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Abstract. Let Um be an m × m Haar unitary matrix and U[m,n] be its n × n truncation.
In this paper the large deviation is proven for the empirical eigenvalue density of U[m,n] as
m/n → λ and n → ∞. The rate function and the limit distribution are given explicitly.
U[m,n] is the random matrix model of quq, where u is a Haar unitary in a finite von Neumann
algebra, q is a certain projection and they are free. The limit distribution coincides with the
Brown measure of the operator quq.

1 Introduction

Although the asymptotics of the eigenvalue density of different random matrices
has been widely studied since the pioneering work of Wigner [18], the first large
deviation theorem for the empirical eigenvalue density of self-adjoint Gaussian
random matrices was proven by Ben Arous and Guionnet much later [1]. After
the publication of their work, several similar theorems were obtained for different
kind of random matrices. In particular, Haar distributed unitaries were discussed by
Hiai and Petz [11] and the monograph [10] contains more information about simi-
lar results (see also [13, 2]). Free probability theory has inspired non-commutative
large deviation results for random matrices recently, see [7], for example.

The aim of this article is to prove the large deviation theorem for the empirical
eigenvalue density of truncated Haar unitary random matrices, and to determine
the limit measure. Let U be an m × m Haar distributed unitary matrix. By trun-
cating m − n bottom rows and m − n last columns, we get an n × n matrix. The
truncated matrix is a contraction, hence the eigenvalues are in the unit disc. Our
aim is to study the asymptotics of the empirical eigenvalue density when n → ∞
and m/n → λ. The truncated Haar unitaries appeared in the works [19, 5]. Since
our random matrix model is unitarily invariant, the limiting eigenvalue density is
rotation invariant in the complex plane. It turns out that the limiting density is
supported on the disc of radius 1/

√
λ. In this paper the large deviation result is
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established and the exact form of the rate function is given. The large deviation
implies the weak convergence of the empirical eigenvalue density of the truncated
unitaries with probability one.

The paper is organized as follows. Section 2 contains some preliminaries about
potential theory and large deviations. The large deviation result is stated in Section
3. Section 4 contains the proof of our main result. In Section 5 of the paper we
make a connection to free probability theory. The truncated Haar unitaries form
a random matrix model for the non-commutative random variable quq, where u

is an appropriate unitary, q is a projection and they are assumed to be free. We
observe that the limiting eigenvalue density coincides with the Brown measure of
the operator quq. Our paper is based on the joint eigenvalue density of truncated
unitaries. In the Appendix we sketch the derivation of this formula following the
original paper [19].

2 Preliminaries

In this section we review the setting of large deviation for the empirical eigenvalue
density of random matrices and collect some useful concepts and results from
potential theory.

Assume that Tn(ω) is a random n × n matrix with complex eigenvalues
ζ1(ω), . . . , ζn(ω). (If we want, we can fix an ordering of the eigenvalues, for exam-
ple, regarding their absolute values and phases, but that is not necessary.) The
empirical eigenvalue density of Tn(ω) is the random atomic measure

Pn(ω) := δ(ζ1(ω)) + · · · + δ(ζn(ω))

n
,

where δ(z) denotes the Dirac measure supported on {z} ⊂ C. Therefore Pn is a
random measure, or a measure-valued random variable.

Let us recall the definition of the large deviation principle [6]. Let (Pn) be a
sequence of measures on a topological space X. The large deviation principle holds
with rate function I : M(X) → R

+ ∪ {+∞} in the scale n−2 if

lim inf
n→∞

1

n2 log Pn(G) ≥ − inf
x∈G

I (x)

for all open set G ⊂ X, and

lim sup
n→∞

1

n2 log Pn(F ) ≤ − inf
x∈F

I (x)

for all closed set F ⊂ X.
Let U(m) be an m×m Haar distributed unitary matrix. By truncating m−n bot-

tom rows and m−n last columns, we get a n×n matrix U[m,n]. The truncated matrix
U[m,n] is not a unitary but its operator norm is at most 1. Hence the eigenvalues
ζ1, ζ2, . . . , ζn lie in the disc D := {z ∈ C : |z| ≤ 1}. The relevant topological
space is M(D), the space of probability measures on D. Note that this space is a
compact metrizable space with respect to the weak convergence of measures. Let
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P[m,n] be the empirical eigenvalue density of U[m,n]. Hence P[m,n] may be regarded
as a measure on M(D).

We are going to benefit from the fact that the joint probability density of the
eigenvalues of U[m,n] is

1

C[m,n]

∏

1≤i<j≤n

|ζi − ζj |2
n∏

i=1

(1 − |ζi |2)m−n−1

according to [19], see also the Appendix. The normalizing constant

C[m,n] = πnn!
n−1∏

j=0

(
m − n + j − 1

j

)−1 1

m − n + j
(1)

was obtained in [14].
Next we recall some definitions and theorems of potential theory [15]. For a

signed measure ν on D

�(ν) :=
∫ ∫

D2
log |z − w| dν(z) dν(w)

is the negative logarithmic energy of ν. Since

�(ν) = inf
α<0

∫ ∫

D2
max(log |z − w|, α) dν(z) dν(w),

this functional is upper semi-continuous. We want to show its concavity.
The following lemma is strongly related to the properties of the logarithmic

kernel K(z, w) = log |z − w| (cf. Theorem 1.16 in [12]).

Lemma 2.1 Let ν be a compactly supported signed measure on C such that
ν(C) = 0. Then �(ν) ≤ 0, and �(ν) = 0 if and only if ν = 0.

From this lemma we can deduce strictly concavity of the functional �. First we
prove that

�

(
µ1 + µ2

2

)
≥ �(µ1) + �(µ2)

2
, (2)

for all µ1, µ2 ∈ M(D), moreover the equality holds if and only if µ1 = µ2. For
this, apply Lemma 2.1 for the signed measure ν = µ1 − µ2. The strict midpoint
concavity (2) implies strict concavity by well-known arguments.

Let K ⊂ C be a compact subset of the complex plane, and M(K) be the col-
lection of all probability measures with support in K . The logarithmic energy E(µ)

of a µ ∈ M(K) is defined as

E(µ) :=
∫ ∫

K2
log

1

|z − w| dµ(z) dµ(w),

and the energy V of K by

V := inf{E(µ) : µ ∈ M(K)}.
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The quantity

cap(K) := e−V

is called the logarithmic capacity of K . The logarithmic potential of µ ∈ M(K)

is the function

Uµ :=
∫

K

log
1

|z − w| dµ(w)

defined on K .
Let K ⊂ C be a closed set, and Q : K → (−∞, ∞] be a lower semi-continuous

function which is finite on a set of positive capacity. The integral

IQ(µ) :=
∫ ∫

K2
log

1

|z − w| dµ(z) dµ(w) + 2
∫

K

Q(z) dµ(z)

is called weighted energy.
The following result tells about the minimizer of the weighted potential (cf.

Theorem I.3.3 in [15]).

Proposition 2.2 Let Q as above. Assume that σ ∈ M(K) has compact support,
E(σ) < ∞ and

Uσ (z) + Q(z)

coincides with a constant F on the support of σ and is at least as large as F on K .
Then σ is the unique measure in M(K) such that

IQ(σ ) = inf
µ∈M(K)

IQ(µ),

i.e., σ is the so-called equilibrium measure associated with Q.

The following lemma is the specialization of Proposition 2.2 to a radially sym-
metric function Q : D → (−∞, ∞], i. e., Q(z) = Q(|z|). We assume that Q is
differentiable on (0, 1) with absolute continuous derivative bounded below, more-
over rQ′(r) increasing on (0, 1) and

lim
r→1

rQ′(r) = ∞.

Let r0 ≥ 0 be the smallest number for which Q′(r) > 0 for all r > r0, and we set
R0 be the smallest solution of R0Q

′(R0) = 1. Clearly 0 ≤ r0 < R0 < 1.

Lemma 2.3 If the above conditions hold, them the functional IQ attains its mini-
mum at a unique measure µQ supported on the annulus

SQ = {z : r0 ≤ |z| ≤ R0},
and the density of µQ is given by

dµQ(z) = 1

2π
(rQ′(r))′ dr dϕ, z = reiϕ.
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Proof The proof is similar to the one of Theorem IV.6.1 in [15]. Using the formula

1

2π

∫ 2π

0
log

1

|z − reiϕ | dϕ =
{− log r, if |z| ≤ r

− log |z|, if |z| > r,

we get that

Uµ(z) = 1

2π

∫ R0

r0

(rQ′(r))′
∫ 2π

0
log

1

|z − reiϕ | dϕ dr

= Q(R0) − log R0 − Q(z),

for z ∈ SQ, since r0 = 0 or Q′(r0) = 0. We have

Uµ(z) + Q(z) = Q(R0) − log R0,

which is clearly a constant.
Next we check that Uµ(z) + Q(z) ≥ Q(R0) − log R0 for |z| < r0 and for

|z| > R0. So µQ satisfies conditions of Theorem 2.2 and it must be the unique
minimizer. 
�

3 The large deviation theorem

Our large deviation theorem for truncated Haar unitaries is the following.

Theorem 3.1 Let U[m,n] be the n×n truncation of an m×m Haar unitary random
matrix and let 1 < λ < ∞. If m/n → λ as n → ∞, then the sequence of empirical
eigenvalue densities Pn = P[m,n] satisfies the large deviation principle in the scale
1/n2 with rate function

I (µ) := −
∫ ∫

D2
log |z − w| dµ(z) dµ(w) − (λ − 1)

∫

D
log(1 − |z|2) dµ(z) + B,

for µ ∈ M(D), where

B := −λ2 log λ

2
+ λ2 log(λ − 1)

2
− log(λ − 1)

2
+ λ − 1

2
.

Furthermore, there exists a unique µ0 ∈ M(D) given by the density

dµ0(z) = (λ − 1)r

π
(
1 − r2

)2 dr dϕ, z = reiϕ

on {z : |z| ≤ 1/
√

λ} such that I (µ0) = 0.

Set

F(z, w) := − log |z − w| − λ − 1

2

(
log(1 − |z|2) + log(1 − |w|2)

)
,

and

Fα(z, w) := min(F (z, w), α),
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for α > 0. Since Fα(z, w) is bounded and continuous

µ ∈ M(D) �→
∫ ∫

D2
Fα(z, w) dµ(z) dµ(w).

is continuous in the weak* topology, when the support of µ is restricted to a compact
set. The functional I is written as

I (µ) =
∫ ∫

D2
F(z, w) dµ(z) dµ(w) + B

= sup
α>0

∫ ∫

D2
Fα(z, w) dµ(z) dµ(w) + B ,

hence I is lower semi-continuous.
We can write I in the form

I (µ) = −�(µ) − (λ − 1)

∫

D
log(1 − |z|2) dµ(z) + B.

Here the first part −�(µ) is strictly convex (as it was established in the previous
section) and the second part is affine in µ. Therefore I is a strictly convex functional.

If X is compact and A is a base for the topology, then the large deviation
principle is equivalent to the following conditions (Theorem 4.1.18 in [6]):

−I (x) = inf
x∈G,G∈A

{
lim sup
n→∞

1

n2 log Pn(G)

}
= inf

x∈G,G∈A

{
lim inf
n→∞

1

n2 log Pn(G)

}

for all x ∈ X. We apply this result in the case X = M(D), and we choose
{
µ′ ∈ M(D) :

∣∣∣∣
∫

D
zk1zk2 dµ′(z) −

∫

D
zk1zk2 dµ(z)

∣∣∣∣ < ε for k1 + k2 ≤ m

}
.

to be G(µ; m, ε). For µ ∈ M(D) the sets G(µ; m, ε) form a neighborhood base
of µ for the weak* topology of M(D), where m ∈ N and ε > 0. To obtain the
theorem, we have to prove that

−I (µ) ≥ inf
G

{
lim sup
n→∞

1

n2 log Pn(G)

}
,

−I (µ) ≤ inf
G

{
lim inf
n→∞

1

n2 log Pn(G)

}
,

where G runs over neighborhoods of µ.
The large deviation theorem implies the almost sure weak convergence.

Theorem 3.2 Let U[m,n], Pn and µ0 as in Theorem 3.1. Then

Pn(ω)
n→∞−→ µ0

weakly with probability 1.

The proof is standard, one benefits from the compactness of the level sets of
the rate function and the Borel-Cantelli lemma is used, see [6].
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4 Proof of the large deviation

In this section we prove Theorem 3.1. Our method is based on the explicit form of
the joint eigenvalue density.

First we compute the limit of the normalizing constant C[m,n] given in (1).

B =: lim
n→∞

1

n2 log C[m,n]

= − lim
n→∞

1

n2

n−1∑

j=1

log

(
m − n + j − 1

j

)

= − lim
n→∞

1

n − 1

n−1∑

i=1

n − 1 − i

n − 1
log

m − n − 1 + i

i
.

Here the limit of a Riemannian sum can be recognized and this gives an integral:

B = −
∫ 1

0
(1 − x) log

(
λ − 1 + x

x

)
dx

= −λ2 log λ

2
+ λ2 log(λ − 1)

2
− log(λ − 1)

2
+ λ − 1

2
.

The lower and upper estimates are stated in the form of lemmas.

Lemma 4.1 For every µ ∈ M(D),

inf
G

{
lim sup
n→∞

1

n2 log Pn(G)

}
≤ −

∫ ∫

D2
F(z, w) dµ(z) dµ(w) − B

where G runs over a neighborhood base of µ.

This is the easier estimate, one can follow the proof of the earlier large deviation
theorems, see [1, 2, 10].

Lemma 4.2 For every µ ∈ M(D),

inf
G

{
lim inf
n→∞

1

n2 log Pn(G)

}
≥ −

∫ ∫

D2
F(z, w) dµ(z) dµ(w) − B,

where G runs over a neighborhood base of µ.

Proof If
∫ ∫

D2
F(z, w) dµ(z) dµ(w)

is infinite, then we have a trivial case. Therefore we may assume that this double
integral is finite.

Since F(z, w) is bounded from below, we have
∫ ∫

D2
F(z, w) dµ(z) dµ(w) = lim

k→∞

∫ ∫

D2
F(z, w) dµk(z) dµk(w)
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with the conditional measure

µk(B) = µ(B ∩ Dk)

µ(Dk)
,

for all Borel set B, where

Dk :=
{
z : |z| ≤ 1 − 1

k

}
.

So it suffices to assume, that the support of µ is contained in Dk for some k ∈ N.
Next we reguralize the measure µ. For any 1/k(k + 1) > ε > 0, let ϕε be a

nonnegative C∞-function supported in the disc {z : |z| < ε} such that
∫

D
ϕε(z) dz = 1,

and ϕε ∗ µ be the convolution of µ with ϕε. This means that ϕε ∗ µ has the density
∫

D
ϕε(z − w) dµ(w)

on Dk+1. Thanks to concavity and upper semi-continuity of � restricted on prob-
ability measures with uniformly bounded supports, it is easy to see that

�(ϕε ∗ µ) ≥ �(µ).

Also

lim
ε→0

∫

D
log (1 − |z|)2 d(ϕε ∗ µ)(z) =

∫

D
log

(
1 − |z|2

)
dµ(z),

since log
(
1 − |z|2) is bounded on Dk+1. Hence we may assume that µ has a con-

tinuous density f on the unit disc D, and δ ≤ f (z) ≤ δ−1 for some δ > 0.
We want to partition the disc into annuli of equal measure. Let k = [

√
n], and

choose

0 = r
(n)
0 ≤ r

(n)
1 ≤ · · · ≤ r

(n)
k−1 ≤ r

(n)
k = 1,

such that

µ
({

z = reiϕ : r ∈ [r(n)
i−1, r

(n)
i ]

})
= 1

k
for 1 ≤ i ≤ k.

Note that

k2 ≤ n ≤ k(k + 2),

and there exists a sequence l1, . . . , lk such that k ≤ li ≤ k + 2, for 1 ≤ i ≤ k, and∑k
i=1 li = n. Now we partition radially. For fixed i let

0 = ϕ
(n)
0 ≤ ϕ

(n)
1 ≤ · · · ≤ ϕ

(n)
li−1 ≤ ϕ

(n)
li

= 2π,
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such that

µ
({

z = reiϕ : r ∈ [r(n)
i−1, r

(n)
i ], ϕ ∈ [ϕ(n)

j−1, ϕ
(n)
j ]

})
= 1

kli
for 1 ≤ j ≤ li .

In this way we divided D into n pieces S
(n)
1 , . . . , S

(n)
n . Here

δ(1 − εn)

n
≤ δ

kli
=
∫

S
(n)
i

dz ≤ 1

k2δ
≤ 1 + ε′

n

nδ
, (3)

where εn = 2/(
√

n + 2) → 0 and ε′
n = 1/(

√
n − 1) → 0 as n → ∞. We can

suppose that

lim
n→∞

(
max

1≤i≤n
diam

(
S

(n)
i

))
= 0. (4)

In each part S
(n)
i we take a smaller one D

(n)
i , similarly to S

(n)
i by dividing the radial

and phase intervals above into three equal parts, and selecting the middle ones, so
that

δ(1 − εn)

9n
≤
∫

D
(n)
i

dz ≤ 1 + ε′
n

9nδ
. (5)

We set

�n :=
{
(ζ1, . . . , ζn) : ζi ∈ D

(n)
i , 1 ≤ i ≤ n

}
.

For any neighborhood G of µ

�n ⊂ {ζ ∈ Dn : µζ ∈ G}

for every n large enough. Then

Pn(G) ≥ νn(�n)

= 1

Zn

∫
· · ·
∫

�n

exp

(
(n − 1)

n∑

i=1

(λ − 1) log
(

1 − |ζi |2
))

×
∏

1≤i<j≤n

|ζi − ζj |2 dζ1 . . . dζn

≥ 1

Zn

(
δ(1 − εn)

9n

)n2

exp

(
(n − 1)(λ − 1)

n∑

i=1

min
ζ∈D

(n)
i

log
(

1 − |ζ |2
))

×
∏

1≤i<j≤n



 min
ζ∈D

(n)
i ,η∈D

(n)
j

|ζ − η|2


 .
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Here for the first part we establish

lim
n→∞

(n − 1)(λ − 1)

n2

n∑

i=1

min
ζ∈D

(n)
i

log
(

1 − |ζ |2
)

= lim
n→∞

λ − 1

n

n∑

i=1

min
ζ∈D

(n)
i

log
(

1 − |ζ |2
)

= (λ − 1)

∫

D
log

(
1 − |ζ |2

)
f (ζ ) dζ,

because of (4) and verify

lim inf
n→∞

2

n2

∑

1≤i<j≤n

log



 min
ζ∈D

(n)
i ,η∈D

(n)
j

|ζ − η|




≥
∫ ∫

D2
f (ζ )f (η) log |ζ − η| dζ dη. (6)

for the second part. We have
∫ ∫

D2
f (ζ )f (η) log |ζ − η| dζ dη

≤ 2
∑

1≤i<j≤n

∫

S
(n)
i

∫

S
(n)
j

f (ζ )f (η) log |ζ − η| dζ dη

≤ 2
∑

1≤i<j≤n

log



 max
ζ∈S

(n)
i ,η∈S

(n)
j

|ζ − η|



∫

S
(n)
i

f (ζ ) dζ

∫

S
(n)
j

f (η) dη

≤ 2(1 + εn)
2

n2

∑

i<j

log



 max
ζ∈S

(n)
i ,η∈S

(n)
j

|ζ − η|


 .

Since the construction of S
(n)
i and D

(n)
i yields

lim
n→∞

2(1 + εn)
2

n2

∑

1≤i<j≤n

log




max

ζ∈S
(n)
i ,η∈S

(n)
j

|ζ − η|
min

ζ∈D
(n)
i ,η∈D

(n)
j

|ζ − η|



 = 0,

we obtain (6). 
�
The last step is to minimize I . Now we apply Lemma 2.3 for

Q(z) := −λ − 1

2
log

(
1 − |z|2

)

on D. This function satisfies the conditions of the lemma. Hence the support of the
limit measure µ0 is the disc

Sλ =
{
z : |z| ≤ 1√

λ

}
,
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and the density is given by

dµ0 = 1

π
(rQ′(r))′ dr dϕ = 1

π

(λ − 1)r
(
1 − r2

)2 dr dϕ, z = reiϕ.

For this µ0 again by [15]

I (µ0) = 1

2
Q

(
1√
λ

)
+ 1

2
log λ + 1

2

∫

Sλ

Q(z)dµ0(z) + B

= −λ − 1

2
log(λ − 1) + 1

2λ
log λ − (λ − 1)2

2π

∫ 2π

0

∫ 1√
λ

0

r log(1 − r2)

(1 − r2)2 dr dϕ

= −λ − 1

2
log(λ − 1) + 1

2λ
log λ − λ − 1

2

(
λ log

(
λ − 1

λ

)
+ 1

)
+ B

= 0.

The uniqueness of µ0 satisfying I (µ0) = 0 follows from the strict convexity of I .

5 Some connection to free probability

Let Qm be an m × m projection matrix of rank n, and let Um be an m × m Haar
unitary. Then the matrix QmUmQm has the same non-zero eigenvalues as U[m,n],
but it has m − n zero eigenvalues. The large deviation result for U[m,n] is easily
modified to have the following.

Theorem 5.1 Let 1 < λ < ∞ and Qm, Um as above. If m/n → λ as n → ∞,
then the sequence of empirical eigenvalue densities QmUmQm satisfies the large
deviation principle in the scale 1/n2 with rate function

Ĩ (µ̃) :=





I (µ), if µ̃ = (1 − λ−1)δ0 + λ−1µ,

+∞, otherwise

Furthermore, the measure

µ̃0 = (1 − λ−1)δ0 + λ−1µ0

is the unique minimizer of Ĩ , and Ĩ (µ̃0) = 0.

Now let M be a von Neumann algebra and τ be a faithful normal trace on M.
The pair (M, τ ) is often called a non-commutative probability space. A unitary
u ∈ M is called a Haar unitary if τ(uk) = 0 for every non-zero integer k. Let
q ∈ M be a projection such that τ(q) = λ. If u and q are free (see [10] or [17] for
more details about free probability), then the above (Um, Qm) is a random matrix
model of the pair (u, q). This means that

1

m
E
(
Tr P(Um, U∗

m, Qm)
) → τ

(P(u, u∗, q)
)
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for any polynomial P of three non-commuting indeterminants. This statement is a
particular case of Voiculescu’s fundamental result about asymptotic freeness ([16],
or Theorem 4.3.5 on p. 154 in [10]).

For an element a of the von Neumann algebra M, the Fuglede-Kadison deter-
minant can be defined by:

�(a) := lim
ε→+0

exp τ
(

log(a∗a + εI)1/2
)

.

It was shown by L.G. Brown in 1983 that the function

λ �→ 1

2π
log �(a − λI)

is subharmonic and its Laplacian (taken in the distribution sense) is a probability
measure µa concentrated on the spectrum of a [4]. This measure is called the Brown
measure and it is a sort of extension of the spectral multiplicity measure of normal
operators:

τ(g(a)) =
∫

C

g(z) dµa(z) (7)

for any function g on C that is analytic in a domain containing the spectrum of a.
The Brown measure is computed for quite a few examples in the paper [3].

Let u be a Haar unitary, and q = q∗ = q2 be free from u. Then uq is a so-called
R-diagonal operator and its Brown measure is rotation invariant in the complex
plane. According to [8] the Brown measure has an atom of mass 1 − λ−1 at zero
and the absolute continuous part has a density

(λ − 1)r

πλ
(
1 − r2

)2 dr dϕ (z = reiϕ)

on {z : |z| ≤ 1/
√

λ}. We just observe that this measure coincides with the limit-
ing measure in our large deviation theorem. In the moment we cannot deduce the
Brown measure from the large deviation result but it is definitely worthwhile to
study the relation.

Appendix

Let Um be an m × m Haar unitary matrix and write it in the block-matrix form
(

A B

C D

)
,

where A is an n×n, B is n×(m−n), C is (m−n)×n and D is an (m−n)×(m−n)

matrix. The space of n × n (complex) matrices is easily identified with R
2n2

and
the push forward of the usual Lebesgue measure is denoted by λn. It was obtained
in [5] that for m ≥ 2n, the distribution measure of the n × n matrix A is absolute
continuous with respect to λn and the density is

C(n, m) det(1 − A∗A)m−2n1‖A‖≤1dλn(A) . (8)
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To determine the joint distribution of the eigenvalues ζ1, ζ2, . . . , ζn of A, we
need only the matrices A and C, and by a unitary transformation we transform A

to an upper triangular form




ζ1 �1,2 �1,3 . . . �1,n

0 ζ2 �2,3 . . . �2,n

. . . . . . .

0 0 0 . . . ζn

C1 C2 C3 . . . Cn




, (9)

where C1, C2, . . . , Cn are the column vectors of the matrix C. It is well-known that
the Jacobian of this transformation is a multiple of

∏

1≤i<j≤n

|ζi − ζj |2.

Note that the columns of the matrix (9) are normalized and pairwise orthogonal.
Following the idea of [19], we integrate out the variables �1,i , �2,i , . . . , �i−1,i , Ci ,
i ≤ n.

One can construct (n − m) × (n − m) matrices X(i) such that

�ij = 1

ζ i

C∗
i X(i)Cj . (10)

We have X(1) = I and

X(i) = I +
∑

k<i

X(k) CkC
∗
k

|ζk|2 X(k).

Since

C∗
i Ci +

∑

k<i

�ki�ki = C∗
i X(i)Ci,

the vectors Ci satisfy the equations

C∗
i X(i)Ci = 1 − |ζi |2. (11)

Geometrically, the point (C1i , . . . , Cm−n,i) lies in the ellipsoid given by X(i). To
compute the volume of this ellipsoid it is enough to know the determinant of X(i)

and this is obtained from the above recursion:

det X(i) = det X(i−1)

|ζi−1|2 =
∏

j<i

1

|ζj |2 .

After this preparation we move to integration. First we integrate with respect
to the last column �1,n, �2,n, . . . , �n−1,nCn. For fixed �1,n . . . �n−1,n the distri-
bution of C1,n, . . . , Cm−n−1,n is uniform on the set

|C1,n|2 + · · · + |Cm−n−1,n|2 ≤ 1 − |ζn|2 − |�1,n|2 . . . |�n−1,n|2,
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i.e. inside the ellipsoid defined by (11). The volume of this m − n − 1 dimensional
complex ellipsoid is

(1 − |ζn|2)m−n−1

det X(n)
= (1 − |ζn|2)m−n−1

∏

i<n

|ζi |2,

Integration out of �i,n gives a factor |ζi |−2 from (10) and all together we obtain a
factor (1 − |ζn|2)m−n−1 from the last column. The same procedure may be applied
to the other columns.
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