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Abstract. We prove a functional central limit theorem for diffusions on periodic sub-
manifolds of R

N . The proof is an adaptation of a method presented in [BenLioPap] and
[Bha] for proving functional central limit theorems for diffusions with periodic drift vector-
fields. We then apply the central limit theorem in order to obtain a recurrence and a transience
criterion for periodic diffusions. Other fields of applications could be heat-kernel estimates,
similar to the ones obtained in [Lot].

1. Introduction

Let M be a closed, connected sub-manifold of R
N . We assume that there exists

a lattice � ⊂ R
N such that the translation by elements of � maps M into M .

Furthermore, we assume that M/� is compact and has an orientation. As a sub-
manifold of the Riemannian manifold R

N ,M carries a natural Riemannian metric.
The associated Riemannian volume-measure will be denoted with v0. Let L be a
periodic, elliptic differential operator of second order defined onC2(M). The oper-
ator L generates a diffusion-process X on M (see [Hsu] p.24). For every function
g ∈ C∞(M)

M
g
t := g(Xt )− g(X0)−

∫ t

0
Lg(Xs)ds

is a local martingale with respect to a suitable filtered probability space (�,F,P,
(Ft )t≥0). As in [Hsu] we assume the filtration to be complete and right continuous.
Since the generator L is periodic, the diffusion process X on M can be naturally
identified with a diffusion X� on M/�. Since L is elliptic, it generates a strongly
continuous contraction semigroup t �→ etL onC(M) and it has positive fundamen-
tal solutions p : R

+ ×M ×M → R
+ with respect to v0. In local coordinates L

has the following expression
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L = 1

2

d∑
i,j

aij ∂xi ∂xj +
d∑
i=1

bi∂xi

with smooth coefficients aij , bi . Furthermore, one defines for h, g ∈ C∞(M)

�(h, g) = L(hg)− hLg − gLh.

In local coordinates � takes the following form

�(h, g) =
d∑
i,j

aij (∂xi h)(∂xj g).

Since M/� is compact, there exists an invariant probability measure µ for X� on
M/�, and two constants C, λ > 0 such that for all periodic g ∈ L∞(M, v0) with∫
M/�

gdµ = 0 one has

‖etLg‖∞ ≤ C‖g‖∞e−tλ

for all t ≥ 0 (see [BenLioPap] p.365). The positive real value λ gives a spectral
gap for the restriction of L to

L2
p(M,µ) :=

{
g : M → R periodic;

∫
M/�

g2dµ < ∞
}
.

Therefore, the resolvent in zero of L is defined on the orthogonal complement of
the constant functions in L2

p(M,µ). This implies that for all g ∈ L2
p(M,µ) with∫

M/�
gdµ = 0 the Poisson-problem Lψ = g has a solution in ψ ∈ L2

p(M,µ). By
elliptic regularity ψ is in C∞(M) if g ∈ C∞(M). For 1 ≤ α ≤ N the restriction
of the coordinate functions kα : R

N → R; x �→ xα to M will be denoted by f α .
We note that Lf α ∈ L2

p(M,µ) ∩ C∞(M). Therefore, the Poisson-problem

Lψα = Lf α −
∫
M/�

Lf αdµ

has a solution in L2
p(M,µ) ∩ C∞(M). We denote by Lf the vector in R

N with

components Lf
α

:= ∫
M/�

Lf αdµ for 1 ≤ α ≤ N . Since M is a sub-manifold of

R
N the diffusion X can also be interpreted as a semi-martingale in R

N (see [Hsu]
p.21). Therefore,X can be viewed as a random variable taking its values in the space
of càdlàg functionsDRN ([0,∞[) with the usual Skorohod topology (see [EthKur]
p.118). We want to show that the distributions of the rescaled semi-martingales

X
(n)
t := n−1/2(Xnt −X0 − ntLf)

converge in the weak sense to the distribution of a Gaussian martingale with inde-
pendent increments. For a given positive semi-definite, symmetric N × N -matrix
�, there exists a unique Gaussian Ft -martingale W� on R

N starting in zero with
covariation process 〈W�,W�〉t = t� for all t ≥ 0 and P-a.s. (see [EthKur] p.338).
By Levy’s characterization theorem the projections of W� onto one dimensional
subspaces of R

N are multiples of Brownian motions (see [RevYor] p.141).
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2. Results and proofs

Theorem 1. The sequence X(n) converges to W� in distribution with

�αβ :=
∫
M/�

�(f α − ψα, f β − ψβ)dµ.

Proof. We first prove, that X(n) is an asymptotic martingale. One has

dψα(Xt ) = dM
ψα

t + Lψα(Xt )dt = dM
ψα

t + Lf α(Xt )dt − Lf
α
dt

and therefore,

f α(Xt )− f α(X0)− tLf
α = M

fα

t +
∫ t

0
(Lf α(Xs)− Lf

α
)ds

= M
fα

t −M
ψα

t − ψα(Xt )+ ψα(X0).

Now, since ψ is bounded, one has P-a.s.

n−1/2(f α(Xnt )− f α(X0)− ntLf
α
) � M

(n),α
t := n−1/2(M

fα

nt −M
ψα

nt ),

whereM(n) is a Ft -martingale. Therefore, X(n) is an asymptotic martingale. Now,
one can apply the central limit theorem for martingales to M(n). In order to do so,
we have to show that the covariation-process ofM(n) converges in L2(�,P) to the
covariation process of W� . For Mα := Mfα −Mψα one has (see [Hsu] p.30)

〈Mα,Mβ〉t = 〈Mfα −Mψα,Mfβ −Mψβ 〉t
=
∫ t

0
�(f α − ψα, f β − ψβ)(Xs)ds.

Therefore,

〈M(n),α,M(n),β〉t = n−1〈Mα,Mβ〉nt
=
∫ t

0
�(f α − ψα, f β − ψβ)(Xns)ds.

Thus,

E

[(
〈M(n),α,M(n),β〉t − t�αβ

)2
]

= E

[(∫ t

0

(
�(f α − ψα, f β − ψβ)(Xns)−�αβ

)
ds

)2
]

= E

[∫ t

0

∫ t

0
R(Xns)R(Xnr)dsdr

]

= 2
∫ t

0

∫ s

0
E [R(Xns)R(Xnr)] drds,

where
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R(x) := �(f α − ψα, f β − ψβ)(x)−�αβ.

Now, by the Markov-property of the diffusion-process X one has

E [R(Xns)R(Xnr)] = E [R(Xnr)E [R(Xns)|Fnr ]]
= E

[
R(Xnr)

(
en(s−r)LR

)
(Xnr)

]
≤ E [|R(Xnr)|]Ce−n(s−r)λ‖R‖sup

≤ C‖R‖2
supe

−n(s−r)λ.

Therefore, one has for n → ∞

E

[(
〈M(n),α,M(n),β〉t − t�αβ

)2
]

≤ 2C‖R‖2
sup

∫ t

0

∫ s

0
e−n(s−r)λdrds

= 2C‖R‖2
sup

nλ

∫ t

0

(
1 − e−nsλ

)
ds ≤ 2C‖R‖2

sup

nλ
t −→ 0.

Now the result follows from the central limit theorem for martingales (see [EthKur]
p.339). �
The following result was proved in [BenLioPap] and [Bat]:

Corollary 1. Let X be a diffusion on R
N with periodic generator

L =
N∑
i,j

aij ∂xi ∂xj +
N∑
i=1

bi∂xi .

Then X(n) converges in distribution to W� with

�αβ =
∫

RN/�

N∑
i,j

(δiα − ∂xiψ
α)aij (δjβ − ∂xj ψ

β)dµ,

where ψα is the periodic solution to

Lψα = bα −
∫

RN/�

bαdµ

with
∫
M/�

ψαdµ = 0.

Proof. One has Lf α = bα and ∂xi f
α = δiα . �

Now, let M be a manifold with a periodic Riemannian metric g. Let ∇ be its asso-
ciated Levi-Civita connection and � the resulting Laplace-Beltrami operator. The
process generated by L = � is called Brownian motion on M .

Corollary 2. LetX be Brownian motion onM . ThenX(n) converges in distribution
to W� , where

�αβ = 1

v(M/�)

∫
M/�

g(∇(f α − ψα),∇(f β − ψβ))dv,

where v is the Riemannian volume on M/�, and ψα is the periodic solution to

�ψα = �f α

with
∫
M/�

ψαdv = 0.
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Proof. This follows, since for all f, h ∈ C∞(M) one has �(f, h) = g(∇f,∇h)
(see [Hsu] p.80). Furthermore,

∫
M/�

�f αdv = 0 follows from the divergence
theorem and the fact that ∇f α is periodic. �
We call a Riemannian manifoldM ⊂ R

N harmonic, iff the restriction of the identity
on R

N to M is harmonic.

Corollary 3. Let M be a periodic, harmonic submanifold of R
N and let X be

Brownian motion on M . Then X(n) converges in distribution to W� with

�αβ = 1

v(M/�)

∫
M/�

g(∇f α,∇f β)dv,

where v is the Riemannian volume on M/�.

Proof. Since M is harmonic, one has �f α = 0 for 1 ≤ α ≤ N (see [Aub] p.350).
Therefore, ψα = 0 in the previous corollary. �
Minimal submanifoldsM of R

N with the metric obtained by restricting the metric
on R

N to the tangential space ofM are harmonic manifolds (see [Jos] p.394). Peri-
odic minimal surfaces are relevant in material science and crystallography, where
they are used to describe boundary layers.

Example 1. The triply periodic Schwarz P-surface (see [Kar]) illustrated in the fig-
ure below is a minimal surface in R

3. A computation using the periodicity of the
manifold and the fact that the surface intersects the boundary ∂Q of the unit-cube
Q perpendicularly shows∫

M/�

g(∇f α,∇f β)dv0 =
∫
M∩∂Q

f βν(f α)dl =
∫
M∩Q∩{xβ=1}

ν(f α)dl,

where dl denotes the differential of the arc length on the intersection ofM with ∂Q
and ν denotes the outward pointing unit-vectorfield on ∂(M∩Q). Since ν(f α) van-
ishes onM ∩ {xβ=1} for α �= β the resulting diffusion coefficient for the limiting
Brownian motion is a diagonal matrix. Further, since ν(f α) = 1 onM ∩ {xα=1},
the diagonal entries are the length of the shortest closed geodesics on M divided
by the volume of M/�.

The figure shows two cells of the triply periodic Schwarz P-surface. Note that the
manifold intersects the boundary of the unit-cube perpendicularly. The figure was
produced with Surface Evolver software.
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3. Applications

We now want to link the recurrence resp. transience ofX to the recurrence resp. tran-
sience ofW� . Since, all the involved processes are continuous, we can restrict our
attention toCRN ([0,∞[)with uniform convergence on compact sets (see [EthKur]
p.153). For a given Borel-set U ⊂ R

N we define the set of recurrent paths

R(U) := {
ω ∈ CRN ([0,∞[); ∀m ∈ N, ∃t ≥ m such that ω(t) ∈ U} .

We note that X is recurrent on M , if and only if PX(R(U)) = 1 for all open sets
U ⊂ R

N intersecting M . For a Borel-set U ⊂ R
N we define the set of transient

paths

T (U) := {
ω ∈ CRN ([0,∞[); ∃s ≥ 0 such that ω(t) /∈ U, ∀t ≥ s

}
,

and note thatX is transient onM , if and only if PX(T (U)) = 1 for all open bounded
sets U ⊂ R

N . The set T (U) is the complement of the set R(U) in CRN ([0,∞[).
Furthermore, the set R(U) is open in CRN ([0,∞[), if U is open in R

N . In order to
apply the central limit theorem from the previous section, we need the following
lemma.

Lemma 1. Let Y be a diffusion process on a sub-manifoldM of R
N and letU,V ⊂

M be such that

δ := inf
x∈U

P(Y1/2 ∈ V |Y0 = x) > 0.

Then one has PY (R(U)\R(V )) = 0.

Proof. Let τ(0) = 0 and τ(n) := inf{t ≥ max(n, τ (n− 1)+ 1);Yt ∈ U}. Let
t �→ Tt be the semigroup associated to Y onL∞(M, ν). Then, one has by the strong
Markov property (see [Hsu] p.31) for all l ∈ N

E

[
k∏
m=l

1V c (Yτ(m)+1/2)

]
= E

[
k−1∏
m=l

1V c (Yτ(m)+1/2)E
[
1V c (Yτ(k)+1/2)|Fτ(k)

]]

= E

[
k−1∏
m=l

1V c (Yτ(m)+1/2)T1/21V c (Yτ(k))

]

≤ (1 − δ)E

[
k−1∏
m=l

1V c (Yτ(m)+1/2)

]

≤ (1 − δ)k−l −→ 0 when k → ∞.

Therefore, one has with Cm := {Yτ(m)+1/2 ∈ V } for all l ∈ N

PY

(
R(U) ∩

k⋂
m=l

Ccm

)
≤ E

[
k∏
m=l

1V c (Yτ(m)+1/2)

]
−→ 0.
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From this follows since lim supCm ⊂ R(V )

PY

(
R(U) ∩ R(V )c) ≤ PY


R(U) ∩

⋃
l∈N

⋂
m≥l

Ccm


 = 0.

�
Lemma 2. Let � be positive definite. For all bounded open sets U ⊂ R

N one has
PW�(∂R(U)) = 0.

Proof. We have ∂R(U) ⊂ R(U1), where U1 := {x ∈ R
N ; dist(x, U) < 1}. Fur-

ther, W� is a diffusion process on R
N and

δ := inf
x∈U1

P(W�
1/2 ∈ U |W�

0 = x) > 0,

since � is positive definite. Therefore, one can apply the previous lemma. Since
R(U) is open, it follows that

PW�(∂R(U)) = PW�(∂R(U)\R(U)) ≤ PW�(R(U1)\R(U)) = 0.

�
Theorem 2. If Lf �= 0 then X is transient on M .

Proof. We have to show that for every ball Br(0) intersecting M one has
PX(T (Br(0))) = 1. Let c ∈ R

N with c �= 0, we define the set of paths leav-
ing the family of shifted half-spaces

Hc,t :=
{
x ∈ R

N ; 〈c, x〉 > |c|2t
}
,

by

S(c) := {
ω ∈ CRN ([0,∞[); ∃s ≥ 0 such that ω(t) /∈ Hc,t , ∀t ≥ s

}
.

Now, by the reflection principle for Brownian motion (see [RevYor] p.100) one has
for all k ∈ N

P(∃t ≥ k, W�
t ∈ Hc,t ) ≤

∞∑
m=k

P(∃t ∈ [m,m+ 1[, W�
t ∈ Hc,m)

≤
∞∑
m=k

P

(
sup

0≤t≤m+1
Bt > |c|m

)
≤

∞∑
m=k

2P (Bm+1 > |c|m) < ∞,

where B is the Brownian motion obtained by projectingW to the one dimensional
sub-space of R

N defined by Rc. This implies for k → ∞

P(W�
t /∈ Hc,t , ∀t ≥ k) = 1 − P(∃t ≥ k, W�

t ∈ Hc,t ) −→ 1.
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From this follows, PW�(S(c)) = 1 for all c ∈ R
N with c �= 0, which implies that

PW�(∂S(c)) = 0 since ∂S(c) ⊂ S(c/2)c. Then, by the central limit theorem it
follows for all r > 0 and large n

PX(T (Br(0))) = P(∃s ≥ 0 with Xnt /∈ Br(0), ∀t ≥ s)

= P(∃s ≥ 0 with X(n)t /∈ Br/√n(0)− √
ntLf, ∀t ≥ s)

≥ P(∃s ≥ 0 with X(n)t /∈ H−Lf,t , ∀t ≥ s)

= PX(n)(S(−Lf)) −→ PW�(S(−Lf)) = 1.

This proves the theorem. �
Theorem 3. Under the assumptions Lf = 0 and � positive definite, the diffusion
X is recurrent on M , if and only if W� is recurrent on R

N .

Proof. First we note that Span(�) = R
N , since � is positive definite. By the pre-

vious lemma, one has PW�(∂R(B)) = 0 for all balls B in R
N . It follows from the

central limit theorem that

lim
n→∞ PX(n)(R(B)) = PW�(R(B)).

Now, recurrence of X on M implies that PX(R(U)) = 1 for all open sets U inter-
secting M . Therefore, PX(n)(R(B)) = 1, if

√
nB intersects M , which is always

fulfilled for large n ∈ N, since Span(�) = R
N . This implies that PW�(R(B)) = 1

for all balls B ⊂ R
N . This proves the recurrence of W� . Now, let’s assume that

W� is recurrent. This implies that

lim
n→∞ PX(R(B

√
n(0))) = lim

n→∞ PX(n)(R(B1(0))) = PW�(R(B1(0))) = 1.

For all ε > 0 there is a r ∈ N such that PX(R(Br(0))) ≥ 1 − ε. Now, since L is
elliptic and M connected for a given open set U ⊂ M , one has

δ := inf
x∈Br(0)∩M

∫
U

p(1/2, x, y)dν(y) > 0.

Furthermore, X satisfies the strong Markov property (see [Hsu] p.31). There-
fore, the first lemma implies PX (R(Br(0))\R(U)) = 0. It follows, PX(R(U)) ≥
PX(R(Br(0))) ≥ 1 − ε. Letting ε go to zero proves the theorem. �
Theorem 4. Under the assumption that Lf = 0 and � positive definite, the diffu-
sion X is transient on M , if and only if W� is transient on R

N .

Proof. Since ∂T (U) = ∂R(U), we know that PW�(∂T (U)) = 0. Therefore, the
central limit theorem gives

lim
n→∞ PX(n)(T (U)) = PW�(T (U)).

Now, if X is transient on M , then PX(T (U)) = 1 for all bounded U ⊂ R
N .

From this follows PX(n)(T (U)) = 1. This implies PW�(T (U)) = 1 for all bounded
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U ⊂ R
N and therefore the transience ofW� . Now, let’s assume thatW� is transient

on R
N . We then have

PX(T (Br(0))) ≥ PX(n)(T (Br(0))) −→ PW�(T (Br(0))) = 1.

Therefore, we have PX(T (Br(0))) = 1 for all r > 0. This means thatX is transient
on M . �
Example 2. Let M be a periodic submanifold of R

N with periodic Riemannian
metric g. Let L := � + B, where B is a divergence-free periodic vectorfield on
M . In this situation the invariant measure is the Riemannian volume v on M/�. It
follows from the divergence theorem that

Lf
α = 1

v(M/�)

∫
M/�

Bf αdv = 1

v(M/�)

∫
M/�

g(B,∇f α)dv.

Therefore, Lf
α

can be interpreted as a measure for the drift-vectorfield B in the
xα-direction.

Example 3. Let againM be a periodic submanifold of R
N with periodic Riemann-

ian metric g. Let ρ be a smooth, positive function such that the restriction of ρ to
M/� is a probability density with respect to the Riemannian volume dv. Then the
ρdv is the invariant measure for the Diffusion on M/� generated by the operator
L := 1

2�− 1
2ρ (∇ρ). It follows that

Lf
α = 1

2

∫
M/�

ρ�f αdv − 1

2

∫
M/�

g(∇f α,∇ρ)dv =
∫
M/�

ρ�f αdv.

In this situation Lf
α
> 0 indicates that the process stays more time at locations

where �f α is positive. This results in a drift of the limiting Brownian motion in
the xα-direction.
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