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Abstract. Let K be a smooth convex set. The convex hull of independent random points
in K is a random polytope. Central limit theorems for the volume and the number of i
dimensional faces of random polytopes are proved as the number of random points tends
to infinity. One essential step is to determine the precise asymptotic order of the occurring
variances.

1. Introduction and main results

Let K be a smooth convex set of volume one, and let X(n) be a Poisson point process
in IRd of intensity n. The intersection of K with X(n) consists of uniformly distrib-
uted random points X1, . . . , XN . (A more precise definition is given in Section 2.)
Define the random polytope �n as the convex hull [X1, . . . , XN ] = [K ∩ X(n)]
of these random points and denote by V (�n) the volume of �n. What can be
said about the distribution function of V (�n)? In particular, does the distribution
function of V (�n) satisfy a central limit theorem as n tends to infinity?

This problem turns out to be surprisingly difficult even in simple cases.Although
the intersection of a Poisson point process with sets of volume one is a well investi-
gated subject nothing is known about the precise distribution function in question.
Hence it is impossible to deduce central limit theorems from properties of the dis-
tribution function of V (�n). Nevertheless, in the planar case and if K is a ball
Hsing [16] succeeded in proving a central limit theorem for the volume of random
polygons, and Groeneboom [13] obtained a central limit theorem for the number
of vertices of the random polygon �n in this case. It seems that the methods cannot
be applied to solve the problem in higher dimensions.

Here we generalize these results and prove a central limit theorem in all dimen-
sions for arbitrary smooth convex sets K . Let K2+ be the set of compact convex
sets K ∈ IRd , d ≥ 2, with nonempty interior, boundary of differentiability class
C2, and positive Gaussian curvature. By IP(A) we denote the probability of A, by
IE the expectation and by Var the variance of a random variable. � denotes the
distribution function of the normal distribution.
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Theorem 1. Let K ∈ K2+ and let �n be the convex hull of the intersection of K

with a Poisson point process of intensity n. Then there is a constant c1(K) such that
∣
∣
∣
∣
IP

(
V (�n) − IEV (�n)√

VarV (�n)
≤ x

)

− �(x)

∣
∣
∣
∣

≤ c1(K) n− 1
2 + 1

d+1 ln2+ 2
d+1 n.

The asymptotic behavior of the occuring expectation is well understood. It
follows easily from well known results on random polytopes (see Lemma 1) that

IEV (�n) = V (K) − γd�(K)n− 2
d+1 (1 + o(1)), (1)

as n → ∞, where the constant γd only depends on the dimension and is known
explicitly, and �(K) denotes the affine surface area of K . But it turned out to be
difficult to deduce more information about the asymptotic behavior of the variance
of functionals of random polytopes. From Theorem 3 we deduce in Lemma 1 that
there are positive constants c2(K), c3(K) depending only on K such that

c2(K)n−1− 2
d+1 ≤ VarV (�n) ≤ c3(K)n−1− 2

d+1 . (2)

Thus at least the asymptotic order of the variance occuring in the denominator in
Theorem 1 is known.

A second functional of �n which is of fundamental interest is the number of
i-dimensional faces fi(�n), i = 0, . . . , d − 1. The analogous question here is to
determine the asymptotic distribution function of fi(�n) as n tends to infinity. It
should be mentioned that there are close connections between the number of ver-
tices f0(�n) and the volume V (�n) of the random polytope. Efron’s identity [11]
states for a Poisson point process that

IEf0(�n) = n(V (K) − IEV (�n)),

and thus the results concerning IEV (�n) can be used to determine the expected
number of vertices f0(�n). Corresponding to (1),

IEf0(�n) = γd�(K)n1− 2
d+1 (1 + o(1))

as n → ∞. Lemma 2 gives an analogous formula for all i ∈ {0, . . . , d − 1},

IEfi(�n) = γd,i�(K)n1− 2
d+1 (1 + o(1)) (3)

as n → ∞, and also the asymptotic order of the variance is stated there: there are
positive constants c4(K), c5(K) depending only on K such that

c4(K)n1− 2
d+1 ≤ Varfi(�n) ≤ c5(K)n1− 2

d+1 . (4)

The second main theorem of this paper gives a central limit theorem for fi(�n),
i ∈ {0, . . . , d − 1}. It generalizes the central limit theorem proved by Greoneboom
[13] for d = 2 and K a ball.
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Theorem 2. Let K ∈ K2+ and define �n as the convex hull of the intersection of
K with a Poisson point process of intensity n. Then there is a constant c6(K) such
that for i ∈ {0, . . . , d − 1}
∣
∣
∣
∣
IP

(
fi(�n) − IEfi(�n)√

Varfi(�n)
≤ x

)

− �(x)

∣
∣
∣
∣

≤ c6(K) n− 1
2 + 1

d+1 ln2+3i+ 2
d+1 n.

Our paper is motivated by a classical problem going back to Sylvester in 1861:
Given a convex set K and n ∈ IN, choose precisely n random points X1, . . . , Xn

independently and according to the uniform distribution in K . Let Pn be their
convex hull [X1, . . . , Xn]. What is the distribution function of V (Pn) and fi(Pn)?

Numerour papers are dedicated solely to the question to determine the expec-
tation of these quantities and the asymptotic behaviour of these expectations as n

tends to infinity. Out of a large number of contributions we only mention the work
of Rényi and Sulanke [23], Wieacker [31], Bárány [4], and Schütt [29] who proved
that

IEV (Pn) = V (K) − γd�(K)n− 2
d+1 (1 + o(1)),

as n → ∞, where γd is the constant occuring in (1). Efron’s identity [11] implies
the analogous result for the numbers of vertices of Pn,

IEf0(Pn) = γd�(K)n1− 2
d+1 (1 + o(1))

as n → ∞. In [22] this was generalized to all i ∈ {0, . . . , d − 1}:

IEfi(Pn) = γd,i�(K)n1− 2
d+1 (1 + o(1))

as n → ∞ for K ∈ K2+.
In contrast to the large number of results dealing with the first moment of V (Pn)

and fi(Pn) there are only few results concerning the variance of V (Pn) and fi(Pn)

or higher moments. It was proved only recently [21], [22] that for K ∈ K2+

VarV (Pn) ≤ c7(K)n−1− 2
d+1

with a positive constant c7(K), and

Varfi(Pn) ≤ c9(K)n1− 2
d+1

for i ∈ {0, . . . , d − 1} with a positive constant c9(K).
Buchta ([9], Corollary 2 and 3) used a generalization of Efron’s identity to show

that if K fulfills stronger differentiability assumptions then

VarV (Pn) ≥ c8(K)n− 5
3

for d = 2 with a constant c8(K) > 0, and

Varf0(Pn) ≥ c10(K)n1− 2
d+1

for d ≥ 4 with a constant c10(K) > 0.
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One of the essential ingredients in proving central limit theorems for random
polytopes is to generalize these results to all dimensions. This determines the pre-
cise order of the variance of V (Pn) and fi(Pn) in arbitrary dimensions and for all
i ∈ {0, . . . , d − 1}.
Theorem 3. Let K ∈ K2+ and choose n random points in K independently and
according to the uniform distribution. Then there are positive constants c7(K),

c8(K) depending only on K such that

c8(K)n−1− 2
d+1 ≤ VarV (Pn) ≤ c7(K)n−1− 2

d+1 .

The analogous result for the number of faces of Pn reads as follows:

Theorem 4. Let K ∈ K2+ and choose n random points in K independently and
according to the uniform distribution. Then there are positive constants c9(K),

c10(K) depending only on K such that for i ∈ {0, . . . , d − 1}

c10(K)n1− 2
d+1 ≤ Varfi(Pn) ≤ c9(K)n1− 2

d+1 .

In Lemma 1 and Lemma 2 we prove that these results concerning the expectation
and the variance of Pn imply formulae (1) – (4) for �n stated above.

The problem to determine the precise distribution function at least in one of the
cases mentioned above is nontrivial. Starting with, the only cases where a distribu-
tion function is known explicitly concerns V (P3) in the planar case, and if K is a
triangle (Alagar [1]), a circular disc or a parallelogram (Henze [15]); for arbitrary
n, or in higher dimensions it is hopeless to expect explicit formulae.

The first who succeeded in proving a limit theorem was Schneider [25]. He
obtained in the planar case for points on the boundary of K a strong law of large
numbers for V (Pn) if K is smooth. In [21] this was generalized to arbitrary dimen-
sions: (V (K) − V (Pn))n

2/(d+1) tends with probability one to an explicitly known
constant depending on K as n tends to infinity. Finally, as mentioned above, Hsing
[16] proved a central limit theorem for V (Pn) but only in the planar case and if K

is a ball.
Here we strengthen these results. By Lemma 3 the distribution function of

V (�n) approximates the distribution function of V (Pn) and thus Theorem 1 implies
a central limit theorem for V (Pn).

Theorem 5. Let K ∈ K2+ and choose n random points in K independently and
according to the uniform distribution. Then there are numbers cn bounded between
two positive constants depending on K , and a constant c11(K) such that
∣
∣
∣
∣
∣
∣

IP




V (Pn) − IEV (Pn)
√

cn n−1− 2
d+1

≤ x



− �(x)

∣
∣
∣
∣
∣
∣

≤ c11(K) n
− 1

2(d+1) ln2+ 2
d+1 n.

Note that the denominator in Theorem 5 has the same order of magnitude as the
standard deviation of V (Pn). In fact, the denominator equals the standard deviation
of V (�n) which is of the same asymptotic order as the standard deviation of V (Pn).
It is an open problem whether VarV (Pn) equals asymptotically VarV (�n). Since
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we are not able to prove this equality, we can not prove that the denominator equals
the standard deviation of V (Pn).

The second theorem of this paper implies in the same way a central limit theorem
for fi(Pn), i ∈ {0, . . . , d − 1}, in arbitrary dimensions:

Theorem 6. Let K ∈ K2+ and choose n random points in K independently and
according to the uniform distribution. Then there are numbers dn bounded between
two positive constants depending on K , and a constant c12(K) such that for i ∈
{0, . . . , d − 1}
∣
∣
∣
∣
∣
∣

IP




fi(Pn) − IEfi(Pn)
√

dnn
1− 2

d+1

≤ x



− �(x)

∣
∣
∣
∣
∣
∣

≤ c12(K) n
− 1

2(d+1) ln2+3i+ 2
d+1 n.

Again the denominator equals the standard deviation of the number of i-dimensional
faces of a random polytope �n.

As a general reference for Poisson point processes we mention the books of
Schneider and Weil [27] and Stoyan, Kendall, and Mecke [28]. For more informa-
tion on random polytopes we refer to a recent survey article by Schneider [26], and
for a comparison of random polytopes and best approximating polytopes to a survey
article by Gruber [14]. In particular, if the underlying convex set K itself is a poly-
tope, we mention the work of Bárány and Buchta [7] dealing with the expectation of
fi(Pn), and Groeneboom [13] and Cabo and Groeneboom [10] who obtained in the
planar case central limit theorems for f0(�n) (but the stated asymptotic value for
the variance in [10] appears to be incorrect, see Hüsler [18], page 111, and for a cor-
rected version Buchta [9] and Finch and Hueter [12]). To the best of our knowledge
the only central limit theorem holding in arbitrary dimensions is due to Hueter [17]
for f0(Pn) where the random points are chosen with respect to the d-dimensional
normal distribution. For (central) limit theorems dealing with important and highly
interesting investigations of random convex hulls closely related to our problem
we mention the work of Bárány [5] [6], and Bárány, Rote, Steiger, and Zhang [8].

2. Approximating Pn by �n

In Section 4 we prove central limit theorems concerning functions of �n, the distri-
bution functions of (V (�n) − IEV (�n))/

√
VarV (�n) and (fi(�n) − IEfi(�n))/√

Varfi(�n) tend to the distribution function � of the normal distribution. To
deduce from these results the corresponding results for Pn we have to show that
expectation, variance, and distribution function of these functions of �n and Pn are
sufficiently close if n tends to infinity.

We start by recalling some elementary facts about a Poisson point process. Let
A be a measurable subset of IRd . Then the intersection of the Poisson point process
X(λ) of intensity λ with A consists of random points {X1, . . . , XN } = A ∩ X(λ)

where the number of random points N is Poisson distributed with intensity λVd(A)

and, conditioning on N , the points X1, . . . , XN are independently uniformly dis-
tributed in A. If A and B are two disjoint subsets of IRd then the two point sets
{X1, . . . , XN } = A ∩ X(λ) and {Y1, . . . , YM} = B ∩ X(λ) are independent: N
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and M are independently Poisson distributed and the points Xi and Yj are chosen
independently.

As we mentioned in the introduction, respectively going to prove in Section 3
we have

V (K) − IEV (Pn) = γd�(K)n− 2
d+1 (1 + o(1)) , and VarV (Pn) ≈ n−1− 2

d+1 .

Here f (n) ≈ g(n) means that there are two constants a, b > 0 such that a g(n) ≤
f (n) ≤ b g(n). It is the aim of this section to show that in all these results Pn can
be replaced by �n:

Lemma 1. Let �n be the convex hull of the intersection of K with the Poisson
point process X(n) of intensity n. Then

V (K) − IEV (�n) = γd�(K)n− 2
d+1 (1 + o(1)) (5)

as n → ∞, and

VarV (�n) ≈ n−1− 2
d+1 . (6)

We prove (5) by showing that V (K) − IEV (�n) = (V (K) − IEV (Pn))(1 +
o(1)). It is also generally believed (but apparently unproved) that VarV (Pn) =
VarV (�n)(1 + o(1)) and Varfi(Pn) = Varfi(�n)(1 + o(1)). (Such an equality
was stated without prove in the paper by Cabo and Groeneboom [10].) If there
would exist a stronger statement than Theorem 3 saying that VarV (Pn)n

1+2/(d+1)

converges to a constant as n → ∞, the method developed in this section would
suffice to prove this equality. Yet we are not able to obtain this strengthening of
Theorem 3.

Proof. The result for the expectation of V (�n) follows easily from the correspond-
ing result for Pn since

V (K) − IEV (�n) =
∑

|k−n|≤n
7
8

(V (K) − IEV (Pk)) e−n nk

k!

+
∑

|k−n|≥n
7
8

(V (K) − IEV (Pk)) e−n nk

k!

and by Chebyshev’s inequality IP(|N − n| ≤ n7/8) ≥ 1 − n−3/4. Because V (K) −
IEV (Pk) ≤ 1 the second sum is of order n−3/4. Observe that for each k occurring in
the first sum we have k−2/(d+1) = n−2/(d+1)(1+o(1)). Combining this proves (5).

In the next step we show that the result of Theorem 3 concerning bounds on
the variance VarV (Pn) implies analogous bounds for VarV (�n). In the following
N always denotes the number of points of the intersection of K with the Poisson
point process X(n) which is Poisson distributed with parameter n. We need some
preparations: By Stirling‘s formula k! ≥ kke−k , and as (ne/x)x is monoton for
x < n we have
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IP
(

N ≤ n

2

)

= e−n

n
2∑

k=0

nk

k!
≤ e−n

n
2∑

k=0

(en

k

)k ≤ n + 2

2

( e

2

)− n
2
.

Analogously

IP(N ≥ 3n) = e−n
∞
∑

k=3n

nk

k!
≤ e−n

∞
∑

k=3n

(en

k

)k ≤ e−n
∞
∑

k=0

( e

3

)k = e−n 3

3 − e
.

(7)

We decompose VarV (�n),

VarV (�n) = IEVar(V (�n)|N) + VarIE(V (�n)|N)

and prove in a first step that the second term is of negligible order.

VarIE(V (�n)|N) = IE (IE(V (�n)|N))2 − (IE IE(V (�n)|N))2

=
∞
∑

j= n
2

∞
∑

k= n
2

(

(IEV (Pk))
2 − IEV (Pk)IEV (Pj )

)

e−2n nk+j

k!j !

+ O

(

n
( e

2

)− n
2
)

=
∞
∑

j= n
2

∞
∑

k=j

(

IEV (Pk) − IEV (Pj )
)2

e−2n nk+j

k!j !

+ O

(

n
( e

2

)− n
2
)

.

It is essential to know that IEV (Pk) − IEV (Pj ) is small if k, j is large. Precisely
this was proved in Section 12 in [21]: There is a constant cd depending on the
dimension such that

IEV (Pk+1) − IEV (Pk) = cd�(K)k−1− 2
d+1 (1 + o(1))

as k → ∞ and thus IEV (Pk+1)−IEV (Pk) ≤ c1k
−1−2/(d+1). This implies a smooth-

ness condition for IEV (Pk): for k > j

IEV (Pk) − IEV (Pj ) =
k−1
∑

i=j

(IEV (Pi+1) − IEV (Pi)) ≤ c1(k − j)j−1− 2
d+1 .

(Throughout this paper constants ck may depend only on the dimension d, on the
dimension i of the faces we are interested in, and on the convex set K , and are
independent of anything else.) This gives us the following:
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VarIE(V (�n)|N) ≤ c2
1

∞
∑

j= n
2

∞
∑

k=j

(k − j)2j2(−1− 2
d+1 ) e−2n nk+j

k!j !

+O

(

n
( e

2

)− n
2
)

≤ c2
1 n2(−1− 2

d+1 )VarN + O

(

n
( e

2

)− n
2
)

= O(n−1− 4
d+1 ).

As for the first term of VarV (�n) we know that VarV (Pn) can be estimated by
n−1−2/(d+1). Thus by (7)

IEVar(V (PN)|N) ≈ IEN−1− 2
d+1

= IE
(

N−1− 2
d+1 I
(n

2
< N ≤ 3n

))

+O
(

IP
(

N ≤ n

2
, 3n < N

))

= IE
(

N−1− 2
d+1 I
(n

2
< N ≤ 3n

))

+O

(
n + 1

2

( e

2

)− n
2 + e−n

)

≈ n−1− 2
d+1

which proves (6). 	

In exactly the same way we prove

Lemma 2. Let �n be the convex hull of the intersection of K with the Poisson
point process X(n) of intensity n. Then for i ∈ {0, . . . , d − 1}

IEfi(�n) = γd,i�(K)n1− 2
d+1 (1 + o(1)) (8)

as n → ∞, and

Varfi(�n) ≈ n1− 2
d+1 (9)

for i = 0, . . . , d − 1.

Proof. It follows from IEfi(Pk) = γd,i�(K)k1−2/(d+1) ≤ c2k that

IEfi(�n) =
∑

|k−n|≤n
7
8

IEfi(Pk) e−n nk

k!
+ O






∑

|k−n|≥n
7
8

k e−n nk

k!






= γd,i�(K)n1− 2
d+1 (1 + o(1)) IP(|N − n| ≤ n

7
8 ) + O(n

1
4 )

which proves (8).
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As for Varfi(�n) we start as before with

Varfi(�n) = IEVar(fi(�n)|N) + VarIE(fi(�n)|N)

and use that

IE
(

NI
(

N ≤ n

2

))

≤
n
2∑

k=0

k e−n
(en

k

)k ≤ n2

4

( e

2

)− n
2

and

IE(NI (N ≥ 3n)) ≤
∞
∑

k=0

k e−n
( e

3

)k = e−n 3e

(3 − e)2 .

Again the second term is of negligible order.

VarIE(fi(�n)|N) =
∞
∑

j= n
2

∞
∑

k=j

(

IEfi(Pk) − IEfi(Pj )
)2

e−2n nk+j
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∞
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+ O

(
n2
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( e
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)− n
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= O(n1− 4
d+1 )

because it follows from (27) in [22] and Theorem 6 in [21] that

IEfi(Pk+1) − IEfi(Pk) ≤
(

d + 1

i + 1

)

IEFk(X) =
(

d + 1

i + 1

)

cd�(K)k− 2
d+1 (1 + o(1))

as k → ∞ which shows for k > j

IEfi(Pk) − IEfi(Pj ) ≤ c3(k − j)j− 2
d+1 .

Estimating Var(fi(�n)|N) by N1−2/(d+1) which follows from Theorem 4, and in
the range N ≤ n/2, N ≥ 3n by N we get

IEVar(fi(PN)|N) ≈ IEN1− 2
d+1 ≈ n1− 2

d+1

which is (9). 	
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It remains to prove that also the distribution functions of V (�n), respectively
fi(�n), are sufficiently close to the distribution functions of V (Pn), respectively
fi(Pn). The following fact will be essential:

Let A, B be arbitrary events. Then

|IP(B | A) − IP(B)| ≤ 1 − IP(A). (10)

This follows from

IP(B) − (1 − IP(A)) ≤ IP(A)IP(B | A) ≤ IP(B).

The estimate (10) will be used in the case where B is a suitable indicator function,
and thus IP(B) is the distribution function of V (�n), V (Pn), fi(�n), or fi(Pn),
and where A is the event that the boundary of Pn and �n are close to the boundary
of K .

To show that the boundary of Pn and �n is close to the boundary of K with
high probability, denote by K(ε) the inner parallel set of ∂K ,

K(ε) = {x ∈ K | δH (x, ∂K) ≤ ε}
where δH denotes the Hausdorff distance. Our aim is to show that, with high prob-
ability, ∂Pn and ∂�n are contained in K(εn) with

εn =
(

2d ln n

d3n

) 2
d+1

where d3 is the constant appearing in Lemma 5.
Let An be the event that ∂Pn ⊂ K(εn). Then the probability of the complement

of An is the probability that at least one facet of Pn has distance at least εn from
the boundary of K , i.e., the hyperplane which is the affine hull of this facet cuts of
from K a cap of height εn which contains no other random point. By Lemma 5 the
volume of this cap is bounded by d3ε

(d+1)/2
n = 2dn−1 ln n and thus we have

1 − IP(An) ≤
(

n

d

)

(1 − 2dn−1 ln n)n−d .

Analogously let Aπ be the event that ∂�n ⊂ K(εn). Then

1 − IP(Aπ) =
∞
∑

k=0

(1 − IP(Ak))
nk

k!
e−n ≤ d

nd−1

(d − 1)!
e−n + 1

d!
n−d .

Thus with high probability K(εn) contains the vertices of the random polytopes Pn

and �n: by (10)

|IP(V (Pn) ≤ x) − IP(V (Pn) ≤ x |An)| ≤ c4 n−d (11)

and

|IP(V (�n) ≤ x|Aπ) − IP(V (�n) ≤ x)| ≤ c5 n−d . (12)
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Given An and Aπ the volume of the random polytopes only depends on the set
of random points in K(εn). Set p = V (K(εn)) which is bounded by S(K)εn, where
S(K) is the surface area of K . Using the Poisson approximation of the binomial
distribution we have

|IP(V (Pn) ≤ x| An) − IP(V (�n) ≤ x | Aπ)|

=
∞
∑

k=0

IP (V (�n) ≤ x | Aπ, 
{K(εn) ∩ X(n)} = k)

×
∣
∣
∣
∣

(np)k

k!
e−np −
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k

)

pk(1 − p)n−k

∣
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∣
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(13)

≤
∞
∑

k=0
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(np)k

k!
e−np −

(
n

k

)

pk(1 − p)n−k

∣
∣
∣
∣

≤ 2p ≤ c6 n− 2
d+1 ln

2
d+1 n. (14)

The last estimate giving a bound 2p is due to Vervaat [30]. Combining (11), (12),
and (14) we obtain an estimate for IP(V (Pn) ≤ x) − IP(V (�n) ≤ x). Precisely the
same proof holds for the number of i-dimensional faces instead of volume.

Lemma 3. Let Pn be the convex hull of n random points chosen independently
according to the uniform distribution in K , and let �n be the convex hull of the
intersection of K with a Poisson point process of intensity n. Then there are con-
stants c7, c8 depending on K such that

|IP(V (Pn) ≤ x) − IP(V (�n) ≤ x)| ≤ c7 n− 2
d+1 ln

2
d+1 n

and

|IP(fi(Pn) ≤ x) − IP(fi(�n) ≤ x)| ≤ c8 n− 2
d+1 ln

2
d+1 n

for i = 0, . . . , d − 1.

From this it is clear that Theorem 5 follows from Theorem 1, and Theorem 6 follows
from Theorem 2.

3. A lower bound for the variance

In this section we show that

VarV (Pn) ≈ n−1− 2
d+1

and

Varfi(Pn) ≈ n1− 2
d+1

for all i = 0, . . . , d − 1. It is already known [21] that there are constants c7(K)

and c9(K) such that VarV (Pn) ≤ c7(K) n−1− 2
d+1 and Varfi(Pn) ≤ c9(K) n1− 2

d+1

so it remains to prove the reverse inequalities:

VarV (Pn) ≥ c8(K) n−1− 2
d+1
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and

Varfi(Pn) ≥ c10(K) n1− 2
d+1 .

Proof of Theorem 3. Clearly it is sufficient to prove these inequalities for n ≥ n0
with some n0 = n0(K).

By H(u, t) we denote the hyperplane {x ∈ IRd , 〈x, u〉 = t} and by H+(u, t)

the corresponding halfspace {x ∈ IRd , 〈x, u〉 ≥ t}. Let K be a smooth convex
set and H(u, hK(u)) be a supporting hyperplane, i.e., the intersection of K with
H+(u, hK(u)) is a point y on the boundary ∂K of K , and hK(u) is the support
function of K at u. We denote the intersection of K with H+(u, hK(u) − h) by
CK(y, h) and call CK(y, h) a cap of K of height h.

Let E be the standard paraboloid in IRd ,

E =





x ∈ IRd | 〈x, ed〉 ≥

d−1
∑

j=1

〈x, ej 〉2







and set

1
2E =





x ∈ IRd | 〈x, ed〉 ≥ 2

d−1
∑

j=1

〈x, ej 〉2






⊂ E ⊂

⊂ 2E =





x ∈ IRd | 〈x, ed〉 ≥ 1

2

d−1
∑

j=1

〈x, ej 〉2






.

Choose a simplex S0 in the cap C
1
2 E(0, 1) in the following way: the base is a regular

simplex with vertices on ∂( 1
2E) ∩ H(ed, (32d2)−1) and the apex is the origin. It

is elementary to see that the cone {λx ∈ IRd | x ∈ S0, λ ∈ IR+} generated by S0
contains 2E ∩ H(ed, 1), since the inball of the (d − 1)-dimensional base of S0 is
a ball of radius (8d2)−1.

By continuity there is a capC
1
2 E(0, δ0) and closed setsC1, . . . , Cd ⊂ C

1
2 E(0, 1)

(e.g. suitable caps whose centers are the vertices of the base of S0) with

V (C
1
2 E(0, δ0)) = V (C1) = · · · = V (Cd) = c0 sufficiently small such that for all

Y ∈ C
1
2 E(0, δ0), xi ∈ Ci , i = 1, . . . , d, we have that the simplex [Y, x1, . . . , xd ]

is close to S0, in particular that

{λx | x ∈ [Y, x1, . . . , xd ], λ ∈ IR+} ⊃ 2E ∩ H(ed, 1) .

Choose the point Y at random according to the uniform distribution in C
1
2 E(0, δ0).

Then there is a constant c9 > 0 such that

VarY V ([Y, x1, . . . , xd ]) ≥ c9

for all possible locations of xi ∈ Ci . Here the variance is taken with respect to the
random variable Y . Now let Q be a paraboloid of the form

Q =





x ∈ IRd | 〈x, ed〉 ≥ 1

2

d−1
∑

j=1

kj 〈x, ej 〉2






, (15)
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put κ =∏ kj , and apply an affinity which maps CE(0, 1) onto CQ(0, h) and leaves

the coordinate axis invariant. Then there is a cap C
1
2 Q(0, h δ0) and sets Di – the

images of C
1
2 E(0, δ0) and Ci – with

V (C
1
2 Q(0, h δ0)) = V (Di) = 2

d−1
2 κ− 1

2 h
d+1

2 c0 (16)

such that for all Y ∈ C
1
2 Q(0, h δ0) and xi ∈ Di

{λx | x ∈ [Y, x1, . . . , xd ], λ ∈ IR+} ⊃ 2Q ∩ H(ed, h) . (17)

Choosing the pointY at random according to the uniform distribution inC
1
2 Q(0, h δ0)

we have

VarY V ([Y, x1, . . . , xd ]) ≥ 2d−1κ−1hd+1 c9 (18)

for all possible locations of xi ∈ Di by the homogeneity of the variance.
Since K ∈ K2+ at each boundary point y ∈ ∂K there is a paraboloid Q(y)

osculating ∂K at y which is the image of a paraboloid Q given by (15) under a
linear map. Thus the principal curvatures ki of ∂Q(y) at y are given by the principal
curvatures ki(y) of ∂K at y, and κ = κ(y) is the Gaussian curvature at the boundary
point y. We denote by 1

2Q(y), respectively 2Q(y), the paraboloid touching ∂K at y
having twice, respectively half, the principal curvatures of ∂K at y. Since K ∈ K2+
there is a constant h0 = h0(K) such that for all h ≤ h0 and for all y ∈ ∂K

C
1
2 Q(y)(y, h) ⊂ CK(y, h) ⊂ C2Q(y)(y, h)

(see Section 5). By (16)–(18) we have the following: there is a cap C
1
2 Q(y)(y, h δ0)

and sets Di(y) with

V (C
1
2 Q(y)(y, h δ0)) = V (Di(y)) = 2

d−1
2 κ(y)−

1
2 h

d+1
2 c0 (19)

such that h ≤ h0 and for all Y ∈ C
1
2 Q(y)(y, h δ0) and xi ∈ Di(y)

{λx | x ∈ [Y, x1, . . . , xd ], λ ∈ IR+} ⊃ 2Q(y) ∩ H(u, hK(u) − h)

⊃ K ∩ H(u, hK(u) − h) (20)

where u is the outer normal vector of K at y. Choosing the point Y at random

according to the uniform distribution in C
1
2 Q(y)(y, h δ0) we have

VarY V ([Y, x1, . . . , xd ]) ≥ 2d−1κ(y)−1hd+1 c9 (21)

for all possible locations of xi ∈ Di(y).
Choose n random points X1, . . . , Xn in K according to the uniform distribu-

tion. We now use the results concerning the cap coverings proved in the appendix.
Set

m =
⌊

n1− 2
d+1

⌋
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and choose according to Lemma 6 a set of points y1, . . . , ym ∈ ∂K , and at these
points corresponding disjoint caps Cj , j = 1, . . . , m, of height hm ≈ m−2/(d−1).
Assume that n is sufficiently large such that hm ≤ h0. As stated above for each

point yj we have a cap C
1
2 Q(yj )(yj , hm δ0) and sets Di(yj ) with the properties

(19)–(21). For j ∈ {1, . . . , m} let Aj be the event that exactly one random point is

contained in C
1
2 Q(yj )(yj , hm δ0) and in each set Di(yj ) and no other point in Cj .

Then

IP(Aj ) =
(

n

d + 1

)

IP(Xi ∈ Di(yj ), i ≤ d)IP(Xd+1 ∈ C
1
2 Q(yj )(yj , hm δ0))

× IP(Xl /∈ Cj , l ≥ d + 2)

=
(

n

d + 1

)(

V (C
1
2 Q(yj )(yj , hm δ0))

d
∏

i=1

V (Di(yj ))

)

(

1 − V (Cj )
)n−d−1

.

By (19), Lemma 4, and Lemma 6 the volumes of the caps C
1
2 Q(yj )(yj , hm δ0), Cj ,

and of the sets Di(yj ) are bounded by functions depending on hm and the Gaussian
curvature κ(yj ). Since the Gaussian curvature is bounded between two positive
constants, there are constants c10, c11 > 0 such that

IP(Aj ) ≥ c10 nd+1n−d−1(1 − d7n
−1)n−d−1 ≥ c11 > 0

and

IE





m
∑

j=1

I (Aj )



 =
m
∑

j=1

IP(Aj ) ≥ c11m. (22)

Denote by F the position of all random points of {X1, . . . , Xn} except those

which are contained in caps C
1
2 Q(yj )(yj , hm δ0) with I (Aj ) = 1. Then

VarV (Pn) = IE Var(V (Pn) | F) + Var IE(V (Pn)| F)

≥ IE Var(V (Pn) | F).

Assume that I (Aj ) = I (Ak) = 1 for some j, k ∈ {1, . . . , m} and fur-
ther without loss of generality that Xj , respectively Xk , is the unique point in

C
1
2 Q(yj )(yj , hm δ0), respectively C

1
2 Q(yk)(yk, hm δ0). By construction the points

Xj and Xk are vertices of Pn, and by (20) there is no edge between Xj and Xk .
Hence the change of volume of Pn if Xj is moved, is independent of the change of
volume if Xk is moved. This independence structure of Pn implies

Var(V (Pn) | F) =
∑

I (Aj )=1

VarXj
V (Pn)
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where the variance is taken with respect to the random variable Xj ∈
C

1
2 Q(yj ) × (yj , hm δ0), and we sum over all j = 1, . . . , m with I (Aj ) = 1.

Combining this with (21), with the definition of hm, that κ(yj ) is bounded, and
with (22) implies

VarV (Pn) ≥ IE




∑

I (Aj )=1

2d−1κ(y)−1hd+1
m c9





≥ c12n
−2IE




∑

j∈J

I (Aj )





≥ c11c12 n−1− 2
d+1

which is Theorem 3. 	


Proof of Theorem 4. We use exactly the same method with one exception: instead

of choosing one random point Y in C
1
2 Q(yj )(yj , hm δ0) we choose two random

points Y, Z. (The convex hull of x1, . . . , xd with only one random point Y in

C
1
2 Q(yj )(yj , hm δ0) is a simplex and thus fi([Y, x1, . . . , xd ]) would be a constant.

But [Y, Z, x1, . . . , xd ] can either be a simplex or can have both points Y, Z as
vertices and thus fi([Y, Z, x1, . . . , xd ]) can at least attain two values with positive
probability.) Then it is immediate that (20) remains unchanged

{λx | x ∈ [Y, Z, x1, . . . , xd ], λ ∈ IR+} ⊃ 2Q(y) ∩ H(u, hK(u) − h)

⊃ K ∩ H(u, hK(u) − h)

whereas (21) is replaced by

VarY,Zfi([Y, Z, x1, . . . , xd ]) ≥ c13 > 0

for all i = 0, . . . , d − 1 since fi is invariant under affine transformations. For
j ∈ {1, . . . , m} let Aj be the event that exactly two random points are contained in

C
1
2 Q(yj )(yj , hm δ0) and one in each set Di(y). Then

IP(Aj ) =
(

n

d + 2

)

IP(Xi ∈ Di(yj ), i ≤ d)

× IP(Xd+1, Xd+2 ∈ C
1
2 Q(yj )(yj , hm δ0))IP(Xl /∈ Cj , l ≥ d + 3)

≥ c14 > 0

and

IE





m
∑

j=1

I (Aj )



 =
m
∑

j=1

IP(Aj ) ≥ c14m.
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Thus

Varfi(Pn) ≥ IE Var(fi(Pn) | F)

= IE




∑

I (Aj )=1

VarXj ,Xj ′fi(Pn)





≥ c13IE




∑

j∈J

I (Aj )





≥ c13c14 n1− 2
d+1

which is Theorem 4. 	


4. Central limit theorems for random points in K

The main tool for proving the central limit theorem for V (�n) and fi(�n) is a cen-
tral limit theorem for dependency graphs due to Rinott [24]. Dependency graphs
are defined as follows: Let Vj , j ∈ V , be a collection of random variables. The
graph G = (V, E) is said to be a dependency graph for Vj if for any pair of disjoint
sets A1, A2 ⊂ V such that no edge in E has one endpoint in A1 and the other in
A2, the sets of random variables {Vi, i ∈ A1} and {Vi, i ∈ A2} are independent.

Theorem 7. (Rinott) Let Vj , j ∈ V , be random variables having a dependency
graph G = (V, E). Set V = ∑j∈V Vj , denote the maximal degree of G by D and
suppose that |Vj − IEVj | ≤ B a.s. Then

∣
∣
∣
∣
IP

(
V − IEV√

VarV
≤ x

)

− �(x)

∣
∣
∣
∣

≤ 1√
2π

DB

σ(V )
+ 16

|V| 1
2 D

3
2 B2

σ 2(V )
+ 10

|V| D2B3

σ 3(V )
.

where σ 2(V ) = VarV .

With a weaker error term an analogous result was proved before by Baldi and Rinott
[3]. It has been noted already by Avram and Bertsimas [2] that this approach should
be used to prove central limit theorems concerning Pn.

We start with the proof of Theorem 1. Let �n = [X1, . . . , XN ] be the convex
hull of the intersection of K with the Poisson point process X(n) of intensity n.
Recall that the volume of K equals one. Set

m =
⌊(

d6 n

(4d + 1) ln n

)1− 2
d+1
⌋

where d6 is the constant appearing in Lemma 6. According to Lemma 6 we choose
m points yj on the boundary of K . Their Voronoi cells C(yj ) dissect the boundary
of K into m parts having approximately the same (d −1)-dimensional volume, and
each Voronoi cell contains a cap denoted by Cj with volume

V (Cj ) ≥ d6m
− d+1

d−1 = (4d + 1) n−1 ln n.
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Let Am be the event that each Cj contains at least one and at most 3(4d + 1) ln n

points of {X1, . . . , XN }. The probability that Cj contains no point of the Poisson
point process is

e−nV (Cj ) ≤ n−(4d+1).

By (7) the probability that Cj contains more than 3(4d + 1) ln n points is bounded
from above by

3

3 − e
e−nV (Cj ) ≤ 3

3 − e
n−(4d+1).

Thus we obtain

1 ≥ IP(Am) ≥ 1 −
m
∑

j=1

c15 n−(4d+1) = 1 − c15 mn−(4d+1) ≥ 1 − c16 n−4d .

Denote by ĨP the conditional probability measure induced by the Poisson point
process X(n) given Am, ĨP(V (�n) ≤ x) = IP(V (�n) ≤ x | Am), and by ĨE and
Ṽar the conditional expectation and variance. The distribution function of V (�n)

remains nearly unchanged under the condition Am since by (10)
∣
∣ĨP(V (�n) ≤ x) − IP(V (�n) ≤ x)

∣
∣ ≤ O(n−4d).

The same holds for the first two moments of V (K)−V (�n). Because V (�n) ≤
1 we have

ĨE
(

V (�n)
k
)

− IE(V (�n)
k) ≤ IE(V (�n)

k)

(
1

IP(Am)
− 1

)

= O(n−4d) (23)

and

IE(V (�n)
k) − ĨE

(

V (�n)
k
)

≤ IE
(

V (�n)
k
(

1 − I (Am)
)) = O(n−4d) (24)

for k = 1, 2. This implies that also the variance is unchanged – up to an error term
O(n−4d) – under the condition Am,

|ṼarV (�n) − VarV (�n)| = O(n−4d). (25)

We introduce m random variables Vj in the following way: given yj , j =
1, . . . , m as above, the Voronoi cells C(yj ) of yj in K dissect K into m parts. Now
Vj is the volume difference in each part,

Vj = V (C(yj )) − V (C(yj ) ∩ �n)

and

V =
m
∑

j=1

Vj = V (K) − V (�n).
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Given Am, the dependency graph G = (V, E) for Vj is obtained if we con-
nect each vertex j ∈ V = {1, . . . , m} by an edge to all k ∈ V with C(yk) ∩
C(yj , d10m

−2/(d−1)) �= ∅, where d10 is the constant given in Lemma 8. Indeed,
if there is no edge in E connecting j and l then according to Lemma 8 there is
no edge of �n between vertices of �n in C(yj ) and C(yl). Hence Vj and Vl are
independent given Am. (Recall that �n is simplicial with probability one.)

To apply the central limit theorem for dependency graphs it remains to show

max Vi ≤ B = c17 m− d+1
d−1 (26)

since we already know by Lemma 7 that the maximal degree of G satisfies

D ≤ d8 (d
1
2

10 + 1)d+1

and by (6) and (25)

ṼarV = ṼarV (�n) = VarV (�n) + O(n−4d) ≥ c18 n−1− 2
d+1 .

To prove (26) we use that, according to Lemma 8, the Hausdorff distance δH

between K and �n is bounded by d9m
−2/(d−1), given Am. It follows that C(yi)\�n

is contained in a cap at yi of height

4d−2
1 d2

5m− 2
d−1 + d9 m− 2

d−1 ,

the height of the cap C̄i containing C(yi) ∩ ∂K plus the Hausdorff distance of K

and �n, and applying Lemma 5 we get

Vi ≤ V (C(yi, (4d−2
1 d2

5 + d9)m
− 2

d−1 ) ≤ c17 m− d+1
d−1

which is (26). Combining these estimates proves

∣
∣
∣
∣
ĨP

(
V − ĨEV√

ṼarV
≤ x

)

− �(x)

∣
∣
∣
∣

≤ c19 n− 1
2 + 1

d+1 ln2+ 2
d+1 n.

We rewrite this central limit theorem to obtain a central limit theorem without
the condition Am. Define x̃ by

IEV + x
√

VarV = ĨEV + x̃
√

ṼarV .

Then by (23) – (25) and by (6) we have |x − x̃| = O(n−4d+(d+3)/(2(d+1))) +
|x| O(n−4d+(d+3)/(d+1)). This implies

Fn(x) = IP(V ≤ IEV + x
√

VarV )

= ĨP(V ≤ ĨEV + x̃
√

ṼarV ) + O(n−4d)

= �(̃x) + O(n− 1
2 + 1

d+1 ln2+ 2
d+1 n) + O(n−4d).
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Now |�(̃x)−�(x)| = O(n−1). For |x| ≤ n this follows from |�(x)−�(̃x)| ≤
|x−x̃|, and for |x| ≥ nwe have by definition x̃ ≥ cnwhich implies |�(̃x)−�(x)| ≤
�(cn) + �(n). Thus in both cases we obtain

|Fn(x) − �(x)| = O(n− 1
2 + 1

d+1 ln2+ 2
d+1 n)

which is Theorem 1. 	

The proof of Theorem 2 is very simlar. We only point out the main differences.
By the upper bound theorem due to McMullen [19] the number of i-dimen-

sional faces fi(�n) is bounded by cdf0(�n)
� d

2 � ≤ cdN
d
2 where N again denotes

the number of points of the Poisson point process in K . Hence

ĨE
(

fi(�n)
k
)

− IE(fi(�n)
k) ≤ ck

d IE(N
dk
2 )

(
1

IP(Am)
− 1

)

= O(n−3d) (27)

and by Hölder’s inequality

IE(fi(�n)
k) − ĨE

(

fi(�n)
k
)

≤ IE
(

N
dk
2
(

1 − I (Am)
))

(28)

≤
√

IE
(

Ndk
)

IE ((1 − I (Am))) = O(n−d) (29)

for k = 1, 2. (For α > 0 the expectation of Nα is of order λα if N is Poisson
distributed with parameter λ.) This implies for the variance under the condition Am

|Ṽarfi(�n) − Varfi(�n)| = O(n−d). (30)

We introduce m random variables gj in the following way: denote by Fi (P ) the
set of i-dimensional faces of a polytope P . Given yj , j = 1, . . . , m as above, gj is
the number of i-dimensional faces in the Voronoi cell C(yj ) of each yj , where each
face which is contained in more than one cell is counted in each cell according to
the number vertices of the face which are contained in that cell. (Recall that �n is
simplicial with probability one.)

gj =
∑

F∈Fi (�n)

1

i + 1

∑

v∈F0(F )

I (v ∈ C(yj ))

and

V =
m
∑

j=1

gj = fi(�n).

We use the same dependency graph G = (V, E) for gj as before. We apply the
central limit theorem for dependency graphs using as before that

D ≤ d8 (d
1
2

10 + 1)d+1

and further

max gj ≤ B = c20 lni+1 n. (31)
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To prove this observe all i-dimensional faces having at least one vertex in Cj have
the other vertices either in Cj or in Cl where j and l are connected by an edge in
E . Since there are at most D indices l connected to j and each cap Cl contains at
most 3(4d + 1) ln n points we have

gj ≤
(

3(D + 1)(4d + 1) ln n

i + 1

)

≤ (3(D + 1)(4d + 1) ln n)i+1

which is (31). By (9) and (30)

Ṽarfi(�n) ≥ c21 n1− 2
d+1 .

Combining these estimates proves
∣
∣
∣
∣
∣
ĨP

(

fi(�n) − ĨEfi(�n)
√

Ṽar(fi(�n))
≤ x

)

− �(x)

∣
∣
∣
∣
∣

≤ c22 n− 1
2 + 1

d+1 ln2+3i+ 2
d+1 n.

We replace ĨP by IP

Fn(x) = IP(fi(�n) ≤ IEfi(�n) + x
√

Varfi(�n) )

= ĨP(fi(�n) ≤ ĨEfi(�n) + x̃

√

Ṽarfi(�n)) + O(n−4d)

= �(̃x) + O(n− 1
2 + 1

d+1 ln2+3i+ 2
d+1 n) + O(n−4d).

It follows from (27) – (30) that |x − x̃| is of order O(n−3d−(d−1)/(2(d+1))) +
|x| O(n−d−(d−1)/(d+1)). The same arguments as before imply

|Fn(x) − �(x)| = O(n− 1
2 + 1

d+1 ln2+3i+ 2
d+1 n)

which is Theorem 2. 	

Remark. The independence of the random variables Vj and gj – which was made
precise by using the dependency graph – does not hold if we replace �n by Pn. In
the case of a fixed number n of random points in K the number of points contained
in one Voronoi cell C(yj ) would effect the distribution of the number of points in
any other Voronoi cell C(yi), and thus Vj and gj would not be independent of Vi

and gi for all i �= j .

5. Appendix: Geometry of smooth convex sets

In the preceding sections we used some well known facts about smooth convex sets
which for convenience of the reader are stated and proved explicitly in this section.

Fix K ∈ K2+. At every boundary point x of K there is a paraboloid Q(x) – given

by a quadratic form b
(x)
2 – osculating ∂K at x. It is essential that these paraboloids

approximate the boundary of K uniformly for all x ∈ ∂K:
Choose δ > 0 sufficiently small. Then there exists a λ > 0 only depending on

δ and K , such that for each boundary point x of K the following holds: identify
the hyperplane tangent to K at x with IRd−1, x with the origin, and −ed with the
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unit outer normal vector of K at x. The λ-neighborhood Uλ of x in ∂K defined by
projIRd−1Uλ = λBd−1 can be represented by a convex function f (x)(y) ∈ C2, i.e.,
(y, f (x)(y)) ∈ ∂K for y ∈ λBd−1. Furthermore

(1 + δ)−1b
(x)
2 (y) ≤ f (x)(y) ≤ (1 + δ)b

(x)
2 (y)

for y ∈ λBd−1.
Denote by f

(x)
ij (0) the second partial derivatives of f (x) at the origin. Then

b
(x)
2 (y) := 1

2

∑

i,j

f
(x)
ij (0)yiyj

and

Q(x) :=
{

(y, z)|z ≥ b
(x)
2 (y)
}

.

This is well known, a proof is contained, e.g., in [20]. By choosing a suitable
Cartesian coordinate system in IRd−1 the quadratic form b2(v) can be written as

b2(y) = 1

2
(k1〈y, e1〉2 + · · · + kd−1〈y, ed−1〉2)

where ki denote the principal curvatures of ∂K at y. Since for all boundary points
of K the principal curvatures ki are bounded from below and above by positive
constants we have

c23‖y‖2 ≤ b2(y) ≤ c24‖y‖2. (32)

We introduce polar coordinates: let IRd = (IR+ × Sd−2) × IR and thus denote
by (rv, z) a point in IRd , r ∈ IR+, v ∈ Sd−2, z ∈ IR. For abbreviation write b2(·)
and f (·) instead of b

(x)
2 (·) and f (x)(·):

(1 + δ)−1b2(v)r2 ≤ z = f (rv) ≤ (1 + δ)b2(v)r2.

This implies

(1 + δ)−
1
2 b2(v)−

1
2 z

1
2 ≤ r = r(v, z) ≤ (1 + δ)

1
2 b2(v)−

1
2 z

1
2 , (33)

where r is the radial function of K ∩H(ed, z). We now choose λ0 and thus h0 suffi-
ciently small such that (33) holds with δ = 1 for all z ≤ h0. Put d1 = (2c24)

−1/2

and d2 = (h0 + 2/c23)
1/2 where c23, c24 are the constants chosen in (32). Let

B(y, r) be the ball of radius r and center y.

Lemma 4. Let K ∈ K2+ be given. Then there are constants d1, d2 such that each
for cap CK(x, h) with h ≤ h0

∂K ∩ B(x, d1h
1
2 ) ⊂ CK(x, h) ⊂ B(x, d2h

1
2 ).
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From (33) we obtain estimates for the (d − 1)-dimensional volume of K ∩
H(ed, z):

(1 + δ)−
d−1

2 κd−1κ(u)−
1
2 z

d−1
2 ≤ Vd−1(K ∩ H(ed, z))

≤ (1 + δ)
d−1

2 κd−1κ(u)−
1
2 z

d−1
2

where κd−1 is the (d−1)-volume of the (d−1)-dimensional unit ball. By definition

V (CK(x, h)) =
∫ h

0
Vd−1(K ∩ H(ed, z)) dz.

Put d3 = 2(d+1)/2κd−1κ(u)−1/2(d + 1)−1.

Lemma 5. Let K ∈ K2+ be given. There is a constant d3 such that each for cap
CK(x, h) with h ≤ h0

V (CK(x, h)) ≤ d3h
d+1

2 .

It is well known that for given m there are points y1, . . . , ym on the boundary
of K such that for a suitable rm the balls B(yi, rm), i = 1, . . . , m, are pairwise
disjoint, and the union of the balls B(yi, 2rm), i = 1, . . . , m, is a covering of ∂K .
(If B(yi, rm), i = 1, . . . , m, is a maximal packing on ∂K , i.e., there is no point
y ∈ ∂K such that B(y, rm) is disjoint from all other balls B(yi, rm), then each point
y ∈ ∂K has distance at most 2rm from at least one point yi .) Hence

∑
κd−1r

d−1
m is

approximately the surface area of K . Denote by C(yj ) the Voronoi cell of yi in K:

C(yi) = {x ∈ K : ‖x − yi‖ ≤ ‖x − yk‖ for all k �= i}.
By the above remark the Voronoi cell C(yi) contains the ball of radius rm and the
Voronoi cell C(yi)∩ ∂K on the boundary of K is contained in a ball of radius 2rm.
By Lemma 4 a cap Cj of height d−2

2 r2
m is contained in the Voronoi cell C(yj ), and

C(yj ) ∩ ∂K is contained in a cap C̄j of height 4d−2
1 r2

m as long as m is sufficiently
large, m ≥ m0. We summarize this in the following lemma:

Lemma 6. Let m ≥ m0 and K ∈ K2+ be given. Then there are points y1, . . . , ym ∈
∂K and caps Ci = CK(yi, hm) and C̄i = CK(yi, h̄m) with

Ci ⊂ B(rm, yi) ⊂ C(yi),

C(yi) ∩ ∂K ⊂ B(yi, 2rm) ∩ ∂K ⊂ C̄i ,

and

hm = d−2
2 r2

m and h̄m = 4d−2
1 r2

m.

Further there are constants d4, . . . , d7 such that

d4 m− 1
d−1 ≤ rm ≤ d5 m− 1

d−1 (34)

and

d6 m− d+1
d−1 ≤ V (Cj ) ≤ d7 m− d+1

d−1

for all i = 1, . . . , m.
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The next lemma estimates the number of Voronoi cells C(yi) which have non-
empty intersection with a capCK(yj , h).Assuming thath ≤ h1 is sufficiently small,
the Voronoi cell C(yi) has nonempty intersection with CK(yj , h) if C(yi) ∩ ∂K

and thus B(yi, 2rm) has nonempty intersection with CK(yj , h). By Lemma 4,
CK(yj , h) is contained in a ball B(yj , d2h

1/2), and thus all for all Voronoi cells
having nonempty intersection with CK(yj , h) we have

Ci ⊂ [B(yj , d2h
1/2 + 2rm) ∩ ∂K] ⊂ CK(yj , d

−2
1 (d2h

1/2 + 2rm)2) (35)

for h ≤ h1, m ≥ m0. (Recall that [A] denotes the convex hull of the set A.)
Summing over all i satisfying (35) we obtain

∑

i

d6m
− d+1

d−1 ≤
∑

i

V (Ci) ≤ V
(

CK(yj , d
−2
1 (d2h

1/2 + 2rm)2)
)

≤ d3

(

d−2
1 (d2h

1/2 + 2rm)2
) d+1

2
.

This proves

Lemma 7. Let m ≥ m0, K ∈ K2+ be given, and choose points yi , i = 1, . . . , m,
according to Lemma 6. Then there is a constant d8 such that the number of Voronoi

cellsC(yi) intersecting the capCK(yj , h) is bounded byd8
(

h1/2m1/(d−1) + 1
)d+1

.

The next Lemma deals with the approximation of K by a polytope which is
constructed using the Voronoi cells of the points y1, . . . , ym. Assume that points
y1, . . . , ym are given according to the previous lemma and choose in each cap Ci ,
i = 1, . . . , m an arbitrary point xi . The Hausdorff distance δH between K and
the convex hull [x1, . . . , xm] is bounded by 16d−2

1 d2
5m−2/(d−1). Otherwise there

would be a facet of [x1, . . . , xm] with larger distance to ∂K , or equivalently, there
is a cap CK(y, 16d−2

1 d2
5m−2/(d−1)) which contains no point of x1, . . . , xm. By

Lemma 4 the cap CK(y, 16d−2
1 d2

5m−2/(d−1)) contains the intersection of a ball
of radius 4d5m

−1/(d−1) with ∂K . Since by (34) the circumradius of each Voronoi
cell is at most 2d5m

−1/(d−1) this implies that the cap CK(y, 16d−2
1 d2

5m−2/(d−1))

contains at least one cap Cj and thus at least one of the points x1, . . . , xm. Hence

δH (K, [x1, . . . , xm]) ≤ 16d−2
1 d2

5m− 2
d−1 . (36)

Let y ∈ K be an arbitrary point with distance δ to xj . Since K ∈ K2+ there is
a number R > 0 depending only on K such that for each boundary point x there
is a ball BR of radius R touching K at x and containing K . It is elementary to see
that the midpoint of a segment of length δ in a ball of radius R has distance at least
δ2

8R
to the boundary of BR . Thus also the segment [y, xj ] has at least distance δ2

8R
to the boundary of K . By (36) this implies that the line segment [y, xj ] intersects
the interior of the convex hull [x1, . . . , xm] if

‖xj − y‖ ≥ 16
√

Rd−1
1 d5m

− 1
d−1 . (37)

Assume that y is chosen such that y ∈ K\[x1, . . . , xm] and y is not contained
in CK(yj , δ

2m−2/(d−1)) where δ will be chosen later. By (36) the distance of y to
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the boundary of K is bounded by 16d−2
1 d2

5m−2/(d−1). Hence y is contained in a cap
with this height. Denote by y∂K ∈ ∂K a point of this cap which is not contained in
CK(yj , δ

2m−2/(d−1)). To estimate the distance from xj to y we use that

‖yj − y∂k‖ ≤ ‖yj − xj‖ + ‖xj − y‖ + ‖y − y∂k‖.
By Lemma 4 the distance between yj and y∂k is bounded from below by
d1δm

−1/(d−1), the distance between y and y∂K is bounded from above by
4d−1

1 d2d5m
−1/(d−1), and since xj ∈ Cj the distance between yj and xj is bounded

by rm ≤ d5m
−1/(d−1). Thus

‖xj − y‖ ≥
(

d1δ −
(

d5 + 4d−1
1 d2d5

))

m− 1
d−1

and choosing δ sufficiently large we see that (37) is satisfied and thus [xj , y] meets
the interior of [x1, . . . , xm].

Lemma 8. Let m ∈ IN, K ∈ K2+, and points yi , i = 1, . . . , m, chosen according
to Lemma 6, be given. Choose in each cap Ci an arbitrary point xi . Then there are
constants d9, d10 depending on K such that

δH (K, [x1, . . . , xm]) ≤ d9m
− 2

d−1

and such that for y ∈ K with y /∈ CK(yj , d10m
−2/(d−1)) implies that the line

segment [y, xi] intersects the interior of the convex hull [x1, . . . , xm].
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29. Schütt, C.: Random polytopes and affine surface area. Math. Nachr. 170, 227–249 (1994)
30. Vervaat, W.: Upper bounds for the distance in total variation between the binomial or

negative binomial and the Poisson distribution. Statistica Neerlandica 23, 79–86 (1969)
31. Wieacker, J.A.: Einige Probleme der polyedrischen Approximation. Diplomarbeit,

Freiburg im Breisgau 1978


