Brice Franke

A functional central limit theorem for diffusions on periodic submanifolds of \mathbb{R}^N

Received: 14 June 2004 / Revised version: 13 December 2004 / Published online: 10 February 2005 – © Springer-Verlag 2005

Abstract. We prove a functional central limit theorem for diffusions on periodic submanifolds of \mathbb{R}^N . The proof is an adaptation of a method presented in [BenLioPap] and [Bha] for proving functional central limit theorems for diffusions with periodic drift vectorfields. We then apply the central limit theorem in order to obtain a recurrence and a transience criterion for periodic diffusions. Other fields of applications could be heat-kernel estimates, similar to the ones obtained in [Lot].

1. Introduction

Let *M* be a closed, connected sub-manifold of \mathbb{R}^N . We assume that there exists a lattice $\Lambda \subset \mathbb{R}^N$ such that the translation by elements of Λ maps *M* into *M*. Furthermore, we assume that M/Λ is compact and has an orientation. As a submanifold of the Riemannian manifold \mathbb{R}^N , *M* carries a natural Riemannian metric. The associated Riemannian volume-measure will be denoted with v_0 . Let *L* be a periodic, elliptic differential operator of second order defined on $C^2(M)$. The operator *L* generates a diffusion-process *X* on *M* (see [Hsu] p.24). For every function $g \in C^{\infty}(M)$

$$M_t^g := g(X_t) - g(X_0) - \int_0^t Lg(X_s) ds$$

is a local martingale with respect to a suitable filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t\geq 0})$. As in [Hsu] we assume the filtration to be complete and right continuous. Since the generator *L* is periodic, the diffusion process *X* on *M* can be naturally identified with a diffusion X^{Λ} on M/Λ . Since *L* is elliptic, it generates a strongly continuous contraction semigroup $t \mapsto e^{tL}$ on C(M) and it has positive fundamental solutions $p : \mathbb{R}^+ \times M \times M \to \mathbb{R}^+$ with respect to v_0 . In local coordinates *L* has the following expression

Mathematics Subject Classification (2000): 35B27, 60F05, 58J65

B. Franke: Ruhr Universität Bochum, 44780 Bochum, Germany. e-mail: Brice.Franke@ruhr-uni-bochum.de

Key words or phrases: Functional central limit theorem – Homogenization – Asymptotic analysis – Periodic diffusion – Periodic manifold – Recurrence – Transience

The author wants to express his gratitude toward the National Cheng Kung University in Tainan (Taiwan) for its kind hospitality.

$$L = \frac{1}{2} \sum_{i,j}^{d} a^{ij} \partial_{x_i} \partial_{x_j} + \sum_{i=1}^{d} b^i \partial_{x_i}$$

with smooth coefficients a^{ij} , b^i . Furthermore, one defines for $h, g \in C^{\infty}(M)$

$$\Gamma(h,g) = L(hg) - hLg - gLh.$$

In local coordinates Γ takes the following form

$$\Gamma(h,g) = \sum_{i,j}^d a^{ij} (\partial_{x_i} h) (\partial_{x_j} g).$$

Since M/Λ is compact, there exists an invariant probability measure μ for X^{Λ} on M/Λ , and two constants $C, \lambda > 0$ such that for all periodic $g \in L^{\infty}(M, v_0)$ with $\int_{M/\Lambda} g d\mu = 0$ one has

$$\|e^{tL}g\|_{\infty} \le C\|g\|_{\infty}e^{-t\lambda}$$

for all $t \ge 0$ (see [BenLioPap] p.365). The positive real value λ gives a spectral gap for the restriction of *L* to

$$L_p^2(M,\mu) := \left\{ g: M \to \mathbb{R} \text{ periodic}; \int_{M/\Lambda} g^2 d\mu < \infty \right\}.$$

Therefore, the resolvent in zero of *L* is defined on the orthogonal complement of the constant functions in $L_p^2(M, \mu)$. This implies that for all $g \in L_p^2(M, \mu)$ with $\int_{M/\Lambda} g d\mu = 0$ the Poisson-problem $L\psi = g$ has a solution in $\psi \in L_p^2(M, \mu)$. By elliptic regularity ψ is in $C^{\infty}(M)$ if $g \in C^{\infty}(M)$. For $1 \le \alpha \le N$ the restriction of the coordinate functions $k^{\alpha} : \mathbb{R}^N \to \mathbb{R}$; $x \mapsto x^{\alpha}$ to *M* will be denoted by f^{α} . We note that $Lf^{\alpha} \in L_p^2(M, \mu) \cap C^{\infty}(M)$. Therefore, the Poisson-problem

$$L\psi^{\alpha} = Lf^{\alpha} - \int_{M/\Lambda} Lf^{\alpha}d\mu$$

has a solution in $L_p^2(M, \mu) \cap C^{\infty}(M)$. We denote by \overline{Lf} the vector in \mathbb{R}^N with components $\overline{Lf}^{\alpha} := \int_{M/\Lambda} Lf^{\alpha} d\mu$ for $1 \le \alpha \le N$. Since *M* is a sub-manifold of \mathbb{R}^N the diffusion *X* can also be interpreted as a semi-martingale in \mathbb{R}^N (see [Hsu] p.21). Therefore, *X* can be viewed as a random variable taking its values in the space of càdlàg functions $D_{\mathbb{R}^N}([0, \infty[)$ with the usual Skorohod topology (see [EthKur] p.118). We want to show that the distributions of the rescaled semi-martingales

$$X_t^{(n)} := n^{-1/2} (X_{nt} - X_0 - nt \overline{\text{Lf}})$$

converge in the weak sense to the distribution of a Gaussian martingale with independent increments. For a given positive semi-definite, symmetric $N \times N$ -matrix Σ , there exists a unique Gaussian \mathcal{F}_t -martingale W^{Σ} on \mathbb{R}^N starting in zero with covariation process $\langle W^{\Sigma}, W^{\Sigma} \rangle_t = t \Sigma$ for all $t \ge 0$ and \mathbb{P} -a.s. (see [EthKur] p.338). By Levy's characterization theorem the projections of W^{Σ} onto one dimensional subspaces of \mathbb{R}^N are multiples of Brownian motions (see [RevYor] p.141).

2. Results and proofs

Theorem 1. The sequence $X^{(n)}$ converges to W^{Σ} in distribution with

$$\Sigma_{\alpha\beta} := \int_{M/\Lambda} \Gamma(f^{\alpha} - \psi^{\alpha}, f^{\beta} - \psi^{\beta}) d\mu.$$

Proof. We first prove, that $X^{(n)}$ is an asymptotic martingale. One has

$$d\psi^{\alpha}(X_t) = dM_t^{\psi^{\alpha}} + L\psi^{\alpha}(X_t)dt = dM_t^{\psi^{\alpha}} + Lf^{\alpha}(X_t)dt - \overline{Lf}^{\alpha}dt$$

and therefore,

$$f^{\alpha}(X_t) - f^{\alpha}(X_0) - t\overline{Lf}^{\alpha} = M_t^{f^{\alpha}} + \int_0^t (Lf^{\alpha}(X_s) - \overline{Lf}^{\alpha}) ds$$
$$= M_t^{f^{\alpha}} - M_t^{\psi^{\alpha}} - \psi^{\alpha}(X_t) + \psi^{\alpha}(X_0).$$

Now, since ψ is bounded, one has \mathbb{P} -a.s.

$$n^{-1/2}(f^{\alpha}(X_{nt}) - f^{\alpha}(X_0) - nt\overline{Lf}^{\alpha}) \simeq M_t^{(n),\alpha} := n^{-1/2}(M_{nt}^{f^{\alpha}} - M_{nt}^{\psi^{\alpha}})$$

where $M^{(n)}$ is a \mathcal{F}_t -martingale. Therefore, $X^{(n)}$ is an asymptotic martingale. Now, one can apply the central limit theorem for martingales to $M^{(n)}$. In order to do so, we have to show that the covariation-process of $M^{(n)}$ converges in $L^2(\Omega, \mathbb{P})$ to the covariation process of W^{Σ} . For $M^{\alpha} := M^{f^{\alpha}} - M^{\psi^{\alpha}}$ one has (see [Hsu] p.30)

$$\langle M^{\alpha}, M^{\beta} \rangle_{t} = \langle M^{f^{\alpha}} - M^{\psi^{\alpha}}, M^{f^{\beta}} - M^{\psi^{\beta}} \rangle_{t}$$

=
$$\int_{0}^{t} \Gamma(f^{\alpha} - \psi^{\alpha}, f^{\beta} - \psi^{\beta})(X_{s}) ds$$

Therefore,

$$\langle M^{(n),\alpha}, M^{(n),\beta} \rangle_t = n^{-1} \langle M^{\alpha}, M^{\beta} \rangle_{nt}$$

= $\int_0^t \Gamma(f^{\alpha} - \psi^{\alpha}, f^{\beta} - \psi^{\beta})(X_{ns}) ds$.

Thus,

$$\mathbb{E}\left[\left(\langle M^{(n),\alpha}, M^{(n),\beta} \rangle_t - t \Sigma_{\alpha\beta}\right)^2\right]$$

= $\mathbb{E}\left[\left(\int_0^t \left(\Gamma(f^{\alpha} - \psi^{\alpha}, f^{\beta} - \psi^{\beta})(X_{ns}) - \Sigma_{\alpha\beta}\right) ds\right)^2\right]$
= $\mathbb{E}\left[\int_0^t \int_0^t R(X_{ns})R(X_{nr}) ds dr\right]$
= $2\int_0^t \int_0^s \mathbb{E}\left[R(X_{ns})R(X_{nr})\right] dr ds,$

where

$$R(x) := \Gamma(f^{\alpha} - \psi^{\alpha}, f^{\beta} - \psi^{\beta})(x) - \Sigma_{\alpha\beta}.$$

Now, by the Markov-property of the diffusion-process X one has

$$\mathbb{E} \left[R(X_{ns})R(X_{nr}) \right] = \mathbb{E} \left[R(X_{nr})\mathbb{E} \left[R(X_{ns})|\mathcal{F}_{nr} \right] \right]$$

= $\mathbb{E} \left[R(X_{nr}) \left(e^{n(s-r)L} R \right) (X_{nr}) \right] \le \mathbb{E} \left[|R(X_{nr})| \right] C e^{-n(s-r)\lambda} ||R||_{\sup}$
 $\le C ||R||_{\sup}^2 e^{-n(s-r)\lambda}.$

Therefore, one has for $n \to \infty$

$$\mathbb{E}\left[\left(\langle M^{(n),\alpha}, M^{(n),\beta}\rangle_t - t\Sigma_{\alpha\beta}\right)^2\right] \le 2C \|R\|_{\sup}^2 \int_0^t \int_0^s e^{-n(s-r)\lambda} dr ds$$
$$= \frac{2C \|R\|_{\sup}^2}{n\lambda} \int_0^t \left(1 - e^{-ns\lambda}\right) ds \le \frac{2C \|R\|_{\sup}^2}{n\lambda} t \longrightarrow 0.$$

Now the result follows from the central limit theorem for martingales (see [EthKur] p.339).

The following result was proved in [BenLioPap] and [Bat]:

Corollary 1. Let X be a diffusion on \mathbb{R}^N with periodic generator

$$L = \sum_{i,j}^{N} a^{ij} \partial_{x_i} \partial_{x_j} + \sum_{i=1}^{N} b^i \partial_{x_i}.$$

Then $X^{(n)}$ converges in distribution to W^{Σ} with

$$\Sigma_{\alpha\beta} = \int_{\mathbb{R}^N/\Lambda} \sum_{i,j}^N (\delta_{i\alpha} - \partial_{x_i} \psi^{\alpha}) a^{ij} (\delta_{j\beta} - \partial_{x_j} \psi^{\beta}) d\mu,$$

where ψ^{α} is the periodic solution to

$$L\psi^{\alpha} = b^{\alpha} - \int_{\mathbb{R}^N/\Lambda} b^{\alpha} d\mu$$

with $\int_{M/\Lambda} \psi^{\alpha} d\mu = 0.$

Proof. One has $Lf^{\alpha} = b^{\alpha}$ and $\partial_{x_i} f^{\alpha} = \delta_{i\alpha}$.

Now, let *M* be a manifold with a periodic Riemannian metric *g*. Let ∇ be its associated Levi-Civita connection and Δ the resulting Laplace-Beltrami operator. The process generated by $L = \Delta$ is called Brownian motion on *M*.

Corollary 2. Let X be Brownian motion on M. Then $X^{(n)}$ converges in distribution to W^{Σ} , where

$$\Sigma_{\alpha\beta} = \frac{1}{v(M/\Lambda)} \int_{M/\Lambda} g(\nabla(f^{\alpha} - \psi^{\alpha}), \nabla(f^{\beta} - \psi^{\beta})) dv,$$

where v is the Riemannian volume on M/Λ , and ψ^{α} is the periodic solution to

$$\Delta \psi^{\alpha} = \Delta f^{\alpha}$$

with $\int_{M/\Lambda} \psi^{\alpha} dv = 0.$

Proof. This follows, since for all $f, h \in C^{\infty}(M)$ one has $\Gamma(f, h) = g(\nabla f, \nabla h)$ (see [Hsu] p.80). Furthermore, $\int_{M/\Lambda} \Delta f^{\alpha} dv = 0$ follows from the divergence theorem and the fact that ∇f^{α} is periodic.

We call a Riemannian manifold $M \subset \mathbb{R}^N$ harmonic, iff the restriction of the identity on \mathbb{R}^N to M is harmonic.

Corollary 3. Let M be a periodic, harmonic submanifold of \mathbb{R}^N and let X be Brownian motion on M. Then $X^{(n)}$ converges in distribution to W^{Σ} with

$$\Sigma_{\alpha\beta} = \frac{1}{v(M/\Lambda)} \int_{M/\Lambda} g(\nabla f^{\alpha}, \nabla f^{\beta}) dv,$$

where v is the Riemannian volume on M/Λ .

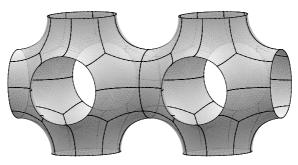
Proof. Since *M* is harmonic, one has $\Delta f^{\alpha} = 0$ for $1 \le \alpha \le N$ (see [Aub] p.350). Therefore, $\psi^{\alpha} = 0$ in the previous corollary.

Minimal submanifolds M of \mathbb{R}^N with the metric obtained by restricting the metric on \mathbb{R}^N to the tangential space of M are harmonic manifolds (see [Jos] p.394). Periodic minimal surfaces are relevant in material science and crystallography, where they are used to describe boundary layers.

Example 1. The triply periodic Schwarz P-surface (see [Kar]) illustrated in the figure below is a minimal surface in \mathbb{R}^3 . A computation using the periodicity of the manifold and the fact that the surface intersects the boundary ∂Q of the unit-cube Q perpendicularly shows

$$\int_{M/\Lambda} g(\nabla f^{\alpha}, \nabla f^{\beta}) dv_0 = \int_{M \cap \partial Q} f^{\beta} \nu(f^{\alpha}) dl = \int_{M \cap Q \cap \{x^{\beta} = 1\}} \nu(f^{\alpha}) dl,$$

where dl denotes the differential of the arc length on the intersection of M with ∂Q and ν denotes the outward pointing unit-vectorfield on $\partial (M \cap Q)$. Since $\nu(f^{\alpha})$ vanishes on $M \cap \{x^{\beta} = 1\}$ for $\alpha \neq \beta$ the resulting diffusion coefficient for the limiting Brownian motion is a diagonal matrix. Further, since $\nu(f^{\alpha}) = 1$ on $M \cap \{x^{\alpha} = 1\}$, the diagonal entries are the length of the shortest closed geodesics on M divided by the volume of M/Λ .



The figure shows two cells of the triply periodic Schwarz P-surface. Note that the manifold intersects the boundary of the unit-cube perpendicularly. The figure was produced with Surface Evolver software.

3. Applications

We now want to link the recurrence resp. transience of X to the recurrence resp. transience of W^{Σ} . Since, all the involved processes are continuous, we can restrict our attention to $C_{\mathbb{R}^N}([0, \infty[)$ with uniform convergence on compact sets (see [EthKur] p.153). For a given Borel-set $U \subset \mathbb{R}^N$ we define the set of recurrent paths

$$R(U) := \left\{ \omega \in C_{\mathbb{R}^N}([0, \infty[); \forall m \in \mathbb{N}, \exists t \ge m \text{ such that } \omega(t) \in U \right\}.$$

We note that X is recurrent on M, if and only if $\mathbb{P}_X(R(U)) = 1$ for all open sets $U \subset \mathbb{R}^N$ intersecting M. For a Borel-set $U \subset \mathbb{R}^N$ we define the set of transient paths

$$T(U) := \left\{ \omega \in C_{\mathbb{R}^N}([0, \infty[); \exists s \ge 0 \text{ such that } \omega(t) \notin U, \forall t \ge s \right\},\$$

and note that *X* is transient on *M*, if and only if $\mathbb{P}_X(T(U)) = 1$ for all open bounded sets $U \subset \mathbb{R}^N$. The set T(U) is the complement of the set R(U) in $C_{\mathbb{R}^N}([0, \infty[))$. Furthermore, the set R(U) is open in $C_{\mathbb{R}^N}([0, \infty[))$, if *U* is open in \mathbb{R}^N . In order to apply the central limit theorem from the previous section, we need the following lemma.

Lemma 1. Let Y be a diffusion process on a sub-manifold M of \mathbb{R}^N and let U, V \subset M be such that

$$\delta := \inf_{x \in U} \mathbb{P}(Y_{1/2} \in V | Y_0 = x) > 0.$$

Then one has $\mathbb{P}_Y(R(U) \setminus R(V)) = 0$.

Proof. Let $\tau(0) = 0$ and $\tau(n) := \inf\{t \ge \max(n, \tau(n-1)+1); Y_t \in U\}$. Let $t \mapsto T_t$ be the semigroup associated to *Y* on $L^{\infty}(M, \nu)$. Then, one has by the strong Markov property (see [Hsu] p.31) for all $l \in \mathbb{N}$

$$\mathbb{E}\left[\prod_{m=l}^{k} \mathbf{1}_{V^{c}}(Y_{\tau(m)+1/2})\right] = \mathbb{E}\left[\prod_{m=l}^{k-1} \mathbf{1}_{V^{c}}(Y_{\tau(m)+1/2})\mathbb{E}\left[\mathbf{1}_{V^{c}}(Y_{\tau(k)+1/2})|\mathcal{F}_{\tau(k)}\right]\right]$$
$$= \mathbb{E}\left[\prod_{m=l}^{k-1} \mathbf{1}_{V^{c}}(Y_{\tau(m)+1/2})T_{1/2}\mathbf{1}_{V^{c}}(Y_{\tau(k)})\right]$$
$$\leq (1-\delta)\mathbb{E}\left[\prod_{m=l}^{k-1} \mathbf{1}_{V^{c}}(Y_{\tau(m)+1/2})\right]$$
$$\leq (1-\delta)^{k-l} \longrightarrow 0 \quad \text{when} \quad k \to \infty.$$

Therefore, one has with $C_m := \{Y_{\tau(m)+1/2} \in V\}$ for all $l \in \mathbb{N}$

$$\mathbb{P}_Y\left(R(U)\cap\bigcap_{m=l}^k C_m^c\right)\leq \mathbb{E}\left[\prod_{m=l}^k \mathbf{1}_{V^c}(Y_{\tau(m)+1/2})\right]\longrightarrow 0.$$

From this follows since $\limsup C_m \subset R(V)$

$$\mathbb{P}_Y\left(R(U)\cap R(V)^c\right) \leq \mathbb{P}_Y\left(R(U)\cap \bigcup_{l\in\mathbb{N}}\bigcap_{m\geq l}C_m^c\right) = 0.$$

Lemma 2. Let Σ be positive definite. For all bounded open sets $U \subset \mathbb{R}^N$ one has $\mathbb{P}_{W^{\Sigma}}(\partial R(U)) = 0$.

Proof. We have $\partial R(U) \subset R(U_1)$, where $U_1 := \{x \in \mathbb{R}^N : \operatorname{dist}(x, U) < 1\}$. Further, W^{Σ} is a diffusion process on \mathbb{R}^N and

$$\delta := \inf_{x \in U_1} \mathbb{P}(W_{1/2}^{\Sigma} \in U | W_0^{\Sigma} = x) > 0,$$

since Σ is positive definite. Therefore, one can apply the previous lemma. Since R(U) is open, it follows that

$$\mathbb{P}_{W^{\Sigma}}(\partial R(U)) = \mathbb{P}_{W^{\Sigma}}(\partial R(U) \setminus R(U)) \le \mathbb{P}_{W^{\Sigma}}(R(U_1) \setminus R(U)) = 0.$$

Theorem 2. If $\overline{Lf} \neq 0$ then X is transient on M.

Proof. We have to show that for every ball $B_r(0)$ intersecting M one has $\mathbb{P}_X(T(B_r(0))) = 1$. Let $c \in \mathbb{R}^N$ with $c \neq 0$, we define the set of paths leaving the family of shifted half-spaces

$$H_{c,t} := \left\{ x \in \mathbb{R}^N; \langle c, x \rangle > |c|^2 t \right\},\$$

by

$$S(c) := \left\{ \omega \in C_{\mathbb{R}^N}([0, \infty[); \exists s \ge 0 \text{ such that } \omega(t) \notin H_{c,t}, \forall t \ge s \right\}.$$

Now, by the reflection principle for Brownian motion (see [RevYor] p.100) one has for all $k \in \mathbb{N}$

$$\mathbb{P}(\exists t \ge k, \ W_t^{\Sigma} \in H_{c,t}) \le \sum_{m=k}^{\infty} \mathbb{P}(\exists t \in [m, m+1[, \ W_t^{\Sigma} \in H_{c,m}))$$
$$\le \sum_{m=k}^{\infty} \mathbb{P}\left(\sup_{0 \le t \le m+1} B_t > |c|m\right) \le \sum_{m=k}^{\infty} 2\mathbb{P}\left(B_{m+1} > |c|m\right) < \infty,$$

where *B* is the Brownian motion obtained by projecting *W* to the one dimensional sub-space of \mathbb{R}^N defined by $\mathbb{R}c$. This implies for $k \to \infty$

$$\mathbb{P}(W_t^{\Sigma} \notin H_{c,t}, \ \forall t \ge k) = 1 - \mathbb{P}(\exists t \ge k, \ W_t^{\Sigma} \in H_{c,t}) \longrightarrow 1.$$

From this follows, $\mathbb{P}_{W^{\Sigma}}(S(c)) = 1$ for all $c \in \mathbb{R}^N$ with $c \neq 0$, which implies that $\mathbb{P}_{W^{\Sigma}}(\partial S(c)) = 0$ since $\partial S(c) \subset S(c/2)^c$. Then, by the central limit theorem it follows for all r > 0 and large n

$$\mathbb{P}_{X}(T(B_{r}(0))) = \mathbb{P}(\exists s \ge 0 \text{ with } X_{nt} \notin B_{r}(0), \forall t \ge s)$$

= $\mathbb{P}(\exists s \ge 0 \text{ with } X_{t}^{(n)} \notin B_{r/\sqrt{n}}(0) - \sqrt{nt}\overline{\mathrm{Lf}}, \forall t \ge s)$
 $\ge \mathbb{P}(\exists s \ge 0 \text{ with } X_{t}^{(n)} \notin H_{-\overline{\mathrm{Lf}},t}, \forall t \ge s)$
= $\mathbb{P}_{X^{(n)}}(S(-\overline{\mathrm{Lf}})) \longrightarrow \mathbb{P}_{W^{\Sigma}}(S(-\overline{\mathrm{Lf}})) = 1.$

This proves the theorem.

Theorem 3. Under the assumptions $\overline{Lf} = 0$ and Σ positive definite, the diffusion *X* is recurrent on *M*, if and only if W^{Σ} is recurrent on \mathbb{R}^{N} .

Proof. First we note that $\text{Span}(\Lambda) = \mathbb{R}^N$, since Σ is positive definite. By the previous lemma, one has $\mathbb{P}_{W^{\Sigma}}(\partial R(B)) = 0$ for all balls *B* in \mathbb{R}^N . It follows from the central limit theorem that

$$\lim_{n \to \infty} \mathbb{P}_{X^{(n)}}(R(B)) = \mathbb{P}_{W^{\Sigma}}(R(B)).$$

Now, recurrence of *X* on *M* implies that $\mathbb{P}_X(R(U)) = 1$ for all open sets *U* intersecting *M*. Therefore, $\mathbb{P}_{X^{(n)}}(R(B)) = 1$, if \sqrt{nB} intersects *M*, which is always fulfilled for large $n \in \mathbb{N}$, since $\text{Span}(\Lambda) = \mathbb{R}^N$. This implies that $\mathbb{P}_{W^{\Sigma}}(R(B)) = 1$ for all balls $B \subset \mathbb{R}^N$. This proves the recurrence of W^{Σ} . Now, let's assume that W^{Σ} is recurrent. This implies that

$$\lim_{n \to \infty} \mathbb{P}_X(R(B_{\sqrt{n}}(0))) = \lim_{n \to \infty} \mathbb{P}_{X^{(n)}}(R(B_1(0))) = \mathbb{P}_{W^{\Sigma}}(R(B_1(0))) = 1.$$

For all $\epsilon > 0$ there is a $r \in \mathbb{N}$ such that $\mathbb{P}_X(R(B_r(0))) \ge 1 - \epsilon$. Now, since *L* is elliptic and *M* connected for a given open set $U \subset M$, one has

$$\delta := \inf_{x \in B_r(0) \cap M} \int_U p(1/2, x, y) d\nu(y) > 0.$$

Furthermore, X satisfies the strong Markov property (see [Hsu] p.31). Therefore, the first lemma implies $\mathbb{P}_X(R(B_r(0))\setminus R(U)) = 0$. It follows, $\mathbb{P}_X(R(U)) \ge \mathbb{P}_X(R(B_r(0))) \ge 1 - \epsilon$. Letting ϵ go to zero proves the theorem.

Theorem 4. Under the assumption that $\overline{Lf} = 0$ and Σ positive definite, the diffusion X is transient on M, if and only if W^{Σ} is transient on \mathbb{R}^{N} .

Proof. Since $\partial T(U) = \partial R(U)$, we know that $\mathbb{P}_{W\Sigma}(\partial T(U)) = 0$. Therefore, the central limit theorem gives

$$\lim_{n \to \infty} \mathbb{P}_{X^{(n)}}(T(U)) = \mathbb{P}_{W^{\Sigma}}(T(U)).$$

Now, if X is transient on M, then $\mathbb{P}_X(T(U)) = 1$ for all bounded $U \subset \mathbb{R}^N$. From this follows $\mathbb{P}_{X^{(n)}}(T(U)) = 1$. This implies $\mathbb{P}_{W^{\Sigma}}(T(U)) = 1$ for all bounded

 $U \subset \mathbb{R}^N$ and therefore the transience of W^{Σ} . Now, let's assume that W^{Σ} is transient on \mathbb{R}^N . We then have

$$\mathbb{P}_X(T(B_r(0))) \ge \mathbb{P}_{X^{(n)}}(T(B_r(0))) \longrightarrow \mathbb{P}_{W^{\Sigma}}(T(B_r(0))) = 1.$$

Therefore, we have $\mathbb{P}_X(T(B_r(0))) = 1$ for all r > 0. This means that X is transient on M.

Example 2. Let *M* be a periodic submanifold of \mathbb{R}^N with periodic Riemannian metric *g*. Let $L := \Delta + B$, where *B* is a divergence-free periodic vectorfield on *M*. In this situation the invariant measure is the Riemannian volume v on M/Λ . It follows from the divergence theorem that

$$\overline{Lf}^{\alpha} = \frac{1}{v(M/\Lambda)} \int_{M/\Lambda} Bf^{\alpha} dv = \frac{1}{v(M/\Lambda)} \int_{M/\Lambda} g(B, \nabla f^{\alpha}) dv.$$

Therefore, \overline{Lf}^{α} can be interpreted as a measure for the drift-vectorfield *B* in the x^{α} -direction.

Example 3. Let again *M* be a periodic submanifold of \mathbb{R}^N with periodic Riemannian metric *g*. Let ρ be a smooth, positive function such that the restriction of ρ to M/Λ is a probability density with respect to the Riemannian volume dv. Then the ρdv is the invariant measure for the Diffusion on M/Λ generated by the operator $L := \frac{1}{2}\Delta - \frac{1}{2\rho}(\nabla \rho)$. It follows that

$$\overline{Lf}^{\alpha} = \frac{1}{2} \int_{M/\Lambda} \rho \Delta f^{\alpha} dv - \frac{1}{2} \int_{M/\Lambda} g(\nabla f^{\alpha}, \nabla \rho) dv = \int_{M/\Lambda} \rho \Delta f^{\alpha} dv.$$

In this situation $\overline{Lf}^{\alpha} > 0$ indicates that the process stays more time at locations where Δf^{α} is positive. This results in a drift of the limiting Brownian motion in the x^{α} -direction.

References

[Aub]	Aubin, T.: Some nonlinear Problems in Riemannian Geometry. SMM,
	Springer Berlin, 1998
[Bha]	Bhattacharya, R.: A central limit theorem for diffusions with periodic coeffi-
	cients. Annals of Probability, 13, 385–396 (1985)
[BenLioPap]	Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for peri-
	odic Structures. North-Holland, 1978
[EthKur]	Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergence.
	John Wiley & Sons, Inc, New-York, 1986
[Hsu]	Hsu, E. P.: Stochastic Analysis on Manifolds. AMS Graduate Studies in Math-
	ematics 38 , 2001
[Jos]	Jost, J.: Riemannian Geometry and geometric Analysis. 3ed. Universitext,
	Springer Berlin, 2002
[Kar]	Karcher, H.: The triply periodic minimal Surfaces of Alan Schoen and their
	constant mean curvature companions. Manuscripta Math. 64, 291–375 (1989)
[Lot]	Lott, J.: Remark about heat diffusion on periodic spaces. Proceedings of the
	American Mathematical Society 127, 1243–1249 (1999)
[RevYor]	Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grun-
	dlehren der mathematischen Wissenschaften 293, Springer Berlin, 1991