

We stress that we choose the sequence an to be increasing, and by (2.3) bn and
cn are increasing too. We also recall that the norming sequence bn is sharply linked
to the probability tail of the random variable T1, by the relation

P
(
T1 > bn

) ∼
√

2

π

1

n
(n → ∞). (2.5)
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In fact, this condition is necessary and sufficient in order that a sequence bn be such
that Tn/bn ⇒ Y , cf. [11, §XIII.6].

Remark 1. It has already been noticed that when the step X1 has finite (nonzero)
variance and zero mean,

E
(
X1

) = 0 E
(
X2

1

) =: σ 2 ∈ (0,∞) ,

by the Central Limit Theorem one can take an = σ
√
n in order that equation (1.1)

holds. In other words, X1 is in the normal domain of attraction of the normal law.
In this case the first ladder height H1 is integrable [6] and the behavior of the tail
of T1 is given by

P
(
T1 > n

) ∼ 2 E(H1)

σ
√

2π

1√
n

(n → ∞) ,

cf. [11, Th.1 in §XII.7 & Th.1 in §XVIII.5]. This means that also T1 andH1 belong
to the normal domain of attraction of their respective limit law, and one can take

bn = E(H1)
2

σ 2 n2 cn = E(H1) n

in order that (2.4) holds (we have used the law of large numbers forH1 and relation
(2.5) for T1).

2.3. An asymptotic result

As an application of the results exposed so far, we derive the asymptotic behavior
of P(Cn) as n → ∞, which will be needed in the sequel. The connection with
Fluctuation Theory is given by the fact that

Cn := (
S1 > 0, . . . , Sn > 0

) = (
T 1 > n

)
.

In analogy to what we have seen for T1, the fact that the random walk is attracted
to the normal law implies that T 1 lies in the domain of attraction of the positive
stable law of index 1/2. Therefore P(Cn) ∈ R−1/2, and denoting by ψ(t) :=
E(exp(−tT 1)) the Laplace transform of T 1, by standard Tauberian theorems [11,
Ex.(c) in §XIII.5] we have that

P(Cn) ∼ 1√
π

(
1 − ψ(1/n)

)
(n → ∞) .

Now, for ψ(t) we have the following explicit expression [11, Th.1 in §XII.7]:

− log(1 − ψ(t)) =
∞∑

m=1

ρm

m
e−mt = − log(1 − e−t )−

∞∑

m=1

ρm

m
e−mt ,

where ρm := P(Sm ≤ 0). A look to (2.3) then yields the desired asymptotic behav-
ior:

P(Cn) ∼ 1√
2π

b−1(n)

n
(n → ∞) . (2.6)
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2.4. Two combinatorial identities

The power of Fluctuation Theory for the study of random walks is linked to some
fundamental identities. The most famous one is the so-called Duality Lemma [11,
§XII] which can be expressed as

P
(
n is a ladder epoch, Sn ∈ dx

) = P
(Cn, Sn ∈ dx

)
, (2.7)

where by (n is a ladder epoch)we mean of course the disjoint union ∪k≥0(Tk = n),
and by P(A,Z ∈ dx) we denote the finite measure B → P(A,Z ∈ B). A sec-
ond important identity, recently discovered by Alili and Doney [1], will play a
fundamental role for us:

P
(
Tk = n,Hk ∈ dx

) = k

n
P
(
Hk−1 < Sn ≤ Hk, Sn ∈ dx

)
. (2.8)

We point out that both the above identities are of purely combinatorial nature,
in the sense that they can be proved by relating the events on the two sides with
suitable one to one, measure preserving transformations on the sample paths space.

2.5. Proof of Theorem 4

We recall that by hypothesis ε is a fixed positive number. We start from the definition
(1.6) of u(n, x): applying the Duality Lemma (2.7) we get

u(n, x) = P
( Cn, Sn = x

) = P
( Cn

)
P
(
Sn = x

∣∣ Cn
)
. (2.9)

Observe that

inf
z∈[ε,1/ε]

ϕ+(z) > 0 inf
z∈[ε,1/ε]

ϕ(z) > 0 ,

which implies that both Theorem 2 and Gnedenko’s LLT (1.5) hold also in a ratio
sense, namely

P
(
Sn = x

∣∣ Cn
) = 1

an
ϕ+(x/an)

(
1 + o(1)

)
(n → ∞)

P
(
Sn = x

) = 1

an
ϕ (x/an)

(
1 + o(1)

)
(n → ∞) ,

uniformly for x/an ∈ [ε, 1/ε]. Since ϕ+(z) = √
2π z ϕ(z) for z > 0, it follows

that

P
(
Sn = x

∣
∣ Cn

) =
√

2π
x

an
P
(
Sn = x

) (
1 + o(1)

)
(n → ∞) , (2.10)

uniformly for x/an ∈ [ε, 1/ε].
The asymptotic behavior of P(Cn) is given by (2.6), and comparing equation

(1.8) with (2.10) and (2.9) we are left with proving that

U(x) = x
b−1(n)

a(n)

(
1 + o(1)

)
(n → ∞) ,
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uniformly for x/an ∈ [ε, 1/ε]. We recall that U(x) is the distribution function of
the renewal measure associated to the ladder height process {Hk}, which is rela-
tively stable, since Hn/cn ⇒ 1 as n → ∞. Then Theorem 8.8.1 in [2] gives that
U(x) ∼ c−1(x) as x → ∞, hence it rests to show that

x

c−1(x)

b−1(n)

a(n)
→ 1 (n → ∞) ,

uniformly for x/an ∈ [ε, 1/ε], or equivalently, setting x = z an, that

z b−1(n)

c−1(z a(n))
→ 1 (n → ∞) ,

uniformly for z ∈ [ε, 1/ε]. However, as c−1(·) ∈ R1, by (2.1) we have that

c−1(z a(n)) ∼ z c−1(a(n)) (n → ∞) ,

uniformly for z ∈ [ε, 1/ε], and the proof is completed observing that c−1(a(n)) =
b−1(n), by the definition (2.3) of cn. ��

3. Proof of Theorem 1: first part

3.1. A fundamental expression

We are going to use Fluctuation Theory to express the law of S+
n in a more useful

way. For x > 0 and n > 1 we have

nP
(Cn, Sn ∈ dx

) (2.7)= nP
(
n is a ladder epoch, Sn ∈ dx

)

=
∞∑

r=1

nP
(
Tr = n, Sn ∈ dx

) (2.8)=
∞∑

r=1

r P
(
Hr−1 < x ≤ Hr, Sn ∈ dx

)
,

where we have used both the combinatorial identities (2.7), (2.8). With a simple
manipulation we get

∞∑

r=1

r P
(
Hr−1 < x ≤ Hr, Sn ∈ dx

) =
∞∑

r=1

r−1∑

k=0

P
(
Hr−1 < x ≤ Hr, Sn ∈ dx

)

=
∞∑

k=0

∞∑

r=k+1

P
(
Hr−1 < x ≤ Hr, Sn ∈ dx

) =
∞∑

k=0

P
(
Hk < x, Sn ∈ dx

)
,

and using the Markov property

P
(
Hk < x, Sn ∈ dx

) =
n−1∑

m=0

∫

[0,x)
P
(
Tk = m, Hk ∈ dz

)
P
(
Sn−m ∈ dx − z

)
.
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In conclusion we obtain the following relation (which is essentially the same as
equation (10) in [1]):

P
(
Sn/an ∈ dx

∣∣ Cn
)

= 1

nP(Cn)
n−1∑

m=0

∫

[0,anx)

( ∞∑

k=0

P
(
Tk = m, Hk ∈ dz

))
P
(
Sn−m ∈ andx − z

)

= b−1(n)

nP(Cn)
∫

[0,1)×[0,x)
dµn(α, β) P

(
S	n(1−α)

an

∈ dx − β

)
, (3.1)

where µn is the finite measure on [0, 1)× [0,∞) defined by

µn(A) := 1

b−1(n)

∞∑

k=0

P
((

Tk

n
,
Hk

an

)
∈ A

)
, (3.2)

for n ∈ N and for any Borel set A ⊆ [0, 1) × [0,∞). Notice that µn is nothing
but a suitable rescaling of the renewal measure associated to the ladder variables
process. Also observe that the sum defining µn can be stopped at k = n− 1, since
by definition Tk ≥ k for every k; hence µn is indeed a finite measure.

Before proceeding, we would like to stress the importance of equation (3.1),
which is in a sense the core of our proof. The reason is that in the r.h.s. the condition-
ing on Cn has disappeared: we are left with a mixture, governed by the measureµn,
of the laws of {S	n(1−α)
}α∈[0,1) without conditioning, and the asymptotic behavior
of these laws can be controlled with Stone’s Local Limit Theorem (1.2) (if we
exclude the values of α close to 1).

In the following subsection we study the asymptotic behavior of the sequence
of measures {µn}, and in the next section we put together these preliminary results
to conclude the proof of Theorem 1.

3.2. A weak convergence result

We are going to show that as n → ∞ the sequence of measure {µn} converges
weakly to the finite measure µ defined by

µ(A) :=
∫

A

dα dβ
β√

2π α3/2
e−β

2/2α , (3.3)

for any Borel set A ⊆ [0, 1) × [0,∞) (it is easy to check that µ is really a finite
measure, see below). Since we are not dealing with probability measures, we must
be most precise: we mean weak convergence with respect to the classCb of bounded
and continuous functions on R

2: µn ⇒ µ iff
∫
h dµn → ∫

h dµ for every h ∈ Cb.
If we introduce the distribution functions Fn, F of the measures µn, µ:

Fn(a, b) := µn
(
[0, a] × [0, b]

)
F(a, b) := µ

(
[0, a] × [0, b]

)
,

then proving that µn ⇒ µ as n → ∞ is equivalent to showing that Fn(a, b) →
F(a, b) for every (a, b) ∈ [0, 1] × [0,∞] (notice that ∞ is included, because the
total mass of µn is not fixed).
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Proposition 5. The sequence of measures {µn} converges weakly to the measureµ.

Proof. We start checking the convergence of the total mass:

Fn(1,∞) = 1

b−1(n)

∞∑

k=0

P
(
Tk ≤ n

) =:
1

b−1(n)
G(n) ,

where G(n) is the distribution function of the renewal measure associated to the
ladder epochs process {Tk}. There is a sharp link between the asymptotic behavior
as n → ∞ of G(n) and that of P(T1 > n), given by [11, Lem. in §XIV.3]:

G(n) ∼ 2

π

1

P(T1 > n)
(n → ∞) . (3.4)

Since from relation (2.5) we have that

P
(
T1 > n

) ∼
√

2

π

1

b−1(n)
(n → ∞) ,

it follows that Fn(1,∞) → √
2/π as n → ∞. On the other hand, the check that

F(1,∞) = √
2/π is immediate:

F(1,∞) = 1√
2π

∫ 1

0
dα

1

α3/2

∫ ∞

0
dβ β e−β

2/2α = 1√
2π

∫ 1

0
dα

1√
α

=
√

2

π
.

Since the total mass converges, we claim that it suffices to show that

lim inf
n→∞ µn

(
(a1, a2] × (b1, b2]

) ≥ µ
(
(a1, a2] × (b1, b2]

)
(3.5)

for all 0 < a1 < a2 < 1, 0 < b1 < b2 < ∞, and weak convergence will be
proved. The (simple) proof of this claim can be found in Appendix A.

Directly from the definition of µn we have

µn
(
(a1, a2] × (b1, b2]

) = 1

b−1(n)

∞∑

k=0

P
(
Tk

n
∈ (a1, a2],

Hk

an
∈ (b1, b2]

)
.

We simply restrict the sum to the set of k such that k/b−1(n) ∈ (b1 + ε, b2 − ε], ε
being a small fixed positive number, getting

µn
(
(a1, a2] × (b1, b2]

) ≥ 1

b−1(n)

∑

s∈ Z

b−1(n)
∩(b1+ε,b2−ε]

ξn(s) , (3.6)

where

ξn(s) := P
(
T	sb−1(n)


n
∈ (a1, a2],

H	sb−1(n)

an

∈ (b1, b2]

)
.
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By the definition (2.3) of cn, we have that an = c(b−1(n)): then, using the weak
convergence (2.4) and the uniform convergence property of regularly varying
sequences (2.1), it is not difficult to check that

ξn(s) → P
(
Y ∈

(
a1

s2 ,
a2

s2

])
=: ξ(s) (n → ∞) ,

uniformly for s ∈ (b1 + ε, b2 − ε].
Observe that the term in the r.h.s. of (3.6) is a Riemann sum of the function ξn(s)

over the bounded interval (b1 + ε, b2 − ε]. Since the sequence of functions {ξn(s)}
is clearly equibounded and converges uniformly to ξ(s), it is immediate to check
that the r.h.s. of (3.6) does converge to the integral of ξ(s) over (b1 + ε, b2 − ε].
Therefore

lim inf
n→∞ µn

(
(a1, a2] × (b1, b2]

) ≥
∫ b2−ε

b1+ε
ds P

(
Y ∈

(
a1

s2 ,
a2

s2

])

=
∫ b2−ε

b1+ε
ds

∫ a2/s
2

a1/s2
dz

e−1/2z

√
2π z3/2

=
∫ b2−ε

b1+ε
ds

∫ a2

a1

dt
s e−s2/2t

√
2π t3/2

= µ
(
(a1, a2] × (b1 + ε, b2 − ε]

)
,

and letting ε → 0 relation (3.5) follows. ��

4. Proof of Theorem 1: second part

4.1. General strategy

Now we are ready to put together the results obtained in the last section. We start
by rephrasing relation (1.4), which is our final goal, in terms of Sn/an, a form that
is more convenient for our purposes: we have to prove that

∀K > 0 lim sup
n→∞

an

[
sup

x∈R+, h≤K/an

∣∣∣P
(
Sn/an ∈ x + Ih

∣∣ Cn
) − hϕ+(x)

∣∣∣
]

= 0,

(4.1)

where Ih := [0, h), and x + Ih := [x, x + h).
Altough the idea behind the proof is quite simple, our arguments depend on an

approximation parameter ε and there are a number of somewhat technical points. In
order to keep the exposition as transparent as possible, it is convenient to introduce
the following notation: given two real functions f (n, x, h, ε) and g(n, x, h, ε) of

the variables n ∈ N, x ∈ R
+, h ∈ R

+ and ε ∈ (0, 1), we say that f
�∼ g if and

only if

∀K > 0 lim sup
ε→0

lim sup
n→∞

an

[
sup

x∈R+, h≤K/an

∣∣f (n, x, h, ε)− g(n, x, h, ε)
∣∣
]

= 0 .

With this terminology we can reformulate (4.1) as

P
(
Sn/an ∈ x + Ih

∣∣ Cn
) �∼ h ϕ+(x) . (4.2)
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To obtain a more explicit expression of the l.h.s. of (4.2), we resort to equa-
tion (3.1): with an easy integration we get

P
(
Sn/an ∈ x + Ih

∣∣ Cn
) = b−1(n)

nP(Cn)
∫

Dx+h1

dµn(α, β) Ĝ
x,h
n (α, β) , (4.3)

where we have introduced the notation Dba := [0, a)× [0, b), and

Ĝx,hn (α, β) := P
(
S	n(1−α)

an

∈ {
(x − β)+ Ih

} ∩ [0,∞)

)
. (4.4)

In order to determine the asymptotic behavior of the r.h.s. of (4.3), we recall that:

• from (2.6) we have

b−1(n)

nP(Cn) →
√

2π ;

• from Proposition 5 we have that µn ⇒ µ;
• from Stone’s LLT (1.2) it follows that, for large n, Ĝx,hn (α, β) is close to

Gx,h(α, β) := h
1√

1 − α
ϕ

(
x − β√
1 − α

)
, (4.5)

where we have used that an(1−α) ∼ √
1 − α an as n → ∞, by (2.1).

In fact, the rest of this section is devoted to showing that

P
(
Sn/an ∈ x + Ih

∣∣ Cn
) �∼

√
2π

∫

Dx1

dµ(α, β) Gx,h(α, β) . (4.6)

It may not be a priori obvious whether this coincides with our goal (4.2), that is
whether

ϕ+(x) =
√

2π
∫

Dx1

dµ(α, β)
1√

1 − α
ϕ

(
x − β√
1 − α

)
. (4.7)

Indeed this relation holds true: in fact (4.6) implies the weak convergence of Sn/an
under P( · | Cn) towards a limiting law with the r.h.s. of (4.7) as density, and we
already know from (1.3) that Sn/an under P( · | Cn) converges weakly to ϕ+(x) dx.
Anyway, a more direct verification of (4.7) is also given in Appendix B.

Thus we are left with proving (4.6), or equivalently
∫

Dx+h1

dµn(α, β) Ĝ
x,h
n (α, β)

�∼
∫

Dx1

dµ(α, β) Gx,h(α, β) .

Since
�∼ is an equivalence relation, this will be done through a sequence of inter-

mediate equivalences:
∫

Dx+h1

dµn Ĝ
x,h
n

�∼ . . .
�∼ . . .

�∼ . . .
�∼

∫

Dx1

dµ Gx,h ,
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and for ease of exposition the proof has been accordingly split in four steps. The
idea is quite simple: we first restrict the domain from Dx+h1 to Dx1−ε (steps 1–2),

then we will be able to apply Stone’s LLT and Proposition 5 to pass from (Ĝ
x,h
n , µn)

to (Gx,h, µ) (step 3), and finally we come back to the domain Dx1 (step 4).

Before proceeding, we define a slight variant Gx,hn of Ĝx,hn :

Gx,hn (α, β) := P
(
S	n(1−α)

an

∈ (x − β)+ Ih

)
(4.8)

(notice that we have simply removed the set [0,∞), see (4.4)) and we establish a
preliminary lemma.

Lemma 6. For every K > 0 there exists a positive constant C = C(K) such that

Gx,hn (α, β) ≤ C

a	(1−α)n

∀n ∈ N, ∀x, β ∈ R, ∀α ∈ [0, 1), ∀h ≤ K/an ,

and the same relation holds also for Ĝx,hn (α, β).

Proof. Since by definition Ĝx,hn (α, β) ≤ G
x,h
n (α, β), it suffices to prove the rela-

tion forGx,hn . However, this is a simple consequence of Stone’s LLT (1.2), that we
can rewrite in terms of Sn/an as

∀K > 0 lim sup
l→∞

al

[
sup

y∈R, h′≤K/al

∣∣∣ P
(
Sl/al ∈ y + Ih′

) − h′ ϕ(y)
∣∣∣
]
=0. (4.9)

In fact from this relation, using the triangle inequality and the fact that
supx∈R |ϕ(x)| < ∞, it follows easily that for every K > 0

al P
(
Sl/al ∈ y + Ih′

) ≤ C ∀l ∈ N, ∀y ∈ R, ∀h′ ≤ K/al , (4.10)

for some positive constant C = C(K). Now it suffices to observe that Gx,hn can be
written as

Gx,hn (α, β) = P
(
S	n(1−α)

a	n(1−α)


∈ an

a	n(1−α)

(x − β)+ I han

a	n(1−α)


)
, (4.11)

so that we can apply (4.10) with l = 	n(1 − α)
 and analogous substitutions. ��

4.2. First step

In the first intermediate equivalence we pass from the domainDx+h1 toDx+h1−ε , that
is we are going to show that

∫

Dx+h1

dµn Ĝ
x,h
n

�∼
∫

Dx+h1−ε
dµn Ĝ

x,h
n .

This means by definition that for every K > 0

lim sup
ε→0

lim sup
n→∞

Rεn = 0 , (4.12)
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where Rεn := sup{x∈R+, h≤K/an} r
ε
n(x, h) and

rεn(x, h) := an

∫

[1−ε,1)×[0,x+h)
dµn(α, β) Ĝ

x,h
n (α, β) .

Applying Lemma 6 and enlarging the domain of integration, we get

Rεn ≤ C an

∫

[1−ε,1)×[0,∞)

dµn(α, β)
1

a	(1−α)n


= C an

n−1∑

m=	(1−ε)n


[
1

b−1(n)

∞∑

k=0

P
(
Tk = m

)
]

1

an−m

= C
an

b−1(n)

n−1∑

m=	(1−ε)n


u(m)

an−m
, (4.13)

where in the second line we have applied the definition (3.2) of µn, and in the
third line we have introduced u(m) := ∑∞

k=0 P(Tk = m), which is the mass func-
tion of the renewal measure associated to the ladder epochs process {Tk}. In the
proof of Proposition 5 we have encountered the asymptotic behavior of the distribu-
tion functionG(n) := ∑n

m=1 u(m), see (3.4). The corresponding local asymptotic
behavior for u(m) follows since the sequence u(m) is decreasing in m (this is a
simple consequence of the Duality Lemma (2.7), see also [10, Th.4]): hence

u(m) ∼ 1

π

1

mP(T1 > m)
∼ 1√

2π

b−1(m)

m
(m → ∞) ,

having used (2.5). It follows that u(m) ≤ C1 b
−1(m)/m for every m, for some

positive constant C1. Recalling that b−1(·) is increasing, from (4.13) we get

Rεn ≤ CC1
an

b−1(n)

n−1∑

m=	(1−ε)n


b−1(m)

man−m

≤ CC1
an

	(1 − ε)n

	εn
∑

k=1

1

ak
≤ CC1C2

ε

1 − ε

an

a	εn

,

for some positive constant C2: in the last inequality we have used (2.2), since
an ∈ R1/2. Now from (2.1) we have that an/a	εn
 → 1/

√
ε as n → ∞, hence

lim sup
n→∞

Rεn ≤ C

√
ε

1 − ε
,

with C := CC1C2, and (4.12) follows.
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4.3. Second step

Now we show that we can restrict the domain from Dx+h1−ε to Dx1−ε:
∫

Dx+h1−ε
dµn Ĝ

x,h
n

�∼
∫

Dx1−ε
dµn Ĝ

x,h
n =

∫

Dx1−ε
dµn G

x,h
n ,

where the equality simply follows from the fact that by definition (see (4.4) and
(4.8))

Ĝx,hn (α, β) = Gx,hn (α, β) for β ≤ x .

We have to show that for every K > 0

lim sup
ε→0

lim sup
n→∞

Qε
n = 0 , (4.14)

where Qε
n := sup{x∈R+, h≤K/an} q

ε
n(x, h) and

qεn(x, h) := an

∫

[0,1−ε)×[x,x+h)
dµn(α, β) Ĝ

x,h
n (α, β) .

From Lemma 6 and from the fact that an is increasing we easily get

qεn(x, h) ≤ C
an

a	εn

µn

(
[0, 1 − ε)× [x, x + h)

)
.

As an ∈ R1/2, we have an/a	εn
 → 1/
√
ε as n → ∞ by (2.1), hence for fixed

ε > 0 we can find a positive constant C1 = C1(ε) such that for all n ∈ N

qεn(x, h) ≤ CC1 µn
(
[0, 1 − ε)× [x, x + h)

)
.

However the term in the r.h.s. can be easily estimated: using the definition (3.2)
of µn, for h ≤ K/an we get

µn
(
[0, 1 − ε)× [x, x + h)

)

= 1

b−1(n)

∞∑

k=0

P
(
Tk < (1 − ε)n,Hk ∈ [anx, anx + anh)

)

≤ 1

b−1(n)

∞∑

k=0

P
(
Hk ∈ [anx, anx +K)

) ≤ 1

b−1(n)
sup
z∈R+

U
(
[z, z+K)

)
,

whereU(dx) := ∑∞
k=0 P(Hk ∈ dx) is the renewal measure associated to the ladder

heights process {Hk}, that we have already encountered in the proof of Theorem 4.
Notice that

∀K > 0 sup
z∈R+

U
(
[z, z+K)

) =: C2 < ∞ ,

which holds whenever {Hk} is a transient random walk, cf. [11, Th.1 in §VI.10].
Thus for every fixed ε > 0

Qε
n = sup

x∈R+, h≤K/an
qεn(x, h) ≤ CC1C2

1

b−1(n)
→ 0 (n → ∞) ,

and (4.14) follows.
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4.4. Third step

This is the central step: we prove that
∫

Dx1−ε
dµn G

x,h
n

�∼
∫

Dx1−ε
dµ Gx,h ,

that is for every K > 0

lim sup
ε→0

lim sup
n→∞

sup
x∈R+, h≤K/an

an

∣
∣
∣
∣

∫

Dx1−ε
dµn G

x,h
n −

∫

Dx1−ε
dµGx,h

∣
∣
∣
∣ = 0 . (4.15)

By the triangle inequality

an

∣
∣
∣
∣

∫

Dx1−ε
dµn G

x,h
n −

∫

Dx1−ε
dµGx,h

∣
∣
∣
∣

≤ an

∫

Dx1−ε
dµn

∣
∣Gx,hn − Gx,h∣∣ + an

∣
∣
∣
∣

∫

Dx1−ε
dµn Gx,h −

∫

Dx1−ε
dµGx,h

∣
∣
∣
∣,

(4.16)

and we study separately the two terms in the r.h.s. above.

First term. With a rough estimate we have

an

∫

Dx1−ε
dµn

∣∣Gx,hn − Gx,h∣∣

≤
[

sup
n∈N

µn
(
D∞

1

)] (
sup

(α,β)∈D∞
1−ε
an

∣∣∣Gx,hn (α, β)− Gx,h(α, β)
∣∣∣
)
, (4.17)

and notice the prefactor in the r.h.s. is bounded since µn(D∞
1 ) → µ(D∞

1 ). For
the remaining term, we use the triangle inequality and the definition (4.5) of Gx,h,
getting

an

∣∣∣Gx,hn (α, β)− Gx,h(α, β)
∣∣∣

≤
(

an

a	(1−α)n


)
a	(1−α)n


∣∣∣∣G
x,h
n (α, β)− h an

a	(1−α)n

ϕ

(
an (x − β)

a	(1−α)n


)∣∣∣∣

+ (h an)

∣∣∣∣
an

a	(1−α)n

ϕ

(
an (x − β)

a	(1−α)n


)
− 1√

1 − α
ϕ

(
x − β√
1 − α

)∣∣∣∣ .

(4.18)

Let us look at the first term in the r.h.s. above: by the by the uniform convergence
property of regularly varying sequences (2.1) we have

sup
α∈(0,1−ε)

∣∣∣
∣

an

a	(1−α)n

− 1√

1 − α

∣
∣∣
∣ → 0 (n → ∞) , (4.19)
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hence the prefactor is uniformly bounded. For the remaining part, from the expres-
sion (4.11) for Gx,hn it is clear that one can apply Stone’s LLT, see (4.9), yielding

sup
(α,β)∈D∞

1−ε, x∈R+, h≤K/an
a	(1−α)n


∣∣∣∣G
x,h
n (α, β)− h an

a	(1−α)n

ϕ

(
an (x − β)

a	(1−α)n


)∣∣∣∣ → 0

as n → ∞.
For the second term in the r.h.s. of (4.18), notice that the prefactor (h an) gives

no problem since h ≤ K/an in our limit. On the other hand, it is easily seen that
the absolute value is vanishing as n → ∞, uniformly for (α, β) ∈ D∞

1−ε and for
x ∈ R

+: this is thanks to relation (4.19) and to the fact that the function ϕ(x) is
uniformly continuous. Coming back to equation (4.17), we have shown that

lim sup
n→∞

sup
x∈R+, h≤K/an

an

∫

Dx1−ε
dµn

∣
∣Gx,hn − Gx,h∣∣ = 0 . (4.20)

Second term. Using the definition (4.5) of Gx,h, the second term in the r.h.s. of
equation (4.16) can be written as

an

∣∣∣∣

∫

Dx1−ε
dµn Gx,h −

∫

Dx1−ε
dµGx,h

∣∣∣∣

= (h an)

∣∣∣∣

∫

D∞
1−ε

dµn �(α, x − β) −
∫

D∞
1−ε

dµ�(α, x − β)

∣∣∣∣ (4.21)

where we have introduced the shorthand

�(s, t) := 1√
1 − s

ϕ

(
t√

1 − s

)
1(t≥0) .

As usual, for us (h an) ≤ K and we can thus concentrate on the absolute value in
the r.h.s. of (4.21). Observe that, for fixed x ≥ 0, the function (α, β) → �(α, x−β)
on the domain D∞

1−ε is bounded, and continuous except on the line β = x: since
µn ⇒ µ, it follows that for fixed x the r.h.s. of (4.21) is vanishing as n → ∞.
However, we would like the convergence to be uniform in x ∈ R

+: this stronger
result holds true too, as one can verify by approximating � with a sequence of
uniformly continuous functions (the details are carried out in Appendix C). The net
result is

lim sup
n→∞

sup
x∈R+, h≤K/an

an

∣
∣∣∣

∫

Dx1−ε
dµn Gx,h −

∫

Dx1−ε
dµGx,h

∣
∣∣∣ = 0 . (4.22)

Putting together relations (4.16), (4.20) and (4.22) it is easily seen that (4.15)
holds (even without taking the limit in ε), and the step is completed.



526 F. Caravenna

4.5. Fourth step

We finally show that
∫

Dx1−ε
dµ Gx,h �∼

∫

Dx1

dµ Gx,h ,

that is, for every K > 0

lim sup
ε→0

lim sup
n→∞

sup
x∈R+, h≤K/an

an

∫

[1−ε,1)×[0,x)
dµ(α, β)Gx,h(α, β) = 0 . (4.23)

This is very easy: observe that

Gx,h(α, β) ≤ h√
2π

√
1 − α

,

as one can check from the explicit expressions for Gx,h (4.5) and ϕ(x) (1.1). Hence

an

∫

[1−ε,1)×[0,x)
dµ(α, β)Gx,h(α, β) ≤ (han)√

2π

∫

[1−ε,1)×[0,∞)

dµ(α, β)
1√

1 − α
,

and (4.23) follows, because the function
{
(α, β) → (1 − α)−1/2} ∈ L

1(D∞
1 , dµ

)
,

as on can easily verify. This completes the proof of Theorem 1.

Appendix A. An elementary fact

We prove the claim stated in the proof of Proposition 5, in a slightly more general
context. Namely, letµn, µ be finite measures on the domainD := [0, 1)× [0,∞),
with µ(∂D) = 0. Assume that µn(D) → µ(D) as n → ∞, and that

lim inf
n→∞ µn

(
(a1, a2] × (b1, b2]

) ≥ µ
(
(a1, a2] × (b1, b2]

)
, (A.1)

for all 0 < a1 < a2 < 1, 0 < b1 < b2 < ∞. What we are going to show is that

∃ lim
n→∞µn

(
(a1, a2] × (b1, b2]

) = µ
(
(a1, a2] × (b1, b2]

)
, (A.2)

for all 0 < a1 < a2 < 1, 0 < b1 < b2 < ∞, and this implies that µn ⇒ µ.
Suppose that (A.2) does not hold: then for some rectangle Q := (x1, x2] ×

(y1, y2] contained in the interior of D and for some ε > 0 one has

lim sup
n→∞

µn(Q) ≥ µ(Q)+ ε . (A.3)

We introduce for η ∈ (0, 1/2) the rectangleW := (η, 1 − η] × (η, 1/η]: by choos-
ing η sufficiently small we can assume that W ⊇ Q and that

µ(W) ≥ µ(D)− ε/2 (A.4)
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(we recall that by hypothesis µ(∂D) = 0). The rectangle W can be easily written
as a disjoint union

W = Q ∪
4⋃

i=1

Qi ,

where the rectanglesQi (whose exact definition however is immaterial) are defined
by

Q1 := (η, 1 − η] × (η, y1] Q2 := (η, x1] × (y1, y2]

Q3 := (x2, 1 − η] × (y1, y2] Q4 := (η, 1 − η] × (y2, 1/η] .

Now, on the one hand we have

lim sup
n→∞

µn(W) ≤ lim sup
n→∞

µn(D) = µ(D) ,

but on the other hand

lim sup
n→∞

µn(W)

= lim sup
n→∞

µn

(
Q ∪

4⋃

i=1

Qi

)
≥ lim sup

n→∞
µn(Q)+ lim inf

n→∞ µn

( 4⋃

i=1

Qi

)

(A.3)≥ µ(Q)+ε+
4∑

i=1

lim inf
n→∞ µn(Qi)

(A.1)≥ µ(Q)+ε +
4∑

i=1

µ(Qi)=ε + µ(W)

(A.4)≥ µ(D)+ ε/2 ,

which evidently is absurd, hence (A.2) holds true.

Appendix B. An integral

We are going to give a more direct proof of relation (4.7): substituting the explicit
expressions for ϕ(x), ϕ+(x),µ given in equations (1.1), (1.3), (3.3) and performing
an elementary change of variable, we can rewrite it as

x e−x
2/2 = x2

√
2π

∫ 1

0
dw

∫ 1

0
dz

w

z3/2(1 − z)1/2
e
− x2

2

[
w2
z

+ (1−w)2
(1−z)

]
. (B.1)

Altough it is possible to perform explicitly the integration in the r.h.s. above, it
is easier to proceed in a different way. Let {Bt } be a standard Brownian motion and
let Ta := inf{t : Bt = a} be its first passage time: then the law of Ta is given by

P
(
Ta ∈ dt

) = g(a, t) dt , g(a, t) := a√
2π t3/2

e−a
2/2t .
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By the strong Markov property, for x > 0 and w ∈ (0, 1) we have the equality in
law Tx ∼ Twx + T(1−w)x , where we mean that Twx and T(1−w)x are independent.
Therefore

g(x, 1) =
∫ 1

0
dz g

(
wx, z

)
g
(
(1 − w)x, 1 − z

)
,

and integrating over w ∈ (0, 1) we get

g(x, 1) =
∫ 1

0
dw

∫ 1

0
dz g

(
wx, z

)
g
(
(1 − w)x, 1 − z

)
. (B.2)

Now observe that relation (B.1) can be written as

g(x, 1) =
∫ 1

0
dw

∫ 1

0
dz

1 − z

1 − w
g
(
wx, z

)
g
(
(1 − w)x, 1 − z

)

=
∫ 1

0
dw

∫ 1

0
dz
z

w
g
(
wx, z

)
g
(
(1 − w)x, 1 − z

)
,

and comparing with (B.2) we are left with showing that
∫ 1

0
dw

∫ 1

0
dz

(
1 − z

w

)
g
(
wx, z

)
g
(
(1 − w)x, 1 − z

) = 0

However, the l.h.s. above can be decomposed in
∫ 1

0
dw

∫ 1

w

dz
(
. . .

) +
∫ 1

0
dw

∫ w

0
dz

(
. . .

) =: I1 + I2 ,

and with a change of variable one easily verifies that I1 = −I2.

Appendix C. A uniformity result

We are going to show that

lim sup
n→∞

sup
x∈R+

∣∣∣∣

∫

D∞
1−ε

dµn �(α, x − β) −
∫

D∞
1−ε

dµ�(α, x − β)

∣∣∣∣ = 0 , (C.1)

where we recall that Dba := [0, a)× [0, b) and the function � is defined by

�(s, t) := 1√
1 − s

ϕ

(
t√

1 − s

)
1(t≥0) .

Let us consider the fixed domain T := [0, 1 − ε] × R. Here the function � is
bounded, ‖�‖∞,T = 1/

√
2πε, and continuous except on the line t = 0. We can

easily build a family of approximations {�δ} of � that are bounded and uniformly
continuous on the whole T , setting for δ > 0

�δ(s, t) :=






�(s, t) t ≥ 0

�(s, 0) · (1 + t/δ) t ∈ [−δ, 0]

0 t ≤ −δ
.
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Notice that ‖�δ‖∞,T = ‖�‖∞,T , and that for (s, t) ∈ T
∣∣�(s, t)−�δ(s, t)

∣∣ ≤ ‖�‖∞,T 1[−δ,0](t) . (C.2)

Let us introduce for short the notation �x(α, β) := �(α, x − β), and analo-
gously for �δ . From the triangle inequality we get

∣∣∣∣

∫

D∞
1−ε

dµn �
x −

∫

D∞
1−ε

dµ�x
∣∣∣∣ ≤

∫

D∞
1−ε

dµn
∣∣�x −�xδ

∣∣

+
∫

D∞
1−ε

dµ
∣
∣�x −�xδ

∣
∣ +

∣
∣
∣
∣

∫

D∞
1−ε

dµn �
x
δ −

∫

D∞
1−ε

dµ�xδ

∣
∣
∣
∣ . (C.3)

Using relation (C.2), the first two terms in the r.h.s. above can be estimated by

‖�‖∞,T

(
µn

(
[0, 1 − ε] × [x, x + δ]

) + µ
(
[0, 1 − ε] × [x, x + δ]

))
.

Since µ is an absolutely continuous and finite measure, its distribution function is
uniformly continuous: therefore for every η > 0 we can take δ0 sufficiently small
so that

sup
x∈R+

µ
(
[0, 1 − ε] × [x, x + δ0]

) ≤ η

4‖�‖∞,T

.

On the other hand, we know that for every x ≥ 0

µn
(
[0, 1 − ε] × [x, x + δ0]

) → µ
(
[0, 1 − ε] × [x, x + δ0]

)
(n → ∞) ,

and this convergence is uniform for x ∈ R
+, as it can be easily checked. Hence by

the triangle inequality we can choose n0 so large that

sup
n≥n0

sup
x∈R+

µn
(
[0, 1 − ε] × [x, x + δ0]

) ≤ η

2‖�‖∞,T

.

Finally, observe that for fixed δ0 the family of functions {�xδ0
}x∈R+ is equibounded

and equicontinuous: since µn ⇒ µ, from a classical result [11, Cor. in §VIII.1] we
have that the third term in the r.h.s. of (C.3) with δ = δ0 is vanishing as n → ∞
uniformly for x ∈ R

+. Therefore we can assume that n0 has been chosen so large
that

sup
n≥n0

sup
x∈R+

∣∣∣∣

∫

D∞
1−ε

dµn �
x
δ0

−
∫

D∞
1−ε

dµ�xδ0

∣∣∣∣ ≤ η

4
.

Applying the preceding bounds to equation (C.3) with δ = δ0, we have shown
that for every η > 0 we can find n0 such that for every n ≥ n0

sup
x∈R+

∣∣∣∣

∫

D∞
1−ε

dµn �
x −

∫

D∞
1−ε

dµ�x
∣∣∣∣ ≤ η ,

and equation (C.1) is proved.
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