
Digital Object Identifier (DOI) 10.1007/s00440-004-0421-4
Probab. Theory Relat. Fields 133, 190–214 (2005)

Sandra Cerrai

Stabilization by noise for a class of stochastic
reaction-diffusion equations

Received: 22 March 2004 / Revised version: 4 December 2004 /
Published online: 10 February 2005 – c© Springer-Verlag 2005

Abstract. We prove uniqueness, ergodicity and strongly mixing property of the invariant
measure for a class of stochastic reaction-diffusion equations with multiplicative noise, in
which the diffusion term in front of the noise may vanish and the deterministic part of the
equation is not necessary asymptotically stable. To this purpose, we show that the L1-norm
of the difference of two solutions starting from any two different initial data converges P-a.s.
to zero, as time goes to infinity.

1. Introduction

We are here interested in the study of the ergodic properties of a class of stochastic
reaction-diffusion equations perturbed by a multiplicative noise, where the diffu-
sion coefficient in front of the noise may be degenerate and the deterministic part is
not asymptotically stable. Namely, we want to show that if such a class of equations
admits an invariant measure, then such invariant measure is unique, ergodic and
strongly mixing.

The toy-model we have in mind (see next section for the general setting) is the
following stochastic reaction-diffusion equation in a bounded interval [0, L]

∂u

∂t
= �u− λ1u

2n+1 + λu+ λ2 + g(u)
∂2w

∂t∂ξ
, u(0) = x ∈ C[0, L], (1.1)

endowed with some boundary conditions. Here λ1 ∈ [0,∞), n ∈ N
� and λ2 ∈ R,

g is a strictly monotone Lipschitz-continuous function, possibly vanishing at some
point, such that for any R > 0

|g(t)− g(s)| ≥ µR |s − t |, s, t ∈ [−R,R],

for some positive constant µR (take for example g ∈ C1(R) such that |g′(t)| > 0,
for any t ∈ R) and λ is any real constant such that{

λ1 > 0 �⇒ λ < µ2
R/2L, for any R > 0,

λ1 = 0 and inf
R>0

µR > 0 �⇒ λ < inf
R>0

µ2
R/2L
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(for all details and comments on these conditions -see the statement of Theorem
2.1- we refer to Remark 2.2).

This means that here neither it is possible to prove any smoothing effect of
the transition semigroup associated with equation (1.1) (and hence apply the Doob
theorem which in turn implies the uniqueness of the invariant measure), nor the
stochastic term can be just regarded as a perturbation of a deterministic equation
which already shows a stable behaviour. Thus, we are considering a situation in
which, without any non-degeneracy assumption on the noise, the stochastic part
plays a crucial role in stabilizing an equation which is not necessarily asymptoti-
cally stable, trying to extend in some sense to an infinite dimensional setting some
results on stabilization by noise proved in finite dimension (see e.g. [1], [2], [18]
and [19]; see also [3], [4], [12] and [15] for some results in infinite dimension).

In the case of PDEs perturbed by a noisy term of multiplicative type, the proof
of uniqueness of the invariant measure can be quite delicate. If the space dimension
d = 1 and the multiplication diffusion term g is bounded from below by a positive
constant, it is possible to prove the uniqueness of the invariant measure through the
Doob theorem, by showing that the associated transition semigroup is strong Feller
and irreducible (see [10] for all details). But as soon as one goes from dimension
d = 1 to dimension d > 1, since the noise has to be colored in space in order to
have function-valued solutions, it is no more clear how to get strong Feller prop-
erty by means of the Bismut-Elworthy formula even in the case of non-degenerate
diffusion coefficients (see [10] and also [5] for some generalizations).

When the space dimension d is bigger than 1 and/or the diffusion coefficient g
is not bounded from below, one can try to show that the equation is asymptotically
stable, that is one can show that the difference of the laws of two solutions ux(t)
and uy(t), starting from any two initial data x and y, converges to zero, as time t
goes to infinity. But, while in the case of additive noise this is not difficult to prove
if the coefficients of the deterministic part are sufficiently dissipative, in the case
of multiplicative noise this can be difficult.

In [21], by using semigroups techniques, Sowers is able to prove mean square
convergence to zero of the C[0, L]-norm of ux(t) − uy(t) for stochastic reaction
diffusion equations in dimension d = 1, having Lipschitz-continuous coefficients,
under the assumptions that the deterministic part is asymptotically stable, the diffu-
sion term is bounded from above and below and a parameter sufficiently small is
put in front of the noise.

In [17], by using a coupling method, comparison arguments and martingale
representation, Mueller extends Sowers results and, removing the small parame-
ter in front of the stochastic term, shows that the L1(0, L)-norm of ux(t) − uy(t)

converges to zero, P-a.s. But in order to apply the coupling method Mueller has
to assume that the diffusion g is bounded both from above and below and hence
in the case he considers the strong Feller property and irreducibility hold, as well.
However, it is important to stress that what is really interesting in Mueller’s paper
[17] are the techniques he uses, some of them have been largely used also in the
present paper.

Concerning the coupling method, we recall that it has been used also recently
by several other authors (see [11], [16] and [13] and references quoted therein),
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to prove exponential mixing properties of some PDEs perturbed by a degenerate
noise of additive type.

In [6] we have proved the existence of an invariant measure for a general class of
stochastic reaction-diffusion systems with multiplicative noise in any space dimen-
sion, having polynomially growing reaction terms and diffusion coefficients which
are unbounded both from above and from below. But unfortunately it has not been
possible to prove that such an invariant measure is unique, without assuming a
strong enough dissipativity of the reaction term (to this purpose see also [8] and
[7]).

The aim of this paper is exactly to see, starting from these examples, when it is
possible to have uniqueness. For the moment we can only treat the one-dimensional
case, but in comparison with the works by Sowers and Mueller we are already able
to remove any conditions of boundedness from above and below for the diffusion
g, of Lipschitz-continuity for the non-linearity f and of asymptotic stability for the
deterministic part. However this is only the starting point: actually, in the sequel
it will be interesting to see what happens in the case of space dimension d > 1,
with colored noise, and in the case of systems, for which it is not possible to use
comparison arguments.

2. Assumptions and statement of the main result

The class of equations we are considering is

∂u

∂t
(t, ξ) = Au(t, ξ)+ f (ξ, u(t, ξ))+ g(ξ, u(t, ξ))

∂2w

∂t∂ξ
(t, ξ), t ≥ 0, ξ ∈ [0, L],

u(0, ξ) = x(ξ), ξ ∈ [0, L], Bu(t, 0) = Bu(t, L) = 0, t ≥ 0.
(2.1)

Here A is a second order uniformly-elliptic operator given in divergence form, that
is

Ah = (ah′)′, h ∈ C2[0, L],

for some a ∈ C1[0, L] such that a(ξ) ≥ ε > 0, for any ξ ∈ [0, L]. Moreover

Bh = α
(
h′ − β

) + (1 − α)h,

for some β ∈ R and α = 0, 1. Notice that, instead of the Neumann and the
Dirichlet conditions above, we could also consider periodic boundary conditions
u(t, 0) = u(t, L) and ∂u/∂ξ(t, 0) = ∂u/∂ξ(t, L), for t ≥ 0 (and the treatment of
this case would be even easier).

The reaction term f fulfills the following conditions.

Hypotheses 1. The function f : [0, L] × R → R is continuous. Moreover

1. there exist m ≥ 1 and c ≥ 0 such that

sup
ξ∈ [0,L]

|f (ξ, σ )| ≤ c (1 + |σ |m), σ ∈ R; (2.2)
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2. for any ξ ∈ [0, L] and σ, ρ ∈ R

f (ξ, σ )− f (ξ, ρ) = λ(ξ, σ, ρ)(σ − ρ),

for some locally bounded function λ : [0, L] × R
2 → R such that

sup
ξ∈ [0,L]
σ,ρ∈ R

λ(ξ, σ, ρ) =: λ < +∞; (2.3)

3. ifm > 1, there exist a > 0 and c ≥ 0 such that for any ξ ∈ [0, L] and σ, ρ ∈ R

(f (ξ, σ + ρ)− f (ξ, σ ))ρ ≤ −a |ρ|m+1 + c
(

1 + |σ |m+1
)
,

where m is the constant in (2.2).

In particular, from the second condition above we have that f (ξ, ·) is locally
Lipschitz-continuous, uniformly with respect to ξ ∈ [0, L], and the mapping

σ ∈ R 	→ fλ(ξ, σ ) := f (ξ, σ )− λ σ ∈ R (2.4)

is non-increasing, for any fixed ξ ∈ [0, L].
In the case m = 1, any continuous function f such that f (ξ, ·) has linear

growth, belongs to C1(R) and

∂f

∂σ
(ξ, σ ) ≤ λ, (ξ, σ ) ∈ [0, L] × R,

fulfills Hypothesis 1. In the case m > 1, the example we have in mind is

f (ξ, σ ) := f1(ξ, σ )+ f2(ξ, σ ),

where f1 : [0, L] × R → R is a continuous mapping such that f1(ξ, ·) is locally
Lipschitz-continuous with linear growth, uniformly with respect to ξ ∈ [0, L], and

f2(ξ, σ ) = −c(ξ)σ 2n+1 +
2n∑
j=1

cj (ξ)σ
j ,

for some n ∈ N
� with 2n + 1 = m and some continuous coefficients c, cj :

[0, L] → R such that

inf
ξ∈ [0,L]

c(ξ) =: c0 > 0.

We want to stress here that the constant λ in (2.3) can be taken positive (see con-
dition (2.11) below) and no relation is assumed between λ and A. This means that
we are not assuming any asymptotic stability for the deterministic part of equation
(2.1)


∂u

∂t
(t, ξ) = Au(t, ξ)+ f (ξ, u(t, ξ)), t ≥ 0, ξ ∈ [0, L],

u(0, ξ) = x(ξ), ξ ∈ [0, L], Bu(t, 0) = B(t, L) = 0, t ≥ 0.

Concerning the diffusion coefficient g in front of the noise we assume the following
conditions.
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Hypotheses 2. The function g : [0, L] × R → R is continuous. Moreover

1. the mapping g(ξ, ·) is Lipschitz continuous, uniformly with respect to ξ ∈
[0, L], that is there exists L > 0 such that

sup
ξ∈ [0,L]

|g(ξ, σ )− g(ξ, ρ)| ≤ L |σ − ρ|, σ, ρ ∈ R; (2.5)

2. for any R > 0 there exists µR > 0 such that

inf
ξ∈ [0,L]

|g(ξ, σ )− g(ξ, ρ)| ≥ µR |σ − ρ|, σ, ρ ∈ [−R,R]. (2.6)

Clearly, any function g such that g(ξ, ·) ∈ C1(R) and |∂g/∂σ (ξ, σ )| > 0, for
any (ξ, σ ) ∈ [0, L] × R, fulfills condition (2.6). Condition (2.6) implies that the
mapping σ 	→ g(ξ, σ ) is either strictly increasing or decreasing. This means that
g(ξ, ·) may vanish, but if it vanishes has only one zero. Moreover, if we define

µ := inf
R>0

µR,

we have that

inf
ξ∈ [0,L]

∣∣∣∣ ∂g∂σ (ξ, σ )
∣∣∣∣ ≥ µ.

In particular, when µ = 0 we allow ∂g(ξ, σ )/∂ξ to go to zero, as |σ | goes to
infinity, and hence g(ξ, ·) can be taken also bounded.

It is important to stress that, as we are not assuming no-degeneracy of the
diffusion coefficient g in front of the noise, in order to prove the uniqueness of
the invariant measure we cannot proceed by showing that the transition semigroup
associated with equation (2.1) is strongly Feller. Actually, one possible key ingre-
dient in the proof of the strong Feller property is the Bismut-Elworthy formula, and
in order to give a meaning to it we have to assume

E

∫ t

0

∣∣∣g−1(·, ux(s))Dxux(s)h
∣∣∣2
L2(0,L)

ds < ∞,

where Dxux(s) is the derivative of ux(s) with respect to x, along the direction h
(for all details see [5, Chapter 6]).

Finally, the stochastic perturbation ∂2w/∂t∂ξ has to be interpreted as the formal
derivative of a Brownian sheet w on [0,∞) × [0, L] defined on some underlying
complete stochastic basis (�,F,Ft ,P). Given the Brownian sheet w, stochastic
integration against ∂2w/∂t∂ξ follows in the classical way (see [9] and [22]).

In [6] it has been proved that under Hypothesis 1 and Hypothesis 2-1. equation
(2.1) admits a unique adapted mild solution ux in Lp(�;C([0, T ];C[0, L])), for
any initial datum x ∈ C[0, L], for any T > 0 and any p ≥ 1 (the case m = 1
was clearly already known in the previous literature). This means that there exists
a unique adapted process ux having continuous trajectories which satisfies

ux(t) = etAx +
∫ t

0
e(t−s)AF (ux(s)) ds +

∫ t

0
e(t−s)AG(ux(s)) dw(s),
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where etA is the semigroup generated by the realization A in C[0, L] of the differ-
ential operator A, endowed with the boundary conditions B, F and G are the
composition operators associated respectively with f and g, that is

F(x)(ξ) := f (ξ, x(ξ)), G(x)(ξ) = g(ξ, x(ξ)), ξ ∈ [0, L],

and finally

w(t) =
∞∑
k=1

ekβk(t) :=
∞∑
k=1

ek

∫ t

0

∫ L

0
ek(ξ)w(dξ, ds), (2.7)

where {ek} is any complete orthonormal basis in L2(0, L).
In [6] we have also proved that in the case m > 1

E sup
t≥0

|ux(t)|pC[0,L] ≤ cp

(
1 + |x|pC[0,L]

)
(2.8)

and

sup
t≥t0

E |ux(t)|Cθ� [0,L] < ∞,

for some θ� > 0 and for any t0 > 0. In particular, the family of measures
{L(ux(t))}t≥t0 is tight in C([0, L],B(C[0, L])) and hence, thanks to the Krylov-
Bogoliubov theorem, the transition semigroup associated with equation (2.1) and
defined by

Ptϕ(x) = Eϕ(ux(t)), x ∈ C[0, L], t ≥ 0, (2.9)

for any ϕ belonging to Bb(C[0, L]), the space of Borel and bounded functions on
C[0, L] with values in R, admits an invariant measure µ (as a matter of fact in [6]
we have studied the more general case of systems with general boundary conditions
in bounded domains of R

d , with d ≥ 1).
Our aim here is to show that such an invariant measure µ is unique (and in

particular ergodic) and strongly mixing. To this purpose, with an approach under
many respects similar to that used by Mueller in [17] we show that the following
convergence result holds.

Theorem 2.1. Assume that Hypotheses 1 and 2 hold. Moreover

1. if m = 1, assume that Bh = h′ − β and

inf
R>0

µR > 0, λ < inf
R>0

µ2
R/2L; (2.10)

2. if m > 1, assume that

λ < µ2
R/2L, for any R > 0, (2.11)

where m, λ and µR are the constants introduced respectively in (2.2), (2.3) and
(2.6). Then for any x, y ∈ C[0, L] we have

lim
t→+∞ |ux(t)− uy(t)|L1(0,L) = 0, P − a.s.
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Remark 2.2. 1. It is important to stress that conditions (2.10) and (2.11) are in
some sense sharp. Actually, if we consider the one-dimensional problem

du = (λu+ λ2) dt + µudBt , u(0) = x ∈ R,

where Bt is a standard Brownian motion, then

ux(t)− uy(t) = (x − y) exp

((
λ− µ2

2

)
t

)
exp(µBt ), t ≥ 0,

so that ux(t)−uy(t) converges to zero P-a.s., as t goes to infinity, iff λ < µ2/2.
On the other hand, if instead of P-almost sure convergence we would like to
have mean-wise convergence, since we have

E
(
ux(t)− uy(t)

) = (x − y) exp(λt),

we should require the stronger condition λ < 0, which does not take into
account of the strength µ of the noise.

2. Note that the two requirements (2.10) and (2.11) on λ do not both coincides
with

λ < inf
R>0

µ2
R/2L.

Actually in the case m = 1 condition (2.10) implies that

inf
R>0

µR = 0 �⇒ λ < 0.

On the contrary, if m > 1 condition (2.11) implies that


∃ min
R>0

µR �⇒ λ <
1

2L
min
R>0

µ2
R = 1

2L
inf
R>0

µ2
R,

� min
R>0

µR �⇒ λ ≤ 1

2L
inf
R>0

µ2
R,

so that, since µR > 0 for any R > 0, we have

inf
R>0

µR = 0 �⇒ λ ≤ 0.

In particular, unlike in the case m = 1, if m > 1 and g exhibits a growth less
than linear we can also take λ = 0.

As we will show later on, Theorem 2.1 implies that for any ϕ in Cb(C[0, L]),
the space of uniformly continuous and bounded functions defined on C[0, L], it
holds

lim
t→+∞Ptϕ(x)− Ptϕ(y) = 0, x, y ∈ C[0, L]. (2.12)

Therefore, if there exists an invariant measure for Pt , it is unique (and hence ergo-
dic) and in addition it is strongly mixing, that is for any ϕ ∈ L2(C[0, L], µ) it
satisfies

lim
t→∞Ptϕ =

∫
C[0,L]

ϕ(x) dµ(x), in L2(C[0, L], µ),

(for general results on ergodicity and strongly mixing property see [10, Chapter 3]).
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3. A comparison result

Here we give a proof of a comparison result for the solution ux of equation (2.1).
An analogous result for equations with locally Lipschitz coefficients having lin-
ear growth can be found for example in [14, Theorem 2.1]. Here, for the sake of
completeness, we give a self-contained proof which adapts also to the case we are
considering, in which the reaction term has polynomial growth.

Theorem 3.1. For any x, y ∈ C[0, L] such that x ≤ y we have

P
(
ux(t) ≤ uy(t), t ≥ 0

) = 1. (3.1)

Proof. Step 1. For any n ∈ N we define

wn(t) := Pnw(t) =
n∑
k=1

ekβk(t), t ≥ 0,

where {ek} is a complete orthonormal basis in L2(0, L) which diagonalizes A, Pn
is the projection operator of L2(0, L) onto span{e1, . . . , en} and βk(t) is defined
as in (2.7). For each n ∈ N we consider the approximating problem

du(t) = [Au(t)+ F(u(t))] dt +G(u(t)) dwn(t), u(0) = x, (3.2)

and denote by uxn its solution. Notice that uxn ∈ L2(�;L2(0, T ;H 1(0, L))), for
any T > 0, and if we set ρn(t) := uxn(t)−uyn(t)we have that ρn solves the problem{
dρ(t) = [Âρ(t)+ F(uxn(t))− F(u

y
n(t))] dt + [G(uxn(t))−G(u

y
n(t))] dw

n(t),

ρ(0) = x − y,

where Â is the realization of the operator A endowed either with homogeneous
Neumann or with Dirichlet boundary conditions.

Now, proceeding as in [14, Theorem 2.1], we can show that if x ≤ y and if
f (ξ, ·) is Lipschitz-continuous, uniformly with respect to ξ ∈ [0, L], with Lips-
chitz constant M , then

E|ρ+
n (t)|2L2(0,L)=E

∫ L

0

(
ρ+
n (t, ξ)

)2
dξ ≤ (2M + cnL2)

∫ t

0
E
∣∣ρ+
n (s)

∣∣2
L2(0,L) ds,

where L is the Lipschitz constant of g(ξ, ·) and c is some positive constant. This
implies that

E |ρ+
n (t)|2L2(0,L) = 0, t ≥ 0,

and hence, as ρn : [0,∞) × [0, L] → R is continuous, P-a.s., it is immediate to
conclude that

P
(
uxn(t) ≤ u

y
n(t), t ≥ 0

) = P
(
ρ+
n (t) = 0, t ≥ 0

) = 1. (3.3)
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Step 2. We show that for any T > 0, p ≥ 1 and x ∈ C[0, L]

lim
n→∞ E

(
sup

(t,ξ)∈ [0,T ]×[0,L]
|uxn(t, ξ)− ux(t, ξ)|p

)
= 0. (3.4)

According to (3.3) this in particular implies that (3.1) holds when f (ξ, ·) is Lips-
chitz continuous.

We have

ux(t)− uxn(t) =
∫ t

0
e(t−s)Â

[
F(ux(s))− F(uxn(s))

]
ds

+
∫ t

0
e(t−s)Â

[
G(ux(s))−G(uxn(s))

]
dwn(s)

+
∫ t

0
e(t−s)ÂG(ux(s))(I − Pn) dw(s)

=: In1 (t)+ In2 (t)+ In3 (t).

We estimate each term. For any t ∈ [0, T ] we have

|In1 (t)|pC[0,L] ≤ sup
s∈ [0,t]

‖esÂ‖pL(C[0,L])

(∫ t

0

∣∣F(ux(s))− F(uxn(s))
∣∣
C[0,L] ds

)p

≤ sup
s∈ [0,T ]

‖esÂ‖pL(C[0,L])M
pT p−1

∫ t

0

∣∣ux(s)− uxn(s)
∣∣p
C[0,L] ds. (3.5)

Next, due to [6, Theorem 4.2] there exists p� ≥ 1 such that for any p ≥ p�

E sup
s∈ [0,t]

|In2 (t)|pC[0,L] ≤ cp(T )

∫ t

0
E sup
r∈ [0,s]

|ux(r)− uxn(r)|pC[0,L] ds,

for some continuous increasing function cp(t) independent of n and vanishing at
t = 0. Finally, for any (t, ξ) ∈ [0,∞)× [0, L] we have

In3 (t, ξ) =
∞∑

k=n+1

∫ t

0
e(t−s)Â

[
G(ux(s))ek

]
(ξ) dβk(s)

and proceeding as in [6, proof of Theorem 4.2] we obtain

lim
n→∞ E sup

t∈ [0,T ]
|In3 (t)|pC[0,L] = 0. (3.6)

Now, collecting all terms for any t ∈ [0, T ] we get

E sup
s∈ [0,t]

|ux(s)− uxn(s)|pC[0,L] ≤ c′p(T )
∫ t

0
E sup
r∈ [0,s]

|ux(r)− uxn(r)|pC[0,L] ds

+E sup
t∈ [0,T ]

|In3 (t)|pC[0,L],
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so that, according to the Gronwall lemma and to (3.6) we can conclude that

E sup
t∈ [0,T ]

|ux(t)− uxn(t)|pC[0,L]

≤ exp(c′p(T ) T )E sup
t∈ [0,T ]

|In3 (t)|pC[0,L] → 0, n → ∞.

This means that there exits {nk} ↑ +∞ such that

P

(
lim
k→∞

sup
t∈ [0,T ]

|ux(t)− uxnk (t)|C[0,L] = lim
k→∞

sup
t∈ [0,T ]

|uy(t)− uynk (t)|C[0,L] = 0

)
= 1.

Thus, since due to what we have proved at Step 1 for any nk

P
(
uxnk (t) ≤ u

y
nk (t), t ≥ 0

) = 1,

we can conclude that if f (ξ, ·) is Lipschitz continuous then (3.1) holds.

Step 3. Assume that f (ξ, ·) is only locally Lipschitz continuous. If (3.1) does not
hold, then there exists T̄ > 0 such that

P

(
sup

(t,ξ)∈ [0,T̄ ]×[0,L]

ux(t, ξ)− uy(t, ξ) > 0

)
> 0.

Since ux and uy belong to Lp(�;C([0, T ];C[0, L])), for any T > 0, we have

P

( ∞⋃
R=1

{
sup

t∈ [0,T̄ ]

|ux(t)|C[0,L] ∨ sup
t∈ [0,T̄ ]

|uy(t)|C[0,L] ≤ R

})
= 1.

Hence, there exists R̄ > 0 such that

P


 sup

t∈ [0,T̄ ]
ξ∈ [0,L]

ux(t, ξ)− uy(t, ξ) > 0, sup
t∈ [0,T̄ ]

|ux(t)|C[0,L] ∨ sup
t∈ [0,T̄ ]

|uy(t)|C[0,L] ≤ R̄


 > 0.

(3.7)

But this is not possible. Indeed, if

sup
t∈ [0,T̄ ]

|ux(t)|C[0,L] ∨ sup
t∈ [0,T̄ ]

|uy(t)|C[0,L] ≤ R̄,

then for any t ∈ [0, T̄ ] we have that ux(t) and uy(t) coincide with the solutions
ux
R̄
(t) and uy

R̄
(t) (starting respectively from x and y) of the equation

du(t) = [
Au(t)+ FR̄(u(t))

]
dt +G(u(t)) dw(t),

where

FR̄(x)(ξ) = fR̄(ξ, x(ξ)), ξ ∈ [0, L],
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and fR̄(ξ, ·) is a mapping which is Lipschitz continuous, uniformly with respect to
ξ ∈ [0, L], and which coincides with f (ξ, ·) on [−R̄, R̄]. Thus, according to what
proved at Step 2

P

(
sup
t∈ [0,T̄ ]

ux(t)− uy(t) > 0, sup
t∈ [0,T̄ ]

|ux(t)|C[0,L] ∨ sup
t∈ [0,T̄ ]

|uy(t)|C[0,L] ≤ R̄

)

= P

(
sup
t∈ [0,T̄ ]

ux
R̄
(t)− u

y

R̄
(t) > 0, sup

t∈ [0,T̄ ]

|ux(t)|C[0,L] ∨ sup
t∈ [0,T̄ ]

|uy(t)|C[0,L] ≤ R̄

)

≤ P

(
sup
t∈ [0,T̄ ]

ux
R̄
(t)− u

y

R̄
(t) > 0

)
= 0,

which contradicts (3.7). ��

4. Proof of Theorem 2.1

In the proof we distinguish the case of Neumann and the case of Dirichlet bondary
conditions.

4.1. The case of Neumann boundary conditions

For any x, y ∈ C[0, L] we define ρ(t) := ux(t)−uy(t). Clearly ρ(t) is the unique
mild solution to the equation{
dρ(t) =

[
Âρ(t)+ F(ux(t))− F(uy(t))

]
dt + [

G(ux(t))−G(uy(t))
]
dw(t),

ρ(0) = x − y,

(4.1)

where Â is the realization in C[0, L] of the differential operator A endowed with
the homogeneous Neumann boundary conditions. As well known this is equivalent
to the fact that∫ L

0
[ρ(t, ξ)ϕ(t, ξ)− ρ(0, ξ)ϕ(0, ξ)] dξ

=
∫ t

0

∫ L

0
ρ(s, ξ)

(
∂ϕ

∂t
+ Aϕ

)
(s, ξ) dξ ds

+
∫ t

0

∫ L

0

[
f (ξ, ux(s, ξ))− f (ξ, uy(s, ξ))

]
ϕ(s, ξ) dξ ds

+
∫ t

0

∫ L

0

[
g(ξ, ux(s, ξ))− g(ξ, uy(s, ξ))

]
ϕ(s, ξ)w(ds, dξ), (4.2)

for any ϕ ∈ C1,2([0,∞)× [0, L]) such that

∂ϕ

∂ξ
(t, 0) = ∂ϕ

∂ξ
(t, L) = 0, t ≥ 0,
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(for a proof see [9] and [22, Chapter 3]). Thus, if we take ϕ ≡ 1 in the formula
above, we can conclude that∫ L

0
ρ(t, ξ) dξ =

∫ L

0
(x − y)(ξ) dξ

+
∫ t

0

∫ L

0

[
f (ξ, ux(s, ξ))− f (ξ, uy(s, ξ))

]
dξ ds

+
∫ t

0

∫ L

0

[
g(ξ, ux(s, ξ))− g(ξ, uy(s, ξ))

]
w(ds, dξ)

=
∫ L

0
(x − y)(ξ) dξ +

∫ t

0

∫ L

0

[
fλ(ξ, u

x(s, ξ))− fλ(ξ, u
y(s, ξ))

]
dξ ds

+λ
∫ t

0

∫ L

0
ρ(s, ξ) dξ ds

+
∫ t

0

∫ L

0

[
g(ξ, ux(s, ξ))− g(ξ, uy(s, ξ))

]
w(ds, dξ), (4.3)

where fλ is the function defined in (2.4) by

fλ(ξ, σ ) = f (ξ, σ )− λσ, (ξ, σ ) ∈ [0, L] × R.

In what follows for any t ≥ 0 we shall set

Z(t) :=
∫ L

0
ρ(t, ξ) dξ,

D(t) :=
∫ L

0

[
fλ(ξ, u

x(t, ξ))− fλ(ξ, u
y(t, ξ))

]
dξ,

M(t) :=
∫ t

0

∫ L

0

[
g(ξ, ux(s, ξ))− g(ξ, uy(s, ξ))

]
w(ds, dξ). (4.4)

Then (4.3) can be written more concisely as

Z(t) = 〈x − y〉 + λ

∫ t

0
Z(s) ds +

∫ t

0
D(s) ds +M(t), t ≥ 0, (4.5)

with the usual notation

〈x − y〉 =
∫ L

0
(x − y)(ξ) dξ.

Lemma 4.1. For any t ≥ 0, let us define

Gt := σ

(∫ ∞

0

∫ L

0
v(s, ξ)w(ds, dξ), v ∈ L2([0,∞) × [0, L]),

supp v ⊆ [0, t] × [0, L]

)
.
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Then, under Hypotheses 1 and 2, for any x, y ∈ C[0, L] such that x ≥ y the
process M(t) defined in (4.4) is a {Gt }t≥0 martingale. Moreover, there exists an
adapted process U(t) such that

d 〈M〉t
dt

= Z2(t)U(t), t ≥ 0, (4.6)

and

P

(
1

L
inf
R>0

µ2
R ≤ U(t) < ∞, t ≥ 0

)
= 1. (4.7)

Proof. The process M(t) is clearly a {Gt }t≥0 martingale and

〈M〉t =
∫ t

0

∫ L

0

[
g(ξ, ux(s, ξ))− g(ξ, uy(s, ξ))

]2
dξds.

Hence, according to (2.6) if

|ux(t)|C[0,L] ∨ |uy(t)|C[0,L] ≤ R,

we have

d 〈M〉t
dt

=
∫ L

0

[
g(ξ, ux(t, ξ))− g(ξ, uy(t, ξ))

]2
dξ

≥ µ2
R

∫ L

0

[
ux(t, ξ)− uy(t, ξ)

]2
dξ.

Now, due to (2.8) for any x, y ∈ C([0, L]) we have

P

(
sup
t≥0

|ux(t)|C[0,L] ∨ sup
t≥0

|uy(t)|C[0,L] < ∞
)

= 1,

then P-a.s. for any t ≥ 0 we have

d 〈M〉t
dt

≥ inf
R>0

µ2
R

∫ L

0
ρ2(t, ξ) dξ

≥ 1

L
inf
R>0

µ2
R

(∫ L

0
ρ(t, ξ) dξ

)2

= 1

L
inf
R>0

µ2
R Z

2(t).

On the other side, due to (2.5) we have

d 〈M〉t
dt

≤ L2
∫ L

0
ρ2(t, ξ) dξ = L2 |ρ(t)|2

L2(0,L). (4.8)

In particular, since from Theorem 3.1 we have that ρ(t) ≥ 0, for any t ≥ 0, P-a.s.,
we obtain

Z(t) =
∫ L

0
ρ(t, ξ) dξ = |ρ(t)|L1(0,L) = 0 �⇒ d 〈M〉t

dt
= 0.
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Therefore, if we set

U(t) :=



Z−2(t)

d 〈M〉t
dt

if Z(t) �= 0,
1

L
inf
R>0

µ2
R if Z(t) = 0,

we have that U(t) is an adapted process which fulfills (4.6) and such that

P

(
U(t) ≥ 1

L
inf
R>0

µ2
R, t ≥ 0

)
= 1.

Moreover, thanks to (4.8) we have

{U(t) = +∞, for some t ≥ 0} ⊆
{
d 〈M〉t
dt

= +∞, for some t ≥ 0

}

⊆ {|ρ(t)|L2(0,L) = +∞, for some t ≥ 0
}

and then, since ρ ∈ Lp(�;C([0, T ];C[0, L])), for any T > 0, we have

P (U(t) = +∞, for some t ≥ 0) = 0.

��
Once we have constructed the process U(t), t ≥ 0, we define

V (t) :=
∫ t

0
U(s) ds, t ≥ 0.

According to (4.7), if infR>0 µR > 0 we have that V is a strictly increasing, con-
tinuous and adapted process with

V (0) = 0, lim
t→∞V (t) = +∞, P − a.s.

Then the process

T (t) := inf {s ≥ 0, V (s) > t} = V −1(t) t ≥ 0,

defines a random time change. In particular, if f is a bounded measurable function
defined on [a, b] ⊆ [0,∞) we have∫ b

a

f (s)U(s) ds =
∫ b

a

f (s)dV (s) =
∫ V (b)

V (a)

f (T (t)) dt. (4.9)

Next, we define

X(t) := Z(T (t)), t ≥ 0.

Our aim is proving that X(t) converges to zero P-a.s., as t goes to infinity.
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Lemma 4.2. Assume that Hypotheses 1 and 2 hold and assume that

inf
R>0

µR > 0.

Moreover, fix any x, y ∈ C[0, L] such that x ≥ y. Then there exists a Brownian
motion B(t) on (�,F,P) such that

X(t) = 〈x − y〉 + λ

∫ t

0

X(s)

U(T (s))
ds +

∫ t

0

D(T (s))

U(T (s))
ds

+
∫ t

0
X(s) dB(s), t ≥ 0. (4.10)

Proof. If we substitute t with T (t) in (4.5) we have

X(t) = Z(T (t)) = 〈x − y〉 + λ

∫ T (t)

0
Z(s) ds +

∫ T (t)

0
D(s) ds +M(T (t)).

If we set s = T (r), we have r = T −1(s) = V (s) and hence dr = dV (s) =
U(s) ds = U(T (r)) ds. This implies that∫ T (t)

0
Z(s) ds =

∫ t

0

Z(T (r))

U(T (r))
dr =

∫ t

0

X(r)

U(T (r))
dr,

and analogously ∫ T (t)

0
D(s) ds =

∫ t

0

D(T (s))

U(T (s))
ds.

Thus, in order to conclude the proof it remains to show that there exists some
Brownian motion B(t) such that

M(T (t)) =
∫ t

0
X(s) dB(s).

Thanks to Lemma 4.1 we have

〈M〉t =
∫ t

0
Z2(s)U(s) ds, t ≥ 0,

and then, according to (4.9), we get

〈M〉T (t) =
∫ T (t)

0
Z2(s)U(s) ds =

∫ V (T (t))

0
Z2(T (s)) ds

=
∫ t

0
Z2(T (s)) ds, t ≥ 0. (4.11)

Now, if we define N(t) := M(T (t)), for any t ≥ 0, as proved for example in
[20, Proposition V.1.5] we have that N(t) is a {GT (t)}t≥0 martingale and

〈N〉t = 〈M〉T (t) , t ≥ 0.
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Hence, due to (4.11) we get that d 〈N〉t is a.s. equivalent to the Lebesgue measure,
with non-negative density Z2(T (t)), that is

d 〈N〉t = Z2(T (t)) dt, t ≥ 0.

In particular, there exists a Brownian motion B(t) such that

M(T (t)) = N(t) =
∫ t

0
Z(T (s)) dB(s) =

∫ t

0
X(s) dB(s), t ≥ 0,

(for a proof see for example [20, Proposition V.3.8 and following remarks]). This
clearly concludes the proof of the present Lemma. ��
Proof of Theorem 2.1. Step 1. Assume first that there exists R̄ > 0 such that

µR̄ = inf
R>0

µR > 0.

As shown in Theorem 3.1, if x ≥ y we have that ux(t) ≥ uy(t), for any t ≥ 0, P-a.s.
Then, recalling that the mapping fλ(ξ, ·) introduced in (2.4) is non-increasing, we
have that the process D(t) defined in (4.4) is non-positive, P-a.s., so that∫ t

0

D(T (s))

U(T (s))
ds ≤ 0, t ≥ 0, P − a.s..

Moreover, according to (4.7) we have that

1

U(t)
≤ L

µ2
R̄

, t ≥ 0, P − a.s.

so that from (4.10) we get

X(t) ≤ 〈x − y〉 + λL

µ2
R̄

∫ t

0
X(s) ds +

∫ t

0
X(s) dB(s).

By comparison this yields

Z(T (t)) = X(t) ≤ 〈x − y〉 exp

((
λL

µ2
R̄

− 1

2

)
t

)
exp(B(t)), t ≥ 0, P − a.s.

and this implies that if λL/µ2
R̄
< 1/2 and x ≥ y

lim
t→+∞

∫ L

0

(
ux(t, ξ)− uy(t, ξ)

)
dξ = lim

t→+∞Z(t)

= lim
t→+∞Z(T (t)) = 0, P − a.s.

Thus, since for any x, y ∈ C[0, L] we have

|ux(t)− uy(t)|L1(0,L) ≤ |ux(t)− ux∧y(t)|L1(0,L) + |ux∧y(t)− uy(t)|L1(0,L),

we can conclude the proof of Theorem 2.1 in the case that the infimum of µR is
attained at some R̄.
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Step 2. Assume that there not exists minR>0 µR and that the constantm in (2.2) is
strictly greater than 1. If

P

(
lim sup
t→+∞

|ux(t)− uy(t)|L1(0,L) > 0

)
> 0,

due to (2.8) we have that there exists R̄ > 0 such that

P

(
lim sup
t→+∞

|ux(t)− uy(t)|L1(0,L) > 0, sup
t≥0

|ux(t)|C[0,L] ∨ sup
t≥0

|uy(t)|C[0,L] ≤ R̄

)
> 0.

(4.12)

We show that this leads us to a contradiction. Without any loss of generality we can
assume that the mapping σ 	→ g(ξ, σ ) is increasing (the case of g(ξ, ·) decreasing
can be treated analogously) and that µR1 ≤ µR2 if R1 > R2. If we define

gR̄(ξ, σ ) :=



g(ξ, σ ) if σ ∈ [−R̄, R̄],

µR̄(σ − R̄)+ g(ξ, R̄) if σ > R̄,

µR̄(σ + R̄)+ g(ξ,−R̄) if σ < −R̄,
it is immediate to check that gR̄ fulfills Hypothesis 2 and

inf
ξ∈ [0,L]

|gR̄(ξ, σ )− gR̄(ξ, ρ)| ≥ µR̄ |σ − ρ|, σ, ρ ∈ R.

According to what we have just proved, if we denote by ux
R̄

and uy
R̄

the solutions
of equation (2.1) corresponding to the diffusion coefficient gR̄ , with initial data x
and y respectively, we have that

P

(
lim

t→+∞ |ux
R̄
(t)− u

y

R̄
(t)|L1(0,L) = 0

)
= 1. (4.13)

On the other side, if

sup
t≥0

|ux(t)|C[0,L] ∨ sup
t≥0

|uy(t)|C[0,L] ≤ R̄,

we have

ux(t) = ux
R̄
(t), uy(t) = u

y

R̄
(t), t ≥ 0,

and then due to (4.13) we get

P

(
lim sup
t→+∞

|ux(t)− uy(t)|L1(0,L) > 0, sup
t≥0

|ux(t)|C[0,L] ∨ sup
t≥0

|uy(t)|C[0,L] ≤ R̄

)

= P

(
lim sup
t→+∞

|ux
R̄
(t)− u

y

R̄
(t)|L1(0,L) > 0, sup

t≥0
|ux(t)|C[0,L] ∨ sup

t≥0
|uy(t)|C[0,L] ≤ R̄

)

≤ P

(
lim sup
t→+∞

|ux
R̄
(t)− u

y

R̄
(t)|L1(0,L) > 0

)
= 0.

But this contradicts (4.12).
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Step 3. Assume that there not exists minR>0 µR , the constant m in (2.2) is 1 and
infR>0 µR > 0. Proceeding as in Step 1, due to (4.7) we have

Z(T (t)) ≤ 〈x − y〉 exp

((
λL

infR>0 µ
2
R

− 1

2

)
t

)
exp(B(t)), t ≥ 0, P − a.s.

and then we can conclude as in Step 1, if λ < infR>0 µ
2
R/2L. ��

4.2. The case of Dirichlet boundary conditions

In the previous subsection we have proved Theorem 2.1 in the case of inhomoge-
neous Neumann boundary conditions. Here we show that Theorem 2.1 is still valid
in the case of Dirichlet boundary conditions, if the constant m introduced in (2.2)
is strictly greater than 1.

If, as in subsection 4.1, we set ρ(t) := ux(t) − uy(t), t ≥ 0, we have that
ρ satisfies equation (4.1), where in this case Â is the realization of the operator
A in C[0, L], endowed with Dirichlet boundary conditions. Thus, for any ϕ ∈
C1,2([0,+∞)× [0, L]) such that ϕ(t, 0) = ϕ(t, L) = 0, we have that (4.2) holds.

Now, we need the following preliminary result.

Lemma 4.3. For any 0 < δ < L/2 there exists a non-negative function ψδ ∈
C2[0, L] such that

Aψδ ≤ 0, ψδ(0) = ψδ(L) = 0, ψδ ≡ 1, on [δ, L− δ]. (4.14)

Proof. Notice that it is sufficient to show that for each 0 < δ < L/2 there
exists ψδ,1 ∈ C2[0, L/2] such that Aψδ,1 ≤ 0, ψδ,1(0) = 0 and ψδ,1 ≡ 1
on [δ, L/2]. Actually, by repeating the same arguments we find another function
ψδ,2 ∈ C2([L/2, L]) vanishing at L and fulfilling Aψδ,2 ≤ 0 and ψδ,2 ≡ 1 on
[L/2, L− δ] and then the functionψδ is obtained by gluing togetherψδ,1 andψδ,2.

If we define

fδ(ξ) := 6

δ3 ξ (ξ − δ)

(∫ ξ

0

1

a(η)
dη

)−1

, ξ ∈ (0, δ]

and set fδ(0) = −6δ2/a(0) and fδ(ξ) ≡ 0 on [δ, L/2], it is immediate to check
that fδ is a continuous non-positive mapping on [0, L/2] and∫ δ

0
fδ(ξ)

∫ ξ

0

1

a(η)
dη dξ = −1. (4.15)

Next, we define

ψδ(ξ) :=
(

1 −
∫ δ

0

g(η)

a(η)
dη

)(∫ δ

0

1

a(η)
dη

)−1 ∫ ξ

0

1

a(η)
dη

+
∫ ξ

0

g(η)

a(η)
dη, ξ ∈ [0, δ],
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where

g(ξ) :=
∫ ξ

0
fδ(η) dη.

Note that ψδ(0) = 0 and since ψδ(δ) = 1 we can extend ψδ as a continuous
mapping on [0, L/2] by setting ψδ(ξ) ≡ 1 on [δ, L/2]. Moreover ψδ ∈ C2([0, δ))
and Aψδ = fδ on [0, δ). This means that it remains to show that

lim
ξ→δ−

ψ ′
δ(ξ) = lim

ξ→δ−
ψ ′′
δ (ξ) = 0.

We have

ψ ′
δ(ξ) =

(
1 −

∫ δ

0

g(η)

a(η)
dη

)(∫ δ

0

1

a(η)
dη

)−1
1

a(ξ)
+ g(ξ)

a(ξ)
,

and then

lim
ξ→δ−

ψ ′
δ(ξ) = 1

a(δ)

[(
1 −

∫ δ

0

g(η)

a(η)
dη

)(∫ δ

0

1

a(η)
dη

)−1

+ g(δ)

]
.

Therefore, limξ→δ− ψ
′
δ(ξ) = 0 if and only if

∫ δ

0
fδ(η) dη = g(δ) = −

(
1 −

∫ δ

0

g(η)

a(η)
dη

)(∫ δ

0

1

a(η)
dη

)−1

,

that is if and only if

g(δ)

∫ δ

0

1

a(η)
dη =

∫ δ

0

g(η)

a(η)
dη − 1.

Since ∫ δ

0

g(η)

a(η)
dη = g(δ)

∫ δ

0

1

a(η)
dη −

∫ δ

0
fδ(η)

∫ η

0

1

a(ρ)
dρ dη,

it follows that limξ→δ− ψ
′
δ(ξ) = 0 if and only if∫ δ

0
fδ(η)

∫ η

0

1

a(ρ)
dρ dη = −1,

which is (4.15).
Concerning the second derivative, we have

ψ ′′
δ (ξ) = −a

′(ξ)
a(ξ)

ψ ′
δ(ξ)+ g′(ξ)

a(ξ)
.

Thus, as limξ→δ− ψ
′
δ(ξ) = 0, we have limξ→δ− ψ

′′
δ (ξ) = 0 if and only if

g′(δ)
a(δ)

= fδ(δ)

a(δ)
= 0,

which is clearly satisfied, as fδ(δ) = 0. ��
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Thus, if for any n ∈ N we set

ϕn(t, ξ) := ψ1/n(ξ), (t, ξ) ∈ [0,+∞)× [0, L],

from (4.2) we obtain

∫ L

0
ρ(t, ξ)ϕn(ξ) dξ =

∫ L

0
(x − y)(ξ)ϕn(ξ) dξ +

∫ t

0

∫ L

0
ρ(s, ξ)Aϕn(ξ) dξ ds

+λ
∫ t

0

∫ L

0
ρ(s, ξ)ϕn(ξ) dξds

+
∫ t

0

∫ L

0

[
fλ(ξ, u

x(s, ξ))− fλ(ξ, u
y(s, ξ))

]
ϕn(ξ) dξ ds

+
∫ t

0

∫ L

0

[
g(ξ, ux(s, ξ))−g(ξ, uy(s, ξ))]ϕn(ξ)w(ds, dξ).

If we assume x ≥ y, thanks to Theorem 3.1 we have that ρ(t, ξ) ≥ 0, P-a.s., and
hence, recalling that Aϕn ≤ 0, we have

∫ L

0
ρ(t, ξ)ϕn(ξ) dξ ≤

∫ L

0
(x − y)(ξ)ϕn(ξ) dξ + λ

∫ t

0

∫ L

0
ρ(s, ξ)ϕn(ξ) dξds

+
∫ t

0

∫ L

0

[
fλ(ξ, u

x(s, ξ))− fλ(ξ, u
y(s, ξ))

]
ϕn(ξ) dξ ds

+
∫ t

0

∫ L

0

[
g(ξ, ux(s, ξ))−g(ξ, uy(s, ξ))]ϕn(ξ)w(ds, dξ).

Therefore, if we define as in (4.3)

Zn(t) :=
∫ L

0
ρ(t, ξ)ϕn(ξ) dξ

Dn(t) :=
∫ L

0

[
fλ(ξ, u

x(t, ξ))− fλ(ξ, u
y(t, ξ))

]
ϕn(ξ) dξ

Mn(t) :=
∫ t

0

∫ L

0

[
g(ξ, ux(s, ξ))− g(ξ, uy(s, ξ))

]
ϕn(ξ)w(ds, dξ),

we have

Zn(t) ≤ 〈(x − y)ϕn〉 + λ

∫ t

0
Zn(s) ds +

∫ t

0
Dn(s) ds +Mn(t), t ≥ 0.

Now, it is immediate to check that all arguments used in the proof of Lemma 4.1
adapts to the martingaleMn(t), so that we can conclude that there exists an adapted
process Un(t) such that

d 〈Mn〉
dt

= Z2
n(t)Un(t), t ≥ 0,
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and

P

(
1

L
inf
R>0

µ2
R ≤ Un(t) < ∞, t ≥ 0

)
= 1.

Hence, proceeding as in the case of Neumann boundary conditions studied in the
previous subsection, we can conclude that for any x, y ∈ C[0, L] and for any
n ∈ N we have

lim
t→+∞ |(ux(t)− uy(t))ϕn|L1(0,L) = 0, P − a.s., (4.16)

where ϕn is a non-negative function in C2[0, L] fulfilling (4.14).
Next, assume that for x ≥ y

P

(
lim sup
t→+∞

∣∣ux(t)− uy(t)
∣∣
L1(0,L) > 0

)
> 0.

As we are assumingm > 1, we have that (2.8) holds and then for any x ∈ C[0, L]

P

(
sup
t≥0

|ux(t)|C[0,L] < ∞
)

= 1.

This implies that there exists some R̄ > 0 such that

P

(
lim sup
t→+∞

|ux(t)− uy(t)|L1(0,L) > 0, sup
t≥0

|ux(t)|C[0,L] ∨ sup
t≥0

|uy(t)|C[0,L] ≤ R̄

)
> 0.

(4.17)

If

sup
t≥0

|ux(t)|C[0,L] ∨ sup
t≥0

|uy(t)|C[0,L] ≤ R̄,

for any t ≥ 0 we have

|(ux(t)− uy(t))(1 − ϕn)|L1(0,L) ≤ 2R̄ |1 − ϕn|L1(0,L) → 0, as n → ∞.

Then for ε > 0 fixed we can find nε ∈ N such that

sup
t≥0

|ux(t)|C[0,L] ∨ sup
t≥0

|uy(t)|C[0,L] ≤ R̄

�⇒ sup
t≥0

|(ux(t)− uy(t))(1 − ϕnε )|L1(0,L) ≤ ε.

This allows to conclude that ux(t) − uy(t) converges to zero in L1(0, L) norm.
Actually, if

sup
t≥0

|ux(t)|C[0,L] ∨ sup
t≥0

|uy(t)|C[0,L] ≤ R̄,

we have for any t ≥ 0

|ux(t)− uy(t)|L1(0,L) ≤ ε + |(ux(t)− uy(t))ϕnε |L1(0,L)



Stabilization by noise for a class of stochastic reaction-diffusion equations 211

and hence, thanks to (4.16), due to the arbitrariness of ε > 0 we have

lim
t→+∞ |ux(t)− uy(t)|L1(0,L) = 0.

But this contradicts (4.17) as

P

(
lim sup
t→+∞

|ux(t)− uy(t)|L1(0,L) > 0, sup
t≥0

|ux(t)|C[0,L] ∨ sup
t≥0

|uy(t)|C[0,L] ≤ R̄

)

≤ P

(
lim sup
t→+∞

|ux(t)− uy(t)|L1(0,L) > 0, lim
t→+∞

|ux(t)− uy(t)|L1(0,L) = 0

)
= 0.

We have thus proved that Theorem 2.1 holds also in the case of Dirichlet bound-
ary conditions, if m > 1.

5. Conclusion

Let Pt be the transition semigroup associated to equation (2.1) and defined as in
(2.9) by

Ptϕ(x) := Eϕ(ux(t)), t ≥ 0,

for any x ∈ C[0, L] and any ϕ ∈ Cb(C[0, L]), the Banach space of uniformly con-
tinuous and bounded functions defined onC[0, L] with values in R. Our aim here is
to show how from Theorem 2.1 it is possible to deduce that for any x, y ∈ C[0, L]
and any ϕ ∈ Cb(C[0, L])

lim
t→+∞Ptϕ(x)− Ptϕ(y) = 0. (5.1)

Clearly, if ϕ ∈ Cb(L
1(0, L)) from Theorem 2.1 we obtain (5.1) immediately.

Next lemma shows how to pass fromCb(L
1(0, L)) to the larger spaceCb(C[0, L]).

Lemma 5.1. For anyϕ ∈ Cb(C[0, L]) there exists a sequence {ϕn}⊂Cb(L1(0, L))
such that {

lim
n→∞ϕn(x) = ϕ(x), x ∈ C[0, L],

‖ϕn‖Cb(L1(0,L)) ≤ ‖ϕ‖Cb(C[0,L]).

Proof. If x ∈ L1(0, L), we can extend it continuously as a L1(0,∞)-function in
such a way that if x ∈ C[0, L] then its extension is in C[0,+∞). Let Px denote
this extension. For any n ∈ N and x ∈ L1(0, L) we define

xn(ξ) := n

∫ ξ+ 1
n

ξ

P x(η) dη, ξ ∈ [0, L].

Clearly for any n ∈ N we have that xn ∈ C[0, L] and if x ∈ C[0, L] we have

lim
n→∞ xn = x, in C[0, L].
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Now, for any ϕ ∈ Cb(C[0, L]) we set

ϕn(x) := ϕ(xn), x ∈ L1(0, L).

For any x ∈ L1(0, L) we have

|ϕn(x)| = |ϕ(xn)| ≤ sup
x∈C[0,L]

|ϕ(x)| = ‖ϕ‖Cb(C[0,L]),

so that

sup
x∈L1(0,L)

|ϕn(x)| ≤ sup
x∈C[0,L]

|ϕ(x)|.

Moreover, for any x, y ∈ L1(0, L) we have

xn(ξ)− yn(ξ) = n

∫ ξ+ 1
n

ξ

(P x(η)− Py(η)) dη

and then

|xn(ξ)− yn(ξ)| ≤ n

∫ ξ+ 1
n

ξ

|Px(η)− Py(η)| dη ≤ n |Px − Py|L1(0,∞). (5.2)

This implies that ϕn is uniformly continuous on L1(0, L). Indeed, for any ε > 0
we fix δε > 0 such that

|z1 − z2|C[0,L] ≤ δε �⇒ |ϕ(z1)− ϕ(z2)| ≤ ε.

Now, as P : L1(0, L) → L1(0,∞) is continuous there exists ρε > 0 such that

|x − y|L1(0,L) ≤ ρε �⇒ |Px − Py|L1(0,∞) ≤ δε

n
.

Then, due to (5.2) we have

|x − y|L1(0,L) ≤ ρε �⇒ |xn − yn|C[0,L] ≤ n|Px − Py|L1(0,∞)) ≤ δε,

and then

|ϕn(x)− ϕn(y)| = |ϕ(xn)− ϕ(yn)| ≤ ε.

Finally, if x ∈ C[0, L] it is immediate to check that the sequence {xn} converges
to x in C[0, L] and then ϕn(x) converges to ϕ(x). ��

From the previous lemma, if ϕ ∈ Cb(C[0, L]) and if {ϕn} ⊂ Cb(L
1(0, L)) is

a sequence as in Lemma 5.1, by the dominated convergence theorem we have that

lim
n→∞Ptϕn(x) = Ptϕ(x), t ≥ 0,

for any fixed x ∈ C[0, L]. This clearly implies that (5.1) holds for any ϕ ∈
Cb(C[0, L]). Hence, by standard arguments we can conclude that the following
theorem holds

Theorem 5.2. Under the same conditions of Theorem 2.1, if equation (2.1) admits
an invariant measure (supported onC[0, L]), such an invariant measure is unique,
ergodic and strongly mixing.
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